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Abstract— This paper elaborates on a paradigm for Quality-
of-Service (QoS) that is local, i.e., it does not depend on multi-
node cooperation. In order to maintain short queuing delays,
we individuate flows that occupy a large fraction of a buffer
and segregate those flows into a separate queue. The algorithm
is provably fair and can avoid all packet re-orderings. We
show through extensive simulations that state requirements are
minimal, and that other flows will benefit from short queuing
delays while aggressive flows can still maintain high throughput.

I. INTRODUCTION

The deployment of Quality-of-Service (QoS) has reached an
impasse that is largely caused by the very design philosophy
of the Internet. Decentralized control and autonomy mandate
an open architecture with no global control. A decentralized
architecture is partly responsible for preventing the adoption of
strategies that rely on multibox administration or inter-provider
coordination. Another fundamental principle is best-effort [1],
which implies unreliable service with no QoS provisioning. A
best-effort network can still guarantee statistically adequate
QoS if over-provisioned. On the other hand, best-effort
networks do not limit or separate flows and so these networks
can in principle give rise to poor levels of service. Figure 1
shows a straightforward but concrete example of the impact
of a single bulk data transfer on Round-Trip Times (RTTs).
In general, over-provisioned best-effort networks can work
well in the typical case, but introduce an element of risk that
cross-traffic can congest links and cause poor QoS. On the
whole, QoS should take into account fundamental architectural
principles (best-effort, decentralized control) and at the same
time overcome the inherent congestion risks of the best-effort
model.

A general paradigm for QoS in best-effort networks is
based on local mechanisms to protect from global risk. In
this paper, we take one step in this direction by investigating
a method to maintain short queues in best-effort networks that
are generally over-provisioned but occasionally congested and
present little support for distributed coordination. The YAQS
(Yet Another Queuing Strategy) algorithm attempts to obtain
short queuing delays in a best-effort router that is crossed by
aggressive flows. The main idea involves the following two
elements. First, a hybrid method maintains per-flow queue
occupancy with high accuracy and limited state. Second, when
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Fig. 1. Ping (ICMP) RTTs collected between two machines across campus.
During sampling period 131 through 1512, a single TCP flow is active between
two other machines whose end-to-end path shares a link with the ping flow.

the queue occupancy of a certain flow exceeds a threshold
value, further packets belonging to that flow are segregated
in a different queue. The forwarding decision is then made
by an approximately fair schedule between the regular and
the segregated queue. The intuition is that flows with small
buffer occupancy should benefit from a shorter queue once
the more aggressive flows have been separated. Main issues
include queuing delays and classification precision. Secondary
issues are packet reordering and flow goodput.

The next section gives the relevant background on these
issues. Section III gives a high-level outline of our queue
management algorithm. Section IV discusses the evaluation
methodology. Section V describes the impact of such algo-
rithm on queue length. A summary of related work, conclu-
sions, and future work end the paper.

II. BACKGROUND

Aggressive Flows: An aggressive flow is a flow that
congests a link and consequently causes queuing delays and
packet losses. Aggressive flows arise for a variety of reasons.
The most benign type of an aggressive flow is a TCP bulk
data transfer (e.g., Figure 1), especially if it has a small RTT
or large end-point buffers. Such a flow backs off if it detects
congestion, but it also probes constantly for additional band-
width and, as a result, can saturate the buffer on a bottleneck
link. The benign type of aggressive flow is common especially
in access networks due to their bandwidth limitations [2],
but it also present in the core [3]. More malicious flows



include unregulated flows or selfish behaviors. All aggressive
flows lead to poor QoS, regardless of whether they were
generated by well-behaved (e.g., TCP) or ill-behaved (e.g.,
CBR) end-points. Finally, a flow aggregate is a set of flows that
originate from a single or from multiple clients and that jointly
exhaust network resources. The best solution for aggregates
are to improve protocols (e.g., persistent connections [4],
multicast [5], persistent dropping [6], peer-to-peer networks)
or to explicitly monitor traffic and take explicit remedial
actions [7], [8]. In this paper, we will not explicitly address
aggregates and assume instead that aggregates are dealt with
by a specialized upstream detection systems (e.g., Figure 1 in
[7]) or by protocol development.

