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Ž .In this paper, we consider the problem of local register allocation LRA : given a
Ž .sequence of instructions basic block and a number of general purpose registers,

find the schedule of variables in registers that minimizes the total traffic between
CPU and the memory system. Local register allocation has been studied for more
than 30 years in the theory and compiler communities. In this paper, we give a
2-approximation algorithm for LRA. We also show that a variant of the known
further-first heuristic achieves a good approximation ratio. � 2000 Academic Press

1. INTRODUCTION

Register allocation is the problem of deciding which variables occupy
the register file at each step of a program. The objective of register
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allocation is to minimize the total traffic between the CPU and the
memory system. Register allocation has a substantial impact on execution
times because of the large speed gap between processors and memories. In
fact, it adds the largest single performance improvement to compiled

� �programs 17 . Register allocation has received widespread attention in
� �academic and industrial research in the past few decades 1, 13, 33 .

1.1. Local Register Allocation

Ž .In this paper, we will focus on local register allocations LRA for which
we provide negative and positive results. Local register allocation assigns
registers to variables in basic blocks, which are maximal branch-free
sequences of instructions. Global register allocation assigns registers to
variables throughout the program. The local register allocation problem is

� �general enough to model off-line paging with write-backs 6, 10 and
� �off-line weighted caching 24, 35 . A local allocation schedules the loading

of values from memory into registers and the storing from registers into
memory, given a fixed number of registers. The main difficulty in finding
an optimal local register allocation stems from the trade-off between the
cost of loads and the cost of stores.

Local register allocation is the first step in demand-dri�en register alloca-
� �tion 28 . Subsequently, a demand-driven allocator will combine local

Žallocations into a global one. Although the second phase LRA combina-
.tion can cause significant overhead in the worst case, in practice it can be

� �done efficiently 28 . Approaches to extend an LRA to a global allocation
� �are also given in 5, 8, 16, 21�23, 26 . The objective of the local register

allocation phase is to minimize the total traffic between CPU and memory.
Consequently, it is more accurate and effective than heuristics based on
graph coloring, in which the goal is to minimize the number of registers
needed to satisfy a sequence of requests. The advantages of local register

� �allocation over graph coloring are summarized, for example, in 19 .

1.2. Pre�ious Work

Local register allocation has been performed since the first Fortran
� �compiler 3, 4 . To the best of our knowledge, local register allocation was

first considered formally in a 1966 paper by Horwitz, Karp, Miller, and
� �Winograd 18 . In that paper, an algorithm was presented to produce an

optimal allocation through dynamic programming. The algorithm accu-
rately captures the index register architecture used at the time. However,
after more than 30 years, the index register model does not reflect the
costs of a modern architecutre with general purpose registers. There are
two major differences between index and general purpose registers. First,
modern architectures can use the values of more than one variable in one
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step. Second, recent architectures would decompose the old write opera-
tion into a sequence of one read and one write. Nonetheless, the algorithm

� �was implemented as recently as 1989 19 , followed by heuristics to fix the
points where the allocation was infeasible for new architectures. As such,
the dynamic programming algorithm no longer guarantees an optimal
solution on modern architectures. The original algorithm also takes an
exponential amount of space and time as a function of the number of
registers and of the length of the basic block. The space and time
requirements were not a problem in early applications, as only two

� �registers and a short basic block were considered 21 . However, the
algorithm fails to terminate in more recent implementations due to exces-

� �sive memory space demands 19 . LRA has been recently proved to be
� �NP-hard 9 . The problem of finding a ‘‘good’’ local register allocation is

�left as an open question in the ‘‘Dragon Book’’ 1, section 9.6, function
� � �getreg, step 3 and in other standard textbooks on compilers 13, 33 .

Some heuristics have been proposed to quickly produce a local register
� � Ž .allocation 1, 13, 19, 33 . For example, the furthest-first algorithm FF

�evicts the program variable that will be referenced furthest in the future 3,
�6, 15, 16, 27 . Related heuristics other than FF have been proposed in the

context of spilling, for whose definition and algorithms we refer the reader
� �to the textbooks 1, 13, 33 . Some known LRA heuristics will be discussed

in Section 2.3.

1.3. New Results

In this paper, we present a simpler NP-hardness proof for the local
register allocation problem. We also provide a 2-approximation algorithm
WW for the local register allocation problem. Actually, the exact approxima-
tion ratio is 2 � 1�K, where K is a parameter that will be specified later
and that is related to the number of accesses to any given program variable
in a basic block. Previously, no algorithm had a performance guarantee
bounded by a constant. We consider the furthest-first algorithm that is

� �used in existing compilers 15, 16 . We propose a version of the furthest-first
Ž .algorithm which we call conservative-furthest-first CFF . We analyze the

behavior of CFF and prove a performance guarantee. Our analysis is tight.
We study weighted off-line caching, which was known to be polynomially

� � Ž .solvable 35 . We present an algorithm that runs in almost quadratic
time.

1.4. Contents

In Section 2, we will define the local register allocation problem,
compare it with paging, discuss previous heuristics, and state our results.
In Section 3, we will discuss the NP-hardness of local register allocation. In
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Section 4, we will present the approximation algorithms WW and CFF. In
the Appendix, we will give an example to contrast our algorithms.

2. PRELIMINARIES

In this section, we formulate the local register allocation problem on
architectures with general purpose registers. First, we define the off-line
paging problem with write-backs. Then, we will explain how to generalize
paging to capture the problem of local register allocation.

2.1. Paging with Write-Backs

In the paging problem, a set of M pages has to be maintained. However,
only N pages can be accommodated in fast memory at any given step.
Remaining pages will reside in slow memory. If a page is requested and it
is not in fast memory, a page fault occurs and the requested page is
brought into fast memory. In turn, a slot in fast memory has to be cleared
for the newly requested page, and a page has to be evicted. If the evicted
page is not consistent with its version on slow memory, then the evicted
page has to be written back to slow memory. A paging strategy aims at
minimizing the total number of page faults and write-backs. Paging with
write-backs is a more realistic problem than traditional paging with only
page faults because it captures the total traffic between fast and slow

� �memory 10 . Off-line paging with write-backs was first formulated in the
� �1966 paper by Horwitz et al. 18 in the context of LRA. Write-back paging

is similar to the problem of local register allocation. Both are problems of
minimizing the traffic between two adjoining levels of the memory hierar-
chy, and once pages are substituted by program variables and memory slots
by registers, write-back paging is almost identical to local register alloca-
tion. However, write-back paging differs from local register allocation in
three respects.

First, write-back paging has been studied both as an on-line and as an
off-line problem. In the on-line version, future page references are un-
known. In the off-line version, the whole sequence of page references is

�known in advance. Off-line paging algorithms serve as a theoretical 20, 25,
� � �30 and experimental 12, 31 point of comparison for on-line algorithms

� �and stimulate researchers to find on-line approximations 29 . Local regis-
ter allocation is inherently an off-line problem because the whole se-
quence of references is completely found in the compiled code.

