

ii

MULTI-AGENT SUPERVISION OF GENERIC ROBOTS

by

David Rosas

Submitted in partial fulfillment of the requirements for the

Degree of Master of Computer Science

Advisors:
Dr. Vincenzo Liberatore

Dr. Wyatt Newman

Department of Electrical Engineering and Computer Science

CASE WESTERN RESERVE UNIVERSITY

May, 2002

iii

SIGNATURE SHEET

iii

iii

Table of Contents

List of Illustrations and Figures….…………………………………………….. iv

Abstract………………………………………………………………………… v

1. Introduction ………………………………………………………………...1

2. Background and Basis for our Work……………………………………... 4
 2.1 Remote Control………………………………………………………… 4
 2.2 Supervisory Control……………………………………………………. 5
 2.3 Natural Admittance Control and Virtual Attractors……………………. 6
 2.4 Traditional Robotic Control and Existent Problems…………………… 7

3. Overview And Rationale of Goals…………………………………….…... 9
 3.1 Enabling Remote, Generic Supervisory Control………………………. 10
 3.2 Generic Robotic Control Application………………………………….. 12
 3.3 Efficient and High-Level Remote Communication……………………. 13
 3.4 Dynamic GUI Utili zing Intuitive, Modern Day Controls……………… 14
 3.5 Single Supervisor, Multiple Robot Control……………………………. 16
 3.6 Adding Dynamic Functionality to the Robot………………………….. 16
 3.7 Enabling Fine-Grain control…………………………………………….21

4. Goal Achievement and Corr esponding Design Architecture…………… 26
 4.1 Enabling Remote, Generic Supervisory Control………………………. 27
 4.2 Achieving a Generic Remote Control Application……………………. 32
 4.3 Efficient and High-Level Remote Communication…………………… 34
 4.4 Achieving a Dynamic GUI Utili zing Intuitive, Modern Day Controls 34

5. Achieving Remaining Goals: A Need for Architecture Modification…... 41
 5.1 The Case for Mobile Agents………………………………………....... 45
 5.2 Revisiting Efficient and High-Level Remote Communication……....... 48
 5.3 Setting Up the Control Architecture………………………………....... 51
 5.4 Achieving Single Supervisor, Multiple Robot Control……………....... 58
 5.5 Achieving Fine-grain control………………………………………....... 59
 5.6 Achieving the Addition of Dynamic Functionality to the Robot…….... 63

6. Future Work and Conclusion……………………………………………... 87
 6.1 Future Work……………………………………………………………. 87
 6.2 Conclusion……………………………………………………………... 93

7. Bibliography………………………………………………………………... 98

iv

iv

List of Illustrations and Figures

3.1 The Paradex Robot………………………………………………………….22

4.1 Initial State of Proposed Architecture……………………………………… 32

4.3 The Virtual Supervisor GUI in its blank state……………………………... 37

4.4 The Virtual Supervisor after a connection has been made………………… 38

4.5 The Control Architecture after definition of the VS……………………….. 40

5.1 Control Architecture after introduction of virtual robots………………….. 48

5.2 The Control Architecture with SOAP……………………………………… 50

5.3 The Control Architecture including the CentralSite registration process….. 52

5.4 The CentralSite server showing one agency registered……………………. 54

5.5 The Virtual Supervisor showing a chain of VRs and a robot……………… 55

5.6 The virtual supervisor after contact has been established with a robot......... 57

5.7 The final control architecture, complete with virtual robots………………. 59

5.8 The methods reported when a VR has dynamically loaded a function…..... 65

5.9 The execution of a dynamically loaded function……………………….….. 67

5.10 The static methods available to the VS after connecting to a robot………. 78

5.11 Sending over a pre-compiled assembly containing new functionality.……79

5.12 The VS after a VR in its chain has loaded up the dynamic functionality… 80

5.13 Execution of the dynamically loaded functionality………………………. 81

5.14 A second assembly is sent to a VR for loading…………………………... 83

5.15 Selecting a 2nd dynamically loaded function that will call the first……… 84

5.16 The result of executing the 2nd dynamically loaded function……………. 85

v

v

Multi-Agent Supervision of Generic Robots

Abstract by

David Rosas

This paper proposes a new architecture for remote robotic control that utilizes

sophisticated programs acting as intermediaries between the robot and the supervisor.

These processes are mobile agents and are capable of moving from one computer to

another autonomously as resource needs change. Through a predefined set of

interfaces and a simple language, the agents may communicate with each other as

well as the robot and supervisor. This abstraction between the supervisor and the

robot allows the virtual robot to move to different computers with different resources

depending on the current task the robot is executing. Additionally, it permits a

programmer to add new functionality to the virtual robot that wraps up existent

robotic functionality. This allows a supervisor to create and inject new methods that

will control the robot without actually reprogramming the robot itself. We believe

that this framework provides alternative solutions to many remote robotic control

problems and allows for many exciting supervisory control possibilities.

1

1. Introduction

This thesis describes the theory behind and implementation of robotic supervisory

control using peer-to-peer processes. The Internet has become a solid infrastructure

upon which distributed applications of all sizes and purposes have been constructed.

Remote robotic control is becoming increasingly valuable as tasks are discovered that

could ideally be performed by robots without requiring human presence1 2. However,

there are two main characteristics that separate this project from past remote robotic

control undertakings. First, most remote control architectures are unacceptable for

real world applications because of the time delays involved. If a robot was given

commands to move to specific locations in n-dimensional space, for instance, and

some unexpected occurs, the error must be reported back to the supervisor. Upon

receiving notification of the robot’s error and current state, the supervisor must first

decide how to correct the robot. Often the supervisor will want to make some small

change, such as causing the robot to move to some modified set of coordinates before

continuing along with its job. This feedback must be assembled into a form that the

robot can understand and then shipped back across the Internet to the robot. This

much delay is often unacceptable, especially when the robot and supervisor have a

low-bandwidth or long-distance link. Our project allows “virtual robot” processes to

take jobs from the supervisor and command the robot. More importantly, these

virtual robots may exist anywhere, such as on a computer that is at a near-distance or

high-bandwidth link to the robot. The flexibili ty that this entails allows us to perform

remote, supervisory control on a new class of Internet-capable robots. This class

1 Bill Adams. [2]
2 Khurshid Alam, Sudipto Mukherjee. [3]

2

includes all robots that require quick response times or error correction for their tasks,

as long as the errors are somewhat expected and thus may be represented in a fashion

understandable to the virtual supervisor process. While the existence and use of these

peer-to-peer processes implies many things and grants us many more advantages than

just success over some time-delay problems, the second main advantage that this

project can tote over traditional attempts is the goal of gaining this control in a

generic fashion. By this we mean the following: it is our goal that any robot, as long

as that robot falls within a range of our classification, may announce its existence and

various details about its abilities to a single, previously written supervisor program

which will then be able to control that robot. The details that the supervisor must

acquire include tasks that the robot can perform and things it can monitor, as well as

basic information about where and how it exists on the Internet. We accomplished

this in a way that will require a bare minimum amount of programming on the robot

and thus allow a relatively easy way to make any robot that fits our classification

compliant with our remote supervisor program. To be able to control any robot

regardless of its actual physical shape or its functionality without needing to rewrite

the program that does the supervision would be a step forward in remote robotic

control. After all, it would provide a standard control mechanism to all robots within

our specified class, allowing a familiar set of controls to supervisors and, furthermore,

would eliminate the need to write a new supervisor program each time a robot is to be

controlled remotely.

Something that must be made clear at this point is that the supervisor program

must somehow adapt itself into a form that allows this control to take place in a

3

manner appropriate for the target robot. It is of little use to have a program that can

relay commands to any robot if it is not flexible enough to provide a meaningful

interface to the supervisor based on what robot is being controlled. However, the

supervisor program itself must not require any additional code or recompilation to

achieve this control of any generic robot. If the supervisor is only made to handle

robots with a gripper and is unable to change the layout of its GUI, then it does no

good to be able to control a mobile pathfinder-like robot, since the supervisor will

still only have access to that gripper control representation on the GUI and nothing

more.

The roadmap of this thesis is as follows. First, background information will

be given and a short description of the foundation upon which this research lies. This

includes topics like remote control, supervisory control, and Natural Admittance

Control as well as a short discussion of current trends and practices. After this

background has been described, all of the third chapter will be devoted to describing

several goals for an ideal system for remote, supervisory control of robots. The rest

of the thesis paper is devoted to attempting to achieve those goals. As each goal is

discussed and a solution proposed, the overall control architecture is updated to

reflect our attempt to satisfy this goal. This control architecture starts off assuming a

strict master/slave model, but eventually we are forced to change it in order to

achieve our objectives. This need is discussed in chapter five, and leads to our final

control architecture, which we then illustrate as achieving the remaining goals. This

architecture is the primary result of our research and is the crux of the thesis.

4

2. Background And Basis For Work

In this chapter, the foundation of our work is discussed. It begins with descriptions of

a few basic concepts and terms and ends with a description of traditional robotic

control and the biggest problems it faces. It is hoped that this chapter will describe

the current state of remote robotic control, along with its strengths and weaknesses,

and set the stage for outlining our objectives.

2.1 Remote Control

The goal of refining remote robotic supervision is nothing new, with attempts

increasingly focused on Internet control. Internet control has proven itself to be an

excellent medium for remote control because there exist standard Internet protocols

which have been utilized by many robots and robotic controllers, both at the hardware

and software levels, and also because it provides us with much of the lower level

implementation that sending messages in a time-efficient manner require3. Previous

related projects at Case Western Reserve University include some of the earliest

network-based teleoperation with reflexive collision avoidance4, a prototype robot

that sorts laundry under the supervision of a remote homeowner, an industrial robotic

arm that sorts items with the assistance of a remote engineer, and the support for the

reprogramming of advanced production line robots from a remote laptop or PDA.

