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Multi-Agent Supervision of Generic Robots 
 
 

Abstract by 
 

David Rosas 
 

 

This paper proposes a new architecture for remote robotic control that utilizes 

sophisticated programs acting as intermediaries between the robot and the supervisor.  

These processes are mobile agents and are capable of moving from one computer to 

another autonomously as resource needs change.  Through a predefined set of 

interfaces and a simple language, the agents may communicate with each other as 

well as the robot and supervisor.   This abstraction between the supervisor and the 

robot allows the virtual robot to move to different computers with different resources 

depending on the current task the robot is executing.  Additionally, it permits a 

programmer to add new functionality to the virtual robot that wraps up existent 

robotic functionality.  This allows a supervisor to create and inject new methods that 

will control the robot without actually reprogramming the robot itself.  We believe 

that this framework provides alternative solutions to many remote robotic control 

problems and allows for many exciting supervisory control possibilities. 
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1. Introduction 

This thesis describes the theory behind and implementation of robotic supervisory 

control using peer-to-peer processes.  The Internet has become a solid infrastructure 

upon which distributed applications of all sizes and purposes have been constructed.  

Remote robotic control is becoming increasingly valuable as tasks are discovered that 

could ideally be performed by robots without requiring human presence1 2.  However, 

there are two main characteristics that separate this project from past remote robotic 

control undertakings.  First, most remote control architectures are unacceptable for 

real world applications because of the time delays involved.  If a robot was given 

commands to move to specific locations in n-dimensional space, for instance, and 

some unexpected occurs, the error must be reported back to the supervisor.  Upon 

receiving notification of the robot’s error and current state, the supervisor must first 

decide how to correct the robot.  Often the supervisor will want to make some small 

change, such as causing the robot to move to some modified set of coordinates before 

continuing along with its job.  This feedback must be assembled into a form that the 

robot can understand and then shipped back across the Internet to the robot.  This 

much delay is often unacceptable, especially when the robot and supervisor have a 

low-bandwidth or long-distance link.  Our project allows “virtual robot” processes to 

take jobs from the supervisor and command the robot.  More importantly, these 

virtual robots may exist anywhere, such as on a computer that is at a near-distance or 

high-bandwidth link to the robot.  The flexibili ty that this entails allows us to perform 

remote, supervisory control on a new class of Internet-capable robots.  This class 

                                                
1 Bill Adams.  [2] 
2 Khurshid Alam, Sudipto Mukherjee. [3] 
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includes all robots that require quick response times or error correction for their tasks, 

as long as the errors are somewhat expected and thus may be represented in a fashion 

understandable to the virtual supervisor process.  While the existence and use of these 

peer-to-peer processes implies many things and grants us many more advantages than 

just success over some time-delay problems, the second main advantage that this 

project can tote over traditional attempts is the goal of gaining this control in a 

generic fashion.  By this we mean the following: it is our goal that any robot, as long 

as that robot falls within a range of our classification, may announce its existence and 

various details about its abilities to a single, previously written supervisor program 

which will then be able to control that robot.  The details that the supervisor must 

acquire include tasks that the robot can perform and things it can monitor, as well as 

basic information about where and how it exists on the Internet.  We accomplished 

this in a way that will require a bare minimum amount of programming on the robot 

and thus allow a relatively easy way to make any robot that fits our classification 

compliant with our remote supervisor program.  To be able to control any robot 

regardless of its actual physical shape or its functionality without needing to rewrite 

the program that does the supervision would be a step forward in remote robotic 

control.  After all, it would provide a standard control mechanism to all robots within 

our specified class, allowing a familiar set of controls to supervisors and, furthermore, 

would eliminate the need to write a new supervisor program each time a robot is to be 

controlled remotely.   

Something that must be made clear at this point is that the supervisor program 

must somehow adapt itself into a form that allows this control to take place in a 
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manner appropriate for the target robot.  It is of little use to have a program that can 

relay commands to any robot if it is not flexible enough to provide a meaningful 

interface to the supervisor based on what robot is being controlled.  However, the 

supervisor program itself must not require any additional code or recompilation to 

achieve this control of any generic robot.  If the supervisor is only made to handle 

robots with a gripper and is unable to change the layout of its GUI, then it does no 

good to be able to control a mobile pathfinder-like robot, since the supervisor will 

still only have access to that gripper control representation on the GUI and nothing 

more. 

The roadmap of this thesis is as follows.  First, background information will 

be given and a short description of the foundation upon which this research lies.  This 

includes topics like remote control, supervisory control, and Natural Admittance 

Control as well as a short discussion of current trends and practices.  After this 

background has been described, all of the third chapter will be devoted to describing 

several goals for an ideal system for remote, supervisory control of robots.   The rest 

of the thesis paper is devoted to attempting to achieve those goals.  As each goal is 

discussed and a solution proposed, the overall control architecture is updated to 

reflect our attempt to satisfy this goal.   This control architecture starts off assuming a 

strict master/slave model, but eventually we are forced to change it in order to 

achieve our objectives.  This need is discussed in chapter five, and leads to our final 

control architecture, which we then illustrate as achieving the remaining goals.  This 

architecture is the primary result of our research and is the crux of the thesis.
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2. Background And Basis For Work 

In this chapter, the foundation of our work is discussed.  It begins with descriptions of 

a few basic concepts and terms and ends with a description of traditional robotic 

control and the biggest problems it faces.  It is hoped that this chapter will describe 

the current state of remote robotic control, along with its strengths and weaknesses, 

and set the stage for outlining our objectives. 

 

2.1 Remote Control  

The goal of refining remote robotic supervision is nothing new, with attempts 

increasingly focused on Internet control.  Internet control has proven itself to be an 

excellent medium for remote control because there exist standard Internet protocols 

which have been utilized by many robots and robotic controllers, both at the hardware 

and software levels, and also because it provides us with much of the lower level 

implementation that sending messages in a time-efficient manner require3.  Previous 

related projects at Case Western Reserve University include some of the earliest 

network-based teleoperation with reflexive collision avoidance4, a prototype robot 

that sorts laundry under the supervision of a remote homeowner, an industrial robotic 

arm that sorts items with the assistance of a remote engineer, and the support for the 

reprogramming of advanced production line robots from a remote laptop or PDA.   

 

 

                                                
3 Soraya Ghiasi [12] 
4 Ittichote Chuckpaiwong [] 
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2.2 Supervisory Control 

Aside from reusing concepts surrounding remote control, we have also geared our 

project towards what has become known as robotic “supervision” .  A complete 

definition and explanation of this term will be provided within the main section of the 

thesis.  In short, robotic supervision implies that the robot is somewhat intelli gent and 

performs and completes most tasks with a large degree of autonomy, often requiring 

input from the supervisor only to receive high-level objectives or to escape from an 

undesirable state in which it finds itself.  We have based our decision to use 

supervisory control on the benefits it affords us relative to the weaknesses of IP 

communication.  For example, at CWRU we have demonstrated an exploratory case 

of remote supervision using a robot that sorts laundry into whites and colors5.  The 

robot (Rhino) is composed of one arm with a gripper (to pick up and put down the 

clothing) and two cameras (to observe the clothing).  The robot uses pictures from the 

cameras to classify a grasped clothing item as white or color and then drops it in the 

appropriate basket.  The robot usually proceeds autonomously, but there are cases in 

which the robot is unable to make a clear distinction about the color (or lack thereof) 

of a piece of clothing.  When this case occurs, the robot contacts a remote human, 

who can assess the state of the robot’s job through a Web browser that displays 

pictures of the environment.  The human supervisor is then able to instruct the robot 

to perform diagnostic or functional actions, which allow the robot to return to 

productive work.  This philosophy of supervisory control applies to many remote 

control robotics situations and we have found it to be an effective excellent pattern to 

build into our control architecture.  
                                                
5 Rhino 
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2.3 Natural Admittance Control and Virtual Attractors 

Natural admittance control (NAC) is control based upon a set of parameters that 

prescribe desirable admittance dynamics that the robot should emulate67.  Robot 

control is achieved by setting these parameters to application-dependent values, 

which are then used by the NAC controller local to the robot.  For example, washing 

a window, the robot would be instructed to behave relatively stiff ly in directions 

tangent to the glass and compliant normal to the glass.  To open a door, the robot 

should behave relatively stiff ly in the expected direction of motion, but should 

comply gently in directions corresponding with hinge constraints.  The NAC 

controller technology is sufficiently developed that it can be used as a foundation for 

remote controls.   

Within NAC, a “virtual attractor” is a point in n-dimensional space to which 

the robot end-effector is virtually connected by a means of a set of fictitious springs 

and dampers of specified stiffnesses and damping.  Through this use of virtual springs 

and dampers, the robot is given goal points upon which it is encouraged to converge.  

If there is an environmental force in opposition to this convergence (perhaps from 

contacting kinematic constraint surfaces), there will be position and/or orientation 

errors between the attractor and the robot, resulting in stretch of the virtual springs.  

As a result, virtual forces are produced.  These virtual forces are part of the model 

reference dynamics, and thus the robot will equili brate in contact with the 

environment with interaction forces equal and opposite to the virtual forces.  By this 

means, one can both visualize and produce desirable interaction dynamics.   

                                                
6 Brian Mathewson  
7 Nirut Naksuk 
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recent experiments at CWRU, the value of virtual dynamics to implement 

strategic behaviors has been demonstrated with respect to assembly of automotive 

transmission components.  It is proposed here that capability is also highly valuable in 

accomplishing Internet based collaboration between humans and robots. 

 

2.4 Traditional Robotic Control and Existent Problems 

 Traditional robotic control involves a myriad of varying components.  Some 

industrial robots are programmed directly while some are controlled through a 

separate computer to which they must always remain attached.  The operating system 

that controls the robot or its computer controller differs from one manufacturer to the 

next.  Sometimes they are standard and often they are completely proprietary.  The 

engineers who wish to program these robots must learn not only the system calls that 

correspond to the operating system at hand but also work within the confines of 

languages that may be compiled or interpreted for that platform.  The languages in 

which robotic controller code is developed also vary greatly, typically being 

proprietary to the robot manufacturer.  With all of these differing factors, it quickly 

becomes quite difficult to program or control multiple robots from differing 

manufacturers without a matching set of trained engineers and programs written to be 

compliant to each system.  This is especially so when multiple robots must be 

coordinated to cooperate in achieving a single objective8. 

 Traditional remote robotic control only adds to these problems of complexity.  

Each robot typically has a static, centralized controller that exposes its own interface 

with which interaction may take place.  Using those interfaces, the remote controller 
                                                
8Terrence Fong, Charles Thorpe, Charles Baur. [10] 
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may send messages in the language defined by the robot.  Various attempts have been 

made to make a standard language that all robots could recognize and thus simplify 

the communication process9 10 11.  Even with such attempts, a fully accepted universal 

language for use in passing messages to robots far from a reality.  Part of this problem 

is the wide range of activities that robots can perform makes the creation of a 

language that can adequately describe all of them difficult.  Trying to remotely 

control two different robots, then, nearly always implies the need to work with vastly 

different interfaces that accept messages formed in vastly different languages. 

 For all of these reasons, traditional remote robotic control solutions have 

struggled to expand their domain to problems requiring multiple robot coordination.  

Additionally, it is difficult to augment the existing functionality of the robot, 

particularly when the owner of the robot who desires these changes is not also the 

manufacturer of the robot.  First, an engineer must be found who understands both the 

operating system and the language with which the robot was programmed.  

Depending on how flexible the remote interfaces were programmed and how robust  

the language that defines the robotic commands is, new interfaces must be added to 

allow the utilization of any new functionality.  Moreover, the robot must have some 

way of informing any potential controller of its new functionality so that the person 

controlling the robot will know that this functionality is now available, or else the 

controller program must be updated and recompiled for usage as well.   

 

                                                
9 Michelle Munson,  Todd Hodes,  Thomas Fischer, Keung Hae Lee,  Tobin Lehman, Ben Zhao. [16] 
10 J. Bates, J. Bacon, K. Moody, and M. Spiteri [6] 
11 D. Gelernter. [11] 
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3. Overview And Rationale of Goals 

Now that the foundation for our work has been explained, this chapter lays out the 

objectives for ideal supervisory robotic control.  The goals are meant to describe an 

architecture that makes the most of the strengths of current systems and perhaps help 

to supplement some of the weaknesses.  Thus, each goal is an attempt either to 

provide a better solution to one of the currently solved challenges of robotic control 

or to propose a new feature altogether.  Once the goals have been defined, their 

proposed solutions and implementations may then be discussed in the next chapter. 
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3.1 Enabling Remote, Generic Supervisory Control  

One of our primary goals for an ideal control system is to enable remote, 

generic supervisory robotic control of a class of robots.  By generic control, we mean 

that control should be possible regardless of the computer, operating system, and 

language associated with the robot.  Clearly, the class of robots with which we wish 

to enable remote, generic supervisory control must be a class of robots that lends 

itself to this control.  Therefore, there are some basic requirements for robots before 

they are classified as a match for our control architecture.  We first require that the 

robot be able to be controlled remotely to a satisfactory degree.  Most often, this goal 

will be achieved by using functions that the robot currently implements when the 

supervisor wishes to execute common, well known tasks, using a virtual attractor and 

impedance model to drive the robot through unexpected, supervisor defined patterns, 

or a combination of the two.  In addition, there will be some basic operational 

requirements of the robots.  There must be a lowest common denominator for 

communication that the remote control program may use and with which, therefore, 

the robots must comply.  It is important to note that these operational requirements 

should not make it diff icult for the average robot to be controlled—that is, the bar for 

the lowest common denominator must be set low enough that it does not eliminate the 

bulk of robots from compatibili ty with our architecture.  Ideally, these operational 

requirements should be nearly universally available across many various robotic 

platforms and programming languages. 

 The final characteristic that a robot must have in order to be classified as a 

good match for our system of remote supervisory control is that it lends itself to 
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supervisory control in the first place.   Supervisory control means, in essence, that the 

robot is given high-level, coarse goals with a high autonomy of control.  In 

supervisory control, the human robot controller acts exactly as such—a supervisor.  