Queuing: Short queues can be guaranteed by limiting the
router buffer size, but at the cost of packet losses with bursty
traffic [9] and consequent throughput reduction. Another ob-
vious approach would be to classify flows as aggressive and
drop all packets from those flows, but at the cost of unfairly
penalizing regular bulk data transfers. A better solution is to
explicitly provide for flow separation through Fair Queuing
(FQ) or one of its variants. However, FQ’s more scalable
versions are either non-deterministic and can require a large
number of buckets [10] or necessitate explicit and coordinated
packet classification [11].

Active Queue Management (AQM): An alternative to FQ
is to employ AQM, such as Random Early Drop (RED) [12],
to curb the sending rate of aggressive flows. AQM is relevant
in best-effort networks if no explicit end-system cooperation
is required. For example, AQM could employ packet dropping
instead of or in addition to marking. Even so, aggressive flows
would be punished but there is no guarantee that the end-
points would necessarily moderate their sending rates and
alleviate congestion. Although various AQM strategies can
lead to high link utilization, throughput fairness, and short
queues on average, AQM does not protect against periods
of long queuing delays ([13], see also Figure 8(c) for an
example). The crux of the problem is that AQM dynamics
depend on end-to-end RTTs and can consequently have a
relatively slow adaptiveness, which in turn can lead to long
queues. In particular, even if an AQM methods can set a small
reference queue length, the convergence to that short queue
can be slowed down by the dependency on RTTs. The most
obvious dependency of AQM dynamics on RTTs arises from
the propagation of congestion indicators to the source, and
this communication can require a significant fraction of the
end-to-end RTT. A more subtle dependency on RTTs stems
from the need to maintain stability in the control-theoretical
sense [14], [15], [16], [17]. Stability typically requires that
indications of congestion be weaker when the flow RTT is
large. For example, a drop (or marking) probability would
increase more slowly if flows have longer RTTs. In turn,
a weaker congestion signal (e.g., a slowly changing drop
probability) delays the AQM dynamics and can lead to ex-
tended periods of long queuing delays. The dependency on
RTTs is shared among AQM strategies and is actually the
manifestation of the more general control-theoretical trade-off

between stability and tracking in the presence of delays in the
feedback loop (e.g., [18], [14]). AQM’s sensitivity to RTTs
motivates the investigation of strategies that can adapt quickly
and, in particular, that are local to each router. An example of
such strategies is FQ, with the potential problems described
above.

Detection: At one extreme, exact queue occupancy can
be maintained in a hash table (e.g., [19]). At the other extreme,
approximate occupancy can be derived from a small random
sample of the packets in the queue (e.g., [20]). Hash tables
are accurate but require per-flow state and, conversely, random
sampling is approximate but does not require per-flow state.
An intermediate solution is to maintain approximate queue
counts (e.g., [21], [22], [23], [24]).

III. YAQS
A. Algorithm

The YAQS queuing strategy is shown below as Algorithm
1 and 2. Upon arrival of a packet � , YAQS checks whether
the corresponding flow occupies ���� bytes in the fast queue or
���� bytes in the slow queue. If so, the packet is enqued in the
slow queue, otherwise it is enqued in the fast queue (Lines
1–3). The slow queue occupancy ��	� is an exact value whereas
the fast queue occupancy ���� is an estimate obtained with an
approximate method. The motivation for using two counters is
their ability to maintain accurate queue occupancy estimates
with minimal state, as discussed in more details in Section V.
Furthermore, a broader consideration is that an administrator
could benefit from an exact knowledge of which specific flows
are occupying a large fraction of a buffer. After an appropriate
queue has been chosen, the packet is enqued (or it is dropped
if there is no more buffer space, Lines 4–7). If the packet is
assigned to the slow queue, its logical length can be inflated
(Lines 9–15) to avoid a certain type of reordering, as discussed
in Section III-C. The remaining details of Algorithm 1 will be
introduced gradually in the rest of the paper.