3 Soraya Ghiasi [12]
4 Ittichote Chuckpaiwong []

5

2.2 Supervisory Control

Aside from reusing concepts surrounding remote control, we have also geared our

project towards what has become known as robotic “supervision” . A complete

definition and explanation of this term will be provided within the main section of the

thesis. In short, robotic supervision implies that the robot is somewhat intelli gent and

performs and completes most tasks with a large degree of autonomy, often requiring

input from the supervisor only to receive high-level objectives or to escape from an

undesirable state in which it finds itself. We have based our decision to use

supervisory control on the benefits it affords us relative to the weaknesses of IP

communication. For example, at CWRU we have demonstrated an exploratory case

of remote supervision using a robot that sorts laundry into whites and colors5. The

robot (Rhino) is composed of one arm with a gripper (to pick up and put down the

clothing) and two cameras (to observe the clothing). The robot uses pictures from the

cameras to classify a grasped clothing item as white or color and then drops it in the

appropriate basket. The robot usually proceeds autonomously, but there are cases in

which the robot is unable to make a clear distinction about the color (or lack thereof)

of a piece of clothing. When this case occurs, the robot contacts a remote human,

who can assess the state of the robot’s job through a Web browser that displays

pictures of the environment. The human supervisor is then able to instruct the robot

to perform diagnostic or functional actions, which allow the robot to return to

productive work. This philosophy of supervisory control applies to many remote

control robotics situations and we have found it to be an effective excellent pattern to

build into our control architecture.

5 Rhino

6

2.3 Natural Admittance Control and Virtual Attractors

Natural admittance control (NAC) is control based upon a set of parameters that

prescribe desirable admittance dynamics that the robot should emulate67. Robot

control is achieved by setting these parameters to application-dependent values,

which are then used by the NAC controller local to the robot. For example, washing

a window, the robot would be instructed to behave relatively stiff ly in directions

tangent to the glass and compliant normal to the glass. To open a door, the robot

should behave relatively stiff ly in the expected direction of motion, but should

comply gently in directions corresponding with hinge constraints. The NAC

controller technology is sufficiently developed that it can be used as a foundation for

remote controls.

Within NAC, a “virtual attractor” is a point in n-dimensional space to which

the robot end-effector is virtually connected by a means of a set of fictitious springs

and dampers of specified stiffnesses and damping. Through this use of virtual springs

and dampers, the robot is given goal points upon which it is encouraged to converge.

If there is an environmental force in opposition to this convergence (perhaps from

contacting kinematic constraint surfaces), there will be position and/or orientation

errors between the attractor and the robot, resulting in stretch of the virtual springs.

As a result, virtual forces are produced. These virtual forces are part of the model

reference dynamics, and thus the robot will equili brate in contact with the

environment with interaction forces equal and opposite to the virtual forces. By this

means, one can both visualize and produce desirable interaction dynamics.

6 Brian Mathewson
7 Nirut Naksuk

7

recent experiments at CWRU, the value of virtual dynamics to implement

strategic behaviors has been demonstrated with respect to assembly of automotive

transmission components. It is proposed here that capability is also highly valuable in

accomplishing Internet based collaboration between humans and robots.

2.4 Traditional Robotic Control and Existent Problems

 Traditional robotic control involves a myriad of varying components. Some

industrial robots are programmed directly while some are controlled through a

separate computer to which they must always remain attached. The operating system

that controls the robot or its computer controller differs from one manufacturer to the

next. Sometimes they are standard and often they are completely proprietary. The

engineers who wish to program these robots must learn not only the system calls that

correspond to the operating system at hand but also work within the confines of

languages that may be compiled or interpreted for that platform. The languages in

which robotic controller code is developed also vary greatly, typically being

proprietary to the robot manufacturer. With all of these differing factors, it quickly

becomes quite difficult to program or control multiple robots from differing

manufacturers without a matching set of trained engineers and programs written to be

compliant to each system. This is especially so when multiple robots must be

coordinated to cooperate in achieving a single objective8.

 Traditional remote robotic control only adds to these problems of complexity.

Each robot typically has a static, centralized controller that exposes its own interface

with which interaction may take place. Using those interfaces, the remote controller

8Terrence Fong, Charles Thorpe, Charles Baur. [10]

8

may send messages in the language defined by the robot. Various attempts have been

made to make a standard language that all robots could recognize and thus simplify

the communication process9 10 11. Even with such attempts, a fully accepted universal

language for use in passing messages to robots far from a reality. Part of this problem

is the wide range of activities that robots can perform makes the creation of a

language that can adequately describe all of them difficult. Trying to remotely

control two different robots, then, nearly always implies the need to work with vastly

different interfaces that accept messages formed in vastly different languages.

 For all of these reasons, traditional remote robotic control solutions have

struggled to expand their domain to problems requiring multiple robot coordination.

Additionally, it is difficult to augment the existing functionality of the robot,

particularly when the owner of the robot who desires these changes is not also the

manufacturer of the robot. First, an engineer must be found who understands both the

operating system and the language with which the robot was programmed.

Depending on how flexible the remote interfaces were programmed and how robust

the language that defines the robotic commands is, new interfaces must be added to

allow the utilization of any new functionality. Moreover, the robot must have some

way of informing any potential controller of its new functionality so that the person

controlling the robot will know that this functionality is now available, or else the

controller program must be updated and recompiled for usage as well.

9 Michelle Munson, Todd Hodes, Thomas Fischer, Keung Hae Lee, Tobin Lehman, Ben Zhao. [16]
10 J. Bates, J. Bacon, K. Moody, and M. Spiteri [6]
11 D. Gelernter. [11]

 9

3. Overview And Rationale of Goals

Now that the foundation for our work has been explained, this chapter lays out the

objectives for ideal supervisory robotic control. The goals are meant to describe an

architecture that makes the most of the strengths of current systems and perhaps help

to supplement some of the weaknesses. Thus, each goal is an attempt either to

provide a better solution to one of the currently solved challenges of robotic control

or to propose a new feature altogether. Once the goals have been defined, their

proposed solutions and implementations may then be discussed in the next chapter.

10

3.1 Enabling Remote, Generic Supervisory Control

One of our primary goals for an ideal control system is to enable remote,

generic supervisory robotic control of a class of robots. By generic control, we mean

that control should be possible regardless of the computer, operating system, and

language associated with the robot. Clearly, the class of robots with which we wish

to enable remote, generic supervisory control must be a class of robots that lends

itself to this control. Therefore, there are some basic requirements for robots before

they are classified as a match for our control architecture. We first require that the

robot be able to be controlled remotely to a satisfactory degree. Most often, this goal

will be achieved by using functions that the robot currently implements when the

supervisor wishes to execute common, well known tasks, using a virtual attractor and

impedance model to drive the robot through unexpected, supervisor defined patterns,

or a combination of the two. In addition, there will be some basic operational

requirements of the robots. There must be a lowest common denominator for

communication that the remote control program may use and with which, therefore,

the robots must comply. It is important to note that these operational requirements

should not make it diff icult for the average robot to be controlled—that is, the bar for

the lowest common denominator must be set low enough that it does not eliminate the

bulk of robots from compatibili ty with our architecture. Ideally, these operational

requirements should be nearly universally available across many various robotic

platforms and programming languages.

 The final characteristic that a robot must have in order to be classified as a

good match for our system of remote supervisory control is that it lends itself to

11

supervisory control in the first place. Supervisory control means, in essence, that the

robot is given high-level, coarse goals with a high autonomy of control. In

supervisory control, the human robot controller acts exactly as such—a supervisor.

The supervisor sees the results of the robot’s efforts, gives overall objectives and

desires for future output, and is able to obtain precise control over the robot when the

robot is confused or in an undesirable state. The supervisor is not required to step the

robot through each micro operation, nor must he or she be present to watch the robot

perform its work. Often this level of job abstraction is achieved through pre-

programmed functionality that is present on the robot and which the supervisor

simply invokes in an ordered sequence. This results in the robot continuously

performing well-known tasks without requiring systematic instructions. This is

perfect for remote control scenarios, where often the time delay prohibits any

efficient fine-tuned control12. Even though supervisory control requires the abili ty for

the robot to complete objectives with only coarse input, it does not eliminate the

possibili ty of low-level control. Occasionally, the supervisor may wish to use low-

level, or precision, control in order to correct a supervised robot from an error state or

to perform some operation that the robot has not preprogrammed to do. When given

complete knowledge about the robot being controlled, the task of giving that robot

meaningful, low-level commands in order to manipulate the robot’s state is trivial.

However, our work has been based around the concept of generic control: Instead of

complete information, virtually no knowledge is available to the virtual supervisor.

Accordingly, it is our intent to provide this same fine-grain control through a virtual

attractor and impedance model, in which the supervisor has a much greater range of

12 Jeffrey B. Elli s [8]

12

control over the robot with no pre-programmed knowledge of the overall goal the

supervisor has in mind.

 It is important to note at this time that while the robot will certainly be

programmed with functionality that it may expose to the supervisor, the remote

control application that the supervisor uses is meant to be generic. It should be able

to apply meaningfully to any robot without any pre-existent knowledge about how the

robot works and what it does. This is a noteworthy endeavor—we must create a

program that will allow a human supervisor to invoke any range of functionality on a

foreign robot that the program previously knew nothing about.

