
An Experiment in
Internet-Based, Human-Assisted Robotics

Lung Ngai, Wyatt S. Newman (wsn@po.cwru.edu), Vincenzo Liberatore (vxl11@po.cwru.edu)

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, Ohio 44106

Abstract: This paper describes an experimental
exploration in Internet-based control of robots. The
motivation of this work is that Internet communications
can be exploited to achieve greater productivity from
machines with local intelligence. Local intelligent systems
contact human experts to solicit advice when a problem
facing the machine is beyond its cognitive capabilities.
This topic is explored in the context of a robot performing
a sample domestic task (sorting laundry). An experimental
system was constructed that has limited autonomous
competence, but which proved to be significantly more
productive through the use of occasional Internet-based
human supervision.

1. Introduction: The Internet creates many technological
opportunities, one of which is the abili ty to use a standard
network infrastructure to control robots from a remote
location [1-6]. Internet-controlled robots will have
valuable applications in automation and, more
futuristically, in space and terrestrial exploration and in
home robotics. Much research has focused on using
Internet connectivity to control robots [7-9], and Internet
robotics can be regarded as the natural extension of
research in remote control. Previous work in Internet
robotics demonstrates that:
1. It is possible to control robots over the Internet.

However, this technology is not yet mature due to
long and unpredictable delays, especially on heavily
loaded IP networks that lack any provisioning for
Quali ty-of-Service [7].

2. There is some evidence that it is possible to
implement remote non-real-time robot control [8].

This paper offers an exploration of the potential for such
future applications of Internet-based robotics. In this
approach, local intelligent systems contact human experts
to solicit advice when a problem facing the machine is
beyond its cognitive capabil ities. Simple tasks may be
performed autonomously. For example, it is easy to write
a program that directs a robot to go to point A, pick up an
item, go to point B, and drop the item. If the location of
the item were always the same, the robot would continue
to repeat the task indefinitely and would never get tired of
doing the same procedure. A more complicated scenario
would be more difficult to automate. For example, if the
system is required to perform different actions depending
on the item color, the robot will start making mistakes.

The developer will also need to develop and trouble-shoot
the vision analysis code. While intelligent systems are
getting more sophisticated, achieving adequate
competence for autonomous operation in complex
environments is not yet feasible. However, partial
solutions may still be usable if augmented with occasional
human assistance. With human-assistant capability, a
robot may ask for help when it is confused. The idea is to
allow the robot to complete the system sub-procedures on
its own and ask for human help to overcome the more
difficult ones. The approach has clear applications to
automation. For example, an automated manufacturing
plant may be relatively predictable and robustly
controlled, but occasional diagnostics, corrections, and
resets may be required. These operations might be
performed via the Internet, possibly collaboratively, by
expert supervisors located anywhere in the world.
Furthermore, the approach can enable innovative
applications, such as lumbering, mining, space
exploration, and domestic service operations through
Internet-based human supervision.

In this paper, a specific experimental system is described,
including local low-level controls, Web server front-ends,
and a human/machine interface. An abstraction of a
household task—sorting laundry—is used to il lustrate and
evaluate the prospective value of Internet-based robots,
the effectiveness and needs of a browser-based interface,
and the economic opportunities presented through the use
of supervisory control.

The paper is organized as follows. In section 2, we review
two early demonstrations of Internet robotics that are
particularly relevant for this paper. In section 3, we
describe the physical and software organization of the
system. In section 4, we discuss the interaction between a
robot and a remote supervisor. In section 5, we evaluate
our approach on a simple household task, and section 6
summarizes conclusions.

2. Earlier Demonstrations: In 1997, Tarn demonstrated
network capabili ty with a joystick in front of a conference
audience in Albuquerque controlling a robot located in St.
Louis. The robot’s movement was captured from a
remote camera and projected on a screen in front of the
audience in real-time. However, the robot’s movements

were noticeably delayed. The robot’s remote control
capabili ty could not be activated during the Internet’s
peak hours because poor Internet response time causes
delays on the robot’s servo. Hence, the demonstration
was performed during the morning, when the Internet was
less busy. This experiment demonstrated that controlling
robots over the Internet was possible. However, due
communication delays and jitter, this technology was not
practical.