The supervisor sees the results of the robot’s efforts, gives overall objectives and 

desires for future output, and is able to obtain precise control over the robot when the 

robot is confused or in an undesirable state.  The supervisor is not required to step the 

robot through each micro operation, nor must he or she be present to watch the robot 

perform its work.  Often this level of job abstraction is achieved through pre-

programmed functionality that is present on the robot and which the supervisor 

simply invokes in an ordered sequence.  This results in the robot continuously 

performing well-known tasks without requiring systematic instructions.  This is 

perfect for remote control scenarios, where often the time delay prohibits any 

efficient fine-tuned control12.  Even though supervisory control requires the abili ty for 

the robot to complete objectives with only coarse input, it does not eliminate the 

possibili ty of low-level control.  Occasionally, the supervisor may wish to use low-

level, or precision, control in order to correct a supervised robot from an error state or 

to perform some operation that the robot has not preprogrammed to do.   When given 

complete knowledge about the robot being controlled, the task of giving that robot 

meaningful, low-level commands in order to manipulate the robot’s state is trivial.  

However, our work has been based around the concept of generic control: Instead of 

complete information, virtually no knowledge is available to the virtual supervisor.  

Accordingly, it is our intent to provide this same fine-grain control through a virtual 

attractor and impedance model, in which the supervisor has a much greater range of 
                                                
12 Jeffrey B. Elli s [8] 
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control over the robot with no pre-programmed knowledge of the overall goal the 

supervisor has in mind.  

 It is important to note at this time that while the robot will certainly be 

programmed with functionality that it may expose to the supervisor, the remote 

control application that the supervisor uses is meant to be generic.  It should be able 

to apply meaningfully to any robot without any pre-existent knowledge about how the 

robot works and what it does. This is a noteworthy endeavor—we must create a 

program that will allow a human supervisor to invoke any range of functionality on a 

foreign robot that the program previously knew nothing about.    

 

3.2 Generic Robotic Control Application 

It is rudimentary that in order to control a robot remotely, there must exist 

some program that the supervisor will use from a different, remote location, to send 

commands to the robot.  This program will be called the Virtual Supervisor, since it is 

exactly that—a computer program that accepts the supervisor’s wishes and relays 

them to the rest of the system.  To the robot, it speaks with the voice and authority of 

the supervisor himself.  Currently, remote robotic control architectures are nearly 

completely composed of master/slave models.  The supervisor uses a program, the 

virtual supervisor, as the master process to send commands that control one or more 

robots, which play the roles of slaves.   We will be assuming this architecture for the 

remainder of the analysis and requirements gathering portion of this thesis.  It is the 

nearly universal architecture used for current day remote robotic control applications, 
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and as such, it is an excellent foundation to stand upon and assess weaknesses and 

possible modifications.   

This virtual supervisor should be, like the robots it hopes to control, generic 

across operating systems.  Regardless of what computer the supervisor himself wishes 

to use, it would be highly desirable if the virtual supervisor could run on any 

computer the supervisor desired, regardless of location or operating system.  This 

would give the supervisor a great deal of flexibili ty in attaining control of a remotely 

located robot. 

 

3.3 Efficient and High-Level Remote Communication  

  Our next goal is to utili ze as efficient and high-level a model for remote 

communication as possible.  While we recognize the need to pander to the lowest 

common denominator of robotic functionality, we wish to use protocols that facili tate 

communication with the robot and the rest of our system in an efficient a fashion as 

possible.  With so many powerful ways to package data, such as Java’s RMI (Remote 

Method Invocation) protocol and the SOAP (Simple Object Access Protocol) 

standard currently used by many corporations, it is unnecessarily inflexible to 

continue to program sockets to send text strings from one process to another.  Modern 

communication protocols give programmers a high-level communication standard 

that allows for easy transmission of a wide range of data types between computers.  

Additionally, they package the data in a far more efficient manner than sending 

ASCII  text strings across sockets. 
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3.4 Dynamic GUI Utilizing Intuitive, Modern Day Controls 

 Just as we are attempting to accomplish communication in a high-level and 

elegant fashion, the virtual supervisor should be required to adhere to these same 

standards.  The virtual supervisor should be a GUI with the powerful control 

mechanisms that are associated with modern-day GUI design.  The advancement of 

visual controls has reached a point in software development where the visual 

representations of commonly requested inputs can be presented intuitively to the 

average computer user.   

 This virtual supervisor must be bidirectional.  The virtual supervisor must be 

able to call a function on the robot and then accept a return value from the robot after 

it has processed the command.  Additionally, the robot will have many different state 

variables with values that it may wish to relay to the supervisor.  These state variables 

are essentially properties of the robot, such as its location and velocity, and the 

robot’s environment, such as external temperature and pictures of its surroundings.  

Ideally, the supervisor could receive updates of these properties in different fashions, 

such as polli ng or upon a change of their value, or upon a change of their value to 

some definable degree of significance.  Regardless, two-way communication is 

necessary for useful robotic control problems.  There are also times when an 

emergency may occur and the robot may wish to ensure that the human supervisor is 

contacted in ways that exceed the normal abili ties of the virtual supervisor.  In these 

emergency cases, it is desirable for the virtual supervisor to be able to give additional 

graphic warnings to the supervisor, possibly out of the scope of the virtual supervisor 

program itself, or even perhaps out of the scope of the computer.  For instance, if an 



 
  
 

  

 
15 

 

assembly line robot were in a state of severe error and could not continue to complete 

its work, it could send a message up to the virtual supervisor.  The virtual supervisor 

would immediately request supervisor input, and, should the supervisor not be at the 

computer to give it, the virtual supervisor might use the Internet to call the 

supervisor’s beeper number and send a message reporting the problem.   

 One of the biggest issues with making a highly robot-specific GUI within our 

architecture is that, as was previously stated, the virtual supervisor is to be generic to 

the point that it has no preprogrammed knowledge about any robot it must control.  

Thus, instead of making a virtual supervisor that can interact with a single robot that 

it has been programmed to know about, the virtual supervisor should be a visually 

intuitive and high-level GUI for generic robots of which it has no foreknowledge.  It 

is a worthwhile effort simply to expose functionality on any robot that the virtual 

supervisor wishes to control while specifying nothing about how fluid and intuitive 

the virtual supervisor’s control mechanisms must be.  However, it is even more 

challenging and beneficial to produce a GUI that uses modern day graphical controls 

and provides a user with an intuitive way to control a robot that was foreign to the 

virtual supervisor at the time of its programming. We must define a way that any 

robot may inform the virtual supervisor about not only its raw functionality, but also 

about what visual representation a human being would see as a close parallel to that 

functionality. 
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3.5 Single Supervisor, Multiple Robot Control 

The architecture of our system, then, must facili tate routing commands from 

the supervisor to multiple robots, thus allowing for single-supervisor control of those 

robots.  Accordingly, it must be able to route return values and property updates from 

multiple robots to a single virtual supervisor in a meaningful fashion.  There are many 

cases in which controlli ng multiple robots from a single interface is beneficial.  Many 

of them are based around scenarios in which the robot participants would have 

previously required different GUIs in order to permit remote control.  In such a 

scenario, allowing the control of two robots from one GUI is a step forward.  More 

complicated, yet equally desired, scenarios involve coordinating the inputs and 

outputs of multiple robots not only with one virtual supervisor, but also with each 

other, thus allowing a network of robots to work collectively even though they are 

being controlled only in a supervisory fashion. 

 

3.6 Adding Dynamic Functionality to the Robot 

 Perhaps the most frustrating ramification of the greatly varied operating 

systems and programming languages that most current robots are built upon is that in 

order to fix a bug or to add functionality to such a robot, an engineer who is familiar 

with the robot’s platform and code base must be found.  Many times this is frustrating 

to industries that buy a robot and then find out later that it requires some maintenance 

or an upgrade in a language or on an operating system with which none of their 

employees are familiar.  Since the interfaces for the current functionality must be 

discovered and stored by the virtual supervisor during the time of its control, it seems 
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feasible that the virtual supervisor could somehow be able to expose new 

functionality to the supervisor based off what it knows currently exists on the robot.  

In other words, it would be a desirable feature if the virtual supervisor could offer the 

supervisor the abili ty to perform actions on the robot that the robot was not originally 

programmed to perform.  This translates into the abili ty to dynamically add 

functionality to robots by using our knowledge of the robot’s preprogrammed 

abili ties.   

Currently, our goals permit the expected case:  If the robot has any 

functionality it wishes to expose at all, the virtual supervisor currently will learn of 

this functionality and expose its own controls to invoke the robot’s functionality.  

Should this new goal be achieved, then the following scenario could play out:  The 

supervisor, using the virtual supervisor program, connects to some robot.  Suppose 

this robot exposes two functions, DrawLine() and Rotate(), which draw a line on a 

piece of paper and rotate the robotic hand appropriately.  The robot informs the 

virtual supervisor of its functionality, functions DrawLine() and Rotate().  The virtual 

supervisor then these functions along with a way for the supervisor to access them, 

passing in whatever parameters are necessary (using some graphical representation 

per the previous requirement of a high-level GUI).  Now, the supervisor wishes to add 

some further functionality to the robot based off the robot’s current abili ties.  In the 

simplest case this would involve perhaps making some function DrawSquare (), 

which called DrawLine() and Rotate() four times.  We now propose that instead of 

reprogramming the robot using whatever robot-specific language and OS calls 

necessary, the supervisor instead reprogram the virtual supervisor to expose a 
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function DrawLine() that calls the robotic functions in the proper order.  The virtual 

supervisor, after all, has complete access to the robot and knows about both 

DrawLine() and Rotate().  It is trivial for the virtual supervisor to make calls to these 

robotic functions.  After the virtual supervisor has been programmed to make those 

calls and expose it as a DrawSquare() command, this new command is exposed to the 

supervisor as if it existed on the robot.  In fact, since a supervisor who is not familiar 

with the robot will gain all of his or her information about the robot from the virtual 

supervisor, it would be impossible to tell what functions existed on the robot and 

which ones were programmed into the virtual supervisor based on previously existent 

functionality.  After this method creation had taken place, the supervisor could invoke 

his newly created DrawSquare() function on the virtual supervisor, which would, in 

turn, invoke the DrawLine() and Rotate() functionality on the existent robot.  

Clearly, this goal is easily accomplished should the virtual supervisor 

program’s source code be updated and then recompiled by the supervisor wishing to 

add features to the robot, but this approach has three drawbacks.  First, should a 

functionality tweak be necessary while the robot is operating, the virtual supervisor 

(and thus, presumably the robots) would need to come to a safe state for shutdown 

and then proceed to shutdown before the virtual supervisor program could be closed.  

After closure, a newly tweaked version that had been compiled could be run and 

connect to the robots to begin controlling them anew.  In short, the changes could not 

be applied while the system was running.  Secondly, it breaks the idea of a generic 

virtual supervisor that may control any robot.  Granted, the challenge of loading up 

functionality dynamically is a separate and arguably more ambitious goal than the 
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previous requirements, but to require a virtual supervisor that has a permanently 

different binary from other virtual supervisors that are in use is extremely 

undesirable.  The aim of this project is to make one virtual supervisor program that 

can be used for any robot.  To require a recompilation into a different virtual 

supervisor program leads to different versions of the virtual supervisor that are 

compatible with different robots. This is not acceptable.  Customization clearly needs 

to take place on a per-robot level, but statically modifying the current generic product 

is not an attractive solution—adding onto it with a separate component would be 

much preferred.   

The third and final drawback of recompili ng the virtual supervisor each time 

one wishes to add robotic functionality is the need for supervisor knowledge of the 

virtual supervisor code.  Recompilation would require the supervisor to not only 

understand how the robot they wish to reprogram functions and what interfaces it 

currently provides, but would demand moderate to high knowledge of the inner 

workings of the virtual supervisor application as well.  Such knowledge should not be 

required of the supervisor, who merely wishes to deal with the robot and have as little 

contact with the inner workings of the virtual supervisor as possible.  It is arguable 

that requiring an engineer to learn the non-changing architecture and interfaces of the 

virtual supervisor application would still be significantly easier than learning new 

languages and OS calls each time a different robot was in need of additional 

programming, but ideally, neither should be necessary. 

We believe that this feature should be especially attractive to supervisors in 

the industry who would much prefer simply to upload new code to transform their 
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robot version 1.0 to robot version 2.0 without shutting the robot down or installi ng 

new hardware.  This kind of patching has certainly become the standard in the 

software world, where the shipped product is constantly being updated, patched, and 

exposing new functionality that was simply not quite ready when the time came to 

ship.  Dynamically loading code to fulfill maintenance or update demands on remote 

robotic controller applications is a fair application of this model. 

As a final point on this requirement, it is important to note that when the 

virtual supervisor may be required to control multiple robots it will contain 

functionality from more than one robot.  Should the supervisor wish to create a single 

new method that wraps up functionality on multiple robots, this should be entirely 

feasible.  By achieving this, the supervisor would achieve something that would have 

been significantly more difficult if he or she was programming at the robot level 

instead of the virtual supervisor level—multiple robot coordination.  At the robot 

level, this involves setting up new communication protocols that do translation 

between the command languages of the two robots and then having a new 

communication link (robot to robot) in existence during execution.  By programming 

at the virtual supervisor level, the robots simply use the pre-existent communication 

links and languages to communicate with a coordinator—the virtual supervisor 

process itself.  To the supervisor, this coordination still appears to be wrapped up into 

one function call.  Thus, he or she may execute a function call to achieve some 

objective and without being aware (or needing to be aware), multiple robots may all 

play a part in achieving the requested goal.   
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3.7 Enabling Fine-Grain control 

 The final requirement that we wish to achieve is to allow for differing levels 

of robotic control.  Depending on what task is requested of some robot, the kind of 

resources required by the robot to complete their objective changes drastically.  

Network distance as well as computation cycles required are two excellent examples 

of metrics whose importance changes drastically depending on the type of job 

requested of the robot.  Thus far, the requirements have been assuming a rigid 

master/slave model, wherein the virtual supervisor talks directly to the robot 

responsible for carrying out his or her commands.  Assuming this model, the control 

flow is static:  regardless of what job is being requested of the robot, the supervisor 

begins by manipulating the GUI on the computer that is running the virtual 

supervisor.  Those commands are then sent to the robot, which executes them and 

sends feedback to the virtual supervisor.  Often the response times are unacceptable13.   

The desire to take advantage of the specific resource requirements of a remotely 

controlled task is widely held14. 

 At this time, it is helpful to introduce a practical example.  Therefore, we will 

introduce a robot that will serve as such.  It is the Paradex robot, and may be seen 

below, in figure 3.1. 