3.2 Generic Robotic Control Application

It is rudimentary that in order to control a robot remotely, there must exist

some program that the supervisor will use from a different, remote location, to send

commands to the robot. This program will be called the Virtual Supervisor, since it is

exactly that—a computer program that accepts the supervisor’s wishes and relays

them to the rest of the system. To the robot, it speaks with the voice and authority of

the supervisor himself. Currently, remote robotic control architectures are nearly

completely composed of master/slave models. The supervisor uses a program, the

virtual supervisor, as the master process to send commands that control one or more

robots, which play the roles of slaves. We will be assuming this architecture for the

remainder of the analysis and requirements gathering portion of this thesis. It is the

nearly universal architecture used for current day remote robotic control applications,

13

and as such, it is an excellent foundation to stand upon and assess weaknesses and

possible modifications.

This virtual supervisor should be, like the robots it hopes to control, generic

across operating systems. Regardless of what computer the supervisor himself wishes

to use, it would be highly desirable if the virtual supervisor could run on any

computer the supervisor desired, regardless of location or operating system. This

would give the supervisor a great deal of flexibili ty in attaining control of a remotely

located robot.

3.3 Efficient and High-Level Remote Communication

 Our next goal is to utili ze as efficient and high-level a model for remote

communication as possible. While we recognize the need to pander to the lowest

common denominator of robotic functionality, we wish to use protocols that facili tate

communication with the robot and the rest of our system in an efficient a fashion as

possible. With so many powerful ways to package data, such as Java’s RMI (Remote

Method Invocation) protocol and the SOAP (Simple Object Access Protocol)

standard currently used by many corporations, it is unnecessarily inflexible to

continue to program sockets to send text strings from one process to another. Modern

communication protocols give programmers a high-level communication standard

that allows for easy transmission of a wide range of data types between computers.

Additionally, they package the data in a far more efficient manner than sending

ASCII text strings across sockets.

14

3.4 Dynamic GUI Utilizing Intuitive, Modern Day Controls

 Just as we are attempting to accomplish communication in a high-level and

elegant fashion, the virtual supervisor should be required to adhere to these same

standards. The virtual supervisor should be a GUI with the powerful control

mechanisms that are associated with modern-day GUI design. The advancement of

visual controls has reached a point in software development where the visual

representations of commonly requested inputs can be presented intuitively to the

average computer user.

 This virtual supervisor must be bidirectional. The virtual supervisor must be

able to call a function on the robot and then accept a return value from the robot after

it has processed the command. Additionally, the robot will have many different state

variables with values that it may wish to relay to the supervisor. These state variables

are essentially properties of the robot, such as its location and velocity, and the

robot’s environment, such as external temperature and pictures of its surroundings.

Ideally, the supervisor could receive updates of these properties in different fashions,

such as polli ng or upon a change of their value, or upon a change of their value to

some definable degree of significance. Regardless, two-way communication is

necessary for useful robotic control problems. There are also times when an

emergency may occur and the robot may wish to ensure that the human supervisor is

contacted in ways that exceed the normal abili ties of the virtual supervisor. In these

emergency cases, it is desirable for the virtual supervisor to be able to give additional

graphic warnings to the supervisor, possibly out of the scope of the virtual supervisor

program itself, or even perhaps out of the scope of the computer. For instance, if an

15

assembly line robot were in a state of severe error and could not continue to complete

its work, it could send a message up to the virtual supervisor. The virtual supervisor

would immediately request supervisor input, and, should the supervisor not be at the

computer to give it, the virtual supervisor might use the Internet to call the

supervisor’s beeper number and send a message reporting the problem.

 One of the biggest issues with making a highly robot-specific GUI within our

architecture is that, as was previously stated, the virtual supervisor is to be generic to

the point that it has no preprogrammed knowledge about any robot it must control.

Thus, instead of making a virtual supervisor that can interact with a single robot that

it has been programmed to know about, the virtual supervisor should be a visually

intuitive and high-level GUI for generic robots of which it has no foreknowledge. It

is a worthwhile effort simply to expose functionality on any robot that the virtual

supervisor wishes to control while specifying nothing about how fluid and intuitive

the virtual supervisor’s control mechanisms must be. However, it is even more

challenging and beneficial to produce a GUI that uses modern day graphical controls

and provides a user with an intuitive way to control a robot that was foreign to the

virtual supervisor at the time of its programming. We must define a way that any

robot may inform the virtual supervisor about not only its raw functionality, but also

about what visual representation a human being would see as a close parallel to that

functionality.

16

3.5 Single Supervisor, Multiple Robot Control

The architecture of our system, then, must facili tate routing commands from

the supervisor to multiple robots, thus allowing for single-supervisor control of those

robots. Accordingly, it must be able to route return values and property updates from

multiple robots to a single virtual supervisor in a meaningful fashion. There are many

cases in which controlli ng multiple robots from a single interface is beneficial. Many

of them are based around scenarios in which the robot participants would have

previously required different GUIs in order to permit remote control. In such a

scenario, allowing the control of two robots from one GUI is a step forward. More

complicated, yet equally desired, scenarios involve coordinating the inputs and

outputs of multiple robots not only with one virtual supervisor, but also with each

other, thus allowing a network of robots to work collectively even though they are

being controlled only in a supervisory fashion.

3.6 Adding Dynamic Functionality to the Robot

 Perhaps the most frustrating ramification of the greatly varied operating

systems and programming languages that most current robots are built upon is that in

order to fix a bug or to add functionality to such a robot, an engineer who is familiar

with the robot’s platform and code base must be found. Many times this is frustrating

to industries that buy a robot and then find out later that it requires some maintenance

or an upgrade in a language or on an operating system with which none of their

employees are familiar. Since the interfaces for the current functionality must be

discovered and stored by the virtual supervisor during the time of its control, it seems

17

feasible that the virtual supervisor could somehow be able to expose new

functionality to the supervisor based off what it knows currently exists on the robot.

In other words, it would be a desirable feature if the virtual supervisor could offer the

supervisor the abili ty to perform actions on the robot that the robot was not originally

programmed to perform. This translates into the abili ty to dynamically add

functionality to robots by using our knowledge of the robot’s preprogrammed

abili ties.

Currently, our goals permit the expected case: If the robot has any

functionality it wishes to expose at all, the virtual supervisor currently will learn of

this functionality and expose its own controls to invoke the robot’s functionality.

Should this new goal be achieved, then the following scenario could play out: The

supervisor, using the virtual supervisor program, connects to some robot. Suppose

this robot exposes two functions, DrawLine() and Rotate(), which draw a line on a

piece of paper and rotate the robotic hand appropriately. The robot informs the

virtual supervisor of its functionality, functions DrawLine() and Rotate(). The virtual

supervisor then these functions along with a way for the supervisor to access them,

passing in whatever parameters are necessary (using some graphical representation

per the previous requirement of a high-level GUI). Now, the supervisor wishes to add

some further functionality to the robot based off the robot’s current abili ties. In the

simplest case this would involve perhaps making some function DrawSquare (),

which called DrawLine() and Rotate() four times. We now propose that instead of

reprogramming the robot using whatever robot-specific language and OS calls

necessary, the supervisor instead reprogram the virtual supervisor to expose a

18

function DrawLine() that calls the robotic functions in the proper order. The virtual

supervisor, after all, has complete access to the robot and knows about both

DrawLine() and Rotate(). It is trivial for the virtual supervisor to make calls to these

robotic functions. After the virtual supervisor has been programmed to make those

calls and expose it as a DrawSquare() command, this new command is exposed to the

supervisor as if it existed on the robot. In fact, since a supervisor who is not familiar

with the robot will gain all of his or her information about the robot from the virtual

supervisor, it would be impossible to tell what functions existed on the robot and

which ones were programmed into the virtual supervisor based on previously existent

functionality. After this method creation had taken place, the supervisor could invoke

his newly created DrawSquare() function on the virtual supervisor, which would, in

turn, invoke the DrawLine() and Rotate() functionality on the existent robot.

Clearly, this goal is easily accomplished should the virtual supervisor

program’s source code be updated and then recompiled by the supervisor wishing to

add features to the robot, but this approach has three drawbacks. First, should a

functionality tweak be necessary while the robot is operating, the virtual supervisor

(and thus, presumably the robots) would need to come to a safe state for shutdown

and then proceed to shutdown before the virtual supervisor program could be closed.

After closure, a newly tweaked version that had been compiled could be run and

connect to the robots to begin controlling them anew. In short, the changes could not

be applied while the system was running. Secondly, it breaks the idea of a generic

virtual supervisor that may control any robot. Granted, the challenge of loading up

functionality dynamically is a separate and arguably more ambitious goal than the

19

previous requirements, but to require a virtual supervisor that has a permanently

different binary from other virtual supervisors that are in use is extremely

undesirable. The aim of this project is to make one virtual supervisor program that

can be used for any robot. To require a recompilation into a different virtual

supervisor program leads to different versions of the virtual supervisor that are

compatible with different robots. This is not acceptable. Customization clearly needs

to take place on a per-robot level, but statically modifying the current generic product

is not an attractive solution—adding onto it with a separate component would be

much preferred.

The third and final drawback of recompili ng the virtual supervisor each time

one wishes to add robotic functionality is the need for supervisor knowledge of the

virtual supervisor code. Recompilation would require the supervisor to not only

understand how the robot they wish to reprogram functions and what interfaces it

currently provides, but would demand moderate to high knowledge of the inner

workings of the virtual supervisor application as well. Such knowledge should not be

required of the supervisor, who merely wishes to deal with the robot and have as little

contact with the inner workings of the virtual supervisor as possible. It is arguable

that requiring an engineer to learn the non-changing architecture and interfaces of the

virtual supervisor application would still be significantly easier than learning new

languages and OS calls each time a different robot was in need of additional

programming, but ideally, neither should be necessary.