Another early demonstration of network-based robot
control was at the University of Southern California in the
Mercury project [8]. Users could change a robot’s position
over a bed of sand by interfacing via a browser. An air jet
was attached to the robot’s gripper. The user directed the
robot to puff air at the sand to discover what lay
underneath. A picture of the robot was provided on the
browser but it was not updated in real-time. Pictures were
captured periodically by a camera, which was attached to
the robot. The user would get an update of the robot’s
movement periodically. This demonstration showed that
a robot could be controlled as a non-real-time system.
The robot gathered all the information about the next
movement from the user before it began to move. The
Mercury project later developed into Telegarden [9]. In
Telegarden, each registered user is responsible for his/her
plant. He or she logs in every day to water the plant
through the robot’s water hose that is attached to the
gripper. However, remote operation did not reduce human
effort.

While these projects do not appear to have clear
applications beyond their experimental and entertainment
value, they nonetheless demonstrated the capability for
network-based robot control and revealed some of the
challenges.

3. System Overview: At CWRU, we constructed a
robotic test facil ity for evaluating the prospect of internet-
based supervisory control of semi-autonomous systems.
Our system consisted of a robotic arm, two cameras, a PC
controller, and a Web server.

3.1 Robot & controller: The robot used in this experiment
was a low-cost educational robot that had been retrofit for
open-architecture control. While this robot had limited
workspace, payload, speed, and precision, this choice was
attractive in terms of safety, which is a significant
consideration in remote control. The robot had five
degrees of freedom in a serial kinematic chain, similar to
popular industrial designs (see Fig 1 and 2). The robot
was interfaced at the torque level to an analog output
board within a PC control computer. Incremental
encoders on the joints were interfaced to encoder counters
within the I/O card hosted by the PC. The PC had a
Pentium 133 processor, which was relatively slow, but
adequate for this investigation.

3.2 Actuators & Sensors: The actuators consisted of the
joint motors and the robot’s gripper. The sensors included

motor encoders, an optical distance sensor, a gripper-
mounted black-and-white camera, and a color Web
camera.

3.3 Operating System: The control software on the PC ran
within the environment of the QNX operating system, a
real-time operating system derived from Unix and
commonly employed on x86 machines [10]. QNX
supports real-time multi-tasking; i.e., multiple processes
can be prioritized and scheduled to run independently,
emulating parallel execution. Multi-tasking was employed
in our system to run concurrently several control and
communication processes. Communications among the
separate processes is coordinated through semaphores
[14]. Semaphores were used to drive processes at fixed
rates and as a mutual exclusion mechanism. We used an
existing priority-driven real-time infrastructure [12,13]
that divided processes into low and high levels. The low-
level processes were simple but required execution at high
frequency and at high priority. In contrast, the high-level
processes required more computation but did not require
frequent execution. The controller software ran on the
QNX PC, was written in C, and was compiled with the
Watcom compiler [11] that is standard in QNX 4.

3.4 Web Server: The experimental system used an Apache
Web server [15] to run as the front-end for user
interaction. In turn, the Web server communicated with
the QNX controller and relayed user commands to the
robot. There is no version of the Apache server for the
QNX operating system, and so we installed the Web
server on a separate PC running Windows NT. The NT
machine connected to the robot controller through
Ethernet. In general, the Web server and the robot
controller could be installed on the same or on different
computers. A single-machine installation is characterized
by reduced hardware requirements and by fast
communication between the Web server and the
controller. The separation of front- and back-end hosts can
result in legacy with existing platforms and can lead to
higher system scalability and security.

3.5 CGI (Common Gateway Interface) scripts: The Web
server initiated robot operation by invoking a CGI script
that ran at the Web server side (see figure 3). In turn, the
script embedded TCP connectivity to relay instructions to
the robot. Furthermore, the scripts gathered feedback from
the robot and passed it on to the user. As a result, CGI
scripts provided a module to communicate and pass
information back and forth between the server and the
controller. CGI scripts were exposed to remote users by
creating a form within an HTML document and inserting
the script URI as the form action.