The second difference is the following. In the paging problem, only one
page reference is generated in one step. In local register allocation,
multiple references can be generated in one step. For example, consider
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� �the ILOC 7 instruction iADD t0 t1 = > t2 which adds the variables t0
and t1 and stores the results in t2. The variables t0 and t1 have to be
read at the same time and fed simultaneously to the ALU unit. Multiple

� �simultaneous references arise also in VLIW architectures 14, 17 .
Finally, in the paging problem, a fault always accounts for one unit of

memory traffic. In local register allocation, different variables are fetched
at different costs. Indeed, many variables are loaded from memory, but
others are not. For example, suppose that t0 is a program variable whose
value is equal to a constant. Then, t0 can be loaded in a register by a load
immediate operation, which does not involve a memory access. Loading t0
is therefore cheaper than fetching a variable from memory. Some authors

� �charge a load immediate the cost of half a memory access 7 .

2.2. Local Register Allocation

We now formulate the problem of local register allocation. For ease of
presentation, we will continuously refer the reader to the example in Fig.
1, to Table 1, which summarizes the most common definitions, and to
Table 2, which gives the meaning of most symbols used in the text. The
model captures the problem of register allocation in architectures with
general purpose registers. Moreover, the model specializes to the off-line
paging problem with write-backs when � � C � 1.

LRA operates on sequences of intermediate code instructions without
branches. The leftmost column of Fig. 1 gives an example of such a

FIG. 1. An example of an optimal LRA with three registers. The first column gives a
sequence of intermediate code instructions, the second and third columns its representation
as a basic block, the fourth column gives the cost per operation assuming that S � 1 and all2

Ž .other S’s are two so that the maximum spill cost is C � 2 , and the last column gives the
register configuration after each step has been executed. In the example, the set of live

� 4variables at the end of the basic block is L � 5, 7 . Compulsory cost is given in parentheses.
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TABLE 1
Summary of the Definitions of Some Frequently Used Terms

Ž .Complete Definitions Are Found in the Text

Term Short definition

Allocation strategy A rule that associates a register allocation to a basic block
Basic block A sequence of references that satisfy the write-once condition

Ž .Capacity miss A reference other than the first to a variable that is not in
a register

Clean variable A variable that is not dirty
Dirty variable A variable that has not been stored after its definition
Live range Interval from point of definition to last point of use
Live variable A variable whose value will be needed in the future
Live on exit A variable whose value will be needed after the end of the

basic block
Reference A use or definition of a set of at most � variables
Register allocation A sequence of register configurations, one per basic block step

Ž .Register configuration Variables in register and their state clean�dirty
Register pressure Number of live unallocated variables at step j
Spill cost Cost to load and store a variable
Value range Interval between consecutive uses of a live variable

TABLE 2
Summary of the Definitions of Some Frequently Used Symbols

Ž .Complete Definitions Are Found in the Text

Symbol Short definition

� Maximum number of variables in a reference
C Maximum spill cost
K Maximum number of value ranges per variable
Ž .K i Number of value ranges of variable i
Ž .K I Number of value ranges of variable i that require a reloadL

L Set of variables live on exit
L Set of variables with live range over step jj
M Number of program variables
n Sum of reference sizes
N Number of available registers
� Register pressure at step jj
r Basic block length
S Spill cost of variable ii
� A basic block
V Set of program variables
W Set of written program variables
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sequence in a RISC-like language. Each instruction executes basic opera-
tions over a set of variables. In the example, the operations are additions,
subtractions, and so on, and the set of variables is {t0,t1, . . . , t7}. For
simplicity of notation, we will denote a variable simply by an index number,

� 4so that we define V � 1, 2, . . . , M to be the set of program �ariables.
Each intermediate code instruction generates one or more read and write
accesses to the program variables. For example, the instructions SUB t1
t2 = > t3 reads simultaneously the values of t1 and t2 in order to
execute an arithmetic operation on them. Then, it will write the result into
t3. Define a read or write request to a program variable as an element of
{read,write}� 2V. Thus, SUB t1 t2 = > t3 generates the sequences
ŽŽ � 4. Ž � 4..read, 1, 2 , write, 3 . Figure 1 gives the sequence of read and write
requests corresponding to a sequence of intermediate code instructions. In
practice, only a small number of variables can be read or written at the
same time. For example, a typical RISC instruction reads no more than
two variables and writes no more than one. We will denote by � an upper
bound on the number of variables that are accessed simultaneously. In
typical applications, � � 2, but we do not fix an a priori bound on � . In
write-back paging, � � 1. We will say that a reference is an element
Ž . V � �s, a � {read,write}� 2 where a � � . A first input to the local
register allocation problem is a basic block, which is defined as a sequence
of references of some positive length r. The third column in Fig. 1 gives
the basic block corresponding to a certain sequence of intermediate code
instructions. In the parlance of compilers, the sequence of instructions is
usually called a basic block, but, from the viewpoint of register allocation,

� �the sequence of references is, in some sense, the basic block 19 . We will
use the following notation: if � is a basic block, then the jth element of �

Ž .is denoted by � and � is written as � � � , � , . . . , � . Define n �j 1 2 r
r � � Ž .Ý a for � � s , a . We can take n to represent the total size of thej�1 j j j j

LRA instance. We will restrict our attention to a proper subset of
reference sequences defined by the following write-once condition: if a
program variable i is written at step � , then i is not written at any otherj
step and i is not read before � . The write-once condition means that thej
value in i is defined at most once and that the value of i cannot be
accessed before the step where i is defined. The write-once condition will
be shown to hold without loss of generality when we introduce the cost
model. Program variables can be partitioned into those that are written at
some step of the basic block and variables that are never written and only
read. Define W as the set of variables W 	 V that are written at some

� 4basic block step. In the example, W � 1, 3, 5, 6, 7 . In general, we assume
that the value of a variable i � W can be loaded from a memory location
or is a constant that can be determined at compile-time. We will assume
for simplicity and without loss of generality that all program variables are
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Ž . Ž .referenced; that is, for all i � V, there is a � � s, a 1 � j � r withj
i � a.

Notice that while a program variable i � W is written at some basic
block step, we do not impose that i be read anywhere else. In Fig. 1, the
variable 7 is written in the very last step and never read. However, we
cannot assume that variable 7 contains a useless value. Indeed, program
variables might hold values that are computed in the current basic block
and used in subsequent basic blocks. Although those variables are not
currently needed, their value must be maintained for future reference. A
program variable is said to be li�e on exit if its value must be maintained
after the end of the basic block. The set of variables live on exit is denoted
by L. The variables live on exit are determined by a live-variable analysis

� �procedure 1, 13, 33 . We will also need the concept of live range and of
live variables. Intuitively, the notion of liveness models basic block inter-
vals where a certain variable value is useful. The li�e range of a variable i
is an interval of the basic block � . The starting point of the live range is
the step where i is written if i � W and it is step 1 otherwise. The ending
point of the live range is step r if i � L and is the last step where i is read
otherwise. A variable i is said to be li�e throughout all the steps of its live
range. For example, in Fig. 1, variable 1 is live from steps 2 to 9, variable 2
is live from steps 1 to 7, and variable 5 is live from steps 6 to 10.