The deque algorithm (Algorithm 2) is an approximation of
an ideal Generalized Processor Sharing (GPS) between the
fast and the slow queue [25]. The GPS algorithm creates two
logical links of bandwidth proportional to 
����������� for the fast
queue and ��
����������� for the slow queue, where 
 is the raw
link bandwidth and � is a tunable parameter. However, GPS is
also work-conserving: if either queue is empty, the other queue
can forward packets. GPS can be approximated with various
methods, and Algorithm 2 is a simple method especially
tailored for the two YAQS queues. The general objectives of
this deque algorithm are simplicity, fairness especially with
respect to the fast queue (Section III-B), and the avoidance of
re-ordering in conjunction with packet length inflation (Section
III-C). The basic idea of the algorithm is to credit the slow
queue for each byte that is forwarded from the fast queue and
to schedule the slow queue only when its credit exceeds the
inflated length of its head-of-line.

It is useful to briefly compare YAQS with the other strate-
gies mentioned in Section II. In the first place, YAQS supports
large buffer but simultaneously aims at a short fast queue.



Algorithm 1 YAQS: Enque
Require: � is an incoming packet, �� � and �� � are queue

occupancy thresholds for the fast and the slow queue
respectively, � is the weight of the slow queue normalized
to the fast queue weight ( ��������� ), credit is a variable
maintained by the deque algorithm (Algorithm 2)

Ensure: � is assigned to either the fast or the slow queue
1: ����! (estimate) fast queue occupancy of the flow to which� belongs
2: ����" (exact) slow queue occupancy of the flow to which� belongs
3: #  �����$ ���� or �����$ ���� ? slow queue : fast queue
4: if length of � exceeds buffer remaining in # then
5: Drop �
6: else
7: Enqueue � in #
8: Add the size of � to the per-flow occupancy counters

of #
9: if # is the slow queue then % Packet length inflation &

10: ' �! length of the fast queue
11: ' �( length of the slow queue (including � and all

nop bytes)
12: if ��' �*) ' � � credit +,� then
13: Inflate the length of � by -.��' ��/0) ' � � credit �1�
14: end if
15: end if
16: end if

Algorithm 2 YAQS: Deque
Require: � is the weight of the slow queue normalized to the

fast queue weight ( ���2���3� ), credit is initially set to 0
Ensure: # is the queue whose head-of-line is transmitted

1: if either queue is empty then
2: choose a non-empty queue # if possible
3: credit  �
4: else if credit + inflated length of slow head-of-line then
5: #  slow queue
6: credit  credit ) inflated length of slow head-of-line
7: else
8: #  fast queue
9: credit  credit ���54 (length of fast head-of-line)

10: end if

YAQS does not require packet classification other than locally
at the router and, unlike FQ, it involves only two queues.
YAQS is more direct than AQM: no end-to-end RTTs are
involved in the algorithm dynamics since all decisions are
made locally. YAQS is not preclusive of AQM strategies,
which can be employed for example to manage the slow queue.
Incidentally, this paper focuses on queue lengths, and we
will investigate non-real-time throughput only inasmuch as no
direct negative consequence arises from the packet separation
into the slow and fast queues. Fairness among all (slow) flows
is beyond the scope of the paper. By the same token, the paper

focuses on queuing delays, and other QoS metrics, such as
bandwidth, will not be considered directly here.

A remark regards the distinction between the slow and the
fast queue. If �768� , the forwarding decision is a balanced
round-robin between the two queues, and so the slow queue
is in some sense as fast as the fast queue. However, there is no
explicit attempt to reduce queuing delays in the slow queue,
and hence its name of “slow”.

B. Fairness

A property of YAQS is that it approximates GPS, as per the
following analysis. We make the distinction between the time
instant when a packet is dequed (i.e., it has been scheduled
for forwarding and its transmission begins) and the time
instant when a packet departs (i.e., its transmission completes).
The departure and deque time differ exactly by the packet
transmission time.