 

                                                
13 Ken Taylor, Barney Dalton, Australian National University.  [21] 
14 Rajrup Banerjee, Amitabha Mukerjee.  [5] 
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3.1 The Paradex robot 

 
The Paradex is one of the robots at Case Western Reserve University and has several 

arms that reach down to a central tool disc.  There is nothing about the Paradex robot 

that makes it especially well or poorly suited for our architecture.  It does have the 

advantage of having force sensors located inside each of the six links from its base to 

its tool disc, and with that an enhanced abili ty to sense and “feel” its way around the 

environment.  This makes it an excellent candidate for NAC and thus supervisory 

control, as was discussed in the introduction.  However, there is nothing about the 

Paradex, either physically or programmatically, that makes it special case for control 

within our architecture.  Consider the following case.  The Paradex is set up in an 

environment in which it may move its tool disc about fairly freely.  The Paradex 

exposes only a single interface that allows the virtual supervisor to send it Cartesian 

coordinates, to which the Paradex will move whatever tool is attached to its tool disc.  

The virtual supervisor contacts the robot and immediately gives the supervisor the 

option of using the robot’s interface and sending a destination point to the robot.  



 
  
 

  

 
23 

 

Additionally, as per the dynamic loading of functionality requirement above, a 

method that allows the supervisor the option to specify a complex path for the 

Paradex’s tool to follow has been added to the virtual supervisor.  How the supervisor 

defines the path is irrelevant, it is only necessary to stipulate that the supervisor has 

the abili ty to meaningfully describe to the virtual supervisor the exact path it wishes 

the Paradex’s tool to follow, perhaps through a sketch pad control.  Assume that the 

virtual supervisor’s newly added operation may be broken down into two stages.  In 

the first, the virtual supervisor, with the image of the path the supervisor specified in 

memory, calculates the actual coordinates that the Paradex must follow.  In the 

second stage, the virtual supervisor actually commands the Paradex to move its tool 

to each point and thus travel the path that the supervisor specified. 

 Assuming that the input the virtual supervisor receives from the user is in any 

significant abstraction layer above actual coordinates (a fair assumption), the first part 

of this process is very computationally intensive in comparison with an idle state or 

with the second stage.  The virtual supervisor must deduce a series of actual 

coordinates from the relatively complex representation of the supervisor’s desired 

path.  Since this stage does require a great deal of calculations, the processing power 

of the computer on which the virtual supervisor exists suddenly becomes important.  

Conversely, the second stage requires relatively little CPU cycles and a great deal of 

data transmission speed.  When the robot has reached a target point, the next point 

should come quickly, taking into consideration any error in convergence upon the 

previous point.  Should a serious error occur, such as the Paradex being bumped or 

some problem occurring in the environment space, the robot needs to receive 
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commands to resolve the problem as quickly as possible.   If the supervisor is in 

another geographical location and separated by a large network distance, then many 

seconds may pass while the state goes from the robot to the supervisor, a response 

intended to correct the current state is given, and that response travels back to the 

robot.  Alternatively, in the normal case when the Paradex has converged upon a 

target point, it will wait, while the signal is sent to the virtual supervisor and next 

coordinate is sent back, calibrated to fix any error in the convergence to the first 

point.   Computational abili ty is now a far less important metric than a short round 

trip time between the Paradex and the supervisor.     

Suppose, then, that there were two computers from which the virtual 

supervisor could be executed.  One of them is on the same local area network 

(LAN)15 as the Paradex and as such has a very good network connection to the robot.  

However, it is an outdated machine and not capable of fast performance.  The other 

computer is located at the supervisor’s home in a different geographical location from 

the Paradex and is on a modem connection to the Internet.  While the round trip time 

between that machine and the robot is large, the computer is very powerful and 

capable of performing massive amounts of calculations in a relatively small amount 

of time.  If the virtual supervisor is launched from the computer on the robot’s LAN, 

it will perform well in the second stage of operation, but not the first.  The opposite is 

true should the virtual supervisor be launched from the computer at the supervisor’s 

home.  

                                                
15 A Local Area Network is a network that connects computers that are close to each other, usually in 
the same building, linked by a cable. 
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 What we would like is for the remote control architecture to contain some 

mechanism that will allow not only engaging in this high-level supervisory control 

from remote locations, but will also enable us to gain fine-grain control over the 

controlled robot when the situation demands it.  In this case, it seems almost as if a 

dual virtual supervisor solution would be called for—one virtual supervisor that 

resides on the high performance machine and does the calculations required in stage 

one and then a second virtual supervisor that takes the results of those calculations 

and moves the Paradex’s tool during stage two.  Note that one highly undesirable 

consequence of the need for running the virtual supervisor on different machines 

during the course of one supervisory action is that the actual person who is the 

supervisor must travel to those machines to control the robot and receive feedback.  

In other words, during a phase that required emphasis on CPU, the supervisor would 

go to a performance-oriented machine and launch the virtual supervisor.  When 

controlli ng the robot in a situation where fast feedback was a priority, a different 

computer would be desirable from which to host the remote control. This is highly 

undesirable. 
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4. Goal Achievement and Corresponding Design Architecture 

 Now that the full requirements for remote robotic control have been specified, 

we may propose an architecture that we believe will allow us to achieve these goals.  

Once that architecture has been put into place, some implementation details must be 

listed and explained to prove that it is indeed a solution to the requirements.   For 

each requirement listed above, the high-level design as well as experimental results 

and control scenarios will be discussed.  Accordingly, the resulting robotic control 

architecture will be revealed and discussed incrementally, so that each goal solution 

yields a modified architecture that accommodates that solution. 
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4.1 Enabling Remote, Generic Supervisory Control  

As discussed in the requirements section, enabling remote, generic, 

supervisory control of robotics requires the ability to interact meaningfully with an 

unspecified robot regardless of operating system and programming language.  This 

requires a specific communication protocol and language that describes the robotic 

commands to be put into practice that allows information communication between 

our generic virtual supervisor and this robot, whose attributes and environment are 

completely unspecified.   

There is no one protocol on any level or in any category that all operating 

systems utilize or with which all programming languages are compliant.   However, a 

method of communication that will act as the best possible lowest common 

denominator must be selected.  It should be basic enough that the vast majority of 

systems and configurations that we encounter will be able to support it with minimal 

difficulty while powerful enough to handle basic Internet communication concerns.  

TCP/IP16 sockets are a universal standard for communicating information and are 

supported under nearly all operating systems, whether Unix or Windows based, hard, 

soft, or not real time and are an attractive solution for the communications aspect of 

this requirement.  They will allow the programmer a standard communications 

protocol with which he or she will almost certainly be familiar and which takes care 

of much of the work required in transmitting data to a foreign host.  Sockets are the 

highest level of communications protocol that we can use to still be compliant with 

                                                
16 TCP/IP is Transmission Control Protocol over Internet Protocol.  It is the most common 
Internet transport layer protocol, defined in STD 7, RFC 793.This communications is based 
on the Internet Protocol as its underlying protocol.  TCP is connection-oriented and stream-
oriented, and provides for reliable communication 
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most robots.  Something more powerful, such as Java’s RMI or even Sun’s RPC 

would not allow compatibili ty with many robots and, since the protocol must serve as 

the lowest common denominator for any generic robot, are unacceptable. 

Using sockets achieves the generic communication aspect of this requirement.  

However, to interact with a foreign robot, the virtual supervisor must do more than be 

able to send data to the robot, it must have a predetermined communication scheme 

so that the two parties may interpret each other.   The attributes of the robot (that is, 

the properties it contains and the methods it exposes) must be discovered and exposed 

in such a way that the virtual supervisor may interact with them.   This will require a 

defined language for expressing robotic commands.  As was stated in the problem 

definition, this concept is nothing new to remote robotic control.  This language must 

be simple enough to be utili zed by any robot but at the same time complex enough to 

adequately describe that robot.  The simplest language would contain absolutely no 

words or phrases, and would certainly be usable by all robots while not able to 

describe any.  A very complicated language would allow absolute control down to the 

rate at which the robot reads signals from the hardware, but would hardly be 

applicable to the average robot that could be controlled.  A middle ground must be 

found.   

The language we chose is text-based, which is again in accordance with the 

standard communication protocols used in modern remote robotic control.  In this 

language, commands sent to the robot may be one of three things: property requests, 

method executions, or control changes.  In the first two cases, the name of the 

requesting supervisor is sent to the robot along with the name of the property/function 
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to execute, and in the case of a function execution, any parameters necessary.  The 

final case involves control changes such as logging onto or off of a robot, or 

indicating the desire to begin supervisory control.  Logging onto a robot is a security 

measure taken to ensure that persons who are not authorized to control a robot are not 

able to do so.  After logging in and being authorized by the robot, a supervisor will 

then be able to execute methods and receive properties.  Properties may be reported 

through polli ng, upon their change, or upon a change of some significance (as 

specified by the supervisor).   Nearly all the outputs and inputs of robots may be 

classified by methods and properties.  Strictly speaking, nearly all software in the 

modern world is built upon the concept of a class, which contains either member 

functions or member variables, relating to methods and properties respectively.  If all 

modern day software can be described through these two categories, robotics should 

be definable through the same methods.   

 When the robot wishes to report to the supervisor, it can send a 

property update, a method return value, or a control communication.  As in the case 

of supervisor to robot communication, the first two cases are straightforward.  The 

robot sends all required information to the supervisor to inform him of the method 

completion or of the state change.  In a control communication, the robot transmits 

messages that confirm or deny a supervisor’s rights to control the robot.  The robot 

also uses control communications to define all of its attributes.  After a supervisor 

first establishes the want and the authorization to control the robot they have 

connected to, the robot then sends the supervisor all the information that defines it.  
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This information takes two forms, as is obvious by now.  They are either a property 

definition or a method definition.   

In the case of a property, the robot is responsible for sending enough details 

about the property to define it to the virtual supervisor17.  One of these details that 

define a property is a notification level that indicates how important it is to notify the 

supervisor about changes to the property.   The notification level will eventually 

determine how the virtual supervisor will respond to the property notification, ranging 

from simply displaying a message on the screen to attempting to contact the 

supervisor’s beeper.  For instance, when there is a change in ambient temperature, 

only a passive notification is needed.  However, if a piece of hardware malfunctioned 

that was endangering the robot and its surroundings, much stronger attempts to reach 

the actual supervisor would be merited. 

 Method definitions are mostly similar18 in that the robot must transmit enough 

information to the virtual supervisor to fully define its methods.  Upon receiving this 

information, it is the virtual supervisor’s requirement to display the attributes of the 

robot in a meaningful fashion to the supervisor and also to map the supervisor’s 

requests into strings compliant with this language that may then be sent to the robot 

for processing.  Using this language, then, any robot should be able to define itself to 

the supervisor in a way that permits satisfactory control.   

                                                
17 Specificall y, a property definition contains a dispatch name by which it is to be called, a friendly 
name that the supervisor will see, a description, also for the supervisor’s benefit, the type of data the  
property represents, whether or not to show the property to the supervisor by default, the initial value 
of the property, and finall y a representation of the notification level that is by default associated with 
this property.   
 
18 Specificall y, the robot is required to inform the supervisor the dispatch and friendly name of the 
method, all of the parameters required to execute the method, whether or not to show this method by 
default, and the type of the return value.  Each parameter description must indicate a name, description, 
type, and default value.   



  
 

  

 
31 

  
 

 It is important at this point to note the obvious: additional programming is 

required on the robot before it will be compatible with the architecture.  This was 

expected, however.  It is obvious that some code must be written on a per-robot basis; 

there is no other way each robot can conform to the communication standard being 

put forth and expose their functionality.   The goal is to make this code as simple as 

possible and to allow each robot to communicate with the virtual supervisor using a 

language that is powerful enough to fully define the robot.  In practice, the owner of 

the robot who wishes to plug it into this generic robotic control framework must write 

the necessary code on the robotic controller, sometimes referred to as the robotic 

proxy control stub, or RPCS.  This code should be significantly easier to construct 

than implementing a remote control architecture from scratch.   The RPCS resides 

wherever the bulk of the robotic control code exists; either on robot itself or on the 

machine attached to the robot that directly controls it.  The RPCS is the component of 

the architecture that is responsible for translating between the methods and properties 

of the robot itself and the language required by the rest of the control architecture.   

 With both the VS and the RPCS defined, the initial state of our proposed 

architecture may now be established.   In this architecture, a Virtual Supervisor is 

used to communicate with a robot through an RPCS using sockets.  The supervisor 

will supervise the robot by interacting with the VS.  The robot represents any generic 

robot, regardless of programming language or operating system, with the RPCS 

providing the interface to the rest of the architecture.  In diagram 4.1, shown below, 

the current architecture design is displayed. 
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4.1 Initial State of Proposed Architecture 

 

 

4.2 Achieving a Generic Remote Control Application 

The virtual supervisor itself should be generic across all operating systems 

and computers.  Additionally, nearly all descriptions of the robot’s attributes include a 

value of a specified type.  Methods involve parameters of various types as well as 

return values of a specific type.  Property updates have types and values.  The abili ty 

to interpret the value depends primarily on the abili ty to recognize the type of that 

value.  A block of information that is calli ng itself a number should be read much 

differently than the same block of information calli ng itself a string.  As such, the 

abili ty to use a language that contains variant or generic types that may be used to 

refer to all types within that language would certainly be an advantage.  Additionally, 

a language that emphasizes strong type safety and reflection would be a huge aid.  
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Type safety of course refers to dealing with variables of different types in a strict 

fashion, such that when performing operations on multiple different types the 

programmer must explicitly state any situation in which he or she wishes to convert 

data types.  Additionally, type safe languages generally have built in optimizations 

when comparing types.  Reflection is the abili ty of a programming language to 

investigate the type of a variable at run-time and allow the programmer access to that 

information.  Thus, the programmer may deal with different types of data in different 

ways, even if these different data types were obtained through a pointer to a base 

class that they share.  If a language that met these requirements were found, then we 

would not have to store the type information of each value as it was specified by the 

robot.  We could instead use generics to represent all values and then use reflection to 

determine what the value is and to display it appropriately.  The two mainstream 

languages at this time that best fit this profile are Java and C# (pronounced C-Sharp).  

Both are based completely on an object model such that objects may be used to 

represent all data and then reflection used to determine what data is being stored19.  