We turn now to model the memory device that is used to execute the
basic block. The processor has N general purpose registers. If a program
variable i is read and it is not in a register, it has to be loaded at cost S . Ini
turn, a program variable i� might have to be evicted to make space for the
new program variable i. The eviction of i� could require that i� be stored
in main memory at a cost S . The main difficulty of the local registeri�
allocation problems originates from the trade-off between minimizing the
cost of loads and the cost of stores. We now detail the cost of loading and
storing variables. If a variable i is not live, then it can be evicted from a
register without storing it because the value of i will never be needed
again. For example, variable 3 can be evicted for free at step 7 because 3 is
dead. Consider now live variables. A variable i � W is said to be dirty at
step j if it has not been stored into main memory between the step when it
was written and step j. All other variables are clean. The state of a variable
is an element of {clean,dirty}. Roughly speaking, dirty live variables
need to be stored for correctness of the resulting code. A clean live
variable can be evicted from a register without storing it. Consider, for
example, step 5 in Fig. 1 and assume that after step 4, variables 1, 2, and 3
are in registers. Step 5 requires the value of 3 and 4. Variable 3 is already
in a register, and we only need to load variable 4. If there are only N � 3
registers, then either variable 1 or variable 2 must be evicted. If variable 1
is evicted, then the value of 1 must be stored in main memory before step
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5. Indeed, we need the value of 1 at step 9 and if we did not store variable
1, we would lose the value. However, variable 2 is already available in

Ž .memory or is a constant and so we do not need to store it. Define a
register configuration Q as a subset of V � {clean,dirty} of size at most
N. A register configuration represents the program variables that are
currently in a register and their state. We will assume that a variable is

Ž . Ž .present in at most one register; that is, if i, s � Q, then i, t � Q. Such
an assumption holds without loss of generality because of the cost model
that we use and define below. We will always assume without loss of
generality that N 
 � , because a request for more than N variables
cannot be satisfied with only N registers. Figure 1 gives examples of
register configurations.

A register allocation for a basic block � of length r is a sequence
Ž .QQ � Q , Q , . . . , Q with the properties that0 1 r

� Ž . Ž .If � � read, a and i � a, then either i, clean � Q orj j
Ž .i, dirty � Q ;j

� Ž . Ž .If � � write, a and i � a, then i, dirty � Q and Q con-j j h
Ž . Ž .tains neither i, clean nor i, dirty for all h � 0, 1, . . . , j � 1.

The condition on Q states that the value of i cannot be used before it ish
defined. We define an allocation strategy as a rule that associates a register
allocation to a basic block � starting from the initial configuration Q .0
Incidentally, Q � � in paging as well as in the local allocation problems0

� �generated by demand-driven register allocation 28 . However, other regis-
ter allocators fix a possibly nonempty Q in a global phase preceding local0

� �allocation 7, 23 . We now describe our cost model. Each variable i has a
spill cost S . Assume without loss of generality that the costs are normal-i

� 4 � 4ized so that min S : 1 � i � M � 1, and define C � max S : 1 � i � M .i i
�In write-back paging, C � 1. In compiler applications, C 
 2 typically 7,

�23 . We now detail the cost of all load and store operations. The cost of
Ž . Ž .changing the contents of one register from i, dirty to i, clean at step

j is the cost of storing i, which is S if i is live and zero otherwise. The costi
Ž . Ž . Žof changing the contents of one register from i, s to h, t h � i and

. Ž .s, t � {clean,dirty} at step j is the sum of the cost for storing i, s
Ž . Ž .plus the cost for loading h, t . The cost for storing i, s is S if i is livei

Ž .and s � dirty, and it is zero otherwise. The cost for loading h, t is zero
Ž .if h is being written at step j. The cost for loading h, t is S if h is noth

being written at step j. For example, in step 5 we evict variable 2 at no cost
because variable 2 is clean. Then, we load variable 4 for a cost S � C � 2.4
Had we evicted variable 1 instead, we would have had to store it because
variable 1 is live and dirty. Hence, the cost would have been S � S � 4.1 4
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The set L of variables live on exit contributes to the determination of live
variables and consequently to the determination of spill cost.

Suppose that a program variable i � W is not in the initial register
configuration Q . Then, i has to be loaded at least once by any allocation0
strategy. The first load of a program variable has been variously called a

� �compulsory miss, a cold start miss, or a first reference miss 17 . Compul-
sory misses cause a fixed cost that any allocation has to pay. Therefore,
compulsory misses can be disregarded while seeking an optimum alloca-
tion. Henceforth, compulsory misses will be ignored, and we will consider

� �only noncompulsory or, in the terminology of 17 , capacity misses. The cost
for processing capacity misses will be termed the capacity cost. We will use
Ž .c QQ to denote the capacity cost of an allocation QQ.

EXAMPLE. The cost of loading 0 and 4 is compulsory. The cost of
loading variable 2 for the first time is also compulsory, but not the cost of
loading variable 2 for the second time.

An optimum register allocation QQ from Q is the one whose first0
Ž .configuration is Q and that minimizes c QQ . In this paper, we consider0

the following local register allocation problem:

Instance: A set V of program variables, a spill cost S for each i � V,i
a subset L 	 V of variables live on exit, a basic block � over V, a positive

Ž .integer N the number of registers , and an initial register configuration
Q0

Solution: An optimum register allocation for � with N registers

We remark that local spill cost is only one of the contributing factors to
the performance of compiled programs and that overall performance
depends also on the effectiveness of other compiler phases, such as, for
example, global allocation. As a case in point, consider the operations of a
demand-driven allocator. Demand-driven allocators first perform local
allocation for each basic block independently under the assumption that
Q � � and with no regard for the final register configuration Q . Then0 r
the allocator combines the local allocations into a global allocation. As a
result, the overall spill cost depends not only on the capacity cost of each
single allocation, but also on the effects of the recombination phase.
Although the global allocation phase could in principle contribute signifi-
cantly in addition to the local spill costs, it is claimed that it can be done

� �efficiently in practice 28 . Consequently, LRA affects actual performance
more than the global recombination pass and is thus identified as one of

� �the two steps where efforts should be concentrated 19, 28 .
We will now justify the write-once condition. Replace a program vari-

able i with a collection of newly introduced program variables, each of
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which is live between two consecutive writes to i. The newly introduced
variables have cost S equal to that of the original variable and belong to L
if and only if the original variable does. For example, in

� 4 � 4 � 4. . . write, 1 , . . . , read, 1 , . . . , read, 1 , . . . ,Ž . Ž . Ž .ŽŽ
� 4 � 4write, 1 , . . . read, 1 , . . . ,Ž . Ž . .

we will obtain

� 4 � 4 � 4. . . write, 2 , . . . , read, 2 , . . . , read, 2 , . . . ,Ž . Ž . Ž .ŽŽ
� 4 � 4write, 3 , . . . , read, 3 , . . . ,Ž . Ž . .

where 2 and 3 are newly introduced variables, S � S � S , and 2, 3 � L2 3 1
if and only if 1 � L. Clearly, no program variable is written more than
once. A simple induction shows that the new optimization problem is

� �equivalent to the original one. Incidentally, some compilers 7 produce
intermediate code instructions that define a variable only once, so that no
further transformation is needed.