Definition 1 ([26]): A deque algorithm has time worst-case
index (T-WCI) equal to 9 for the queue # if a packet that
arrives at time : in the queue # will depart at or before time
:;�<9=�>'!��
@? , where ' is the length of # at time : (including
the packet that arrives at time : and all “nop” bytes if any)
and 
A? is the bandwidth assigned to # by GPS.

The proof of the following proposition is omitted for
compactness.

Proposition 1: Let 9 � be the maximum transmission time
of a packet enqueued in the slow queue and 9 � be the
maximum transmission time of a packet enqueued in the fast
queue. Algorithm 2 has time worst-case index (T-WCI) equal
to 9 � �B��9 � for the fast queue and equal to C�9 � for the slow
queue.

A large value of � increases the fast T-WCI. Thus, ���D�!�
� is assumed in Algorithm 2. In addition to its fairness prop-
erties, YAQS can also avoid packet re-orderings, as discussed
next.

C. Re-Orderings

The presence of two queues can in general create packet
re-orderings, which can negatively impact end-to-end per-
formance. For example, in the case of a TCP flow, packet
reordering has effects ranging from an increase in the number
of acknowledgment packets to the degradation of flow good-
put. Re-orderings fall in two categories: a fast-after-slow re-
ordering is a packet that is enqued in the fast queue but is
forwarded after packets that belong to the same flow, that
arrived after � , and that were enqued in the slow queue.
Symmetrically, slow-after-fast re-orderings are packets enqued
in the slow queue that are forwarded after subsequent fast
packets from the same flow.

Proposition 2: Algorithms 1 and 2 avoid all fast-after-slow
re-orderings.

Proof: (Proof Sketch.) The property follows from packet
length inflation (Lines 9–15 in Algorithm 1). The rest of the
proof is omitted for lack of space.

Although packet length inflation removes fast-after-slow re-
orderings, it also effectively increases the amount of traffic



Id Packets BW
1 1335082 131.3
2 385075 23.9
3 1344755 93.9
4 1573240 80.8
5 2285605 123.4
6 330444 11.9
7 818536 44.7
8 646023 25.6

TABLE I
CHARACTERISTICS OF THE NLANR PACKET TRACES.

that a slow flow must transfer. Thus, it remains to verify that
packet length inflation introduces a relatively small amount of
pseudo-traffic (Section V). As for slow-after-fast re-orderings,
it is easy to see that they are avoided if ���� 6E� . This parameter
choice ���� 6E� will be further discussed in Section V.

IV. EXPERIMENTAL METHODOLOGY

Two types of experimental methods have been considered.
The first involves NLANR packet traces. Table I shows certain
characteristics of our packet traces. These packet traces were
collected in the early afternoon of a 2003 mid-week day on
OC-3 links and represent roughly 90 seconds of traffic. BW
is the average link bandwidth utilization expressed in Mbps.
Most traces log packets at the time when they are forwarded on
a link, and so they do not present a queuing behavior. However,
queuing is critical for our analysis, and so we assume that the
links where the trace was collected directly feed into another
link with smaller bandwidth. Since the downstream bandwidth
is smaller than that of the link where the trace was collected,
queues can form. The downstream buffer is assumed to have
infinite capacity.

Definition 2: The over-provisioning factor F of a link dur-
ing a certain time interval G is the ratio of the link bandwidth
over its average utilization during G .
In the rest of the paper, the downstream bandwidth will be
expressed as its over-provisioning factor F $ � . The raw
downstream bandwidth can then be obtained by multiplying
F with the average bandwidth utilization shown in Table
I. Simulations will use FH6 �JIK�	L , which corresponds to
slight over-provisioning and causes the downstream link to
always have less bandwidth than the link where the traces
were collected. The deque algorithm approximately overlays
a logical link of bandwidth equal to 
��MN�O�P��� for the fast
queue traffic (Proposition 1). If the fast queue share is over-
provisioned ( �RQ,F ) � ), then the fast queue should be short,
which is the primary objective of YAQS. The slow queue
weight was set to �36S�MIK� , which corresponds to a slight
over-provisioning of the fast queue bandwidth. The thresholds
�� � and �� � were set to 16,500B in the initial set of experiments
below. In general, this choice of parameters is meant to create
difficulties for YAQS for the following reason. Smaller values
of F and � can lead to longer queues and degrade service
levels. Moreover, small values of ��	� and ���� should force the