We believe that this feature should be especially attractive to supervisors in

the industry who would much prefer simply to upload new code to transform their

20

robot version 1.0 to robot version 2.0 without shutting the robot down or installi ng

new hardware. This kind of patching has certainly become the standard in the

software world, where the shipped product is constantly being updated, patched, and

exposing new functionality that was simply not quite ready when the time came to

ship. Dynamically loading code to fulfill maintenance or update demands on remote

robotic controller applications is a fair application of this model.

As a final point on this requirement, it is important to note that when the

virtual supervisor may be required to control multiple robots it will contain

functionality from more than one robot. Should the supervisor wish to create a single

new method that wraps up functionality on multiple robots, this should be entirely

feasible. By achieving this, the supervisor would achieve something that would have

been significantly more difficult if he or she was programming at the robot level

instead of the virtual supervisor level—multiple robot coordination. At the robot

level, this involves setting up new communication protocols that do translation

between the command languages of the two robots and then having a new

communication link (robot to robot) in existence during execution. By programming

at the virtual supervisor level, the robots simply use the pre-existent communication

links and languages to communicate with a coordinator—the virtual supervisor

process itself. To the supervisor, this coordination still appears to be wrapped up into

one function call. Thus, he or she may execute a function call to achieve some

objective and without being aware (or needing to be aware), multiple robots may all

play a part in achieving the requested goal.

21

3.7 Enabling Fine-Grain control

 The final requirement that we wish to achieve is to allow for differing levels

of robotic control. Depending on what task is requested of some robot, the kind of

resources required by the robot to complete their objective changes drastically.

Network distance as well as computation cycles required are two excellent examples

of metrics whose importance changes drastically depending on the type of job

requested of the robot. Thus far, the requirements have been assuming a rigid

master/slave model, wherein the virtual supervisor talks directly to the robot

responsible for carrying out his or her commands. Assuming this model, the control

flow is static: regardless of what job is being requested of the robot, the supervisor

begins by manipulating the GUI on the computer that is running the virtual

supervisor. Those commands are then sent to the robot, which executes them and

sends feedback to the virtual supervisor. Often the response times are unacceptable13.

The desire to take advantage of the specific resource requirements of a remotely

controlled task is widely held14.

 At this time, it is helpful to introduce a practical example. Therefore, we will

introduce a robot that will serve as such. It is the Paradex robot, and may be seen

below, in figure 3.1.

13 Ken Taylor, Barney Dalton, Australian National University. [21]
14 Rajrup Banerjee, Amitabha Mukerjee. [5]

22

3.1 The Paradex robot

The Paradex is one of the robots at Case Western Reserve University and has several

arms that reach down to a central tool disc. There is nothing about the Paradex robot

that makes it especially well or poorly suited for our architecture. It does have the

advantage of having force sensors located inside each of the six links from its base to

its tool disc, and with that an enhanced abili ty to sense and “feel” its way around the

environment. This makes it an excellent candidate for NAC and thus supervisory

control, as was discussed in the introduction. However, there is nothing about the

Paradex, either physically or programmatically, that makes it special case for control

within our architecture. Consider the following case. The Paradex is set up in an

environment in which it may move its tool disc about fairly freely. The Paradex

exposes only a single interface that allows the virtual supervisor to send it Cartesian

coordinates, to which the Paradex will move whatever tool is attached to its tool disc.

The virtual supervisor contacts the robot and immediately gives the supervisor the

option of using the robot’s interface and sending a destination point to the robot.

23

Additionally, as per the dynamic loading of functionality requirement above, a

method that allows the supervisor the option to specify a complex path for the

Paradex’s tool to follow has been added to the virtual supervisor. How the supervisor

defines the path is irrelevant, it is only necessary to stipulate that the supervisor has

the abili ty to meaningfully describe to the virtual supervisor the exact path it wishes

the Paradex’s tool to follow, perhaps through a sketch pad control. Assume that the

virtual supervisor’s newly added operation may be broken down into two stages. In

the first, the virtual supervisor, with the image of the path the supervisor specified in

memory, calculates the actual coordinates that the Paradex must follow. In the

second stage, the virtual supervisor actually commands the Paradex to move its tool

to each point and thus travel the path that the supervisor specified.

 Assuming that the input the virtual supervisor receives from the user is in any

significant abstraction layer above actual coordinates (a fair assumption), the first part

of this process is very computationally intensive in comparison with an idle state or

with the second stage. The virtual supervisor must deduce a series of actual

coordinates from the relatively complex representation of the supervisor’s desired

path. Since this stage does require a great deal of calculations, the processing power

of the computer on which the virtual supervisor exists suddenly becomes important.

Conversely, the second stage requires relatively little CPU cycles and a great deal of

data transmission speed. When the robot has reached a target point, the next point

should come quickly, taking into consideration any error in convergence upon the

previous point. Should a serious error occur, such as the Paradex being bumped or

some problem occurring in the environment space, the robot needs to receive

24

commands to resolve the problem as quickly as possible. If the supervisor is in

another geographical location and separated by a large network distance, then many

seconds may pass while the state goes from the robot to the supervisor, a response

intended to correct the current state is given, and that response travels back to the

robot. Alternatively, in the normal case when the Paradex has converged upon a

target point, it will wait, while the signal is sent to the virtual supervisor and next

coordinate is sent back, calibrated to fix any error in the convergence to the first

point. Computational abili ty is now a far less important metric than a short round

trip time between the Paradex and the supervisor.

Suppose, then, that there were two computers from which the virtual

supervisor could be executed. One of them is on the same local area network

(LAN)15 as the Paradex and as such has a very good network connection to the robot.

However, it is an outdated machine and not capable of fast performance. The other

computer is located at the supervisor’s home in a different geographical location from

the Paradex and is on a modem connection to the Internet. While the round trip time

between that machine and the robot is large, the computer is very powerful and

capable of performing massive amounts of calculations in a relatively small amount

of time. If the virtual supervisor is launched from the computer on the robot’s LAN,

it will perform well in the second stage of operation, but not the first. The opposite is

true should the virtual supervisor be launched from the computer at the supervisor’s

home.

15 A Local Area Network is a network that connects computers that are close to each other, usually in
the same building, linked by a cable.

25

 What we would like is for the remote control architecture to contain some

mechanism that will allow not only engaging in this high-level supervisory control

from remote locations, but will also enable us to gain fine-grain control over the

controlled robot when the situation demands it. In this case, it seems almost as if a

dual virtual supervisor solution would be called for—one virtual supervisor that

resides on the high performance machine and does the calculations required in stage

one and then a second virtual supervisor that takes the results of those calculations

and moves the Paradex’s tool during stage two. Note that one highly undesirable

consequence of the need for running the virtual supervisor on different machines

during the course of one supervisory action is that the actual person who is the

supervisor must travel to those machines to control the robot and receive feedback.

In other words, during a phase that required emphasis on CPU, the supervisor would

go to a performance-oriented machine and launch the virtual supervisor. When

controlli ng the robot in a situation where fast feedback was a priority, a different

computer would be desirable from which to host the remote control. This is highly

undesirable.

26

4. Goal Achievement and Corresponding Design Architecture

 Now that the full requirements for remote robotic control have been specified,

we may propose an architecture that we believe will allow us to achieve these goals.

Once that architecture has been put into place, some implementation details must be

listed and explained to prove that it is indeed a solution to the requirements. For

each requirement listed above, the high-level design as well as experimental results

and control scenarios will be discussed. Accordingly, the resulting robotic control

architecture will be revealed and discussed incrementally, so that each goal solution

yields a modified architecture that accommodates that solution.

27

4.1 Enabling Remote, Generic Supervisory Control

As discussed in the requirements section, enabling remote, generic,

supervisory control of robotics requires the ability to interact meaningfully with an

unspecified robot regardless of operating system and programming language. This

requires a specific communication protocol and language that describes the robotic

commands to be put into practice that allows information communication between

our generic virtual supervisor and this robot, whose attributes and environment are

completely unspecified.

There is no one protocol on any level or in any category that all operating

systems utilize or with which all programming languages are compliant. However, a

method of communication that will act as the best possible lowest common

denominator must be selected. It should be basic enough that the vast majority of

systems and configurations that we encounter will be able to support it with minimal

difficulty while powerful enough to handle basic Internet communication concerns.

TCP/IP16 sockets are a universal standard for communicating information and are

supported under nearly all operating systems, whether Unix or Windows based, hard,

soft, or not real time and are an attractive solution for the communications aspect of

this requirement. They will allow the programmer a standard communications

protocol with which he or she will almost certainly be familiar and which takes care

of much of the work required in transmitting data to a foreign host. Sockets are the

highest level of communications protocol that we can use to still be compliant with

16 TCP/IP is Transmission Control Protocol over Internet Protocol. It is the most common
Internet transport layer protocol, defined in STD 7, RFC 793.This communications is based
on the Internet Protocol as its underlying protocol. TCP is connection-oriented and stream-
oriented, and provides for reliable communication

28

most robots. Something more powerful, such as Java’s RMI or even Sun’s RPC

would not allow compatibili ty with many robots and, since the protocol must serve as

the lowest common denominator for any generic robot, are unacceptable.

Using sockets achieves the generic communication aspect of this requirement.

However, to interact with a foreign robot, the virtual supervisor must do more than be

able to send data to the robot, it must have a predetermined communication scheme

so that the two parties may interpret each other. The attributes of the robot (that is,

the properties it contains and the methods it exposes) must be discovered and exposed

in such a way that the virtual supervisor may interact with them. This will require a

defined language for expressing robotic commands. As was stated in the problem

definition, this concept is nothing new to remote robotic control. This language must

be simple enough to be utili zed by any robot but at the same time complex enough to

adequately describe that robot. The simplest language would contain absolutely no

words or phrases, and would certainly be usable by all robots while not able to

describe any. A very complicated language would allow absolute control down to the

rate at which the robot reads signals from the hardware, but would hardly be

applicable to the average robot that could be controlled. A middle ground must be

found.