We decided to use C# to create the virtual supervisor.  First, we used C# because, 

being a newer language, C# has had the opportunity to learn from Java’s mistakes and 

clearly assess its advantages during usage in the programming world over many 

years.  A second reason for using C# was the universally accepted SOAP protocol for 

communication, unlike Java’s proprietary RMI.  The biggest weakness to a C# 

                                                
 
19 At this point, a debate is usually raised about Java’s adherence to this strict object-oriented behavior.  
The fact that there exist within Java native types, such as the standard int, that are not represented by 
objects and are grossly different from the int class found within Java’s libraries is troublesome even to 
the most dedicated Java zealot.  Still , Java has been found able to meet strongly object oriented 
requirements again and again in the past, despite its compromises on various points, and as such is 
considered a viable lingual option. 
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implementation is that at this time, a CLR20 exists only on Windows-based systems, 

and thus it is at this time not as generic as we hope it shall become as C# ages and 

expands in popularity.   

 

4.3 Efficient and High-Level Remote Communication  

Now that we have defined the existence of a virtual supervisor that is capable of 

high level remote communication, this objective is more feasible than ever.  

However, we have already defined the communication protocol utili zed by the robots 

to be text strings sent across normal socket connections.  Therefore, in a master/slave 

model such is currently being assumed, this high-level communication requirement 

currently has no place.  We shall pass over this requirement and return to it at a later 

point.   

 

4.4 Achieving a Dynamic GUI Utilizing Intuitive, Modern Day Controls 

 Summarizing this objective, the virtual supervisor GUI should be able to 

display the attributes of the robot(s) to which it is connected in an intuitive way 

utili zing the standard graphical controls that are so common in nearly every modern 

day piece of software.  The above architectural statements have revealed C# as the 

language of implementation for the virtual supervisor.  With C# comes a very rich 

library of graphical controls.  Specifically, therefore, the half of this requirement that 

demands using intuitive, modern day controls equates to nothing more than utili zing 

the graphical controls found within the domain of C#.  The other half of this 

                                                
 
20 CLR – Common Language Runtime.  A (very) coarse equivalent to a Virtual Machine for Java 
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requirement is dynamically changing the look and feel of the virtual supervisor 

according to the attributes of the robot to which it connects.  This half now equates to 

creating these C# controls and placing them on the GUI after the virtual supervisor 

has been exposed to the robot and has had the robots attributes (functions and 

properties) defined.  Once placed on the GUI, the supervisor may then interact with 

these dynamically loaded controls and thereby control the robot that defined the 

underlying functionality.   

 Using C#’s built-in graphical interface library, these objectives are very 

achievable.  When a robot reports a method with some number of parameters and the 

supervisor indicates to the virtual supervisor that he or she has an interest in executing 

that method, the virtual supervisor must simply dynamically create controls that are 

good representations of each parameter’s type.  The supervisor can then manipulate 

these newly created controls to reflect the parameter values he wishes to send to the 

method.  However, the area of diff iculty has now become clear:  how does the virtual 

supervisor actually map a data type to a control that provides the best representation 

for that type?  When the robot requests input of some specified type, what control 

should the virtual supervisor create to receive input from the supervisor?  One simple 

response to this question (indeed, the solution sometimes taken by robotic control 

applications) is to simply accept all input in text.  Textboxes are well recognized as 

established methods of gaining input from a user on Web Pages and computer 

applications alike.  All parameter values must eventually become text strings anyway, 

when they are to be passed to the robot.  While this is a workable solution, it does an 
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unsatisfactory job of achieving our true objective: to provide intuitive control of the 

robot using a control that best represents the type of each required value.   

 In order to use different controls for different data types, then, we need an 

effective way to map data types to controls.  We wish to be more flexible than 

assigning one control to one data type, and instead offer the user various controls that 

map well to the data type he must provide.  For instance, if the data type is an integer, 

then horizontal and vertical sliders may both be options, as would various other 

controls, and the virtual supervisor would by default display one of the controls in 

that group.  In other words, we need to classify which groups of controls are best able 

to represent each data type.  At present, all basic data types are associated with a class 

of controls that may be displayed on the virtual supervisor GUI.  However, this 

classification work is ongoing work.  Controls and classifications alike are being 

added to the architecture as users of the virtual supervisor request more controls are 

used to represent various data types and also as robot methods require more and more 

complex types as input.  Below, in figure 4.3, is the GUI before a robotic connection 

is made.  Note that there are no methods listed, nor are there any parameters 

displayed on the form. The GUI is a template—it is initially blank and useless and 

molds itself to fit the profile of whatever robot(s) it is instructed to control. 
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4.2 The Virtual Supervisor GUI in its blank state; no connections to robots have been made. 

 
 
 
The Paradex robot was introduced earlier in this chapter and, since it has an RPCS, is 

able to receive controlli ng connections from this architecture.  Accordingly, the 

Virtual Supervisor may be used to make a connection to the Paradex, which will 

result in the GUI automatically updating to reflect the Paradex’s exposed methods.  In 

figure 4.2 below, we see the updated form.  Several new methods have appeared, each 

of which was exposed by the Paradex robot through the RPCS.  Most of the methods 

are related to manipulating the workspace of the Paradex robot, a board with several 
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controls attached to it.  In this figure, a window is shown overtop of the GUI that is a 

webcam image of the Paradex’s workspace.  The Parradex robot itself is hanging in 

the air just above the board.  After the supervisor indicates an interest in one of the 

reorted methods, “Large Metal Switch” , the virtual supervisor program updates its 

GUI.  This is the state that Figure 4.4 captures. 

 

 

4.3 The Virtual Supervisor after a connection has been made to the Paradex robot 

 

The parameter required to execute the ‘Large Metal Switch’ method has been 

graphically displayed in the upper right.  It is an input of type ‘ range’.  Range types 

describe data that must fall within a certain range of values, in this case one of three 

values (corresponding to three states of the large metal switch, either neutral or 

switched to the left or right).  The virtual supervisor selected its default control to 
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represent a range input, a horizontal slider.  Each of the three stops along the slider 

indicates a possible input.  Upon holding the mouse cursor over the method name, a 

tool tip has appeared, informing the supervisor of the name and return value of the 

method (in this case there is no return value).  The virtual supervisor will render 

controls to represent many different types of data and thus mold itself into the form of 

whatever robot to which it connects. 

 It may also be noted that there is a box for robotic properties to be selected 

and monitored, as well as for the feedback from method calls to be displayed.  As 

mentioned above, much of the virtual supervisor is crude and still under development.  

There is currently a project at CWRU underway to continue to develop this concept 

of dynamic controls based on type classification.  The virtual supervisor is currently 

the least developed component of our control architecture.  Below, figure 4.5 displays 

the updated diagram of our proposed control architecture.  The Virtual Supervisor is 

now defined to be a visual C# program that adapts to whatever robot(s) it controls, 

thus fulfilling our requirement for a dynamic GUI.  
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4.4 The Control Architecture after definition of the VS
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5.Achieving Remaining Goals: A Need for Architecture Modification 

Many of the goals thus far have been achieved and the control architecture 

defined and updated per the solutions.  However, there is a significant challenge 

associated with achieving the remainder of the goals from within the standard 

master/slave architectural model.  The desire to add dynamic functionality to the 

robot through reprogramming the Virtual Supervisor has been discussed in detail, but 

very little has been mentioned about exactly how to achieve this objective.  In short, 

the goal of allowing supervisors to add functionality to robots dynamically is as 

follows:  Upon evaluating the current functionality of the robot(s) under their control, 

supervisors may decide that there exists a need for the robot to have additional 

functionality based on its current functionality.  In that case, the supervisor should be 

able to program a new method, based on existing methods and properties, that may be 

loaded into the robot for execution.  This new method would wrap up the currently 

existent methods and properties in a supervisor-defined fashion.  Since it certainly 

may not be assumed that the robot itself may have the abili ty to dynamically load 

code and expose this abili ty remotely, this dynamic code loading was to occur inside 

the virtual supervisor.  Since the VS already is aware of all of the robot’s 

functionality and is written in C#, dynamically loading a function based on existent 

functions is feasible.  If the supervisor could continually create new functions that 

wrapped up existent functionality, the result is very comparable to an object oriented 

programming model.  At each level, functionality is wrapped up by member functions 

that make use of the functionality from the level below.  To ill ustrate, we return to our 

DrawSquare() example proposed in the goals chapter.  Suppose that a robot initially 
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had functions DrawLine() and Rotate().  A supervisor who knew nothing about the 

implementation details of either of these functions could write a new function: 

DrawSquare().  The DrawSquare() method could simply call the DrawLine() and 

Rotate() functions in whatever order and frequency and with whatever parameters are 

required to actually draw a square.  Then, the Supervisor could write a 

DrawDiamond() function that wrapped up Rotate() and DrawSquare().  Furthermore, 

he could write a function DrawBaseballField() that used DrawSquare() and 

DrawDiamond() to draw the basic infield diamond and squares for the bases.  At each 

level, the commands are layered into higher and higher levels of abstractions just as 

the classes in modern day applications repeatedly abstract away lower level 

functionality.  

When applied to the Paradex robot, the supervisor could have the opportunity 

to write functions like EverythingOn() that moved all switches and buttons to the ‘on’ 

position, or ToggleAll(), that viewed the properties of the robot (the current positions 

of the switches) and then toggled the state of each switch.  Using just this one high-

level command certainly saves the supervisor the trouble of having to execute each 

switch’s controlli ng method one by one whenever he or she wishes to effect global 

change.   

Note that at each level, we have a layer that sees only the level below it.  

Moreover, the commands at the layer below are what are considered the ‘ robot’ 

functionality, even though the pre-existent robot functionality may have already been 

abstracted by one or more layers before the current layer is reached.  Note that when 

the layer in question receives commands to execute functionality from the layer 
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above, it appears as if those commands have come directly from the supervisor.  In 

summary, each level acts as a supervisor to the level below it and a robot to the level 

above it.  Each of these layers has its own drastically different set of functionality 

and, associated with that, processor and networking requirements associated with it.  

Each layer quickly takes on both the resource requirements and attributes that are 

normally associated with an actual robot. 

Taking a step away from this requirement for a second, we pause to look at 

our intention to enable fine-grain control of the robot.  Recapping the requirement, we 

wish to provide a mode in which the process supervising the robot may achieve tight 

control over the robot when needed or computational power may be provided to that 

controlling robot when that characteristic is deemed important.  Previously, this 

requirement was determined equal to allowing the process that is actually responsible 

for controlling the robot to be able to exist at different machines depending on its job 

or stage of such.  Although it is desirable for the process to exist at different 

machines, it is highly undesirable to require the supervisor to have to physically move 

from machine to machine as the process did.  Ideally, fulfilling this requirement 

would involve having a process that exists independently of the virtual supervisor that 

is responsible for carrying out commands for the virtual supervisor but may move to 

whatever machine best fits its needs.  This process could abstract away the control of 

the virtual supervisor, and report to the robot as a supervisor while reporting to the 

supervisor as a robot.  With full freedom for movement given to this process, the 

control architecture would be flexible enough to allow for fine-grain control when 

merited while still allowing for standard supervisory control from a remote location.  
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Summarizing these two sets of requirements, the following is true:  In order to 

achieve dynamic code loading, the supervisor must be able to write object oriented 

code fragments which act as robots to both the supervisor and to the code fragments 

above them and act as supervisors to the robot and code fragments below them.  Each 

of these code fragments has its own task and CPU/latency requirements as well as 

robot-like functionality and properties.  To best fulfill the flexibility required allowing 

for fine-grain control inside a primarily supervisory control architecture, a different 

process needs to abstract away control from the Virtual Supervisor.  This process, or 

processes, would act as supervisors to the robot and as a robot to the supervisor, and 

would be able to move from machine to machine as their requirements change along 

with the task they are currently executing.   

The result of combining these two requirements is clear: there exists a need 

for a new type of process, a process that exists between the virtual supervisor and the 

robot.  These processes would take on the characteristics of the robot or other 

processes below them and expose them to the supervisor or other processes above.  

They must be capable of moving from one computer to another as their resource 

requirements change.  Furthermore, they would provide a very natural host for the 

code fragments the supervisor would write to add functionality dynamically.  Since 

this functionality is at base a way to abstract the robot functionality from one layer to 

another, this functionality could be added to the functionality of these processes, since 

they are already existent in layers between the virtual supervisor and the robot.   It 

follows, then, that each process would encapsulate the functionality of the process 

below it.  This leads to a chain of processes between the supervisor to the robot, each 
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reporting to the process above and the process below in the chain of command as if 

they were the supervisor or the robot.  These processes will be referred to as virtual 

robots, or VRs, since that is what they appear to be from the perspective of the 

supervisor.  It is certainly plausible that more than one virtual robot could exist 

between a virtual supervisor and the robot under its control.  These virtual robots are 

peer-to-peer processes that will compose the very core of our architecture and will 

allow us to circumvent many of the problems in remote robotic control surrounding 

master/slave models21. 

 

5.1 The Case for Mobile Agents 

  The idea of putting a level of abstraction between two processes in order to 

achieve a greater degree of flexibili ty is not novel.  In fact, there exists an 

architectural control model that meets the architectural needs.  This model is called 

the agent model, and it is based around the concept of processes called agents that act 

in proxy for the user.  The term agent is a confusing one, with many different 

definitions.  Griss and Pour while working for HP Labs provide us with one of the 

earliest definitions for an agent: "A proactive software component that interacts with 

its environment and other agents as a surrogate for its user".  But this definition is 

very broad.  Again, there is a lack of universal agreement on exactly what is required 

to deem some process as an agent, but generally a process is considered an agent if it 

displays one or more of the following characteristics:  

• Autonomous: acts on user's behalf independently 

                                                
 
21 Giri Nipi, Amitabha Ghosh, K.Sriram. [17] 
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• Adaptable: may be customized or changed run-time 

• Mobile: agent can move around to different machines at different locations 

• Collaborative: agents can work together 

• Persistent: abili ty to retain state over time 

• Knowledgeable: can reason about its goals and users 

 

Examples of simplistic agents include22:   

• Shopbots and pricebots, which monitor product availabili ty and price, then 

negotiate and complete sales of goods and stocks to optimize business-to-

business and business-to-consumer interactions. 

• Personal agents which interact directly with a user, presenting  some 

personality or character, monitoring and adapting to the users’  activities (eg 

Microsoft Office Assistant) 

• Internet spiders that autonomously move from computer to computer, 

gathering information about the web sites they find there and reporting them 

to a central data warehouse for access.  