2.3. Pre�ious Heuristics

In this section, we will discuss two LRA heuristics that have been
Ž .proposed in the literature. The two heuristics are furthest-first FF and

Ž .clean-first CF . Both heuristics assign program variables to empty registers
if there is one. The heuristics differ if no empty register exists and a
variable has to be evicted from a register. FF evicts the variable that will

� �be requested furthest in the future 3 . CF evicts the clean variable
requested furthest in the future if there is one, otherwise it evicts the dirty

� �variable requested furthest in the future 13, 19 .
The FF rule has a long and interesting story. Apparently, it was rediscov-

� �ered several times. FF is commonly attributed to Belady 6 , who intro-
duced it in the context of off-line paging. Actually, Belady cites the work

� �by Horwitz et al. 18 , where FF is implicitly proven to be optimal for
paging without write-backs. FF was first implemented by Sheldon Best in

� �1956 as a part of the first Fortran compiler 3 . Apparently, Best had also
Ž .an unpublished proof of optimality as early as 1955. An FF algorithm

gives rise to ties among variables whose next reference is equally further in
the future, a case that occurs when more than one variable is referenced in

Ž .a basic block step � � 1 or if several variables are live on exit, but never
referenced again in the basic block. FF can be regarded as a family of
algorithms, where each algorithm follows a different rule to break ties. All
FF algorithms are optimal for off-line paging without write-backs, which is



FARACH-COLTON AND LIBERATORE48

the LRA problem for C � � � 1 and W � �. However, FF is not opti-
mum for write-back paging, where we only dispense with W � � and
retain C � � � 1. Moreover, some versions of FF do not achieve any
multiplicative performance guarantee. Suppose, for example, that ties are
broken against the variable with the smallest index number; that is, if two
variables are requested equally further in the future, the one with the
smallest index is the first to be evicted. Let Q � �, � �0
ŽŽ � 4. Ž � 4. Ž � 4.. � 4write, 1 , read, 2 , read, 3 , L � 1, 2 , and N � 2. All load costs
are compulsory, an eviction for 2 is at no cost because 2 is clean, and an
eviction for 1 costs S � C � 1. Then, the cost of FF is 1, while the1
optimum cost is 0. In Section 4.6, we will show that a simple version of FF
achieves a 2C performance guarantee for the general LRA problem. The
example above also suggests that FF should take into account variable
state while breaking ties. The CF heuristic is an attempt to introduce state
considerations in the FF rule. Unfortunately, CF can be arbitrarily worse
than the optimum for the problem of write-back paging. Construct a basic
block that fills all registers but one with dirty variables. Then, ask repeat-

ŽŽ � 4. Ž � 4.. x�1edly for two clean variables for x � 1 times: read, 1 , read, 2 .
CF repeatedly evicts and reloads 1 and 2 and pays a capacity cost of 2 x. In
this case, the optimum strategy is FF that would evict a dirty variable,
paying a cost of 1. Take x arbitrarily large and, while x grows, the cost
ratio of CF over FF tends to infinity.

3. HARDNESS OF OFF-LINE PAGING

In this section, we give a new proof of the NP-hardness of LRA. First of
all, we will show that the problem is NP-hard for � � N and then we will
show the result for � � 1. Our proofs hold even for the special case

� �C � 1. Previously, NP-hardness was known 9 in the original model of
� �index register architectures 18 . That construction can be adapted to the

LRA problem that we consider in this paper. However, we will present a
simpler reduction directly from set cover.

LEMMA 3.1. The decision problem corresponding to local register alloca-
Žtion i.e., gi�en a basic block � , an initial configuration Q , and two positi�e0

integers N and z, decide whether there is a register allocation for N registers
.that costs no more than z is NP-complete.

Proof. The reduction is from set cover: given a collection SS �
� 4 � 4S , S , . . . , S of subsets of S � 1, 2, . . . , p , find a subset SS � 	 SS with1 2 m 0

� �the properties that SS � � z and that every element in S belongs to at0
least one set in SS �. We will assume without loss of generality that for
every j � S there is an S � SS with j � S.0
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We will have program variables numbered from 1 to m corresponding to
� 4the sets S , S , . . . , S and define X � 1, 2, . . . , m . We introduce a pro-1 2 m

gram variable � � m � j for each j � S , so that the total number ofj 0
� 4 � 4 � 4variables is M � m � p. Let X � i : j � S � � 	 X � � for j � S .j i j j 0

The basic block is

� 4 � 4 � 4� � write, 1 , write, 2 , . . . , write, m ,Ž . Ž . Ž .Ž
� 4write, � , read, X , read, X ,Ž . Ž .Ž .1 1

� 4write, � , read, X , read, X ,Ž . Ž .Ž .2 2
...

� 4write, � , read, X , read, X .Ž .Ž .Ž . .p p

Finally, Q � L � � and N � m. We now highlight some properties that0
we will use in the next proof. Since j is contained in at least one set from

� �SS , we have X � m. The maximum size of a requested set is thej
� � � � � 4maximum of X � m and max X : 1 � j � p � m and so � � m � N.j

Moreover, no more than one variable is written at any step in � . Clearly,
the size of the LRA instance is polynomial in the size of the input.

We will show that every set cover of size z corresponds to an allocation
of cost z � p and that conversely an allocation of cost z � p corresponds
to a cover of size at most z. Let � Ž j. be the subsequence of � defined as

Ž j. ŽŽ � 4. Ž ..� � write, � , read, X for j � S . First, notice that � � Xj j 0 j h
when h � j and � � X. It follows that � is live only during � Ž j..j j

Ž j. � 4Therefore, the set of live variables during � is X � � . Then, therej
are exactly m � 1 � N � 1 live variables during � Ž j.. It follows that �
can be satisfied by evicting during � Ž j. one program variable in the set
Ž � 4. � 4X � � � X � i : j � S . Given a set cover SS � of size z, we constructj j i
an allocation as follows. We store all the program variables i with
S � SS �, and for every � Ž j., we choose to evict a page i with j � S � SS �i i
in any arbitrary way. The cost due to stores is exactly z. The evicted

Ž . Ž j.variable is requested in read, X after � and has to be reloaded, so
that the cost due to loads is exactly p. Hence, the total cost of the
allocation is z � p. Conversely, suppose that there is an allocation QQ with
Ž .c QQ � z � p. Notice that any allocation reloads all X after X and evictsj

at least one program variable at each request sequence � Ž j.. In fact, we
can assume without loss of generality that exactly one variable is evicted in
correspondence to each � Ž j.. Indeed, if this is not the case, we choose in
an arbitrary way a program variable q among those that are evicted forj

Ž j.Ž .� j � S . Then, we replace the original allocation with one that evicts0
only q for � Ž j.. The new allocation is feasible and it costs no more thanj
the original one. But the new allocation immediately corresponds to a set
cover of size z, and the result follows.
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The case � � N is the most general as it allows requests for any number
of pages. However, � � 1 in off-line write-back paging and the previous
lemma does not hold. Instead, we prove the following

THEOREM 3.2. The decision problem corresponding to local register alloca-
Žtion i.e., gi�en a basic block � and two positi�e integers N and z, decide

.whether there is a register allocation that costs no more than z is NP-complete
e�en for the particular case of off-line write-back paging.