CGI is an acronym that stands for “Common Gateway
Interface” and refers to the protocol used to pass
arguments from the Web server to the script. Internally,
the script could be written in any programming language
but, in practice, CGI scripts are typically written in Perl.
The Apache server had a handler for running CGI scripts

as threads that are part of the Web server process: when
the server invoked a CGI script, a new thread was created
within the Web server process to execute the script. An
earlier version of the system did not use such a module
and was running CGI scripts as separate processes. The
robot reacted very slowly to users’ commands due to the
overhead for forking additional processes to execute the
scripts. When CGI scripts were wrapped in the same
server process, the robot reaction time improved
dramatically [16].

3.6 Vision Analysis: We used a Matrox card as the image
frame grabber. The Matrox card has a driver for Windows
NT but no driver for QNX. Therefore, the Matrox card
was installed on the same NT machine that hosted the
Web server. The NT machine also performed vision
analysis. Thus, images from the frame grabber were sent
to two processes: a CGI script within the server process to
forward the images to the end user and a C process that
analyzed the images (see figure 4).

The Matrox card was connected to a gray-scale camera,
which was mounted on the robot’s gripper. The camera
and frame grabber provided 512 x 480 frame with pixel
intensities in the 0 to 255 range. The driver was written
using Matrox’s Mil-Lite Version 6.1 C library [17]. The
C program for image processing was developed using
Microsoft Visual Studio.

3.7 User Interface (UI) presentation: The Web interface
was written in HTML. The interface had feedback buttons
for a user to transmit commands to the Web. The
commands would be relayed to the robot controller for
execution. Radio buttons, drop down menu, and normal
buttons were used. The radio buttons forced the user to
select from a list of valid choices so that the return string
would not be an empty string. The drop down menu
stored choices for the users (see figure 5).

Image-based servo control was accomplished through the
actual image from the camera. The frame grabber took a
snapshot of the robot’s view and the Web server encoded
the saved image as part of the HTML display. The image
was a black and white JPEG picture and it projected the
robot’s point of view (see figure 6). Such pictures were
used as an input means. The user could click on the actual
picture on the Internet browser, and this action would
invoke recording the actual pixel X and Y coordinates.
These coordinates were then delivered to the Web server
and a CGI script relayed the data from the web server to
the robot controller. Image-space coordinates were
translated into robot-space coordinates, transparent to the
operator, to command the robot to move to the selected
location.

3.8 Web Cam: The buttons and the servo control were the
input elements; however the user also needed feedback
from the system. There were two forms of feedback:
images from the robot’s viewpoint (with the gripper-
mounted camera) and a wider-angle side view from a Web

camera (a WebCam). The first camera was mounted on
the robot’s arm and its frame was refreshed only after the
robot arm completed a movement. In practice, the frame
was refreshed at the behest of a CGI script spawned by the
server when the arm movement completed. Since the
picture was delivered only at the end of the arm
movement, the user would see a “busy” icon during the
movement. A second camera was mounted near the robot
with a side view of the robot and its workspace and
provided a real-time view of the robot environment. The
camera used the Webcam32 surveyor software [18] that
acted as a real-time streaming video server to capture and
deliver the images to a remote user in real time (see figure
7). Webcam32 was a separate server that worked
independently from the Apache server, but ran on the
same NT machine as the Web server. To display the
video stream, the client used a Java applet [18], i.e., a Java
bytecode executable that was dynamically downloaded
into a browser over the Internet. The applet continuously
downloaded video streams from Webcam32, displaying
the video at a rate of about 1 frame per second.

3.9 Client site: The human supervisor interacted
exclusively with the Apache Web server and with the
Webcam32 video server. In practice, the operator could
use any of the commercially available Web browsers to
supervise the robot and download video streams. When
the user clicked on a button or selected an option from a
drop-down menu, the user choice was sent to the Web
server in a standard HTTP request. The server would then
trigger a CGI script that communicated with the robot
controller through a TCP connection. Meanwhile, the
Webcam32 server would continuously push video frames
to the Java applet running on a Java Virtual Machine
within the browser, presenting the video feed to the user.
The client site used widespread off-the-shelf components,
such as Java-enabled Web browsers, so that the human
interface to the robot required no specialized software or
hardware beyond what is already commonly available.
Furthermore, the use of standard components shifted the
software design process from the internals to the interface
between humans and machines.