 

The role that the virtual robots fulfill within the current control architecture meet 

nearly all of the requirements associated with mobile agents, and thus they may be 

classified as sophisticated mobile agents.  The virtual robots are autonomous: they act 

independently from the supervisor and decide without input when it is beneficial to 

move from one computer to another.  The fact that the VRs will allow the loading of 

                                                
 
22 Wayne Pease. [18] 
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code at run-time and then take on the functionality exposed by this code makes them 

highly adaptable.  They are mobile by definition; they will move from one computer 

to another as the task they are charged with executing changes and gives different 

priorities to various resources.   Since the decision about whether or not the VR 

should move itself to another computer is based upon the resources available at its 

current location and others, it is knowledgeable about itself and surroundings.  VRs 

are collaborative, since they must transmit information between themselves and also 

the supervisor and the robots.   Currently they are not persistent (once they are 

destroyed, they will start over in a blank state), but this is the only attribute that 

agents may have that the VRs do not.  

Including these virtual robots as mobile agents in our architecture is the 

foundation of our proposed control architecture for supervisory control of generic 

robots.  A supervisor will use a virtual supervisor to control a robot.  However, the 

virtual supervisor does not deal directly with the robot.  Instead, it communicates its 

desires to a virtual robot.  That fix virtual robot has the abili ty to move to a different 

computer when it concludes that the task it has been assigned could be more 

optimally achieved elsewhere.  That virtual robot will express its commands to what 

looks to be the robot below him.  This ‘ robot’  may be the actual robot, or could be 

another virtual robot posing as one.  Should it be a virtual robot, then that process will 

be independently determining its own resource demands and where it would best be 

located.  If it is the robot itself, then the command from the supervisor will have 

traversed the full length of the VR chain.   Figure 5.1 below shows the control 

architecture after its biggest change yet—the addition of a layer of virtual robots. 
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5.1 Control Architecture after introduction of Virtual Robots (VRs) 

 

5.2 Revisiting Efficient and High-Level Remote Communication  

 The remaining requirements can now be integrated into this revised control 

architecture.  Since we will have virtual robots that will exist between the supervisor 

and the robot, there is the obvious need for them to communicate.  These agents have 

been written in C# for the same reasons that C# was chosen to implement the virtual 

supervisor.  Since the C# virtual robots must communicate, the previous requirements 

of high-level, efficient communication whenever possible is immediately applicable.  

Since the virtual robots are both C# applications, they may make use of the remote 

communication standard for that language.  This communication protocol is, in fact, 

not something C# or CLR specific, but is a protocol known as SOAP, or Simple 

Object Access Protocol.  SOAP is a high-level communication protocol that is 
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analogous to Sun’s RPC or Java’s RMI.  SOAP is a universally accepted protocol that 

came out of the efforts of several major corporations in the software industry.  

Besides working over IP, SOAP allows any data within the program to be transported 

to remote instances of classes through a binary or XML-based payload, which 

produces an efficient packaging of data.   

Since we have this high-level communication available to us, it is utili zed for 

communication by the virtual supervisor and virtual robots.  However, the robot itself 

cannot communicate using SOAP; it is required only to be compliant with the lowest 

common denominator of network communication found on typical robots.  

Accordingly, the architecture utili zes a communications hybrid model that uses 

SOAP based communication throughout with the exception of the link between the 

robot and the virtual robot that communicates with the robot directly.  This bottom-

most virtual robot is referred to as the ‘Base Virtual Robot’ or ‘Base VR’ and must 

communicate with the robot through sockets.   Figure 5.2 below shows the 

architecture with the communication protocols defined between each process. 
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5.2 The Control Architecture with the VR and VS links communicating via SOAP 

 

From a technical standpoint, all communication within the architecture is 

interface driven.  Each VR, therefore, has no idea if it is reporting up to another VR 

or to the VS itself; only that it is an object that inherits from an interface that accepts 

upstream functionality.  The same is true downstream, the virtual supervisor knows 

nothing about the process to which it passes method execution commands; only that it 

inherits from an interface that allows for downstream communication.  This complete 

abstraction from the type of process in the chain above or below a process in question 

(the process’ neighbors) allows for virtual robots to be added or removed from the 

chain without disturbance to the rest of the chain.  Commands continue to be passed 

down the chain until a robot receives them, and return values travel up the chain.  

When a virtual robot becomes mobile and changes its machine of residence, it merely 

alerts its neighbors of its new IP, they re-establish communication, and the chain 
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remains intact.  If a new virtual robot is spawned and placed just downstream of the 

virtual supervisor, it notifies its neighbors, and the virtual robot that previously 

reported to the virtual supervisor now reports to the new virtual robot using the same 

interface.   

 

5.3 Setting Up the Control Architecture 

 Since it has been assumed that setup of these processes had already occurred 

throughout this section, a short time will be spent discussing how that setup occurs.  

Using the terminology associated with mobile agents, agents may only be constructed 

on agencies, which are willi ng hosts ready to spawn new agents or accept existent 

agents that are looking for a new home.  The existence of hosts is what excludes these 

mobile agents from the possibili ty of being categorized as a virus—the host computer 

must be willi ng to accept their presence.  Since these agencies are not implicitly 

known to the supervisor, nor to the virtual supervisor, a registration server must be 

employed that allows registration and lookup of agencies and currently existent 

agents by any interested party.  This server is called the CentralSite server.  Currently, 

there has been no effort made toward networking the registration servers with each 

other.  In the future, we hope to network each server together so that each CentralSite 

server will have information about agencies that have been registered with any server.  

The name CentralSite server was coined to refer to the hope that they would become 

the center of a site for registration that may talk to other centers of registration sites 

and freely share registration information.  Upon startup, the CentralSite server simply 

waits for registration or lookups to occur.  Upon startup, the Agency process requests 



       

  

 
52 

  
 

to know the address of a CentralSite server where it may register itself and where it 

may go to look up other agencies when it is considering a move.  It is not necessary to 

register an agency with a server, but then only supervisors who know about the 

agency may spawn agents upon it (since they may not look it up), and the agents will 

not have a server upon which to look up possible move locations.  The addition of 

this lookup server to our architecture is required, and thus figure 5.3 below shows its 

inclusion. 

 

 

5.3 The Control Architecture including the CentralSite registration and lookup process. 

 

 

 

Below is the agency process, upon start: 

D:\code\my code\thesis\vr\agency\bin\Debug>agency.exe 
Please enter the hostname or IP of the CentralSite machine... 
(enter nothing to not use a central site): 
raging.cwru.edu 
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Successfully connected to centralsite server and registered this 
agency.  
Agency activated.  Press enter to quit (and deac tivate).  

 

And the following is the CentralSite server process, upon start: 

D: \ code \ my code \ thesis \ vr \ CentralSite \ bin \ Debug>CentralSite.exe  
Central Site server activated.  Press en ter to quit (and deactivate).  
User: *******  & Pass: ******* added.  
1 user adde d to permissions.  
<2:21.14>(an agency @ 'raging'  was added to the lookup service)  

 

The registration server requires a user name and password before it allows the agency 

to register, thus providing a security mechanism against hostile agencies from 

registering to host agents. 

 When the Virtual Supervisor program is started, the user is asked to enter the 

address of a central site server.  Upon doing so, a listbox with all registered agencies 

is populated.  In this case, the CentralSite server and the Agency are both running on 

the same computer, raging.cwru.edu.  All of this is shown in figure 5.4 below. 
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5.4 The CentralSite server shows one agency registered; an agency located at the computer 
‘ raging’ . 

 

 

Once an agency has been located, the supervisor may create an agent upon it.  When 

that agent is created, it may enslave another existent agent, a new agent it can create, 

or an actual robot.  Once successfully enslaved, the robot (virtual or not) is subject to 

the control of the virtual supervisor.  Of course, to enslave another process, the 

supervisor must first log on, and as was described earlier, the process of logging on 

involves the transmission and approval of credentials.  This means that it is not 
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possible for any agency or robot to be enslaved against its will .  In the example of 

figure 5.5 below, two VRs have been created on the same computer and then base VR 

enslaves a robot called ‘MotoMan’: 

 

 

 

5.5 The Virtual Supervisor showing a chain of two VRs and an actual robot under its control. 
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The agency’s output below shows that the supervisor (whose name is abstracted by 

the word ‘User’) created and logged onto the first VR, vr.raging.1.  In this 

experiment, he then asked vr.raging.1 to create a new virtual robot using his 

credentials, and enslave it.  Thus, we see that vr.raging.2 is created by vr.raging.1.  

Then the supervisor instructs the base VR, vr.raging.2, to connect to a robot, 

Motoman.  That VR reports a connection with the robot, and then the VR upstream 

from it, vr.raging.1, reports a connection as well (since connections are passed 

upstream, signifying that if one VR is a master to a robot, then all VRs who are a 

master to the Base VR are also masters to the robot): 

(enter nothing to not use a central site): 
raging.cwru.edu 
Successfully connected to centralsite server and registered this 
agency. 
Agency activated.  Press enter to quit (and deactivate). 
<2:26.7>{vr.raging.1}User has logged onto this VR. 
<2:26.11>{vr.raging.2}User has logged onto this VR. 
<2:26.11>{vr.raging.1}Successfully created and logged on to a new VR 
who is now one of my slaves, named: vr.raging.2 
Going to attempt to listen. 
<2:26.15>{vr.raging.2}vr.raging.2: reports connection with Motoman 
formal name 
<2:26.15>{vr.raging.1}vr.raging.1: reports connection with Motoman 
formal name 

 

This notification and control continues to be passed up to the supervisor himself who 

now contains the definitions of the attributes for the robot.  These attributes include 

three methods as well as one property, which have all appeared on the Robot Control 

tab.  The control for the parameter to the selected function have been dynamically 

created, as was discussed during the intuitive GUI portion of the thesis.   In figure 5.6 

below, this state may be seen from the perspective of the Virtual Supervisor. 
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5.6 The virtual supervisor after contact has been established with a robot. 

 
 

At this point, setup has been completed and the supervisor can now command the 

virtual supervisor to execute functionality on the robot.  The virtual supervisor will 

pass those commands down through each VR until the command propagates to the 

robot itself.  The robot will then execute the command, send the return value (if any) 

to the base VR, and the value will travel back upstream from there until it reaches the 

supervisor.   
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 What follows is an example of such.  The method was exposed on the robot in 

reference to near lab mishap famous to some of the team members working on this 

project.  In this mishap, this author’s hand was nearly injured while attempting to free 

a camera from a supposedly unpowered robotic arm that came to life at a dangerous 

time.  The function itself simply returns the text string it was passed.  The parameter 

name requests a location and its value has been entered above as ‘ freeing the camera’ . 

 

<2:34.8>{vr.raging.1}Relaying a call to Motoman formal name.Slice 

Off David's Hand  

<2:34.8>{vr.raging.2}Relaying a call to Motoman formal name.Slice 

Off David's Hand  

<2:34.8>{vr.raging.2}Got a return value from Motoman formal name for 

official_sliceDavids Hand(freeing the camera)  

<2:34.8>{vr.raging.1}Got a return value from Motoman formal name for 

official_sliceDavidsHand(freeing the camera)  

  

 

5.4 Achieving Single Supervisor, Multiple Robot Control 

The goal of achieving single supervisor, multiple robot control has now 

become fairly easy.  Instead of requiring a one-to-one master-to-slave ratio, we allow 

a master to enslave multiple processes.  Thus, the master takes on the functionality of 

each of its slaves and more than one slave will pass messages upstream through the 

same VR.  We do not allow, however, a slave to have more than one master.  It is 

unnecessary, for there are no reasonable use scenarios in which it is advantageous to 

allow a virtual robot to report to more than one master.  Robots may only be 
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controlled, after all, by a single supervisor.   Elimination of this possibility thus 

excludes many frustrating problems encountered in peer-to-peer process algorithms, 

such as cycles.  When a single VR is a master to more than one robot (either directly 

or through other VRs who are enslaved), the functionality from all its slaves is 

accumulated and exposed to upper VRs and the Supervisor.  Thus, our final 

architectural control diagram has been constructed.  It is displayed, in finished form, 

by figure 5.7 below.   

 

 

 

5.7) The final control architecture, complete with Virtual Robots in a 1:Many relationship 

 

 

5.5 Achieving Fine-Grain control 

 With the control framework finalized, the remaining requirements may be 

addressed without much effort.  Since the virtual robots are mobile, they can move 

from one computer to another when their duties change.  Now, consider the previous 
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fine-grain control example in which the Paradex was being commanded to move its 

tool in a complex pattern.  The virtual supervisor accepted a path from the supervisor, 

and the processes that load functionality dynamically, must first translate the image 

into a point-by-point path for the robotic arm to travel.  While before it was unknown 

what processes would load this functionality and thus it was assigned to the Virtual 

Supervisor, we know now this to be the role of the virtual robots.  In the second stage, 

then, a virtual robot must send the target points to the Paradex and monitor closely for 

problems while accounting for errors in convergence.  In one example, the virtual 

supervisor creates the bare minimum – one virtual robot to accept commands from 

the virtual supervisor and control the robot.  This virtual robot has been loaded with 

the functionality to calculate the coordinates that the Paradex’s tool is to follow (stage 

one), and knows how to send coordinates to the Paradex and monitor its progress 

(stage two).  Stage one requires a powerful processor, and during stage two, 

minimizing round trip time between the VR and the robot is of top priority.  The 

actual loading of this functionality into the virtual robots will be discussed in the next 

section of this thesis.  It is only important at this point to note that the VR itself is 

executing these commands, not sending a request to calculate the coordinates for the 

path to the Paradex and then waiting for the robot to return the calculations.  Were 

that the case, then the location of the VR would be irrelevant—no matter where it was 

located, the robot would still be doing all the work.   