The language we chose is text-based, which is again in accordance with the

standard communication protocols used in modern remote robotic control. In this

language, commands sent to the robot may be one of three things: property requests,

method executions, or control changes. In the first two cases, the name of the

requesting supervisor is sent to the robot along with the name of the property/function

29

to execute, and in the case of a function execution, any parameters necessary. The

final case involves control changes such as logging onto or off of a robot, or

indicating the desire to begin supervisory control. Logging onto a robot is a security

measure taken to ensure that persons who are not authorized to control a robot are not

able to do so. After logging in and being authorized by the robot, a supervisor will

then be able to execute methods and receive properties. Properties may be reported

through polli ng, upon their change, or upon a change of some significance (as

specified by the supervisor). Nearly all the outputs and inputs of robots may be

classified by methods and properties. Strictly speaking, nearly all software in the

modern world is built upon the concept of a class, which contains either member

functions or member variables, relating to methods and properties respectively. If all

modern day software can be described through these two categories, robotics should

be definable through the same methods.

 When the robot wishes to report to the supervisor, it can send a

property update, a method return value, or a control communication. As in the case

of supervisor to robot communication, the first two cases are straightforward. The

robot sends all required information to the supervisor to inform him of the method

completion or of the state change. In a control communication, the robot transmits

messages that confirm or deny a supervisor’s rights to control the robot. The robot

also uses control communications to define all of its attributes. After a supervisor

first establishes the want and the authorization to control the robot they have

connected to, the robot then sends the supervisor all the information that defines it.

30

This information takes two forms, as is obvious by now. They are either a property

definition or a method definition.

In the case of a property, the robot is responsible for sending enough details

about the property to define it to the virtual supervisor17. One of these details that

define a property is a notification level that indicates how important it is to notify the

supervisor about changes to the property. The notification level will eventually

determine how the virtual supervisor will respond to the property notification, ranging

from simply displaying a message on the screen to attempting to contact the

supervisor’s beeper. For instance, when there is a change in ambient temperature,

only a passive notification is needed. However, if a piece of hardware malfunctioned

that was endangering the robot and its surroundings, much stronger attempts to reach

the actual supervisor would be merited.

 Method definitions are mostly similar18 in that the robot must transmit enough

information to the virtual supervisor to fully define its methods. Upon receiving this

information, it is the virtual supervisor’s requirement to display the attributes of the

robot in a meaningful fashion to the supervisor and also to map the supervisor’s

requests into strings compliant with this language that may then be sent to the robot

for processing. Using this language, then, any robot should be able to define itself to

the supervisor in a way that permits satisfactory control.

17 Specificall y, a property definition contains a dispatch name by which it is to be called, a friendly
name that the supervisor will see, a description, also for the supervisor’s benefit, the type of data the
property represents, whether or not to show the property to the supervisor by default, the initial value
of the property, and finall y a representation of the notification level that is by default associated with
this property.

18 Specificall y, the robot is required to inform the supervisor the dispatch and friendly name of the
method, all of the parameters required to execute the method, whether or not to show this method by
default, and the type of the return value. Each parameter description must indicate a name, description,
type, and default value.

31

 It is important at this point to note the obvious: additional programming is

required on the robot before it will be compatible with the architecture. This was

expected, however. It is obvious that some code must be written on a per-robot basis;

there is no other way each robot can conform to the communication standard being

put forth and expose their functionality. The goal is to make this code as simple as

possible and to allow each robot to communicate with the virtual supervisor using a

language that is powerful enough to fully define the robot. In practice, the owner of

the robot who wishes to plug it into this generic robotic control framework must write

the necessary code on the robotic controller, sometimes referred to as the robotic

proxy control stub, or RPCS. This code should be significantly easier to construct

than implementing a remote control architecture from scratch. The RPCS resides

wherever the bulk of the robotic control code exists; either on robot itself or on the

machine attached to the robot that directly controls it. The RPCS is the component of

the architecture that is responsible for translating between the methods and properties

of the robot itself and the language required by the rest of the control architecture.

 With both the VS and the RPCS defined, the initial state of our proposed

architecture may now be established. In this architecture, a Virtual Supervisor is

used to communicate with a robot through an RPCS using sockets. The supervisor

will supervise the robot by interacting with the VS. The robot represents any generic

robot, regardless of programming language or operating system, with the RPCS

providing the interface to the rest of the architecture. In diagram 4.1, shown below,

the current architecture design is displayed.

32

4.1 Initial State of Proposed Architecture

4.2 Achieving a Generic Remote Control Application

The virtual supervisor itself should be generic across all operating systems

and computers. Additionally, nearly all descriptions of the robot’s attributes include a

value of a specified type. Methods involve parameters of various types as well as

return values of a specific type. Property updates have types and values. The abili ty

to interpret the value depends primarily on the abili ty to recognize the type of that

value. A block of information that is calli ng itself a number should be read much

differently than the same block of information calli ng itself a string. As such, the

abili ty to use a language that contains variant or generic types that may be used to

refer to all types within that language would certainly be an advantage. Additionally,

a language that emphasizes strong type safety and reflection would be a huge aid.

33

Type safety of course refers to dealing with variables of different types in a strict

fashion, such that when performing operations on multiple different types the

programmer must explicitly state any situation in which he or she wishes to convert

data types. Additionally, type safe languages generally have built in optimizations

when comparing types. Reflection is the abili ty of a programming language to

investigate the type of a variable at run-time and allow the programmer access to that

information. Thus, the programmer may deal with different types of data in different

ways, even if these different data types were obtained through a pointer to a base

class that they share. If a language that met these requirements were found, then we

would not have to store the type information of each value as it was specified by the

robot. We could instead use generics to represent all values and then use reflection to

determine what the value is and to display it appropriately. The two mainstream

languages at this time that best fit this profile are Java and C# (pronounced C-Sharp).

Both are based completely on an object model such that objects may be used to

represent all data and then reflection used to determine what data is being stored19.

We decided to use C# to create the virtual supervisor. First, we used C# because,

being a newer language, C# has had the opportunity to learn from Java’s mistakes and

clearly assess its advantages during usage in the programming world over many

years. A second reason for using C# was the universally accepted SOAP protocol for

communication, unlike Java’s proprietary RMI. The biggest weakness to a C#

19 At this point, a debate is usually raised about Java’s adherence to this strict object-oriented behavior.
The fact that there exist within Java native types, such as the standard int, that are not represented by
objects and are grossly different from the int class found within Java’s libraries is troublesome even to
the most dedicated Java zealot. Still , Java has been found able to meet strongly object oriented
requirements again and again in the past, despite its compromises on various points, and as such is
considered a viable lingual option.

34

implementation is that at this time, a CLR20 exists only on Windows-based systems,

and thus it is at this time not as generic as we hope it shall become as C# ages and

expands in popularity.

4.3 Efficient and High-Level Remote Communication

Now that we have defined the existence of a virtual supervisor that is capable of

high level remote communication, this objective is more feasible than ever.

However, we have already defined the communication protocol utili zed by the robots

to be text strings sent across normal socket connections. Therefore, in a master/slave

model such is currently being assumed, this high-level communication requirement

currently has no place. We shall pass over this requirement and return to it at a later

point.

4.4 Achieving a Dynamic GUI Utilizing Intuitive, Modern Day Controls

 Summarizing this objective, the virtual supervisor GUI should be able to

display the attributes of the robot(s) to which it is connected in an intuitive way

utili zing the standard graphical controls that are so common in nearly every modern

day piece of software. The above architectural statements have revealed C# as the

language of implementation for the virtual supervisor. With C# comes a very rich

library of graphical controls. Specifically, therefore, the half of this requirement that

demands using intuitive, modern day controls equates to nothing more than utili zing

the graphical controls found within the domain of C#. The other half of this

20 CLR – Common Language Runtime. A (very) coarse equivalent to a Virtual Machine for Java

35

requirement is dynamically changing the look and feel of the virtual supervisor

according to the attributes of the robot to which it connects. This half now equates to

creating these C# controls and placing them on the GUI after the virtual supervisor

has been exposed to the robot and has had the robots attributes (functions and

properties) defined. Once placed on the GUI, the supervisor may then interact with

these dynamically loaded controls and thereby control the robot that defined the

underlying functionality.

 Using C#’s built-in graphical interface library, these objectives are very

achievable. When a robot reports a method with some number of parameters and the

supervisor indicates to the virtual supervisor that he or she has an interest in executing

that method, the virtual supervisor must simply dynamically create controls that are

good representations of each parameter’s type. The supervisor can then manipulate

these newly created controls to reflect the parameter values he wishes to send to the

method. However, the area of diff iculty has now become clear: how does the virtual

supervisor actually map a data type to a control that provides the best representation

for that type? When the robot requests input of some specified type, what control

should the virtual supervisor create to receive input from the supervisor? One simple

response to this question (indeed, the solution sometimes taken by robotic control

applications) is to simply accept all input in text. Textboxes are well recognized as

established methods of gaining input from a user on Web Pages and computer

applications alike. All parameter values must eventually become text strings anyway,

when they are to be passed to the robot. While this is a workable solution, it does an

36

unsatisfactory job of achieving our true objective: to provide intuitive control of the

robot using a control that best represents the type of each required value.

 In order to use different controls for different data types, then, we need an

effective way to map data types to controls. We wish to be more flexible than

assigning one control to one data type, and instead offer the user various controls that

map well to the data type he must provide. For instance, if the data type is an integer,

then horizontal and vertical sliders may both be options, as would various other

controls, and the virtual supervisor would by default display one of the controls in

that group. In other words, we need to classify which groups of controls are best able

to represent each data type. At present, all basic data types are associated with a class

of controls that may be displayed on the virtual supervisor GUI. However, this

classification work is ongoing work. Controls and classifications alike are being

added to the architecture as users of the virtual supervisor request more controls are

used to represent various data types and also as robot methods require more and more

complex types as input. Below, in figure 4.3, is the GUI before a robotic connection

is made. Note that there are no methods listed, nor are there any parameters

displayed on the form. The GUI is a template—it is initially blank and useless and

molds itself to fit the profile of whatever robot(s) it is instructed to control.