classification algorithm to look for flows that have small queue
occupancy relative to the long queue, and could increase the
number of misclassifications of an approximate algorithm. In
the following evaluation, approximate classification employs
the Count-Sketch algorithm [21] with T hash tables of T;C
buckets per hash table.

A classification algorithm should be fast and avoid maintain-
ing per-flow state, but classification algorithms with no per-
flow state are approximate and can occasionally misclassify
flows. Accuracy can be expressed as the number of packets
belonging to aggressive flows that are not individuated (false
negatives) as well as the number of packets belonging to non-
aggressive flows that are mistakenly classified as aggressive
(false positives). In the parlance of Information Retrieval, the
percentage of false negatives is a measure of the method’s
recall and the percentage of false positives is a measure of the
method’s precision. False negatives and false positives have
different roles. False negatives are only relevant to the extent
that they increase the fast queue length. On the other hand,
false positives can critically worsen the QoS perceived by the
victim flows.

Definition 3: Given an accuracy parameter UV+W� , a false
positive is a packet belonging to flow X for which either
�� � .X�� $ �� � or �� � YXZ� $ �� � , and moreover � � .XZ�[�\�� ) U]���� �
and � � YXZ�@�\N� ) U]���� � , where � � .X�� ( � � YXZ� ) is the exact fast
(slow) queue occupancy count of flow X at the time when the
packet was enqued.
Definition 3 is inappropriate to quantify the dependency on
���� because ���� is an exact count. Therefore, the definition is
strengthened as

Definition 4: Given an accuracy parameter U , a strict false
positive is a packet belonging to flow X for which either
���� .X�� $ ���� or ���� .X�� $ ���� , and moreover ��� .X��]^ ��� .X��2�
N� ) U]�5_�`�aZ%5���� ^	���� & .
Definition 4 is stricter than Definition 3 in that if a packet is a
strict false positive, it is also a false positive, but the converse
is not true. It also gives rise to a severe evaluation of YAQS
in that the algorithm makes no attempt to promote a flow with
�bQc�� � QW�� � (i.e., the algorithm does not attempt to remove
strict false positives). If the number of misclassifications is
small and sporadic, the main performance metric for YAQS
is the queuing delay in the fast queue. The fast queue length
can then be compared with the total queue length under other
strategies, such as FIFO.

The main advantage of packet traces is that they capture
behavior from actual links. Their main disadvantage is that
traces are fixed and flows are not adaptive. Flow adaptiveness
can be addressed by network simulations. Our simulation
network is shown in Figure 2. We have explored the sim-
ulation sensitivity to all parameters but we report only on
the most informative cases. The central link is the network
bottleneck, has a bandwidth of 45Mbps and latency 1ms. The
two endpoints hold 512 packets in each queue, and are YAQS,
DropTail, and RED in our experiments. At each end, the link
is attached to 14 routers by 10Mbps, 10ms links, and each of
these routers is then connected to 6 end-nodes. Each end-node
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Fig. 2. Network used for simulations.
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Fig. 3. (Fast) queue length (trace 6). Chart (a) gives YAQS fast queue length, chart (b) compares YAQS and FIFO, and chart (c) zooms on the intervald e]f	gihjflk
, where the FIFO queue starts its highest ascent. The vertical axis scale differs among charts.