Proof. The reduction uses the construction in the previous lemma. The
Ž .only remaining problems are requests of the form � � read, Y forj

Ž 4 � �some set Y � y , y , . . . , y 	 V that has Y � 1. Such a request is1 2 �Y �
� Ž � .4 �mapped to a subsequence � � � , where � is the sequencej j j

� � 4 � 4 � 4� � read, y , read, y , . . . , read, y .Ž . Ž . Ž .Ž .j 1 2 �Y �

Call the resulting sequence � �. We will how that an allocation QQ� for � �
Ž . Ž .corresponds to an allocation QQ for � with c QQ� � c QQ . First, we will

show how to transform QQ� into a feasible allocation for � � with the
property that at most one program variable i � � is evicted during � � forj j
all j’s. Recall that at most N � 1 program variables are live during � . Ifj
the number of live variables is at most N, then no eviction takes place in
either allocation. Suppose now that N � 1 variables are live during � .j
Notice that once a program variable i � Y is evicted during � �, allj
program variables in Y can be accommodated in registers and no further
eviction is necessary during � �. Suppose that during � � the allocation QQ�j j
evicts a program variable i � Y and also a program variable i� � Y. Then,
the eviction of a variable i� � Y during � � can be avoided without losingj
feasibility and without increasing the cost. Assume now that only program
variables in Y are evicted during � �. If i � Y is the last program variablej

� Ž .evicted during the hth repetition of � h � 1, 2, 3 , then it will bej
Ž . �reloaded during the h � 1 st repetition of � . At that step, some otherj

variable i� � Y is not in any register because there are N � 1 live
variables and only variables in Y are evicted. We conclude that at least one
eviction takes place during each of the first three repetitions of � � and atj
least one load during each of the last three. Therefore, during the
Ž . �h � 1 st repetition of � , QQ� executes at least one load. So, the total costj
on � � is at least 3. But then it would have been cheaper to evict a programj
variable not in Y for a cost of at most 2 for loading and storing it. It
follows that we can obtain an allocation that during � � evicts programj
variables not in Y and that does not cost more than the original one. Then,
we obtain a feasible allocation QQ for � by evicting the same page q thatj

�
QQ� evicts during � , and the theorem follows.j
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4. ALGORITHMS

In this section, we give algorithms for LRA. First, we establish general
properties on the placement of loads and stores. Then, we give a new
algorithm for the case when W � � that is based on the solution of a
minimum cost network flow problem. Our algorithm is instrumental for
getting our 2-approximation algorithm for LRA. We will also describe a

Ž .tie-breaking rule for FF which yields a 2C -approximation algorithm that
runs in almost linear time.

4.1. Spill Code Placement

In this section, we will establish general properties on the placement of
loads and stores. Specifically, we will show that if an algorithm violates
such properties, no cost reduction arises. Thus, we can assume that such
placement properties hold without loss of generality for LRA algorithms.
Throughout the section, we will continuously refer to the example in Fig. 1
for clarity of presentation.

We begin with some observations concerning the laziness of weighted
multipaging algorithms. Consider variable 2 in Fig. 1. Since Q � 2 and0
variable 2 is not referenced before step 3, we can assume without loss of
generality that variable 2 is loaded for the first time at step 3. Indeed,
variable 2 is not needed at steps 1 and 2, and one more register is available
during those steps if 2 is not loaded. In general, if i � Q , then we can0
assume without loss of generality that i is not loaded before it is requested
for the first time. We now turn to comment on the feasibility of evicting a
variable. A dead variable can always be evicted because its value is not
needed any longer. Moreover, we can assume without loss of generality
that a variable i is evicted as soon as it ceases to be live, because no cost is
paid to store i or to reload i at some subsequent step, and one more
register becomes immediately free. The situation is more complicated for
live variables. We define a �alue range as a maximal sequence of steps
where a live variable can be evicted.

EXAMPLE. Variable 2 in Fig. 1 cannot be evicted at steps 3 and 7
because it is requested at those steps. Moreover, variable 2 cannot be
evicted at steps 1 and 2 because without loss of generality it is not in a
register during those two steps. Finally, variable 2 cannot be evicted after
step 8 because we have assumed without loss of generality that variable 2
is evicted immediately after step 7. On the whole, variable 2 can be evicted
in steps 4, 5, and 6, and it is evicted immediately after step 7 without loss

� 4of generality. Hence, variable 2 has one value range 4, 5, 6 . Steps 8 to 10
do not count as a value range because variable 2 is dead.
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In general, a live variable can be evicted after its first reference at all
steps when it is not requested. Hence, a value range of i is a maximal
sequence of steps strictly between two references to i. In addition, if
i � Q , variable i has a value range that starts at step 1 and ends before0
the first reference to i. Finally, if i � L, variable i has a value range that

Ž .begins after the last reference to i and ends at step r. We define K i to
Ž .be the number of value ranges of variable i and K � max K i . We1� i� M

will number value ranges by increasing the starting point.
We now turn to estimate the costs for loading program variables.

Suppose that a variable i is evicted at some step of one of its value ranges.
Then, i must be reloaded by the end of the value range because i is used
at that point. Conversely, evictions outside a value range are either
infeasible or are for free and occur without loss of generality.

EXAMPLE. Variable 2 is evicted before step 5, and so it must be
reloaded at step 7 at a cost S . The eviction of variable 2 at step 7 does not2
cause any cost because the eviction is for free, variable 2 will never be
reloaded, and one more register becomes free.

Therefore, an LRA algorithm has to make eviction decisions only during
value ranges. We will now argue that at most one eviction and one load of
a variable i take place in one value range of i. Specifically, we claim that if
a variable i is evicted along one of its value ranges, then without loss of
generality variable i is evicted at the beginning of its value range and
reloaded at the end. Indeed, if a variable is reloaded at a step j preceding
the end of a value range, capacity costs do not decrease, while there is one
less available register at step j. Similarly, if a variable is evicted at a step j
after the beginning of a value range, capacity costs do not decrease, while
there is one available register at step j. As a result, at most one eviction
and one load of one variable i takes place in one value range of i.
Therefore, the eviction of a program variable i along one of its value range

� 4can be associated with a binary decision variable y � 0, 1 because thei k
position of the resulting load and store is determined without loss of
generality. We have y � 1 if and only if variable i is evicted during itsi k
k th value range.

We now turn to examine the position of store operations. If i � W, a
cost S is charged for storing i independent of the step j where the storei
occurs as long as i is live and dirty at step j. It follows that if a live
program variable i � W is ever stored, then we can assume without loss of
generality that it is stored at the very inception of its live range. Conse-
quently, we can assume that the decision of storing i is a binary decision

� 4variable x � 0, 1 , where x � 1 if and only if variable i is stored.i i
Ž .Moreover, x 
 y for i � W and k � 1, 2, . . . , K i .i i k
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4.2. Weighted Multipaging

We turn to the special case of LRA when W � �. Since the weighted
� �paging problems is LRA for W � L � � and � � 1 35 , and we now allow

� � 1, we term this problem weighted multipaging. We will show a polyno-
mial algorithm for weighted multipaging. Since no polynomial algorithm

Ž .exists for LRA unless P � NP , we conclude that the hardness of LRA
stems from cases when W � �.