To start the scenario, the virtual supervisor executes the dynamically loaded 

function on the VR, passing it some representation of the path for the Paradex’s tool 

to follow.  When the VR breaks down this function call into the first stage, 
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calculating the coordinates, it is aware of its task and notices very quickly that it is a 

CPU intensive task.  The VR does a lookup on the registration server and finds that 

there are other agencies registered.  The VR proceeds to collect information about 

round trip times from each agency to its slave, the Paradex, as well as the 

performance capabili ties of each agency.  Should this agent deduce that it is in its best 

interests to move to a foreign agency, it will  do so.  In the first stage, the virtual robot 

will move to the powerful computer at the supervisor’s home and calculate the 

desired coordinates.  During the second stage, the virtual robot will move to the 

computer on the Paradex’s LAN and engage in fine-grain control of the robot, passing 

it coordinates and monitoring its progress.  Thus, without the Virtual Supervisor (and 

thus the supervisor) moving to any other computers, the control of the Paradex, 

housed by the virtual robot, moves freely throughout the agencies and is optimized 

for the task it is engaged in.  This kind of mobili ty has been implemented and tested –

successfully— as resource needs change a virtual robot will i ndeed survey its 

surroundings and move to the computer best suited for its task.   

The most complicated portion of this process is the logic pertaining to the 

VRs decision to move.  In the current implementation, if the agent finds that the 

available CPU and network location of a foreign agency’s computer are better suited 

for its current task than its current computer, it decides that a move would be 

advantageous and proceeds.  In other words, a greedy algorithm bent on local 

optimization is utili zed in which the VR optimizes its own state.  There are several 

outstanding issues with this method that will be discussed in the Future Work section 

at the end of the thesis.   
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 One technical concern about agent mobility is simply coordinating their 

moves.  Although there are many well known distributed algorithms, applying 

distributed programming techniques  to a series of processes that decide 

autonomously when to move and must be responsible for passing messages both up 

and down the chain is challenging.  Virtual robots need to coordinate their move such 

that two neighbors may not move at once, or else they would be unable to find each 

other to report their new location.  VRs also may not move when they are currently 

executing any functionality.  If a message is attempting to pass through a VR that is 

currently moving, the VR must store the message and deliver it to the master or slave 

process upon completion of its move.  The classic distributed algorithm that solves 

this coordination problem involves setting up a coordinator process that grants or 

denies the processes the right to move.   However, there is the danger of a very slow 

coordination effort.  When the task being executed has a low response time priority, 

the virtual robots may have moved themselves to powerful computers at large 

network distances from each other.  Should network response time be a priority, it is 

probable that one virtual robot will move in close proximity to the robot to achieve 

this fine-grain control while the others remain far apart.  Therefore, because our 

virtual robots are mobile and flexible, there is never a guarantee of a centrally located 

coordinator process.  In fact, the processes will most likely be at a close proximity to 

their neighbors, but the virtual robots at opposite ends of the control chain may be at 

large network distances from one another.   Therefore, any algorithm that relies too 

heavily on the virtual supervisor as a coordinator is potentially spending a long time 

sending packets back and forth and wasting more time than might be gained by the 
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benefits of a virtual robot’s requested move.  An algorithm that utili zes minimal 

supervisor moderation and heavy coordination with neighboring processes was 

utili zed.  This is merely a minor technical detail, but noteworthy because of the 

unusual perspective required when approaching such a classic distributed application 

coordination problem.  

 

5.6 Achieving the Addition of Dynamic Functionality to the Robot 

The only requirement that is not currently in the control model is allowing the 

supervisor to dynamically load functionality that may apply to the robot.  Originally, 

in a master/slave architecture, the virtual supervisor was required to dynamically load 

functionality in order to achieve this requirement.  However, in our current 

architecture, the virtual robots are currently abstracting away the control of the robot 

in layers, acting as intermediaries between the virtual supervisor and the robot.  They 

are also capable of moving from one computer to another as their job requirement 

changes, and thus efficiently execute code themselves instead of merely passing on 

instructions to the robot.  Because of these two facts, adding dynamic functionality to 

the virtual robots is the logical progression of their role within the architecture.  Thus, 

it is not the robot that is to be modified, nor the virtual supervisor, but rather the 

virtual robots that exist between the two.   Because the virtual robots do exist as 

supervisors to robots and virtual robots below them and as robots to any virtual robots 

or the virtual supervisor above, they provide us a natural medium in which to 

partition up added functionality that will wrap up existent robot commands and 

abstract them to a supervisor. 
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If a robot exposes functions DrawLine() and Rotate() through the 

architecture’s remote control interface, then a virtual robot could be programmed with 

a code fragment that calls DrawLine() and Rotate() four times and encapsulates it in a 

function it exposes as DrawSquare().  This VR, then, which previously was 

responsible only for transmitting the abili ties of the robot may now report 

functionality of its own along with that of the robot.  The VR exposes the sum of 

these functionalities to the process upstream, which eventually reaches the supervisor.  

The supervisor may now execute the DrawLine(), Rotate(), or DrawSquare() 

methods, according to what the VR reported.   This is ill ustrated by figure 5.8 below, 

which lists each process involved in the architecture along with the commands they 

are aware of.  When read top to bottom, it shows how the methods the supervisor is 

capable of executing may be decomposed into function calls that the robot itself 

understands. 
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5.8 The methods reported when a VR has dynamically loaded a function.  Note that each process 
believes that the process below it is the actual robot and that the process above is the actual 
virtual supervisor, thus the DrawLine(), Rotate(), and DrawSquare() commands all appear as 
actual robotic commands to the VS.  

 

 

Should the supervisor choose to execute the DrawLine() or Rotate() 

commands, the normal case commences: the command is issued down the chain until 

it reaches the robot, who will execute the requested function and then pass the return 

value (if any) back up the chain to the virtual supervisor.  Only the robot itself 

executes any meaningful code, the virtual robots act only as messengers, passing the 

execution command down and the return value up.  However, should the supervisor 

choose to execute DrawSquare(), the command that exists on the virtual robot, a 

slightly different case will commence.  The command execution will travel 

downstream from VR to VR.  Each VR between the VR that actually implements 
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DrawSquare() and the VS is under the impression that the robot actually exposes 

DrawSquare().  This is natural, since each one of those VRs will believe that the 

process just downstream is the actual robot, and that ‘ robot’ was the process that 

exposed and reported the DrawSquare() command.  When the DrawSquare() 

execution command reaches the VR that houses its functionality, that VR calls into its 

functionality instead of calli ng the next VR (who, of course, would not know what 

DrawSquare() was).  That functionality, in this example, will call DrawLine() and 

Rotate() four times on the appropriate slave VR.  At this point, then, the VR, 

controlled by the code it has loaded, will pass these calls on to the process 

downstream until they reach the robot.  Thus, this VR now has a more significant role 

than merely passing messages to the robots; it is executing meaningful code that is 

giving its own commands to the robot.   

This second, more complicated scenario is ill ustrated  in figure 5.9 below.  

This figure shows the propagation and decomposition of a Supervisor’s command for 

the robot to DrawSquare(). 
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5.9 The execution of a dynamically loaded function.  Note that only the top two VRs are aware of 
the function DrawSquare (), which was loaded into the middle VR, and thus when the middle VR 
decodes DrawSquare() into DrawLine() and Rotate() components as the supervisor 
programmed, the lower VRs and the robot itself will be able to recognize and execute the 
commands. 

 

 

As was indicated previously, dividing new functionality among the virtual 

robots results in different virtual robots each implementing different tasks with 

different resource requirements.  The implications of such are significant.  Revisiting 

the example of cutting shapes out of sheet metal illustrates this point.  Previously, a 

supervisor could dynamically load both stage1 (CPU intensive) and stage2 (priority 

on network response time) functionality into the same VR.  That VR, then, would 

move to a different machine as it changed stages.  Alternatively, the supervisor could 
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spawn two different VRs between the VS and the Robot.  He or she could then load 

the stage1 functionality into the VR closest to the supervisor and the stage2 

functionality into the Base VR.  Each VR would detect the resource needs of its 

functionality and move to the most suitable computer, which would be different for 

each of the VRs.  Even though both VRs are controlli ng the same robot with only a 

single command actually exposed (simply move arm), the VRs themselves differ in 

the requirements of their wrapper functionality and thus optimize their location based 

on their part of the overall task.  This partial specialization of tasks is clearly more 

efficient than a non-mobile agent that must execute the functionality on a computer 

that will be well suited for one stage and not the other.  It is also more efficient than a 

mobile agent, which must incur the time overhead of testing out other agencies and 

coordinating a move to a different computer when its task and thus resource 

requirements change.   

When the virtual robots load further functionality from the supervisor, their 

responsibili ties change from merely command passing to actually executing code that 

is relevant to the control of one or more robots.  Yet because currently the 

functionality of the robot is exposed and defined through standard interfaces that each 

virtual robot uses, no change in the virtual agent’s interfaces is required after it loads 

robot-specific functionality under the order of the supervisor.  The new methods or 

properties are simply reported and defined up the stream as if they were coming from 

the robot itself.  Each virtual robot, then, contains knowledge of the actual robotic 

functionality as well as any dynamic functionality that they have loaded and any 

functionality loaded into other virtual robots further down the chain.   
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It is interesting that as functionality is wrapped up along the chain of VRs, the 

functionality that each VR contains represents that of class inheritance in any modern 

object oriented language.  Expanding the DrawSquare() example even further, 

suppose the supervisor spawns three VRs named VRa, VRb, and VRc.  The 

supervisor then lines them up in a chain so that the virtual supervisor communicates 

directly with VRa and VRc is the Base VR.  First, the supervisor loads into VRc the 

functionality for DrawSquare(), which is implemented as calls to DrawLine() and 

Rotate().  Then the supervisor wishes VRb to implement the DrawDiamond() 

function, which uses DrawSquare() and Rotate(), both of which are exposed to it by 

its “robot” , VRc.  The supervisor may then add a new function, DrawBaseballField () 

to VRa that calls upon DrawSquare() and DrawDiamond().  VRa still exposes 

DrawLine(), Rotate(), DrawSquare() and DrawDiamond()  to the supervisor, as well 

as this new function.  Note that at each level, the VR implements all of the 

functionality of the VR downstream as well as any functionality that has been 

dynamically loaded into itself.  This closely mimics the concept of inheritance.  The 

robot acts as a base class, providing a standard set of functionality.  Each VR built on 

top of the robot contains all of the functionality of the downstream process and 

possibly additional functionality, in parallel to a derived class.  Additionally, when 

the supervisor adds commands to a VR, he or she has the option of hiding previous 

methods from upstream VRs.  So when the supervisor loads the DrawDiamond () 

function into VRb that wraps up Rotate() and DrawSquare(), he or she has the option 

to hide DrawSquare() from upstream VRs (and therefore the supervisor as well).  In 

that case, the example would fail because VRa, which is upstream of VRb, could not 
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call DrawSquare() and thus could not wrap that up into DrawBaseballField().  This 

mimics private inheritance, where the members of the base class are taken as private 

members of the derived class and may not be inherited by further derivations.   

Also, note that this dynamic method loading takes place at a VR level, and it 

has been previously established that a VR may control multiple slaves that may 

control, directly or indirectly, a robot each.  This means that when we add new 

functionality that wraps up existent functionality, we have the ability to wrap up 

functionality from multiple robots.  This parallels multiple inheritance, where the 

functionality from more than one base class is added to a single derived class.  Even 

more interesting is that some of the typical multiple inheritance problems that object 

oriented languages contain, such as duplicate method names also appear within our 

control architecture. 

Although the technical implementations of theory are not always required nor 

desirable, the concept of requiring robotic supervisors to write code that will be added 

dynamically to an existent process has been treated with some skepticism by some in 

industry.  As a reaction to the hesitation to believe that it is feasible, with little effort, 

to write code that can interact meaningfully with an existent virtual robot process, 

some technical detail is merited, and follows.  From a technical standpoint, the ability 

to load code into the VR is quite feasible in a modern, reflexive language like C#.  

The language supports the ability to inject compiled assemblies into the executing 

process at any time.  In this context, an assembly refers to a compiled collection of 

classes that form an exe or dll.  The classes and member functions within those 

classes are then accessible to the currently executing program immediately after the 
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assembly is loaded.  There are two main challenges associated with dynamically 

loading functionality within the context of the current architecture.  First, there is the 

fundamental problem of how this code is to be written and, once written and 

compiled, how it can be loaded into the virtual robot from a remote point without 

requiring a shutdown of the robot or a recompilation of the host VR.  Secondly, the 

communication between the loaded assembly and the virtual robot that loads that 

assembly must be coordinated.  The loaded assembly must inform the VR that there is 

new functionality to expose, how that functionality should be reported, and how the 

VR can invoke that functionality when a call comes to it from the virtual supervisor.   

Since the virtual robots are written in C#, any language written on top of the 

CLR may be compiled into an assembly and loaded by the process.  The supervisor, 

therefore, must write code in one of those languages, such as C#.   While this sounds 

undesirable, the alternative to reprogramming the virtual robot is reprogramming the 

robot itself.  To add functionality to a virtual robot, the supervisor must write code in 

any of the dozens of languages on top of the CLR that will i nteract with the code 

resident in a VR… code that will remain constant and familiar even though the VR 

may be controlli ng vastly different robots.  Should the supervisor be required to 

reprogram the robots when an upgrade is necessary, then supervisor would be forced 

to learn each robot’s multiple interfaces and multiple languages that make calls to 

whatever proprietary operating system the robot or robotic controller was running.   

Furthermore, the hardship involved in adding code that will i nteract with a virtual 

robot’s functionality can be made significantly easier by careful planning by the 

programmers writing the VR.  These simplifications will be shown after the concern 
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involving VR communication with the loaded assembly is addressed.  

The standard approach to interacting with dynamically loaded code is to 

require the unknown code to implement well-known interfaces that will serve as a 

contract for communication.  This case is no different.  When a supervisor wishes to 

write code to be loaded into an agent as additional functionality, then, he must simply 

write a class that derives from a known interface.  In this case, there is one key 

function, CreateMethods() that the interface requires of any newly loading classes.  

The CreateMethods() function returns objects that represent the methods supported by 

the dll.   These objects are similar to the objects that the VR uses internally to 

represent robot functionality, with one exception.  The object contains one member 

that is not found within a normal method description: a delegate that points to a 

method contained within the loaded class.  Crudely, a delegate is a C# wrapper 

around a standard function pointer.    