37

4.2 The Virtual Supervisor GUI in its blank state; no connections to robots have been made.

The Paradex robot was introduced earlier in this chapter and, since it has an RPCS, is

able to receive controlli ng connections from this architecture. Accordingly, the

Virtual Supervisor may be used to make a connection to the Paradex, which will

result in the GUI automatically updating to reflect the Paradex’s exposed methods. In

figure 4.2 below, we see the updated form. Several new methods have appeared, each

of which was exposed by the Paradex robot through the RPCS. Most of the methods

are related to manipulating the workspace of the Paradex robot, a board with several

38

controls attached to it. In this figure, a window is shown overtop of the GUI that is a

webcam image of the Paradex’s workspace. The Parradex robot itself is hanging in

the air just above the board. After the supervisor indicates an interest in one of the

reorted methods, “Large Metal Switch” , the virtual supervisor program updates its

GUI. This is the state that Figure 4.4 captures.

4.3 The Virtual Supervisor after a connection has been made to the Paradex robot

The parameter required to execute the ‘Large Metal Switch’ method has been

graphically displayed in the upper right. It is an input of type ‘ range’. Range types

describe data that must fall within a certain range of values, in this case one of three

values (corresponding to three states of the large metal switch, either neutral or

switched to the left or right). The virtual supervisor selected its default control to

39

represent a range input, a horizontal slider. Each of the three stops along the slider

indicates a possible input. Upon holding the mouse cursor over the method name, a

tool tip has appeared, informing the supervisor of the name and return value of the

method (in this case there is no return value). The virtual supervisor will render

controls to represent many different types of data and thus mold itself into the form of

whatever robot to which it connects.

 It may also be noted that there is a box for robotic properties to be selected

and monitored, as well as for the feedback from method calls to be displayed. As

mentioned above, much of the virtual supervisor is crude and still under development.

There is currently a project at CWRU underway to continue to develop this concept

of dynamic controls based on type classification. The virtual supervisor is currently

the least developed component of our control architecture. Below, figure 4.5 displays

the updated diagram of our proposed control architecture. The Virtual Supervisor is

now defined to be a visual C# program that adapts to whatever robot(s) it controls,

thus fulfilling our requirement for a dynamic GUI.

40

4.4 The Control Architecture after definition of the VS

41

5.Achieving Remaining Goals: A Need for Architecture Modification

Many of the goals thus far have been achieved and the control architecture

defined and updated per the solutions. However, there is a significant challenge

associated with achieving the remainder of the goals from within the standard

master/slave architectural model. The desire to add dynamic functionality to the

robot through reprogramming the Virtual Supervisor has been discussed in detail, but

very little has been mentioned about exactly how to achieve this objective. In short,

the goal of allowing supervisors to add functionality to robots dynamically is as

follows: Upon evaluating the current functionality of the robot(s) under their control,

supervisors may decide that there exists a need for the robot to have additional

functionality based on its current functionality. In that case, the supervisor should be

able to program a new method, based on existing methods and properties, that may be

loaded into the robot for execution. This new method would wrap up the currently

existent methods and properties in a supervisor-defined fashion. Since it certainly

may not be assumed that the robot itself may have the abili ty to dynamically load

code and expose this abili ty remotely, this dynamic code loading was to occur inside

the virtual supervisor. Since the VS already is aware of all of the robot’s

functionality and is written in C#, dynamically loading a function based on existent

functions is feasible. If the supervisor could continually create new functions that

wrapped up existent functionality, the result is very comparable to an object oriented

programming model. At each level, functionality is wrapped up by member functions

that make use of the functionality from the level below. To ill ustrate, we return to our

DrawSquare() example proposed in the goals chapter. Suppose that a robot initially

42

had functions DrawLine() and Rotate(). A supervisor who knew nothing about the

implementation details of either of these functions could write a new function:

DrawSquare(). The DrawSquare() method could simply call the DrawLine() and

Rotate() functions in whatever order and frequency and with whatever parameters are

required to actually draw a square. Then, the Supervisor could write a

DrawDiamond() function that wrapped up Rotate() and DrawSquare(). Furthermore,

he could write a function DrawBaseballField() that used DrawSquare() and

DrawDiamond() to draw the basic infield diamond and squares for the bases. At each

level, the commands are layered into higher and higher levels of abstractions just as

the classes in modern day applications repeatedly abstract away lower level

functionality.

When applied to the Paradex robot, the supervisor could have the opportunity

to write functions like EverythingOn() that moved all switches and buttons to the ‘on’

position, or ToggleAll(), that viewed the properties of the robot (the current positions

of the switches) and then toggled the state of each switch. Using just this one high-

level command certainly saves the supervisor the trouble of having to execute each

switch’s controlli ng method one by one whenever he or she wishes to effect global

change.

Note that at each level, we have a layer that sees only the level below it.

Moreover, the commands at the layer below are what are considered the ‘ robot’

functionality, even though the pre-existent robot functionality may have already been

abstracted by one or more layers before the current layer is reached. Note that when

the layer in question receives commands to execute functionality from the layer

43

above, it appears as if those commands have come directly from the supervisor. In

summary, each level acts as a supervisor to the level below it and a robot to the level

above it. Each of these layers has its own drastically different set of functionality

and, associated with that, processor and networking requirements associated with it.

Each layer quickly takes on both the resource requirements and attributes that are

normally associated with an actual robot.

Taking a step away from this requirement for a second, we pause to look at

our intention to enable fine-grain control of the robot. Recapping the requirement, we

wish to provide a mode in which the process supervising the robot may achieve tight

control over the robot when needed or computational power may be provided to that

controlling robot when that characteristic is deemed important. Previously, this

requirement was determined equal to allowing the process that is actually responsible

for controlling the robot to be able to exist at different machines depending on its job

or stage of such. Although it is desirable for the process to exist at different

machines, it is highly undesirable to require the supervisor to have to physically move

from machine to machine as the process did. Ideally, fulfilling this requirement

would involve having a process that exists independently of the virtual supervisor that

is responsible for carrying out commands for the virtual supervisor but may move to

whatever machine best fits its needs. This process could abstract away the control of

the virtual supervisor, and report to the robot as a supervisor while reporting to the

supervisor as a robot. With full freedom for movement given to this process, the

control architecture would be flexible enough to allow for fine-grain control when

merited while still allowing for standard supervisory control from a remote location.

44

Summarizing these two sets of requirements, the following is true: In order to

achieve dynamic code loading, the supervisor must be able to write object oriented

code fragments which act as robots to both the supervisor and to the code fragments

above them and act as supervisors to the robot and code fragments below them. Each

of these code fragments has its own task and CPU/latency requirements as well as

robot-like functionality and properties. To best fulfill the flexibility required allowing

for fine-grain control inside a primarily supervisory control architecture, a different

process needs to abstract away control from the Virtual Supervisor. This process, or

processes, would act as supervisors to the robot and as a robot to the supervisor, and

would be able to move from machine to machine as their requirements change along

with the task they are currently executing.

The result of combining these two requirements is clear: there exists a need

for a new type of process, a process that exists between the virtual supervisor and the

robot. These processes would take on the characteristics of the robot or other

processes below them and expose them to the supervisor or other processes above.

They must be capable of moving from one computer to another as their resource

requirements change. Furthermore, they would provide a very natural host for the

code fragments the supervisor would write to add functionality dynamically. Since

this functionality is at base a way to abstract the robot functionality from one layer to

another, this functionality could be added to the functionality of these processes, since

they are already existent in layers between the virtual supervisor and the robot. It

follows, then, that each process would encapsulate the functionality of the process

below it. This leads to a chain of processes between the supervisor to the robot, each

45

reporting to the process above and the process below in the chain of command as if

they were the supervisor or the robot. These processes will be referred to as virtual

robots, or VRs, since that is what they appear to be from the perspective of the

supervisor. It is certainly plausible that more than one virtual robot could exist

between a virtual supervisor and the robot under its control. These virtual robots are

peer-to-peer processes that will compose the very core of our architecture and will

allow us to circumvent many of the problems in remote robotic control surrounding

master/slave models21.

5.1 The Case for Mobile Agents

 The idea of putting a level of abstraction between two processes in order to

achieve a greater degree of flexibili ty is not novel. In fact, there exists an

architectural control model that meets the architectural needs. This model is called

the agent model, and it is based around the concept of processes called agents that act

in proxy for the user. The term agent is a confusing one, with many different

definitions. Griss and Pour while working for HP Labs provide us with one of the

earliest definitions for an agent: "A proactive software component that interacts with

its environment and other agents as a surrogate for its user". But this definition is

very broad. Again, there is a lack of universal agreement on exactly what is required

to deem some process as an agent, but generally a process is considered an agent if it

displays one or more of the following characteristics:

• Autonomous: acts on user's behalf independently

21 Giri Nipi, Amitabha Ghosh, K.Sriram. [17]

46

• Adaptable: may be customized or changed run-time

• Mobile: agent can move around to different machines at different locations

• Collaborative: agents can work together

• Persistent: abili ty to retain state over time

• Knowledgeable: can reason about its goals and users

Examples of simplistic agents include22:

• Shopbots and pricebots, which monitor product availabili ty and price, then

negotiate and complete sales of goods and stocks to optimize business-to-

business and business-to-consumer interactions.

