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Abstract: This paper describes an experimental 
exploration in Internet-based control of robots. The 
motivation of this work is that Internet communications 
can be exploited to achieve greater productivity from 
machines with local intelligence. Local intelligent systems 
contact human experts to solicit advice when a problem 
facing the machine is beyond its cognitive capabilities.  
This topic is explored in the context of a robot performing 
a sample domestic task (sorting laundry). An experimental 
system was constructed that has limited autonomous 
competence, but which proved to be significantly more 
productive through the use of occasional Internet-based 
human supervision.   
 
1. Introduction: The Internet creates many technological 
opportunities, one of which is the abili ty to use a standard 
network infrastructure to control robots from a remote 
location [1-6]. Internet-controlled robots will have 
valuable applications in automation and, more 
futuristically, in space and terrestrial exploration and in 
home robotics. Much research has focused on using 
Internet connectivity to control robots [7-9], and Internet 
robotics can be regarded as the natural extension of 
research in remote control. Previous work in Internet 
robotics demonstrates that: 
1. It is possible to control robots over the Internet.  

However, this technology is not yet mature due to 
long and unpredictable delays, especially on heavily 
loaded IP networks that lack any provisioning for 
Quali ty-of-Service [7]. 

2.  There is some evidence that it is possible to 
implement remote non-real-time robot control [8]. 

This paper offers an exploration of the potential for such 
future applications of Internet-based robotics. In this 
approach, local intelligent systems contact human experts 
to solicit advice when a problem facing the machine is 
beyond its cognitive capabil ities. Simple tasks may be 
performed autonomously.  For example, it is easy to write 
a program that directs a robot to go to point A, pick up an 
item, go to point B, and drop the item. If the location of 
the item were always the same, the robot would continue 
to repeat the task indefinitely and would never get tired of 
doing the same procedure. A more complicated scenario 
would be more difficult to automate. For example, if the 
system is required to perform different actions depending 
on the item color, the robot will start making mistakes.  

The developer will also need to develop and trouble-shoot 
the vision analysis code. While intelligent systems are 
getting more sophisticated, achieving adequate 
competence for autonomous operation in complex 
environments is not yet feasible. However, partial 
solutions may still be usable if augmented with occasional 
human assistance. With human-assistant capability, a 
robot may ask for help when it is confused.  The idea is to 
allow the robot to complete the system sub-procedures on 
its own and ask for human help to overcome the more 
difficult ones.  The approach has clear applications to 
automation. For example, an automated manufacturing 
plant may be relatively predictable and robustly 
controlled, but occasional diagnostics, corrections, and 
resets may be required.  These operations might be 
performed via the Internet, possibly collaboratively, by 
expert supervisors located anywhere in the world. 
Furthermore, the approach can enable innovative 
applications, such as lumbering, mining, space 
exploration, and domestic service operations through 
Internet-based human supervision.  
 
In this paper, a specific experimental system is described, 
including local low-level controls, Web server front-ends, 
and a human/machine interface.  An abstraction of a 
household task—sorting laundry—is used to il lustrate and 
evaluate the prospective value of Internet-based robots, 
the effectiveness and needs of a browser-based interface, 
and the economic opportunities presented through the use 
of supervisory control. 
 
The paper is organized as follows. In section 2, we review 
two early demonstrations of Internet robotics that are 
particularly relevant for this paper. In section 3, we 
describe the physical and software organization of the 
system. In section 4, we discuss the interaction between a 
robot and a remote supervisor. In section 5, we evaluate 
our approach on a simple household task, and section 6 
summarizes conclusions.  
 
2. Earlier Demonstrations: In 1997, Tarn demonstrated 
network capabili ty with a joystick in front of a conference 
audience in Albuquerque controlling a robot located in St. 
Louis.  The robot’s movement was captured from a 
remote camera and projected on a screen in front of the 
audience in real-time.  However, the robot’s movements 



were noticeably delayed.  The robot’s remote control 
capabili ty could not be activated during the Internet’s 
peak hours because poor Internet response time causes 
delays on the robot’s servo.  Hence, the demonstration 
was performed during the morning, when the Internet was 
less busy.  This experiment demonstrated that controlling 
robots over the Internet was possible.  However, due 
communication delays and jitter, this technology was not 
practical.    
 
Another early demonstration of network-based robot 
control was at the University of Southern California in the 
Mercury project [8]. Users could change a robot’s position 
over a bed of sand by interfacing via a browser.  An air jet 
was attached to the robot’s gripper.  The user directed the 
robot to puff air at the sand to discover what lay 
underneath.  A picture of the robot was provided on the 
browser but it was not updated in real-time. Pictures were 
captured periodically by a camera, which was attached to 
the robot.  The user would get an update of the robot’s 
movement periodically.  This demonstration showed that 
a robot could be controlled as a non-real-time system.  
The robot gathered all the information about the next 
movement from the user before it began to move.  The 
Mercury project later developed into Telegarden [9].  In 
Telegarden, each registered user is responsible for his/her 
plant.  He or she logs in every day to water the plant 
through the robot’s water hose that is attached to the 
gripper. However, remote operation did not reduce human 
effort. 
 