When a virtual robot loads up an assembly, it immediately executes the 

assembly’s NewMethods method (which is guaranteed to exist since the loaded 

assembly must derive from an interface that requires that method).  The objects 

returned, that describe the newly added methods, are stored by the VR.  The VR then 

reports this functionality to the process upstream, either another VR or the VS.  This 

is the standard protocol for exposing static robotic functionality.  That is how the 

virtual supervisor is made aware of the dynamically loaded functionality.  When the 

supervisor chooses to execute the new functionality through the VS, the call travels 

downstream until i t reaches the virtual robot to which the supervisor sent the 

compiled assembly.  This is the same virtual robot that stores the object describing 
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this functionality.  The virtual robot recognizes the command, finds the object 

describing the command, and routes control to the function that the object specifies 

with the parameters that the VS sent.  This will i n turn execute the code inside the 

assembly, passing it the parameters that have been passed down the stream from the 

VS.   

Below is the code for an assembly eligible to be dynamically loaded.  In its 

CreateMethods function, it creates one new method with a friendly name of “Laundry 

if David’s close”.  It accepts one parameter, of TypeText, with a name “Location” 

and a description of David’s location.  It has no default value.  This method is added 

to an arraylist along with a delegate to a method called DualMethod which is also 

existent in the loaded class (and will be shown shortly).  These methods are returned 

and every VR above whatever VR loaded this assembly, as well as the VS, will 

reflect a new method called “Laundry if David’s Close”.  Note that the objects that 

contain all the information necessary to describe this new method are of type 

DynamicBotMethod, which is what the host VR will store and use to recognize when 

commands being executed are intended for dynamically loaded code instead of its 

downstream process. 

public override ArrayList CreateMethods()  
{  
   ArrayList newMethods = new ArrayList();  
   ArrayLis t parms = new ArrayList();  
   parms.Add(new BotParam(new TypeText(), "Location", "David 's     
      location.", null));  
   DynamicBotMethod dbm = new DynamicBotMethod("dispatch_newDual",    
      "Laundry if David's close", parms, true, new TypeBoolean(),    
   MyName, new DynamicMethodDelegate(DualMethod));  
   newMethods.Add(dbm);  
   return newMethods;  
}  
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 While this analysis reveals the communication feasibili ty from the virtual 

robot to the dynamically loaded functionality, the reverse communication is much 

more challenging.  The difficulty arises when the assembly, which was written 

without any of the virtual robot code to compile against, must be able to call methods 

that are exposed to the virtual robot.  To accomplish this, the writers of the assembly 

must be provided something to compile against that will expose methods allowing 

module writers to call functions that have been exposed to the current VR.  These 

‘helper functions’ will give module writers a way to ensure that they have correctly 

formatted their calls.  Additionally, the helper functions will take away a significant 

amount of the complexity involved when executing a function.  Although in-depth 

discussion of all the helper functionality existent is beyond the purpose of this thesis, 

a technical explanation of one should help ease concerns about the feasibili ty of 

interfacing with the virtual robots.  The main helper function within the base class is 

RunMethod, which requires a method name to run, a list of parameters to pass that 

method, and a boolean value indicating whether to continue exposing the functions 

that have been exposed to the VR from downstream VRs (the equivalent of a switch 

between public and private inheritance of methods). 

 

public object RunMethod(string methodName, ArrayList parameters, 

bool keepshowing) 

 

The RunMethod function is an excellent example of how a base class helper 

function can drastically simplify the work that module writers must undergo in order 

to make their code compatible with the virtual robot architecture.  First, RunMethod 
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(at runtime) retrieves a listing of all functions exposed by the VR that loaded the 

assembly and ensures that the methodName passed to it by the derived assembly 

matches to one of the exposed function.  If not, then the dynamically loaded assembly 

was attempting to call functionality that the virtual robot does not know.  Secondly, it 

packages up the information into the exact object that VR the needs to understand in 

order to execute the method, so the module author does not need to concern himself 

or herself with it.  RunMethod then spins off a new process to handle the command 

execution.  When the command is executed on the robot and the return value is 

passed back through the VRs, it eventually is passed to the VR that contains the 

loaded assembly that initiated the command.  There is one additional problem: the 

architecture is set up so that multiple commands may be sent to the robot before any 

return values are received.  That is, the virtual robot does not have to wait for a return 

value from one function before it can send the next command (which may be an 

abort).  However, the author of the module wishes to have one command executed 

and its return value stored before the next line is processed.  For example, “ int a = 

base.RunMethod(foo,…)” is intended to have foo execute (via sockets) and return 

value be stored in “a”  before the next command is read.   In order to make this non-

blocking process blocking, RunMethod uses a multithreading algorithm to block until 

the return value is passed back to the base class.  After receiving a return value for 

foo, the base class allows the thread that called into RunMethod(foo,…) to continue, 

and passes the thread the return value.  This creates the ill usion that the execution 

took place within one thread and allowing a return value to come back to the caller of 

the function.  Without the base class undergoing this functionality, there is no way 
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that the writer of the module could wait to receive return values from function calls 

before executing the next line of code.   

Using these helper functions, the module author may thus have an easier time 

writing code to be injected into the VR chain.  The helper functions and base classes, 

in fact, are the means of simplification that erases the difficulty involved for 

supervisors wishing to write modules to be injected into a VR.  The base class does 

nearly all of the work in integrating the assembly with the system and handling the 

communication while leaving the supervisor to worry only about writing code related 

to the desired robotic functionality. 

 The DualMethod method that corresponds to the example “Laundry if David’s 

close” example above then, is: 

 

 

 

private object DualMethod(BotMethod bm)  
{  
   ArrayList p = new ArrayList();  
   object ret = base.R unMethod("Slice Off David's Hand", 
bm.parameters, true);  
   string sret = ret.ToString();  
   if (sret == "laundry machine")  
   {  
      p.Clear();  
 ret = base.RunMethod("Do the laundry", p, true);  
 return true;  
   }  
   return false;  
}  

 
This example shows that when DualMethod is executed (in response from the 

supervisor executing the “Laundry if David’s Close” method exposed within 

CreateMethods), it will pass in the parameters (which were specified in create 
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methods to be a single text parameter) to an existent function.  If the return value 

from that function is “ laundry machine”, then it will run an additional function and 

return true.  If not, the function will return false.  The function that it calls happens to 

return whatever its parameter was passed in to be.  So, if “Laundry if David’s Close” 

is given a parameter of “Laundry Machine”, it should execute two of the robot’s 

functions, the second one being a “Do Laundry Machine”.  If the parameter is not 

“Laundry Machine”, it will execute only the first method, “Slice off David’s Hand” 

(as mentioned earlier, a reference to a tense night in the lab).   

 The amazing thing about this example is that the totality of the code for the 

loaded assembly has now been displayed—just those two functions.  CreateMethods 

announced the existence of a new method, called “Laundry if David’s Close” and 

mapped it to the second and final method of the class, DualMethod().  All the code 

necessary to add functionality to a VR has been written in a few dozen, simplistic 

lines. 

The following figure (5.10) shows the functions available after setting up a 

VS, one VR, and the same robot to which we have been demonstrating connections 

throughout.  They are the three functions that the robot itself supports. 
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5.10 The static methods available to the VS after connecting to a robot 

 
 
 

Note that “Do the laundry” as well as “Slice off David’s Hand” are both 

exposed to this VR, and are the two functions that the example module may call.   

The next step is to send over an assembly for the program to load up while it 

continues to run.  This is done from the “Method Creation” tab on the virtual 

supervisor, which allows the supervisor to browse his or her computer for pre-

compiled assemblies.  Below, Figure 5.11 below shows the “Method Creation” tab 

and the result of this action. 
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5.11 Sending over a pre-compiled assembly containing new functionality to the VR for loading 

 

Now, the Robot Control tab display should have updated to reflect the dynamically 

loaded functionality.  This is indeed the case, as may be seen in figure 5.12 below, 

which shows the “Robot Control” tab, this time with the new method. 
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5.12 The VS after a VR in its chain has loaded up the dynamic functionality.  The new function 
has been reported to the VS in the same fashion as the static robotic functions. 

 
 
 
 
The new method, entitled “Laundry if David’s close” has appeared.  It accepts one 

text parameter, which the virtual supervisor uses a text box to represent, and returns a 

boolean value.  When the supervisor enters some value other than “Laundry 

Machine” (in this case “Not the laundry machine”) and executes the method the 

virtual supervisor responds as shown in figure 5.13 below:  
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5.13 Execution of the dynamically loaded functionality 

 
Note that the return value (displayed in a listbox) came back false.  When looking at 

the output from the agent, it is clear to see what happened: 

<6:32.48>{vr.raging.1}Relaying a call to vr.raging.1.Laundry if 
David's close  
<6:32.48>{executing Slice Off David's Hand}  
Just got a base call to  run a method; checking for validity.  
<6:32.48>{executing Slice Off David's Hand}Valid request.  Going to 
attempt to execute.  
<6:32.48>{executing Slice Off David's Hand}Waiting for a return to 
come in.  
<6:32.48>{executing official_sliceDavidsHand}Spun off a thread to 
handle execution.  
<6:32.48>{vr.raging.1}Relaying a call to Motoman formal name.Slice 
Off David's Hand  
<6:32.48>{vr.raging.1}Realizes that he's returning from a method 
that he invoked  dynamically.  
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<6:32.48>{Return in base}recevied a return for 
official_sliceDavidsHand ... going to release waiting procs.  
<6:32.48>{executing Slice Off David's Hand}A return came in for 
official_sliceDavidsHand  
<6:32.48>{executing Slice Off David's Hand}Returning to the derived 
class with our return value.  
<6:32.48>{ vr.raging.1}I actually received a return from the derived 
class just now... it was False  
<6:32.48>{vr.raging.1}Got a return value from vr.raging.1 for 
dispatch_newDual(False)  

 
This output is worth a simple analysis.  First, a call was made to the vr for “Laundry 

if David’s close”, which came from the VS.  This call mapped to DualMethod(), 

which used the base class to attempt to make a function call.  The base class 

recognized it as a valid method name and spun off a thread to handle the execution 

and locked down the thread that made the call to the base class.  This thread then 

ordered the vr to relay the call to the robot, and then the next thing we see a return 

value is coming back.  The virtual robot realizes that the return value is for a function 

that was created dynamically, and thus it must handle the return value instead of 

continuing to pass it upwards.  The VR releases the waiting processes and the process 

that was waiting for the return value realizes that the value has come back and returns 

back to the derived class with that return value.  Since it was not “Laundry Machine”, 

as the module hoped for, the module returned false without going through any 

additional calls.   

 As one final demonstration, observe what happens when a second assembly is 

added to the virtual robot that had previously loaded the first.  This time, a method 

called “Tell Dual David’s by Laundry” is created that calls into the created 

DualMethod() function and passes it a parameter of “Laundry Machine”.  The new 

method requires no parameters from the user and returns a boolean value, 

specifically, the value that DualMethod() returns.  The following is the complete code 



       

  

 
83 

  
 

for this new module: 

public override ArrayList CreateMethods()  
{  
   ArrayList newMethods = new ArrayList();  
   ArrayList parms = new ArrayList();  
   DynamicBotMethod dbm = new DynamicBotMethod("Big_dual", "Tell    

Dual David's by Laundry", parms, true, new TypeBoolean(),  
 MyName, new DynamicMethodDelegate(BigDual));  

   newMethods.Add(dbm);  
   return newMethods;  
}  
 
private object BigDual(BotMethod bm)  
{  
   Console.WriteLine("Executing the big dual method.");  
 
    bm.parameters.Add(new BotParam(new TypeText(), null, null,  
        "laundry machine"));  
    object ret = base.RunMethod("Laundry if David's close",  

  bm.p arameters, true);  
    if (ret is string)  
    {  
  ret = bool.Parse((string)ret);  
    }  
     bool bret = (bool)ret;  
     return bret;  
}  

 
 
Again, load up the assembly, shown in Figure 5.14 below: 
 
 

 
5.14 A second assembly is sent to a VR for loading.  Note that the VR tracks the assemblies it has 
loaded. 

 
Note the new method, “Tell Dual David’s by Laundry” .  Additionally, the 

temperature property has been set up to report when any changes occur.  When the 
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“Do Laundry” function is invoked, the temperature property is programmed to 

increase by three degrees.  Since the “Do Laundry” function has no return value, a 

reported change in temperature is the easiest way of telli ng if this function has 

executed, as is expected.  The “Robot Control” tab, with both of the dynamically 

loaded functions available, is shown in figure 5.15 below. 

 

 
5.15 Selecting a 2nd dynamically loaded function that will call the first. 

 
 
When the supervisor chooses to execute this new command, the Virtual Supervisor 

will respond according to the loaded code.  It is shown in figure 5.16 below, and will 

be explained immediately afterwards. 
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5.16 The result of executing the 2nd dynamicall y loaded function.  Note that the temperature has 
changed, indicating that it successfull y called the 1st dynamicall y loaded function, which 
evaluated the parameters and called into a static function, “ Do Laundry”  

 
 

We see in figure 5.16 that Big_dual returned true, indicating that its call to 

DualMethod with “Laundry Machine” returned true, indicating that the laundry 

should have been done.  This has occurred because the temperature property reported 

an update.  Thus, we have successfully ill ustrated two dynamically loaded functions, 

the first wrapping up the second, which in turn wraps up actual robotic functionality.  

Each piece of dynamically loaded code is able to check return values of the methods 

they call and act accordingly, using any methods or properties that existed before it 
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was loaded, regardless of whether the attributes were exposed by the actual robot or 

simply another Virtual Robot.
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6. Future Work and Conclusion 

6.1 Future Work 

There is a significant amount of future work associated with expanding this project 

into its final form.  The work to this point has served the intended purpose: 

researching an alternative architecture for robotic control and implementing the basic 

solutions to prove their worth.  The next step, however, is to continue to test the 

solutions proposed in this thesis with differing robotic control scenarios as well as 

using it as a foundation to be developed into a full-featured, fully tested architecture.  

Much of this work will surround the virtual supervisor.  There is a need to add 

additional types into the architecture as robots that desire to transmit data in different 

formats are discovered, just as the Paradex wished to deal with a RangeType instead 

of merely an integer when controlling the large switch.  These data types must be 

turned into classifications and have default controls associated with them for display 

on the GUI.  Also, adding non-default controls to existent classifications and 

providing the supervisor ways of saving his preferred control types for each 

classification are both needed.  Aside from specific data classification, there is also 

the need for the Virtual Supervisor to handle different priorities of data.  When a 

return value with a high priority is reported to the Virtual Supervisor, it should react 

accordingly.  Currently, these priorities are being reported, but the Virtual Supervisor 

does not react differently based on a priority.  It is hoped that eventually high-priority 

responses will cause the virtual supervisor to demand acknowledgement from the 

Supervisor and, should it not be received, attempt to contact him via a cell phone or 

pager.  
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Loading code into the VRs is in many ways a much easier process than it 

could have been.  There are well defined interfaces to access robotic functionality and 

pass values to the Virtual Supervisor the Virtual Robot will recognize and thus the 

Supervisor may code against.  This code may be written in any .NET language, of 

which there are dozens, since the architecture was written in C#, a .NET language 

itself.  However, to minimize the effort required to author dynamically loaded code, a 

small visual development environment would be highly desirable.  If supervisors 

could use a visual interface to choose methods to call and parameters to pass in, it 

would make writing these pieces of code even easier.   