In weighted multipaging, the capacity cost is due only to loads. Value
ranges imply a reload cost if the variable is evicted during that range. The
only exception is the last value range of variables in L. Indeed, if a
variable live on exit is evicted after its last use in the basic block, then it

Ž .does not need to be reloaded. We define K i to be the number of liveL
Ž . Ž .ranges where an evicted variable has to be reloaded. Clearly, K i � K iL

Ž . Ž .for all i � L and K i � K i � 1 for all i � L. The capacity cost isL
ÝM ÝK LŽ i. S y . We also need to impose constraints that enforce ai�1 k�1 i i k
number N of registers. We continue with the example from Fig. 1. At step
5, there are four live variables, namely 1�4. Since we have only N � 3
registers, one of those live variables cannot be in a register. We use � toj
denote the number of live variables that must be out of registers at step j.
In other words, � is the maximum of zero and of the difference betweenj
the total number of live variables and the number N of registers. In the
example, � � 1. We will say that � is the register pressure at step j.5 j
Obviously, variables 3 and 4 cannot be out of registers because they are
read at exactly step 5. Hence, the choice is between variables 1 and 2.
Recall that a value range is a maximal sequence of steps where a variable
is live and it is legal to evict it. Clearly, no value range of 3 and 4 contains
step 5. However, there are value ranges of 1 and 2 that contain step 5.
Define L to be the set of variables that have a value range containing stepj

� 4j. In the example, L � 1, 2 . Hence, the general principle is that if at step5
j there are more live variable than registers, then we choose the �j
unallocated live variables from L . Therefore, Ý y 
 � , where k isj i� L ik j i jj i j

the index of the value range of i that contains step j. For example, step 5
forces y � y 
 1. On the whole, an integer programming formulation11 21
of weighted multipaging is

Ž .K iM

min S y 1.1Ž .Ý Ý i i k
i�1 k�1

s.t. y 
 � j � 1, 2, . . . , r 1.2Ž .Ý i k ji j
i�L j

� 4y � 0, 1 i � 1, 2, . . . , M ; k � 1, 2, . . . , K i .Ž .i k

1.3Ž .
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Let A be the matrix of coefficients of this program. Notice that A is a
zero�one matrix. Moreover, we now argue that A has the consecutive
ones properties in the columns; that is, the ones in the columns of A
appear in consecutive rows. Indeed, a column corresponds to a value
range, and that column has unit coefficients for the constraints corre-
sponding to the steps that belong to that value range. However, the steps
in a value range are an interval of the basic blocks. We conclude that A

Ž .has the consecutive ones property. It follows that 1 corresponds to a
� �minimum cost network flow problem 34 , and thus it is polynomially

� � Ž .solvable 2 . Although the reduction of 1 to a network flow problem is
known in the literature, we explicitly describe the resulting flow problem in
order to derive a time bound and for use in the general LRA construction.
Basically, the reduction transforms inequalities into equalities by introduc-
ing slackness variables, inserts a last row with the equation 0 � 0, and then

Ž . � �subtracts the j � 1 st row from the jth for j � r, r � 1, . . . , 1 2 . Hence,
Ž .each column has exactly one �1 and one �1 and thus 1 corresponds to

a minimum cost network flow problem. The resulting minimum cost
network flow problem is exemplified by the network NN in Fig. 2 and is as1
follows. For each equation of the resulting problem we associate a node � j
Ž . Ž .j � 1, 2, . . . , r � 1 . The right hand side node supplies will be equal to
b � � � � for j � 2, . . . , r ; that is, b is the change in register pressurej j j�1 j
at step j � 1. Moreover, b � � and b � �� . The slackness variables1 1 r�1 r

Ž . Ž .give rise to backward arcs t � � , � j � 1, 2, . . . , r with infinitej�1 j�1 j
capacity and no cost. The value range variable y would originate forwardi k

Ž .arcs � , � of unit capacity and cost S , where j� and j� � 1 are thej� j� i
starting and ending point of the kth value range of variable i. In the actual

Ž .graph NN , we break the arc � , � into the sequence of three arcs1 j� j�
Ž . Ž � . � Ž � . �� , � , l � � , � , and l � � , � where � and � are newlyj� i k ik ik ik ik ik j� i k ik

Ž . �introduced nodes, the arcs � , � and l have infinite capacity and noj� i k ik
cost, while l has unit capacity and S cost. For example, the figure showsi k i

Ž .how an arc � , � is divided into the sequence of three arcs. Such5 9
transformation does not change the nature of the problem and will be
useful for the general case of LRA. We observe that the amount of flow in
l is equal to y . We also notice that the number of arcs and nodes isi k ik

Ž .proportional to the number of value ranges and thus it is O n .

4.3. Weighted Caching

The problem of weighted caching is the weighted multipaging problem
for � � 1 and W � L � �. Weighted caching is similar to paging without
write-backs except that the value of S is not necessarily equal for alli

� �pages. The on-line version of this problem was introduced in 24 . Intu-
itively, weighted off-line caching is much simpler than write-back paging
because costs do not depend on the page state. The subnetwork NN in Fig.1
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FIG. 2. Part of the multicommodity flow problem relative to one program variable. Arc
cost and capacity for commodity h � 1, 2 are denoted by ch and uh, respectively. Node supply
for the second commodity is denoted by b2.

2 gives an example of minimum cost network flow problems arising from a
weighted off-line caching problem.

Since � � 1, the register pressure never increases by more than one. It
follows that the maximum supply is one. Consequently, weighted off-line

Ž 2 .caching can be solved in O r log log r time with the successive shortest
� �path algorithm 2, 32 . Previous algorithms solve the more general k-server

� �problem 11 , rely on algorithms for the assignment problem, and run in
2 3'Ž Ž .. Ž . � �O r r log rC time and in strongly polynomial time in O r 2 .

4.4. General LRA

Ž .The program 1 can be modified to take into account the case W � �
by introducing constraints x 
 y . The resulting formulation isi i k

Ž .K iM L

min S x � S y 2.1Ž .Ý Ý Ýi i i i k
i�W i�1 k�1
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s.t. y 
 � j � 1, 2, . . . , r 2.2Ž .Ý i k ji j
i�L j

x 
 y i � W ; k � 1, 2, . . . , K i 2.3Ž . Ž .i i k

� 4y � 0, 1 i � 1, 2, . . . , M ; k � 1, 2, . . . , K i 2.4Ž . Ž .i k

� 4x � 0, 1 i � W . 2.5Ž .i

� 4Notice that the constraint y � 0, 1 can be relaxed to 0 � y � 1.i k ik
Indeed, suppose that the value of the x ’s has been fixed to an integeri

Ž Ž ..value. If x � 0, then we simply set y � 0 k � 1, 2, . . . , K i . If x � 1,i i k i
then the constant x 
 y is superfluous. Hence, the program with fixedi i k
integral x ’s is once again a minimum cost network flow problem, and thei
y ’s will then be integral in a basic solution, even if the integralityi k
constraint is relaxed.

The x ’s can be incorporated into the network flow by introducing ai
second commodity as depicted by the network NN in Fig. 2 and detailed2
below. For each i � W, insert a new source and sink of unit supply for the
second commodity and an arc l of unit capacity and cost S . We will alsoi i
constrain the second commodity to take integer values. We will show later
on that the flow on l will take a value equal to x . We connect all arcs li i i k
into a path from the source to the sink of the second commodity through
auxiliary arcs l� of zero cost as depicted in Fig. 2. The arcs l� have zeroi k ik
capacity for the first commodity and infinite capacity for the second
commodity. Conversely, the arcs l� have infinite capacity for the firsti k
commodity and zero capacity for the second commodity. Therefore, the
first commodity is confined to the subnetwork NN and the second commod-1
ity to the subnetwork NN . Finally, the arcs l have unit bundle capacity. In2 i k
the previous section, we had set the capacity of the l arcs to be one fori k
the first commodity. Such constraint is now redundant because it is
subsumed by the bundle constraint on l . However, we will keep thosei k
redundant constraints as they will play a technical part in the construction

Žand analysis of our approximation algorithm. Recall that the flow of the
.first commodity through l is equal to y . Hence, if there is a k fori k ik

which y � 0, then, by the bundle capacity constraints and by integrality,i k
no flow of the second commodity can flow through l , and so the flowi k
through l is one. The second commodity flow can avoid l and thei i
associated cost S if and only if y � 0 for all k ’s. Since the flow on l isi i k i
greater or equal to all y , such flow can be identified with x . We will usei k i

hŽ .the following notation: c e denotes the cost of arc e for the hth
Ž .commodity h � 1, 2 .