generates ON/OFF traffic following a Pareto distribution with
shape equal to 1.2 and average file size of 8KB (an http-like
distribution [4]). The Pareto traffic is then transported by TCP
Sack/DelAck to a random end-node on the other side of the
central link. Furthermore, average idle times are chosen so that
the average traffic from all of these end-nodes is 14Mbps in
both directions (i.e., the average utilization of the bottleneck
bandwidth due to all these traffic sources is less than 1/3).
Segment size for all TCP flows is 1460B, the initial window
is 2 packets, and the advertised window is 1024 packets. In
addition to these Pareto sources, the simulation employs m
additional nodes that generate more aggressive flows (in the
base case, m\6S� ). At time �*�on��5��� seconds, node n will
generate 4MB of data directed to a peer node on the other
side of the central link ( �1�Wn�QWm ). All such “aggressive”
nodes are connected to the central link by 100Mbps, 0.4ms
links and (unlike the Pareto sources) all their data traffic flows
from left to right. The aggressive RTT is relatively short so
that, on the one hand, the TCP flows can quickly congest links
and, on the other hand, AQM has a relatively faster dynamic
on these flows. We have also experimented with the case when
the aggressive sources are CBR/UDP flows, but the results are
relatively uninteresting and omitted from the paper.

V. EVALUATION

A. Trace 6
Summary data will be reported on all traces (Section V-

B) but, for compactness, time-dependent charts will only be
detailed for trace 6, where some of the longest queues form
at the chosen value of F .

Figure 3 gives the fast queue length of YAQS and FIFO
during trace 6. YAQS is a clear improvement over FIFO in
terms of fast queue length. In fact, the YAQS line is but noise
close to the horizontal axis when compared to FIFO. The
comparison is better seen by zooming in, as in Figure 3(c).
Figure 4(a) shows the complementary cumulative distribution
of the fast queue length under YAQS. The probability of
obtaining a long fast queue decreased exponentially. The
corresponding distribution for FIFO in Figure 4(b) shows an
excellent fit to a power law over three orders of magnitude. In
other words, not only did YAQS shorten the queue length, but
it also improved its qualitative behavior. Figure 5 reports on the
number of flows in the slow queue. For comparison, the fast
queue hosted up to 258 flows. In general, few flows are hosted
in the slow queue and the distribution decays exponentially
fast. Consequently, it is feasible to maintain exact occupancy
counts ���� . The slow queue traffic contributed to 14% of the
bytes that flowed through the link. Packet length inflation
added around 279KB to the slow queue throughout the trace,
which is equal to 1.6% of the non-inflated slow traffic. Most
nop bytes (88%) are added when a flow is moved into an
empty slow queue. Correspondingly, no flow was starved.

In the case Up6 ����C , trace 6 had 18 false positives
(Definition 3) out of 330,444 packets in the log. No flow had
more than 3 false positives, although some of these multiple
false positives were concentrated in a 1ms burst. The use of
two counters �� � and �� � is critical for the accuracy of the
classification algorithm. In an earlier version, we used only
one counter �� to maintain the total flow occupancy in both
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Fig. 4. Complementary cumulative distributions of the (fast) queue length
(trace 6). Axis scale differs between charts.

the fast and the slow queue. The approximate counter does
not maintain per-flow state and thus it lumps in the same
tables statistics pertaining to flows with large and small queue
occupancy. As a result, small occupancy flows were more often
mistaken for flows with larger queue occupancy, i.e., false
positives are more frequent. In the two counter scheme, qr�s
maintains statistics for the fast queue, where flows should have
small queue occupancy by design. Therefore, the classification
algorithm has the easier job of identifying the larger queue
occupancy outliers when they occur among a population of
small occupancy flows. Another reason for the algorithm’s
accuracy is due to the use of exact occupancy counts for the
slow queue (Line 2 in Algorithm 1): if an approximate estimate
is used instead, the number of false positives increases to 434
and, more importantly, false positives are more concentrated
either in time or by flows. Meanwhile, the small number of
flows in the slow queue (Figure 5) even for this severe choice
of t , ur�v , and ur�s makes it feasible to efficiently maintain exact
slow counts.