While these projects do not appear to have clear 
applications beyond their experimental and entertainment 
value, they nonetheless demonstrated the capability for 
network-based robot control and revealed some of the 
challenges. 
 
3. System Overview: At CWRU, we constructed a 
robotic test facil ity for evaluating the prospect of internet-
based supervisory control of semi-autonomous systems. 
Our system consisted of a robotic arm, two cameras, a PC 
controller, and a Web server. 
 
3.1 Robot & controller:  The robot used in this experiment 
was a low-cost educational robot that had been retrofit for 
open-architecture control.  While this robot had limited 
workspace, payload, speed, and precision, this choice was 
attractive in terms of safety, which is a significant 
consideration in remote control.  The robot had five 
degrees of freedom in a serial kinematic chain, similar to 
popular industrial designs (see Fig 1 and 2).  The robot 
was interfaced at the torque level to an analog output 
board within a PC control computer.  Incremental 
encoders on the joints were interfaced to encoder counters 
within the I/O card hosted by the PC. The PC had a 
Pentium 133 processor, which was relatively slow, but 
adequate for this investigation. 
 
3.2 Actuators & Sensors: The actuators consisted of the 
joint motors and the robot’s gripper.  The sensors included 

motor encoders, an optical distance sensor, a gripper-
mounted black-and-white camera, and a color Web 
camera.   
 
3.3 Operating System: The control software on the PC ran 
within the environment of the QNX operating system, a 
real-time operating system derived from Unix and 
commonly employed on x86 machines [10]. QNX 
supports real-time multi-tasking; i.e., multiple processes 
can be prioritized and scheduled to run independently, 
emulating parallel execution. Multi-tasking was employed 
in our system to run concurrently several control and 
communication processes. Communications among the 
separate processes is coordinated through semaphores 
[14]. Semaphores were used to drive processes at fixed 
rates and as a mutual exclusion mechanism. We used an 
existing priority-driven real-time infrastructure [12,13] 
that divided processes into low and high levels. The low-
level processes were simple but required execution at high 
frequency and at high priority.  In contrast, the high-level 
processes required more computation but did not require 
frequent execution. The controller software ran on the 
QNX PC, was written in C, and was compiled with the 
Watcom compiler [11] that is standard in QNX 4.    
 
3.4 Web Server: The experimental system used an Apache 
Web server [15] to run as the front-end for user 
interaction. In turn, the Web server communicated with 
the QNX controller and relayed user commands to the 
robot.  There is no version of the Apache server for the 
QNX operating system, and so we installed the Web 
server on a separate PC running Windows NT. The NT 
machine connected to the robot controller through 
Ethernet. In general, the Web server and the robot 
controller could be installed on the same or on different 
computers.  A single-machine installation is characterized 
by reduced hardware requirements and by fast 
communication between the Web server and the 
controller. The separation of front- and back-end hosts can 
result in legacy with existing platforms and can lead to 
higher system scalability and security. 
 
3.5 CGI (Common Gateway Interface) scripts:  The Web 
server initiated robot operation by invoking a CGI script 
that ran at the Web server side (see figure 3). In turn, the 
script embedded TCP connectivity to relay instructions to 
the robot. Furthermore, the scripts gathered feedback from 
the robot and passed it on to the user. As a result, CGI 
scripts provided a module to communicate and pass 
information back and forth between the server and the 
controller. CGI scripts were exposed to remote users by 
creating a form within an HTML document and inserting 
the script URI as the form action. 
 
CGI is an acronym that stands for “Common Gateway 
Interface” and refers to the protocol used to pass 
arguments from the Web server to the script. Internally, 
the script could be written in any programming language 
but, in practice, CGI scripts are typically written in Perl. 
The Apache server had a handler for running CGI scripts 



as threads that are part of the Web server process: when 
the server invoked a CGI script, a new thread was created 
within the Web server process to execute the script. An 
earlier version of the system did not use such a module 
and was running CGI scripts as separate processes. The 
robot reacted very slowly to users’ commands due to the 
overhead for forking additional processes to execute the 
scripts. When CGI scripts were wrapped in the same 
server process, the robot reaction time improved 
dramatically [16].  
 