4.5. A 2-Approximation Algorithm

This section is devoted to the proof of the following
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THEOREM 4.1. There is a polynomial-time approximation algorithm for
local register allocation with a multiplicati�e performance guarantee of 2 �
1�K.

The gist of the algorithm WW is to distribute the cost S of storingi
program variable i among all the value ranges of i and then solve the
resulting weighted off-line caching problem. If store costs are distributed

Žequally, no constant approximation factor is possible compare with the
.analysis below , and so we will distribute store cost according to a different

scheme.
A fundamental component of the argument is to compare the integer

multicommodity flow formulation and its linear relaxation, which is the
problem where arc flows can take noninteger values. Clearly, the optimum
value of the linear relaxation is a lower bound on the integer optimum.
Finally, we exploit the theory of Lagrangian relaxation as follows. We
notice that the difficulty of the problem stems from the interaction
between the subnetworks NN and NN . We can decouple those networks by1 2
considering the bundle constraints on the arcs l and moving them intoi k

Ž .the objective function with some prices w l , which are Lagrangiani k
multipliers for the bundle constraints. The resulting flow problem is as
follows. The flows of the first and second commodity are confined to NN1
and NN , respectively, and there is no bundle constraint. However, we2
maintain the constraint that the l arcs have unit capacity for the firsti k
commodity. Although such capacity is redundant in the multicommodity
flow formulation, it is critical after the bundle constraints have been

hŽ .relaxed. Recall that c l is the cost across arc l for the hth commodity.i k ik
hŽ . hŽ . Ž . Ž .The cost c l is changed into a new cost c l � w l , where w l isi k ik ik ik

a price or Lagrangian multiplier. On the whole, we have decoupled a
two-commodity flow problem into two single commodity network flow
problems on the networks NN and NN . The arcs l have now a cost1 2 i k

hŽ . Ž .c l � w l for the hth commodity and unit capacity for the firsti k ik
commodity. We need the technique of Lagrangian relaxation to correlate
the optimum value of the resulting ‘‘priced’’ problem with the optimum
value of the original problem.

Ž .Once we have assigned certain prices w l to the l arcs, we solve thei k ik
problem on NN to obtain an optimum flow. The optimum flow is an integer1
without loss of generality and we interpret it as a register allocation as we

Ždescribed above that is, store a variable i � W if and only if i is evicted
. Ž .along one of its ranges . A simple way to assign the w l prices is toi k

Ž .charge S to the last value range and nothing to the other ones: w l �i i K Ž i.
Ž . Ž .S and w l � 0 for all k � K i . Such an algorithm is a 2-approximationi i k

algorithm, by a proof similar to the one we give below. A more uniform
Ž .distribution of prices leads to a better 2 � 1�K -approximation algorithm.
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We let

1
S if k � K iŽ .i2 K i � 1Ž .�w l � 3Ž . Ž .i k K iŽ .
S otherwise.i�2 K i � 1Ž .

Then, solve the minimum cost network flow problem on NN with costs1
1Ž . 1Ž . Ž . 1c l replaced by c l � w l . Let � be the resulting flow of the firsti k ik ik

commodity. We will assume without loss of generality that �1 is integral.
We denote by E 	 W the set of program variables that are stored in the

� � Ž .4resulting allocation, which is to say E � i : i � W, �k � 1, 2, . . . , K i .
1Ž . 4 2� l � 1 . The set E implicitly gives a flow � for the second commod-i k

2Ž .ity; that is, � l � 1 if and only if i � E. An example of algorithm WW isi
reported in the Appendix.

We now conduct the analysis of WW and show that it establishes Theorem
4.1. The proof is summarized as follows. The optimum cost of a local
register allocation is at least equal to the value of the linear relaxation of
the multicommodity integer flow. In turn, the optimum cost of the linear
relaxation is at least equal to the value of the Lagrangian relaxation when
the bundle constraints are brought into the objective function with prices
w. But the value of the Lagrangian relaxation can be expressed in terms of
the optimum flow � that is determined by the algorithm WW , and the
performance guarantee will follow. Throughout the proof, it is important
to appreciate the difference between the optimum value of the integer
multicommodity problem, which is equal to the allocation capacity cost,
the flow cost on NN and NN , the optimum value of the relaxation, and the1 2
algorithm cost.

Proof of Theorem 4.1. Since original costs are integers and prices are
fractional numbers, the precision required to perform a minimum cost flow
computation increases. However, notice that the ratio of the largest over

Ž . Ž .the smallest cost is no more than O CK � O rC , and the precision
Ž .needed to carry out the computation is increased only by an O log r

additive term when prices are added to costs.
The flow �1 of the first commodity is optimum with respect to the new

costs c1 � w by definition of the algorithm. The construction above
implies a flow � 2 of the second commodity that is optimum with respect to

2 2Ž . K Ž i. Ž .the prices c � w because c l � 0 and Ý w l � S is the cost ofi k k�1 i k i
	 Ž . 1Ž . 1Ž .l . Let z w � Ý c e � e . Observe that only nonpriced costs ap-i 1 e� A

	 Ž . 	 Ž .pear in the expression for z w . Hence, z w is not the flow cost on the1 1
priced network NN , but is the actual register allocation capacity cost that is1
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	 Ž . 2Ž . 2Ž .due to loads only. Let z w � Ý c e � e � Ý S be the cost2 e� A i� E i
Ž .due to stores only. The total cost of the register allocation is c WW �

	 Ž . 	 Ž . 	 Ž . 	 Ž .z w � z w . The costs z w and z w are at this point unrelated,1 2 1 2
and this fact constitutes a difficulty in the proof. The next argument is

	 Ž .motivated by the need of bounding the cost z w in terms of the cost2
	 Ž .z w .1

Partition the set E of stored variables into two subsets E0 and E1

depending on whether those variables are evicted during their last value
0 � 1Ž . . 1 �range or not, that is, E � i � E : � l � 0 and E � i �i K Ž i.

1Ž . 4E : � l � 1 . Correspondingly, let for h � 0, 1,i K Ž i.

z	 w � c1 l �1 lŽ . Ž . Ž .Ýh1 i k ik
hi , k : i�E

and

z	 w � S . 4Ž . Ž .Ýh2 i
hi�E

	 Ž . 	 Ž . 0Notice that z w 
 z w because for a program variable i � E there is01 02
Ž . 1Ž .a value range k � K i with � l � 1 to cause i � E. We have nowi k

	 Ž . 	 Ž . 0succeeded in bounding z w in terms of z w with respect to E only,2 1
and this will be enough for the proof.