Another advantage of exactness in slow counts is that packet
re-orderings can be completely eliminated if ur	v�wyx . The
value ur�vzw3x should be used, however, only if qr	v is exact, as
approximate algorithms can accurately detect only the flows
with larger occupancy values. The number of strict false
positives (Definition 4) for ur�v(w{x and | w~}���� was 606, which
corresponds to 0.2% of the packets in the trace. Moreover, the
smaller value ur v wEx led to shorter fast queues (Section V-B).
It also led to a decrease in the maximum number of flows
ever present simultaneously in the slow queue (no more than
10 flows were ever hosted in the slow queue at the same time).
The reduction of slow flows at peak times appears to be due to
the following dynamic behavior of the YAQS algorithm. The
previous value ur�v"w�}����JxJx is quicker at releasing flows from
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Fig. 5. Number of flows in the slow queue over time and its complementary
cumulative distribution (trace 6).

the slow queue than ur v wEx is. Released flow move to the fast
queue and share buffer space and bandwidth with the other
fast flows. As a result, the fast queue length increases and
the fast queue occupancy also increases for more fast flows,
which are then all moved to the slow queue. The net result is
that at the end of this process, more flows occupy the slow
queue than in the case when the original flows were left in
the slow queue throughout ( ur	v(wPx ). Although ur�v should be a
parameter that an individual administrator could set, we feel
that ur�vzw3x presents only a minor loss of accuracy compared
to the benefit of completely removing all packet re-orderings.
In the rest of the paper, ur v wEx will be assumed.

The findings above shed light also on YAQS’s handling of
aggregates. Between time 55s and 85s, up to 18 flows collude
to congest the link bandwidth (Figure 5). However, all of
these flows are individuated with excellent accuracy and then
contained in the slow queue, with minor disruptions on the
other flows (Figure 3).

B. Trace Summary

Summary data across all traces are discussed next. Figure 6
shows the maximum, average, and 90 percentile queue length.
YAQS led to drastic reductions in the maximum queue length
on the traces where FIFO had the longest queuing. Further-
more, the average queue length becomes more predictable:
while the average FIFO queue length varied by 2 orders of
magnitude, YAQS ranged between 8KB and 21KB. Figure 7
gives the maximum and average number of flows in the slow
queue. The slow flow count was below 12 in all traces. The
slow traffic accounted for 6% of the total number of bytes
transmitted across all traces, and for no more than 20% on
any single trace. Most nop bytes (77% to 96%) are added
when a flow is moved into an empty slow queue, at which
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point 2-4KB of nop traffic are added on average across the
traces. The nop traffic was around 4% of the total slow traffic.
The percentage of false positives never exceed 0.003% of
logged packets across all traces and the percentage of strict
false positive never exceeded 0.25%.

C. Simulations

As for simulations, Figure 8 gives the (fast) queue length of
YAQS, FIFO, and RED during the activity of � w�} aggressive
flow. The thresholds are ur s w�}����JxJx B, ur v wPx B, and � wPx�� � ,
which over-dimensions the fast queue bandwidth by roughly
a factor of 2. In the case of RED queues, we used packet
dropping and the default ns-2.1b9a parameters.

YAQS is a clear improvement over FIFO and RED in
terms of fast queue length. In fact, the YAQS line looks
once more like noise when compared to FIFO or RED. RED
improves over DropTail, and it prevents long queues after
an initial transient where it behaves like FIFO (i.e., until
time 1.9s). However, RED did lead to long queues initially
due to its slower dynamics, as discussed in Section II. (To
compound the problem, the aggressive flow has a smaller
RTT and consequently the benefit of faster dynamics than
the Pareto flows.) The aggressive flow goodput is 24Mbps
under YAQS, 29Mbps under FIFO, and 17Mbps under RED.
In summary, YAQS was the most effective method to maintain
short queues, and simultaneously the aggressive flow achieved
higher goodput than under RED.

Figure 9 gives the queue length for � w�}J�j����� aggressive
flows. The spikes in the fast queue length are due to various
reasons. The most obvious cause is the initial slow start phase.