4. Human / Machine interaction: Internet-based control
makes it possible for a remote user to direct robot
operations from a remote location. However, network
connectivity is inherently subject to time delays, which
constrains an interface designer to limit the
communication demands between the two hosts. Direct
teleoperation, as described in [7], requires low latency to
be safe and effective. In contrast, if most of the control
communication is in the form of low-level commands,
such as unidirectional movements, these can be
interpreted and expanded into real-time execution with
only low-level intell igence local to the robot. If robots can
handle simple local tasks as well as basic survival skill s,
such as obstacle avoidance, the latency requirements
would be greatly reduced. The principle of supervisory
control motivates our adoption of coarse-grained

interfaces such as drop down menus and point and click
interaction.

As for control feedback, it should provide reliable real-
time information about the robot’s motion to a remote
supervisor, and motivates our use of a streaming video
server at the robot site and of the corresponding client
applet at the user site.

5. Evaluation: The following experimental evaluation
illustrates the potential for network-based supervisory
control of semi-autonomous systems. The experiment
simulated a laundry-sorting task, which is mundane for
humans, but complicated for robots. Consequently, this
task is an instance in which human assistance could make
a robot productive. In the experiment, there were three
baskets with three types of washcloths: bleachable, non-
bleachable, and ambiguous. The robot was pre-
programmed to pick-up the washcloths from a source
basket and then use its cameras and visual analysis
program to determine the color of the washcloth. The
robot would then drop the washcloth into either the
bleachable basket or the non-bleachable basket, depending
on the analysis result. A pick-and-drop sequence was
considered a “task”. The entire sorting procedure was a
group of tasks. If the robot had a problem determining the
color of a washcloth, it paused and asked for help from
the user, who communicated with the robot through an
Internet browser. The user could assist the robot by using
buttons from the Web page. The human advisor looked at
the picture that was shown on the browser and clicked on
the corresponding radio button on the panel to provide
guidance. The robot then completed the task according to
the human interaction then continued with the remaining
tasks on its own.

The experiment employed a set of five washcloths, which
included four bleachable washcloths and one non-
bleachable washcloth, which were randomly placed in a
basket. Every two sets of washcloths contained a yellow
washcloth whose black-and-white camera representation
could be mistaken for a bleachable cloth. There were total
of 20 sets for the robot to sort. Autonomous operation
resulted in 83% correctness. There were a total of 4%
gripper mistakes, in which the robot gripped more than
one washcloth at a time. The remaining 13% of mistaken
sets was due to the incorrect vision analysis (see figure 8).

The system made some mistakes on the yellow
washcloths, which were incorrectly classified as
bleachable. The experiment was then modified to include
the capability for network-based human assistance. When
the robot had trouble recognizing the color of a cloth, it
would pause and take a snapshot of the cloth. The picture
of the cloth would be posted on the Web. After the remote
supervisor advised the robot, operations continued with
the remaining tasks. The robot needed help about 20% of
the time (see figure 9) and the accuracy increased to 92%.

Subsequently, we refined the gripper control and installed
a color camera, which improved autonomous performance
to 98% consistency. Combined with human assistance, the
robot made no errors while asking for human assistance
only 5% of the time.

In the experiment above, the “human assistance” system
helped the robot to be more effective when performing
difficult tasks. More generally, it is not practical to build a
competent, autonomous system that performs flawlessly
in complex situations. But if a system has some degree of
competence, can recognize situations beyond its
competence, and can contact a remote supervisor for
assistance when necessary, then it can be substantially
more valuable than in imperfect fully autonomous system.
In our demonstration, we focused on building a robot with
a high percentage of consistency and a good human
assistance system.

6. Discussion and Conclusions: In this paper, a system
was designed to experiment with the concept of human-
assisted internet-controlled robotics. The laundry-sorting
example yields encouraging results, motivating further
work with this conceptual approach. Human assistance
systems offer a new concept to automation. Building a
fully automated, reliable system can be infeasible or cost-
prohibitive for complex tasks using current technology.
Human assistance can lower development cost
significantly, and the resulting system can begin to be
operational and productive sooner than a fully
autonomous system. With human assistance, emerging
technologies could be util ized more rapidly, since
absolute dependabili ty is not required. Thus, with human
assistance, imperfect technology could be productively
deployed in demanding scenarios. Immediate applications
would include remote exploration, remote
experimentation, hazardous environment operations and
defense applications. More futuristically, this approach
could help lower the cost of achieving adequate
competence in domestic robots.