Although the architecture was built to accommodate multiple robots, very 

little has been done to do multiple robot coordination, or to load dynamic 

functionality that would do anything exciting with the two robots.  Currently, the 

extent of writing functions that wrap up basic methods on multiple robots has been 

limited to functionality on each robot that is unrelated to the other.  Thus, true 

coordination has not yet been attempted.  Moreover, a demonstration of writing 

dynamically loaded code that reorganizes groups of robots to work in different teams 

would be impressive, and is well within the scope of the architecture.   

One of the problems with allowing such abstraction from the robots’ basic 

commands, is that it becomes possible for the supervisor, who is unaware of the 

actual implementation of the high level commands he or she is issuing, to request that 

the robot perform actions that contradict each other.  For instance, he could execute a 

function to load into a VR controlli ng the Paradex robot that wrapped up calls to 

turning a switch on and off.  Should this function be executed, the Paradex will be 
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given conflicting commands that may or may not achieve what the supervisor 

intended.  If the virtual robots could track the dependencies of their dynamically 

loaded functions and report an error when an ambiguous set of commands was 

wrapped up, it would be a great addition to the architecture.  

Finally, there is a great deal of work to surrounding the mobili ty of the virtual 

robots.  This is by far the area of future work that is the most complicated.  Currently, 

a simple algorithm is in place.  Using this algorithm, a virtual robot looks at each 

agency and records the available CPU as well as the round trip time to each of its 

neighbors.  The virtual robot then moves to the agency that provides it the best 

resources.  First, this algorithm does nothing to counter possible looping that may 

occur.  For example, AgentA is dissatisfied with the CPU performance of its current 

machine.  It looks up another agency on another machine and, upon running tests on 

that agency, finds that the computer on which the agency runs is somewhat faster than 

its current computer.  Thus, it moves itself from its current computer to that agency.  

But AgentB, which is located on that computer, now finds that with the drop of CPU 

performance on its computer, it is better suited for AgentA’s old computer.  Moving 

there, AgentB then makes that computer undesirable for a third Agent, AgentC, who 

had been sharing the computer with AgentA originally.  AgentC gets up and moves to 

computer B.  This is the initial state for the same cycle to occur, with processes 

reversing the direction of their move.  Clearly, the local greedy solution is not 

universally stable.  

Additionally, there is the issue of priority.  Perhaps AgentB is performing a 

critical task, such as navigating a robot through a dangerous stretch of road.  AgentA, 
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then, could possibly be performing some CPU consuming task as well, but of much 

less importance to its supervisor relative to the importance of robotic navigation to 

AgentB’s supervisor.  If AgentA simply sees AgentB’s powerful computer and moves 

there blindly, it may starve AgentB from getting its massive requirement of CPU 

cycles, leading to a failure of an important task in the name of an efficiency increase 

for an unimportant task.  This situation is also undesirable.  

Ideally, a stable global optimal solution would be calculated before any 

movement occurred, in which the importance, or priority, of each agent was taken 

into consideration as well as their current task and current task requirements.  It may 

not be best for any one process or even for any process at all, but overall would be the 

best solution available and thus stable, until requirements changed or additional 

processes were added.  This problem is known as the agent-planning problem, and is 

an emerging field of research.  It has been compared to many well-known problems, 

including the problem of distributed data storage and the traveling salesperson23.  A 

complete analysis of this diff icult, currently unsolved problem is well beyond the 

scope of this thesis.  However, when applied specifically to the proposed virtual 

robots, the problem reduces fairly well to that of obtaining a globally optimal solution 

for similar processes that are engaged in performing different tasks that are each 

requesting space on a finite number of computers with finite resources.  This problem 

has been researched for many years under the heading of web page caching on 

servers.  Users each want their common pages cached on a local server instead of 

requiring those pages to be reloaded from the page’s main server each time.  The 

local servers have a limited number of resources, most notably space, to be spread 
                                                
23 Katsuhiro Moizumi. [15] 
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across all the users that want to cache their web pages there.  Therefore, researching 

the best way to find the globally optimal arrangement of VRs meant relating it to the 

problem of web caching and applying the research and results of that work to our 

problem. 

 Currently, there are a number of different web caching algorithms in usage.  

These include Greedy Dual Size24, LRU, LFU, LRU-Threshhold25, LogLRU26, 

HYPER-G27, Pitkow/Recker28, Lowest-Latency First29, and Hybrid30.  Out of these, 

the best algorithms are generally agreed to be Greedy Dual Size and the Hybrid when 

calculation time for the algorithm itself is disregarded31 32.  In the Hybrid model, a 

function is computed for each document in the cache.  The function is designed to 

capture the utility of retaining a given document in the cache, and the document with 

the smallest function value is evicted.  The function for a document depends on the 

time to connect with the server on which the page is located, the bandwidth of that 

server, the number of times the page has been requested since it was brought into the 

cache, and the size of the document.  Greedy Dual Size bases its decisions about 

which page to evict from the cache on an equation as well, but uses some slightly 

different factors.  These factors are the locality of the page, the size of the page, and 

the latency/cost concerns of caching the page instead of fetching it each time.  The 

two methods are very similar and use similar parameters, differing in ways too minute 

                                                
24 comparison of online 
25 LRU THRESH 
26 loglru 
27 hyper-g 
28 pitkow/recker 
29 lowest latency first 
30 hybrid 
31 greedy  
32 compare 
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to be listed here.  Also favored as a web-caching algorithm is the LRU method, which 

simply removes the least recently used page from the cache before adding the new 

page.  It does not produce as optimal a solution as other algorithms (like Greedy Dual 

Size), but it achieves its calculations in O(1) vs. O(log n)33 for the more complicated 

algorithms where n is the number of pages in the cache.  Also, LRU does not require 

additional space, of which many other algorithms require a significant amount.   

 The bottom line for web caching is that all of the algorithms look at the 

currently cached pages and attempt to find the page that has fewest of the 

characteristics the algorithm holds to be important.  Most algorithms are based 

completely on LRU or incorporate it heavily into their equations along with other 

factors, such as size and latency.  In future research, we hope to apply this principle to 

the arrangement of our virtual robots.  We must analyze the currently existent VRs 

against a set of characteristics that we hold valuable and give the best spots to the 

VRs that are rated the highest.  Some of the parameters in web caching have no clear 

counterpart in our situation.  For instance, the size of a page is usually considered, but 

the size of virtual agents will be very consistent.  However, other web page factors 

have clear associations with our agents; locality of the page’s server, for instance, 

parallels well to the distance between an agent and his slaves and master.  The agent’s 

message must travel different distances depending on which agency it utili zes, just as 

the time to reload a page depends on the time to contact the page’s server or the time 

to contact a cache of that page on a local server.  There is also a parallel between LFU 

(Least Frequently Used) and LRU (Least Recently Used) to the frequency of message 

                                                
 
33 Some implementations of GDS may obtain a running time of O(1), but the constants in the time 
complexity analysis are so large that those implementations are rarely seen in practice 
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passing and command execution by the virtual robots.  And there are certainly other 

factors to take into account with virtual robots that have no clear counterpart in the 

web-caching world, like job priority.  We believe that calculating a globally optimal 

solution for virtual robot placement is plausible should factors be correctly assessed 

in an equation that can meaningfully incorporate information about each agent.   

 

6.2 Conclusion 

There are many challenges involved in the remote control of robotics.  Many 

of these challenges have been met by current solutions, yet there remain many 

difficult objectives that have not been satisfactorily achieved.  We believe that a 

revision to the architectural model of robotic control allows the accomplishment of 

many of these objectives as well as permitting the incorporation of several features to 

the realm of remote robotic control that had not been previously possible.  This 

revision involves two main components.  First, the introduction of peer-to-peer 

processes that serve as intermediaries between the remote control application (the 

virtual supervisor) and the robot itself.  These processes are viewed as the supervisor 

from the perspective of the robot and as robots to the supervisor, and are therefore 

called virtual robots.  Secondly, the architecture is designed to allow control of robots 

generically.  This means that the virtual supervisor, as well as the virtual robots that 

exist between the virtual supervisor and the robot, are merely templates.  They were 

written with no preexistent knowledge of the robot they are intended to control, and 

therefore do not have any programming to reflect the methods and properties any 

specific robot has exposed for remote interaction.   
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We believe that since our model is focused on having a single application that 

may control robots generically, it will be appealing to industry users.  Currently, to 

enable remote supervision of a robot, a language to describe the robot’s abili ties and 

pass supervisory commands must be established, robotic functionality must be 

exposed to communicate with a controlli ng application, and, finally, the controlli ng 

application must be programmed.  This controlli ng application must accept user input 

and then translate it into a message that can be understood by the robot before 

sending that message over the Internet.  In contrast, when using our architecture, the 

robot needs only to have a small stub written that defines its attributes in a well-

defined language.  The virtual supervisor will then mold itself to accept user input 

relevant to the robot in question and send commands to the robotic stub.  The virtual 

supervisor will place visual controls on its GUI that correspond to the robot’s 

methods and are intuitive to users of modern-day software.  In addition, the virtual 

supervisor will communicate with the rest of the remote architecture as efficiently as 

possible when sending the messages across the Internet.  In short, the architecture 

makes it trivially easy to enable remote control of nearly any robot through a rich, 

user-intuitive GUI that is completely pre-written.  

Because our control model uses peer-to-peer processes, virtual robots, to 

abstract away the control of the supervisor and the functionality of the robot, we are 

able to boast several advantages over traditional master/slave remote control.  One 

immediate advantage is that because the virtual supervisor does not interact directly 

with a robot, it is easy to build a structure of a virtual supervisor directly or indirectly 
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controlli ng multiple virtual robots, each of which control a robot.  Thus, achieving 

single supervisor control of multiple robots is effortlessly achieved.  

There are also advantages to this structure that rely on the advanced 

capabili ties of these virtual robots.  The virtual robot processes are actually mobile 

agents that are capable of evaluating their current task and the resource requirements 

associated with that task, as well as gauging the resources available on various, 

registered host computers.  Upon finding a more desirable computer, these processes 

are able to move themselves, along with the task they are executing, to that new host 

before continuing their execution.  This results in an inherent flexibili ty to the types 

of resources required by the objective the supervisor assigned.  When a supervisor 

orders a robot to perform a job that requires fine-grain control, for instance, the 

virtual robot that is carrying out the supervisor’s command will recognize the need 

for a short round trip time to the robot and move itself to a computer that can provide 

it with such.  The same is true when a virtual robot realizes that its supervisor is 

requesting a computationally intensive task.  All of this flexibili ty and run-time 

reaction to the supervisor’s commands happens in such a fashion that the virtual 

supervisor program itself, and thus the supervisor, need not themselves move to a 

different computer or direct the mobili ty of the virtual robots in any way.  

The virtual robots have also been programmed to accept additional 

functionality from the supervisor.  Thus, to add new functionality to a robot based on 

currently existent abili ties, the supervisor may simply write code for the new 

function, compile it into an assembly, and send it to a virtual robot.  The virtual robot 

is aware of the robot’s functions as well as how to invoke them, since it must use this 
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knowledge whenever a supervisor wishes to know what abili ties a robot may have or 

wishes to invoke one such abili ty.  This virtual robot then reports the abili ty to 

execute this new function as a robotic abili ty to the virtual supervisor along with the 

functionality that is actually programmed into the robot.  When the virtual supervisor 

executes this new function, the command reaches the virtual robot that loaded the 

supervisor’s assembly, and that VR passes control to the assembly.  The assembly 

executes the supervisor’s program, including calls to the robot’s current functionality.  

This is an especially exciting feature, since it allows a supervisor to upgrade the 

abili ties of a robot without directly reprogramming the robot in whatever language 

and operating system the robot requires.  Instead, the supervisor may reprogram the 

virtual robots and follow the same steps to add functionality to any robot that fits 

within our architecture.  This upgrade will take place dynamically, without a need to 

recompile the virtual robot program or even halt operation of the robot in question.  

Additionally, since a virtual robot may control multiple robots, a function may be 

loaded dynamically that, upon execution by the supervisor, actually executes 

commands on multiple robots in a coordinated effort.   

This abili ty to load functionality into a virtual robot results in a supervisor’s 

abili ty to repeatedly wrap up existent functionality in an object-oriented fashion, so 

that layers of abstraction are established.  By layering functionality and thus 

providing the abili ty to program the robots against higher and higher level 

abstractions (that may include one or more robots), the supervisor is able to write 

powerful command sequences using relatively little effort, much as using classes 

greatly simplifies modern software development.  Furthermore, by enabling the 
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robots’ abili ties to be modified while they are running, the control architecture allows 

the supervisor to react to the conditions his or her robots encounter with a new degree 

of flexibili ty.  If the environment to which the robot must be deployed is mostly 

unknown to a supervisor, he or she may program in a significant portion of the 

robot’s actual functionality after the robot has arrived in its target environment and 

reported its surroundings.  In addition, by loading functionality that involves multiple 

robots, a supervisor could dynamically reorganize teams of robots depending on what 

unexpected challenges the environment may pose to a team of robots that must 

accomplish some task. 

We feel that because of its fresh approach, our control architecture represents 

a step forward in remote robotic control.  First, it provides an easy way to allow the 

remote, supervisory control of generic robots.  This control takes place from within a 

rich GUI that molds itself to the target robot.  Our architecture also solves many of 

the current diff iculties of robotic control, such as flexible, fine-grain control and 

facili tating the coordination of multiple robots from within a single application.  

Finally, it offers the impressive feature of enabling the supervisor to dynamically load 

functionality into virtual robots.  By modifying the abili ties of a robot as it executes, 

the supervisor may wrap up and abstract away lower-level functionality into higher-

level methods that allow a more powerful programming model.    
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