• Personal agents which interact directly with a user, presenting some

personality or character, monitoring and adapting to the users’ activities (eg

Microsoft Office Assistant)

• Internet spiders that autonomously move from computer to computer,

gathering information about the web sites they find there and reporting them

to a central data warehouse for access.

The role that the virtual robots fulfill within the current control architecture meet

nearly all of the requirements associated with mobile agents, and thus they may be

classified as sophisticated mobile agents. The virtual robots are autonomous: they act

independently from the supervisor and decide without input when it is beneficial to

move from one computer to another. The fact that the VRs will allow the loading of

22 Wayne Pease. [18]

47

code at run-time and then take on the functionality exposed by this code makes them

highly adaptable. They are mobile by definition; they will move from one computer

to another as the task they are charged with executing changes and gives different

priorities to various resources. Since the decision about whether or not the VR

should move itself to another computer is based upon the resources available at its

current location and others, it is knowledgeable about itself and surroundings. VRs

are collaborative, since they must transmit information between themselves and also

the supervisor and the robots. Currently they are not persistent (once they are

destroyed, they will start over in a blank state), but this is the only attribute that

agents may have that the VRs do not.

Including these virtual robots as mobile agents in our architecture is the

foundation of our proposed control architecture for supervisory control of generic

robots. A supervisor will use a virtual supervisor to control a robot. However, the

virtual supervisor does not deal directly with the robot. Instead, it communicates its

desires to a virtual robot. That fix virtual robot has the abili ty to move to a different

computer when it concludes that the task it has been assigned could be more

optimally achieved elsewhere. That virtual robot will express its commands to what

looks to be the robot below him. This ‘ robot’ may be the actual robot, or could be

another virtual robot posing as one. Should it be a virtual robot, then that process will

be independently determining its own resource demands and where it would best be

located. If it is the robot itself, then the command from the supervisor will have

traversed the full length of the VR chain. Figure 5.1 below shows the control

architecture after its biggest change yet—the addition of a layer of virtual robots.

48

5.1 Control Architecture after introduction of Virtual Robots (VRs)

5.2 Revisiting Efficient and High-Level Remote Communication

 The remaining requirements can now be integrated into this revised control

architecture. Since we will have virtual robots that will exist between the supervisor

and the robot, there is the obvious need for them to communicate. These agents have

been written in C# for the same reasons that C# was chosen to implement the virtual

supervisor. Since the C# virtual robots must communicate, the previous requirements

of high-level, efficient communication whenever possible is immediately applicable.

Since the virtual robots are both C# applications, they may make use of the remote

communication standard for that language. This communication protocol is, in fact,

not something C# or CLR specific, but is a protocol known as SOAP, or Simple

Object Access Protocol. SOAP is a high-level communication protocol that is

49

analogous to Sun’s RPC or Java’s RMI. SOAP is a universally accepted protocol that

came out of the efforts of several major corporations in the software industry.

Besides working over IP, SOAP allows any data within the program to be transported

to remote instances of classes through a binary or XML-based payload, which

produces an efficient packaging of data.

Since we have this high-level communication available to us, it is utili zed for

communication by the virtual supervisor and virtual robots. However, the robot itself

cannot communicate using SOAP; it is required only to be compliant with the lowest

common denominator of network communication found on typical robots.

Accordingly, the architecture utili zes a communications hybrid model that uses

SOAP based communication throughout with the exception of the link between the

robot and the virtual robot that communicates with the robot directly. This bottom-

most virtual robot is referred to as the ‘Base Virtual Robot’ or ‘Base VR’ and must

communicate with the robot through sockets. Figure 5.2 below shows the

architecture with the communication protocols defined between each process.

50

5.2 The Control Architecture with the VR and VS links communicating via SOAP

From a technical standpoint, all communication within the architecture is

interface driven. Each VR, therefore, has no idea if it is reporting up to another VR

or to the VS itself; only that it is an object that inherits from an interface that accepts

upstream functionality. The same is true downstream, the virtual supervisor knows

nothing about the process to which it passes method execution commands; only that it

inherits from an interface that allows for downstream communication. This complete

abstraction from the type of process in the chain above or below a process in question

(the process’ neighbors) allows for virtual robots to be added or removed from the

chain without disturbance to the rest of the chain. Commands continue to be passed

down the chain until a robot receives them, and return values travel up the chain.

When a virtual robot becomes mobile and changes its machine of residence, it merely

alerts its neighbors of its new IP, they re-establish communication, and the chain

51

remains intact. If a new virtual robot is spawned and placed just downstream of the

virtual supervisor, it notifies its neighbors, and the virtual robot that previously

reported to the virtual supervisor now reports to the new virtual robot using the same

interface.

5.3 Setting Up the Control Architecture

 Since it has been assumed that setup of these processes had already occurred

throughout this section, a short time will be spent discussing how that setup occurs.

Using the terminology associated with mobile agents, agents may only be constructed

on agencies, which are willi ng hosts ready to spawn new agents or accept existent

agents that are looking for a new home. The existence of hosts is what excludes these

mobile agents from the possibili ty of being categorized as a virus—the host computer

must be willi ng to accept their presence. Since these agencies are not implicitly

known to the supervisor, nor to the virtual supervisor, a registration server must be

employed that allows registration and lookup of agencies and currently existent

agents by any interested party. This server is called the CentralSite server. Currently,

there has been no effort made toward networking the registration servers with each

other. In the future, we hope to network each server together so that each CentralSite

server will have information about agencies that have been registered with any server.

The name CentralSite server was coined to refer to the hope that they would become

the center of a site for registration that may talk to other centers of registration sites

and freely share registration information. Upon startup, the CentralSite server simply

waits for registration or lookups to occur. Upon startup, the Agency process requests

52

to know the address of a CentralSite server where it may register itself and where it

may go to look up other agencies when it is considering a move. It is not necessary to

register an agency with a server, but then only supervisors who know about the

agency may spawn agents upon it (since they may not look it up), and the agents will

not have a server upon which to look up possible move locations. The addition of

this lookup server to our architecture is required, and thus figure 5.3 below shows its

inclusion.

5.3 The Control Architecture including the CentralSite registration and lookup process.

Below is the agency process, upon start:

D:\code\my code\thesis\vr\agency\bin\Debug>agency.exe
Please enter the hostname or IP of the CentralSite machine...
(enter nothing to not use a central site):
raging.cwru.edu

53

Successfully connected to centralsite server and registered this
agency.
Agency activated. Press enter to quit (and deac tivate).

And the following is the CentralSite server process, upon start:

D: \ code \ my code \ thesis \ vr \ CentralSite \ bin \ Debug>CentralSite.exe
Central Site server activated. Press en ter to quit (and deactivate).
User: ******* & Pass: ******* added.
1 user adde d to permissions.
<2:21.14>(an agency @ 'raging' was added to the lookup service)

The registration server requires a user name and password before it allows the agency

to register, thus providing a security mechanism against hostile agencies from

registering to host agents.

 When the Virtual Supervisor program is started, the user is asked to enter the

address of a central site server. Upon doing so, a listbox with all registered agencies

is populated. In this case, the CentralSite server and the Agency are both running on

the same computer, raging.cwru.edu. All of this is shown in figure 5.4 below.

54

5.4 The CentralSite server shows one agency registered; an agency located at the computer
‘ raging’ .

Once an agency has been located, the supervisor may create an agent upon it. When

that agent is created, it may enslave another existent agent, a new agent it can create,

or an actual robot. Once successfully enslaved, the robot (virtual or not) is subject to

the control of the virtual supervisor. Of course, to enslave another process, the

supervisor must first log on, and as was described earlier, the process of logging on

involves the transmission and approval of credentials. This means that it is not

55

possible for any agency or robot to be enslaved against its will . In the example of

figure 5.5 below, two VRs have been created on the same computer and then base VR

enslaves a robot called ‘MotoMan’:

5.5 The Virtual Supervisor showing a chain of two VRs and an actual robot under its control.

56

The agency’s output below shows that the supervisor (whose name is abstracted by

the word ‘User’) created and logged onto the first VR, vr.raging.1. In this

experiment, he then asked vr.raging.1 to create a new virtual robot using his

credentials, and enslave it. Thus, we see that vr.raging.2 is created by vr.raging.1.

Then the supervisor instructs the base VR, vr.raging.2, to connect to a robot,

Motoman. That VR reports a connection with the robot, and then the VR upstream

from it, vr.raging.1, reports a connection as well (since connections are passed

upstream, signifying that if one VR is a master to a robot, then all VRs who are a

master to the Base VR are also masters to the robot):

(enter nothing to not use a central site):
raging.cwru.edu
Successfully connected to centralsite server and registered this
agency.
Agency activated. Press enter to quit (and deactivate).
<2:26.7>{vr.raging.1}User has logged onto this VR.
<2:26.11>{vr.raging.2}User has logged onto this VR.
<2:26.11>{vr.raging.1}Successfully created and logged on to a new VR
who is now one of my slaves, named: vr.raging.2
Going to attempt to listen.
<2:26.15>{vr.raging.2}vr.raging.2: reports connection with Motoman
formal name
<2:26.15>{vr.raging.1}vr.raging.1: reports connection with Motoman
formal name

This notification and control continues to be passed up to the supervisor himself who

now contains the definitions of the attributes for the robot. These attributes include

three methods as well as one property, which have all appeared on the Robot Control

tab. The control for the parameter to the selected function have been dynamically

created, as was discussed during the intuitive GUI portion of the thesis. In figure 5.6

below, this state may be seen from the perspective of the Virtual Supervisor.

57

5.6 The virtual supervisor after contact has been established with a robot.

At this point, setup has been completed and the supervisor can now command the

virtual supervisor to execute functionality on the robot. The virtual supervisor will

pass those commands down through each VR until the command propagates to the

robot itself. The robot will then execute the command, send the return value (if any)

to the base VR, and the value will travel back upstream from there until it reaches the

supervisor.