3.6  Vision Analysis:  We used a Matrox card as the image 
frame grabber. The Matrox card has a driver for Windows 
NT but no driver for QNX.  Therefore, the Matrox card 
was installed on the same NT machine that hosted the 
Web server. The NT machine also performed vision 
analysis. Thus, images from the frame grabber were sent 
to two processes: a CGI script within the server process to 
forward the images to the end user and a C process that 
analyzed the images (see figure 4).   
 
The Matrox card was connected to a gray-scale camera, 
which was mounted on the robot’s gripper. The camera 
and frame grabber provided 512 x 480 frame with pixel 
intensities in the 0 to 255 range. The driver was written 
using Matrox’s Mil-Lite Version 6.1 C library [17].  The 
C program for image processing was developed using 
Microsoft Visual Studio.   
 
3.7 User Interface (UI) presentation:  The Web interface 
was written in HTML. The interface had feedback buttons 
for a user to transmit commands to the Web. The 
commands would be relayed to the robot controller for 
execution. Radio buttons, drop down menu, and normal 
buttons were used.  The radio buttons forced the user to 
select from a list of valid choices so that the return string 
would not be an empty string.  The drop down menu 
stored choices for the users (see figure 5).   
 
Image-based servo control was accomplished through the 
actual image from the camera. The frame grabber took a 
snapshot of the robot’s view and the Web server encoded 
the saved image as part of the HTML display. The image 
was a black and white JPEG picture and it projected the 
robot’s point of view (see figure 6). Such pictures were 
used as an input means.  The user could click on the actual 
picture on the Internet browser, and this action would 
invoke recording the actual pixel X and Y coordinates.   
These coordinates were then delivered to the Web server 
and a CGI script relayed the data from the web server to 
the robot controller. Image-space coordinates were 
translated into robot-space coordinates, transparent to the 
operator, to command the robot to move to the selected 
location. 

3.8 Web Cam:  The buttons and the servo control were the 
input elements; however the user also needed feedback 
from the system.  There were two forms of feedback: 
images from the robot’s viewpoint (with the gripper-
mounted camera) and a wider-angle side view from a Web 

camera (a WebCam).  The first camera was mounted on 
the robot’s arm and its frame was refreshed only after the 
robot arm completed a movement. In practice, the frame 
was refreshed at the behest of a CGI script spawned by the 
server when the arm movement completed. Since the 
picture was delivered only at the end of the arm 
movement, the user would see a “busy” icon during the 
movement. A second camera was mounted near the robot 
with a side view of the robot and its workspace and 
provided a real-time view of the robot environment. The 
camera used the Webcam32 surveyor software [18] that 
acted as a real-time streaming video server to capture and 
deliver the images to a remote user in real time (see figure 
7). Webcam32 was a separate server that worked 
independently from the Apache server, but ran on the 
same NT machine as the Web server.  To display the 
video stream, the client used a Java applet [18], i.e., a Java 
bytecode executable that was dynamically downloaded 
into a browser over the Internet.  The applet continuously 
downloaded video streams from Webcam32, displaying 
the video at a rate of about 1 frame per second.   

3.9 Client site: The human supervisor interacted 
exclusively with the Apache Web server and with the 
Webcam32 video server. In practice, the operator could 
use any of the commercially available Web browsers to 
supervise the robot and download video streams. When 
the user clicked on a button or selected an option from a 
drop-down menu, the user choice was sent to the Web 
server in a standard HTTP request. The server would then 
trigger a CGI script that communicated with the robot 
controller through a TCP connection. Meanwhile, the 
Webcam32 server would continuously push video frames 
to the Java applet running on a Java Virtual Machine 
within the browser, presenting the video feed to the user. 
The client site used widespread off-the-shelf components, 
such as Java-enabled Web browsers, so that the human 
interface to the robot required no specialized software or 
hardware beyond what is already commonly available. 
Furthermore, the use of standard components shifted the 
software design process from the internals to the interface 
between humans and machines. 
 
4. Human / Machine interaction:  Internet-based control 
makes it possible for a remote user to direct robot 
operations from a remote location. However, network 
connectivity is inherently subject to time delays, which 
constrains an interface designer to limit the 
communication demands between the two hosts. Direct 
teleoperation, as described in [7], requires low latency to 
be safe and effective. In contrast, if most of the control 
communication is in the form of low-level commands, 
such as unidirectional movements, these can be 
interpreted and expanded into real-time execution with 
only low-level intell igence local to the robot. If robots can 
handle simple local tasks as well as basic survival skill s, 
such as obstacle avoidance, the latency requirements 
would be greatly reduced. The principle of supervisory 
control motivates our adoption of coarse-grained 



interfaces such as drop down menus and point and click 
interaction. 
 
As for control feedback, it should provide reliable real-
time information about the robot’s motion to a remote 
supervisor, and motivates our use of a streaming video 
server at the robot site and of the corresponding client 
applet at the user site. 
 