Besides lowering the cost of building a system, our
demonstration has illustrated that human assistance can
improve the consistency of a procedure. From the
laundry-sorting task example, the system performed the
operation error free with the help of human supervision.

Current and future developments are inspired by the need
to add reliabili ty and consistency to complex robotic
systems. To this end, we are implementing a sophisticated
software platform that is based on mobile intelligent
agents for large-scale software development and on local
controls and low-level intell igence for performing force-
controlled contact operations.

Acknowledgments. We would like to thank Bob
Barmish, Mike Branicky, Maria Dikshteyn, Ken Loparo,
Steve Phillips, Deepak Rao, and David Rosas for helpful
discussions. This work has been supported in part under
NASA grant NAG3-2578.

References:
1. Sayers Craig, Richard Paul, Dana Yoerger, Louis

Whitcomb, and Josko Catipovic (WHOI). “Subsea
Teleprogramming”,
http://www.cis.upenn.edu/~sayers/tele/subsea.html
May 1995

2. Sayers Craig, Augela Lai and Richard Paul. “Visual
Imagery for Subsea Teleprogramming”, IEEE
Robotics and Automation Conference, May, 1995.

3. Sayers Craig and Richard Paul. “An operator
interface for teleprogramming employing synthetic
fixtures”, Presence, Vol. 3, No. 4, 1994

4. Scalable Coordination of Wireless Robots
ftp://deckard.usc.edu/pub/arena

5. Card S. K., Moran T. P., Newell A. “The psychology
of human-computer interaction”. Hillsdale, NJ,
Lawrence Erlbaum Associates. (1983).

6. Taylor K. and Dalton B., “Internet Robots: A New
Robotics Niche”, IEEE Robotics and Automation
Magazine, 2000, pages 27-34

7. Tarn T. J. “Live Remote Control of a Robot via the
Internet”, IEEE Robotics & Automation Magazine,
pages 7-8, September 1999

8. Goldberg Ken, et. al., “Desktop Teleoperation via the
World Wide web”. IEEE Int. Conf. On Robotics and
Automation, 1995, pages 654-659.

9. Goldberg Ken and Joseph Santarromana (UC Irvine).
“The Telegarden” http://www.usc.edu/dept/garden/ ,
1995

10. Photon 1.1 Widget Reference, QNX Software
Systems, Ltd. (1998)

11. Watcom C (v10.6) Library, QNX Software Systems,
Ltd. (1998)

12. Krten, Rob, “A Guide for Realtime Programmers” ,
Parse, 1998.

13. Morris, Daniel M., “Experiments in Mechanical
Assembly Using a Novel Parallel Manipulator”, M.S.
thesis, EECS Dept., on Robotics and Automation,
1999.

14. Photon 1.1 Programmer’s Guide, QNX Software
Systems, Ltd. (1998)

15. Apache web Server http://www.apache.org
16. Mod_Perl, http://perl.apache.org
17. Matrox Imaging Library, version 6.1

http://www.matrox.com/imaging/prod/mil-
lite/home.htm

18. Surveyor (web Cam software)
http://www.surveyor.com

J2

J3

J4

J1

L1

L2L3

Gripper

J5

Figure 1. Robot Kinematics.

Figure 2. Robot’s side view.

Figure 3. Perl CGI Process.

Response to
client

CGI
process

Web server

Spawn new
process

Result

CGI
request

Client

Internet

N/T Web Server

Web Serve rControl .p l

Vis ion (Matrox
Board)

Figure 4. Client-server architecture.

Figure 5. Picture of the control interface.

Figure 6. Picture of the robot’s view control.

Figure 7. Picture of the robot’s view control.

Figure 8. Robot’s performance result.

Figure 9. Effect of human assistance.

0

5 0

1 00

1 50

2 00

2 50

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

ite ration

lig
h

t
in

te
n

si
ty

co rrec t inco rrec t

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

iteration

lig
h

t
in

te
n

si
ty

correct incorrect human assisted