Figure 10(a) details the initial period when each aggressive
flow ramps up its queue occupancy and causes a separately
identifiable spike. The fast queue subsequently shrinks when
these flows are moved to the slow queue. Of course, similar
spikes can occur after the initial slow start phases: Figure
10(b) shows the fast queue peak at time 2.8s caused by an
aggressive flows that goes into slow start after having lost a
retransmitted packet. Another reason for fast queue spikes is
simply that less bandwidth is available to the fast flows when
packets are waiting in the slow queue. For comparison with
Figure 9, Figure 10(c) shows the FIFO queue length when
there is no aggressive flow and the link bandwidth has been
reduced to the � �M�N}�� ��� wE��x Mbps fast bandwidth share. As
for the aggressive goodput, it ranged from 7Mbps to 14Mbps
across the 4 flows.

VI. RELATED WORK

The local QoS paradigm can be instantiated in ways other
than those described in this paper. For example, end-point
applications or middleware can adapt to erratic network QoS
[18]. The idea of treating flows differently depending on
their behavior was developed in the context of AQM, for
example, by FRED [19]. The RuN2C algorithm uses a two
queue mechanism in order to achieve better response time
for shorter flow, but it is based on TCP sequence numbers
and does not consider instantaneous queue occupancy [27].
The significance of aggressive flows for real-time traffic stems
from the measurement and characterization literature: first, it
is shown that the largest traffic spikes across a link are due to
sporadic flows that have relatively large end-to-end available
bandwidth; second, it is demonstrated that the removal of
such flows leads to excellent levels of service in an over-
provisioned best-effort network [28], [29], [30], [31] (see also
the measurements in [32]). A recent paper points out that the
objective of QoS should be to minimize risk [33].

The GPS discipline can be approximated by various algo-
rithms [34]. Algorithm 2 achieves the same fast T-WCI as the
virtual clock algorithm [35] and it makes it easier than WF � Q
[26] to avoid re-orderings.

The problem of identifying frequently occurring items in a
stream has received much attention. The earliest algorithmic
work focused on the problem of finding an item that occurs
at least half of the time [36], [37] or with a certain large
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Fig. 9. Fast queue length in simulations with different numbers of aggressive flows.
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Fig. 10. Fast queue length in simulations and queue occupancy of the aggressive flows. The vertical axis scale differs among charts.

percentage [38]. A detailed background of this problem and
its database and algorithmic ramifications can be found in [39].
Generally speaking, most of these approaches are suitable for
massive data sets (e.g., a log of Google search queries, an off-
line packet trace) but unsuitable to compute queue occupancy
counters due to their high processing time, lack of support for
packet departures, or both.

VII. CONCLUSIONS

The paper has introduced the YAQS queuing strategy.
YAQS provides excellent protection against sporadic aggres-
sive flows. YAQS individuates with high accuracy and little
state the flows that occupy a large fraction of a buffer and
segregates these offending flows into a separate slow queue.
Extensive simulations show that other flows will benefit from
short queuing delays while aggressive flows can still maintain
high goodput. The analysis employed both ns simulations and
packet traces collected on NLANR links.

A strategy such as YAQS is intermediate between two
extremes: packets get differentiated handling at a router (as
in explicit QoS) but a packet QoS class is ignored (as in
best-effort). A direct consequence is that intermediate strate-
gies, such as YAQS, can be selectively turned on or off at
each router depending on the QoS needs at that link. At
the core of the paper, the fundamental contribution is to
elaborate on a local QoS paradigm that does not depend on
multi-node cooperation. Local QoS is interoperable with best-
effort networks, requires minimal router configuration but no
multibox administration and no inter-provider coordination. In
general, the local QoS paradigm has the potential to favor the
incremental adoption of QoS in computer networks.

We feel that the paper poses more questions than answers.
Future work should at least address end-to-end QoS on hetero-
geneous large-scale networks, a dynamic choice of the weight
� , a comparison between YAQS and FQ, the interaction of



YAQS with AQM, and the queue behavior in the presence of
shrew attacks [40] and aggregates.
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