5. Evaluation:  The following experimental evaluation 
illustrates the potential for network-based supervisory 
control of semi-autonomous systems. The experiment 
simulated a laundry-sorting task, which is mundane for 
humans, but complicated for robots. Consequently, this 
task is an instance in which human assistance could make 
a robot productive. In the experiment, there were three 
baskets with three types of washcloths: bleachable, non-
bleachable, and ambiguous. The robot was pre-
programmed to pick-up the washcloths from a source 
basket and then use its cameras and visual analysis 
program to determine the color of the washcloth.  The 
robot would then drop the washcloth into either the 
bleachable basket or the non-bleachable basket, depending 
on the analysis result.  A pick-and-drop sequence was 
considered a “task”.  The entire sorting procedure was a 
group of tasks.  If the robot had a problem determining the 
color of a washcloth, it paused and asked for help from 
the user, who communicated with the robot through an 
Internet browser.  The user could assist the robot by using 
buttons from the Web page.  The human advisor looked at 
the picture that was shown on the browser and clicked on 
the corresponding radio button on the panel to provide 
guidance.  The robot then completed the task according to 
the human interaction then continued with the remaining 
tasks on its own.   
 
The experiment employed a set of five washcloths, which 
included four bleachable washcloths and one non-
bleachable washcloth, which were randomly placed in a 
basket. Every two sets of washcloths contained a yellow 
washcloth whose black-and-white camera representation 
could be mistaken for a bleachable cloth. There were total 
of 20 sets for the robot to sort.  Autonomous operation 
resulted in 83% correctness.  There were a total of 4% 
gripper mistakes, in which the robot gripped more than 
one washcloth at a time. The remaining 13% of mistaken 
sets was due to the incorrect vision analysis (see figure 8). 
 
The system made some mistakes on the yellow 
washcloths, which were incorrectly classified as 
bleachable. The experiment was then modified to include 
the capability for network-based human assistance.  When 
the robot had trouble recognizing the color of a cloth, it 
would pause and take a snapshot of the cloth.  The picture 
of the cloth would be posted on the Web. After the remote 
supervisor advised the robot, operations continued with 
the remaining tasks. The robot needed help about 20% of 
the time (see figure 9) and the accuracy increased to 92%.  
 

Subsequently, we refined the gripper control and installed 
a color camera, which improved autonomous performance 
to 98% consistency. Combined with human assistance, the 
robot made no errors while asking for human assistance 
only 5% of the time.   
 
In the experiment above, the “human assistance” system 
helped the robot to be more effective when performing 
difficult tasks. More generally, it is not practical to build a 
competent, autonomous system that performs flawlessly 
in complex situations.  But if a system has some degree of 
competence, can recognize situations beyond its 
competence, and can contact a remote supervisor for 
assistance when necessary, then it can be substantially 
more valuable than in imperfect fully autonomous system. 
In our demonstration, we focused on building a robot with 
a high percentage of consistency and a good human 
assistance system.   
 
6. Discussion and Conclusions: In this paper, a system 
was designed to experiment with the concept of human-
assisted internet-controlled robotics.  The laundry-sorting 
example yields encouraging results, motivating further 
work with this conceptual approach. Human assistance 
systems offer a new concept to automation.  Building a 
fully automated, reliable system can be infeasible or cost-
prohibitive for complex tasks using current technology.  
Human assistance can lower development cost 
significantly, and the resulting system can begin to be 
operational and productive sooner than a fully 
autonomous system. With human assistance, emerging 
technologies could be util ized more rapidly, since 
absolute dependabili ty is not required. Thus, with human 
assistance, imperfect technology could be productively 
deployed in demanding scenarios. Immediate applications 
would include remote exploration, remote 
experimentation, hazardous environment operations and 
defense applications.  More futuristically, this approach 
could help lower the cost of achieving adequate 
competence in domestic robots.  
 
Besides lowering the cost of building a system, our 
demonstration has illustrated that human assistance can 
improve the consistency of a procedure.  From the 
laundry-sorting task example, the system performed the 
operation error free with the help of human supervision.  
 
Current and future developments are inspired by the need 
to add reliabili ty and consistency to complex robotic 
systems. To this end, we are implementing a sophisticated 
software platform that is based on mobile intelligent 
agents for large-scale software development and on local 
controls and low-level intell igence for performing force-
controlled contact operations.  
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Figure 1. Robot Kinematics. 

 

 
Figure 2. Robot’s side view. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Perl CGI Process. 
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Figure 4. Client-server architecture. 
 

 
Figure 5. Picture of the control interface. 

 

 
Figure 6. Picture of the robot’s view control. 

 

 
Figure 7. Picture of the robot’s view control. 

Figure 8. Robot’s performance result. 

Figure 9. Effect of human assistance. 
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