	 Ž . K Ž i. 1Ž . 1Ž .Let z w � Ý Ý c l � l be the register allocation cost21 i� W k�1 i k ik
due to the program variables that do not have to be stored. On the whole,

	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž . Ž .z w � z w � z w � z w , z w � z w � z w , and c WW �1 01 11 21 2 02 12
	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž . 	 Ž .z w � z w � z w � z w � z w � z w � z w .1 2 01 11 21 02 12

The cost of the optimum allocation OPT can be estimated as follows.
We relax the integrality constraints. We also take the Lagrangian relax-
ation of the 2-commodity flow problem by bringing the bundle constraints
into the objective function with prices w. The value of the Lagrangian

� �relaxation can be obtained with a standard formula 2 and yields

c OPT 
 z	 w � z	 w � w l .Ž . Ž . Ž . Ž .Ý1 2 i k
1 2Ž . Ž .i , k : � l �� l �0ik ik

If i � E0, then

1 1
w l � 1 � S � 1 � S ,Ž .Ý i k i iž /ž /2 K i � 1 2 K � 1Ž .1 2Ž . Ž .k : � l �� l �0ik ik

Ž . 1Ž .because at least one value range k � K i has � l � 1.i k
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If i � E1, then

K i � 1 K � 1Ž .
w l � S � SŽ .Ý i k i i2 K i � 1 2 K � 1Ž .1 2Ž . Ž .k : � l �� l �0ik ik

1Ž . Ž .because at least � l � 1 and K i � K.i K Ž i.
Finally, if i � W � E, then

w l � 0Ž .Ý i k
1 2Ž . Ž .k : � l �� l �0ik ik

2Ž .because � l � 1 for all k ’s.i k
Ž .Then, by 4 ,

1 K � 1
	 	c OPT 
 z w � z w � 1 � S � SŽ . Ž . Ž . Ý Ý1 2 i iž /2 K � 1 2 K � 10 1i�E i�E

1 K
	 	 	 	 	
 z w � z w � z w � z w � z w .Ž . Ž . Ž . Ž . Ž .01 02 11 12 212 K � 1 2 K � 1

Ž .Define 	 � 1� 2 K � 1 and notice that 1 � 	 � 2	K. The cost ratio is at
most

c WW z	 w � z	 w � z	 w � z	 w � z	 wŽ . Ž . Ž . Ž . Ž . Ž .01 02 11 12 21� .	 	 	 	 	c OPT z w � 	 z w � z w � 	Kz w � z wŽ . Ž . Ž . Ž . Ž . Ž .01 02 11 12 21

	 Ž . 	 Ž .Elementary calculus shows that the ratio is maximized for z w � z w01 02
	 Ž . 	 Ž .and z w � z w � 0, and11 21

c WW 2 z	 w � z	 w 2 z	 w � z	 wŽ . Ž . Ž . Ž . Ž .02 12 02 12� �	 	 	 	c OPT 1 � 	 z w � 	Kz w 2	Kz w � 	Kz wŽ . Ž . Ž . Ž . Ž . Ž .02 12 02 12

1 1
� � 2 � ,

	K K

which completes the proof.

The running time of the algorithm is slightly worse than before because
the register pressure may change by more than one. Consequently, the
total supply is now bounded by n. The running time of the algorithm is
˜ 2Ž . � �O n 2 .

4.6. Fast Approximation

In this section, we will establish that

Ž .THEOREM 4.2. There is a 2C -approximation algorithm for local register
˜Ž .allocation that runs in O n time.
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The algorithm is similar to furthest-first. It has an additional tie-break-
ing rule for the case when there is more than one page requested furthest
in the future. The algorithm chooses to evict a program variable that in
some sense is the cheapest to remove from the register configuration.

Ž .Conser�ati�e Furthest-First CFF . In response to a fault, determine the
set F of program variables requested furthest in the future. Evict a
program variable in F that is not live. If all program variables in F are
live, evict a variable in F that is clean. If all program variables in F are
live and dirty, evict one variable in F arbitrarily.

We claim that the algorithm conservative furthest-first establishes Theo-
� �rem 4.2. We will assume familiarity with the proof of optimality of FF 25 .

The proof is complicated by the fact that some program variables can be
evicted without being subsequently reloaded.

Proof of Theorem 4.2. Let QQ be an allocation. Define the eviction
points of QQ to be the step indexes where QQ evicts a program variable from
the register configuration. By optimality of furthest-first, CFF has the least
possible number of eviction points. Let f � f � 


 � f be the eviction1 2 h
points of CFF and t the number of CFF’s eviction points where CFF evicts
clean variables that do not have to be reloaded during the basic block. The

Ž .cost of CFF is then at most 2C h � t . Let QQ be the optimum allocation,
g � g � 


 � g be the first h eviction points of QQ, and t be the1 2 h QQ

number of QQ’s eviction points where QQ evicts clean variables that do not
have to be reloaded during the basic block. The optimum cost is then at

� �least h � t . By the proof in 25 , f 
 g for j � 1, 2, . . . , h. It follows thatQQ j j
if QQ evicts during g , g , . . . , g a clean variable that is not reloaded1 2 h
during the basic block, so does CFF. Therefore, t 
 t , and the resultQQ

follows.

We can also show that our analysis is tight. Let

� 4 � 4 � 4� � write, 1 , read, 3 , write, 2 ,Ž . Ž . Ž .Ž
� 4 � 4 � 4read, 2 , read, 3 , read, 1 ,Ž . Ž . Ž . .

and S � S � C, S � 1, L � �. For N � 2, CFF evicts 1 at a cost of 2C,1 2 3
whereas if we evict 3 we pay only S � 1.3

APPENDIX: AN EXAMPLE

In the Appendix, we give an example of LRA and illustrate the behavior
of WW and CFF.
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ŽŽ . Ž . Ž . Ž . Ž .Let � � write, 1 , write, 2 , write, 3 , write, 4 , read, 2 ,
Ž . Ž ..write, 5 , read, 1 be the sequence of requests, Q � � the initial0

� 4register configuration, L � 2, 3, 5 the set of variables live on exit, and
C � 1.

The following table reports the behavior of CFF on � . It also gives the
optimum register allocation.

CFF OPT

Step � Reg. config. Cost Reg. config. Cost

Ž . �Ž .4 �Ž .41 write, 1 1, dirty 0 1, dirty 0
Ž . �Ž . Ž .4 �Ž . Ž .42 write, 2 1, dirty , 2, dirty 0 1, dirty , 2, dirty 0
Ž . �Ž . Ž .4 �Ž . Ž .43 write, 3 2, dirty , 3, dirty 1 1, dirty , 3, dirty 1
Ž . �Ž . Ž .4 �Ž . Ž .44 write, 4 2, dirty , 4, dirty 1 1, dirty , 4, dirty 1
Ž . �Ž . Ž .4 �Ž . Ž .45 read, 2 2, dirty , 4, dirty 0 1, dirty , 2, clean 1
Ž . �Ž . Ž .4 �Ž . Ž .46 write, 5 2, dirty , 5, dirty 0 1, dirty , 5, dirty 0
Ž . �Ž . Ž .4 �Ž . Ž .47 read, 1 1, clean , 2, dirty 2 1, dirty , 5, dirty 0

Total: 4 3

Note that the eviction of 4 can be performed for free because 4 is not
live on exit. The live ranges are given in the following table:

Variable Decision variable Range

� 41 l 2, 3, 4, 5, 611
� 42 l 3, 421
� 42 l 6, 722
� 43 l 4, 5, 6, 731
� 44 l 441
� 45 l 6, 751

Correspondingly, the algorithm WW defines and solves the minimum cost
network flow in Fig. 3. All live range arcs l have unit capacity and all tik i
arcs have infinite capacity. Moreover, the cost of the t ’s is zero. The flowi
is positive only on the value range arcs l , l , and l . The eviction of the21 22 31
corresponding variables during those three value ranges yields the opti-
mum allocation.
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FIG. 3. Sample flow problem solved by WW .
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