58

 What follows is an example of such. The method was exposed on the robot in

reference to near lab mishap famous to some of the team members working on this

project. In this mishap, this author’s hand was nearly injured while attempting to free

a camera from a supposedly unpowered robotic arm that came to life at a dangerous

time. The function itself simply returns the text string it was passed. The parameter

name requests a location and its value has been entered above as ‘ freeing the camera’ .

<2:34.8>{vr.raging.1}Relaying a call to Motoman formal name.Slice

Off David's Hand

<2:34.8>{vr.raging.2}Relaying a call to Motoman formal name.Slice

Off David's Hand

<2:34.8>{vr.raging.2}Got a return value from Motoman formal name for

official_sliceDavids Hand(freeing the camera)

<2:34.8>{vr.raging.1}Got a return value from Motoman formal name for

official_sliceDavidsHand(freeing the camera)

5.4 Achieving Single Supervisor, Multiple Robot Control

The goal of achieving single supervisor, multiple robot control has now

become fairly easy. Instead of requiring a one-to-one master-to-slave ratio, we allow

a master to enslave multiple processes. Thus, the master takes on the functionality of

each of its slaves and more than one slave will pass messages upstream through the

same VR. We do not allow, however, a slave to have more than one master. It is

unnecessary, for there are no reasonable use scenarios in which it is advantageous to

allow a virtual robot to report to more than one master. Robots may only be

59

controlled, after all, by a single supervisor. Elimination of this possibility thus

excludes many frustrating problems encountered in peer-to-peer process algorithms,

such as cycles. When a single VR is a master to more than one robot (either directly

or through other VRs who are enslaved), the functionality from all its slaves is

accumulated and exposed to upper VRs and the Supervisor. Thus, our final

architectural control diagram has been constructed. It is displayed, in finished form,

by figure 5.7 below.

5.7) The final control architecture, complete with Virtual Robots in a 1:Many relationship

5.5 Achieving Fine-Grain control

 With the control framework finalized, the remaining requirements may be

addressed without much effort. Since the virtual robots are mobile, they can move

from one computer to another when their duties change. Now, consider the previous

60

fine-grain control example in which the Paradex was being commanded to move its

tool in a complex pattern. The virtual supervisor accepted a path from the supervisor,

and the processes that load functionality dynamically, must first translate the image

into a point-by-point path for the robotic arm to travel. While before it was unknown

what processes would load this functionality and thus it was assigned to the Virtual

Supervisor, we know now this to be the role of the virtual robots. In the second stage,

then, a virtual robot must send the target points to the Paradex and monitor closely for

problems while accounting for errors in convergence. In one example, the virtual

supervisor creates the bare minimum – one virtual robot to accept commands from

the virtual supervisor and control the robot. This virtual robot has been loaded with

the functionality to calculate the coordinates that the Paradex’s tool is to follow (stage

one), and knows how to send coordinates to the Paradex and monitor its progress

(stage two). Stage one requires a powerful processor, and during stage two,

minimizing round trip time between the VR and the robot is of top priority. The

actual loading of this functionality into the virtual robots will be discussed in the next

section of this thesis. It is only important at this point to note that the VR itself is

executing these commands, not sending a request to calculate the coordinates for the

path to the Paradex and then waiting for the robot to return the calculations. Were

that the case, then the location of the VR would be irrelevant—no matter where it was

located, the robot would still be doing all the work.

To start the scenario, the virtual supervisor executes the dynamically loaded

function on the VR, passing it some representation of the path for the Paradex’s tool

to follow. When the VR breaks down this function call into the first stage,

61

calculating the coordinates, it is aware of its task and notices very quickly that it is a

CPU intensive task. The VR does a lookup on the registration server and finds that

there are other agencies registered. The VR proceeds to collect information about

round trip times from each agency to its slave, the Paradex, as well as the

performance capabili ties of each agency. Should this agent deduce that it is in its best

interests to move to a foreign agency, it will do so. In the first stage, the virtual robot

will move to the powerful computer at the supervisor’s home and calculate the

desired coordinates. During the second stage, the virtual robot will move to the

computer on the Paradex’s LAN and engage in fine-grain control of the robot, passing

it coordinates and monitoring its progress. Thus, without the Virtual Supervisor (and

thus the supervisor) moving to any other computers, the control of the Paradex,

housed by the virtual robot, moves freely throughout the agencies and is optimized

for the task it is engaged in. This kind of mobili ty has been implemented and tested –

successfully— as resource needs change a virtual robot will i ndeed survey its

surroundings and move to the computer best suited for its task.

The most complicated portion of this process is the logic pertaining to the

VRs decision to move. In the current implementation, if the agent finds that the

available CPU and network location of a foreign agency’s computer are better suited

for its current task than its current computer, it decides that a move would be

advantageous and proceeds. In other words, a greedy algorithm bent on local

optimization is utili zed in which the VR optimizes its own state. There are several

outstanding issues with this method that will be discussed in the Future Work section

at the end of the thesis.

62

 One technical concern about agent mobility is simply coordinating their

moves. Although there are many well known distributed algorithms, applying

distributed programming techniques to a series of processes that decide

autonomously when to move and must be responsible for passing messages both up

and down the chain is challenging. Virtual robots need to coordinate their move such

that two neighbors may not move at once, or else they would be unable to find each

other to report their new location. VRs also may not move when they are currently

executing any functionality. If a message is attempting to pass through a VR that is

currently moving, the VR must store the message and deliver it to the master or slave

process upon completion of its move. The classic distributed algorithm that solves

this coordination problem involves setting up a coordinator process that grants or

denies the processes the right to move. However, there is the danger of a very slow

coordination effort. When the task being executed has a low response time priority,

the virtual robots may have moved themselves to powerful computers at large

network distances from each other. Should network response time be a priority, it is

probable that one virtual robot will move in close proximity to the robot to achieve

this fine-grain control while the others remain far apart. Therefore, because our

virtual robots are mobile and flexible, there is never a guarantee of a centrally located

coordinator process. In fact, the processes will most likely be at a close proximity to

their neighbors, but the virtual robots at opposite ends of the control chain may be at

large network distances from one another. Therefore, any algorithm that relies too

heavily on the virtual supervisor as a coordinator is potentially spending a long time

sending packets back and forth and wasting more time than might be gained by the

63

benefits of a virtual robot’s requested move. An algorithm that utili zes minimal

supervisor moderation and heavy coordination with neighboring processes was

utili zed. This is merely a minor technical detail, but noteworthy because of the

unusual perspective required when approaching such a classic distributed application

coordination problem.

5.6 Achieving the Addition of Dynamic Functionality to the Robot

The only requirement that is not currently in the control model is allowing the

supervisor to dynamically load functionality that may apply to the robot. Originally,

in a master/slave architecture, the virtual supervisor was required to dynamically load

functionality in order to achieve this requirement. However, in our current

architecture, the virtual robots are currently abstracting away the control of the robot

in layers, acting as intermediaries between the virtual supervisor and the robot. They

are also capable of moving from one computer to another as their job requirement

changes, and thus efficiently execute code themselves instead of merely passing on

instructions to the robot. Because of these two facts, adding dynamic functionality to

the virtual robots is the logical progression of their role within the architecture. Thus,

it is not the robot that is to be modified, nor the virtual supervisor, but rather the

virtual robots that exist between the two. Because the virtual robots do exist as

supervisors to robots and virtual robots below them and as robots to any virtual robots

or the virtual supervisor above, they provide us a natural medium in which to

partition up added functionality that will wrap up existent robot commands and

abstract them to a supervisor.

64

If a robot exposes functions DrawLine() and Rotate() through the

architecture’s remote control interface, then a virtual robot could be programmed with

a code fragment that calls DrawLine() and Rotate() four times and encapsulates it in a

function it exposes as DrawSquare(). This VR, then, which previously was

responsible only for transmitting the abili ties of the robot may now report

functionality of its own along with that of the robot. The VR exposes the sum of

these functionalities to the process upstream, which eventually reaches the supervisor.

The supervisor may now execute the DrawLine(), Rotate(), or DrawSquare()

methods, according to what the VR reported. This is ill ustrated by figure 5.8 below,

which lists each process involved in the architecture along with the commands they

are aware of. When read top to bottom, it shows how the methods the supervisor is

capable of executing may be decomposed into function calls that the robot itself

understands.

65

5.8 The methods reported when a VR has dynamically loaded a function. Note that each process
believes that the process below it is the actual robot and that the process above is the actual
virtual supervisor, thus the DrawLine(), Rotate(), and DrawSquare() commands all appear as
actual robotic commands to the VS.

Should the supervisor choose to execute the DrawLine() or Rotate()

commands, the normal case commences: the command is issued down the chain until

it reaches the robot, who will execute the requested function and then pass the return

value (if any) back up the chain to the virtual supervisor. Only the robot itself

executes any meaningful code, the virtual robots act only as messengers, passing the

execution command down and the return value up. However, should the supervisor

choose to execute DrawSquare(), the command that exists on the virtual robot, a

slightly different case will commence. The command execution will travel

downstream from VR to VR. Each VR between the VR that actually implements

66

DrawSquare() and the VS is under the impression that the robot actually exposes

DrawSquare(). This is natural, since each one of those VRs will believe that the

process just downstream is the actual robot, and that ‘ robot’ was the process that

exposed and reported the DrawSquare() command. When the DrawSquare()

execution command reaches the VR that houses its functionality, that VR calls into its

functionality instead of calli ng the next VR (who, of course, would not know what

DrawSquare() was). That functionality, in this example, will call DrawLine() and

Rotate() four times on the appropriate slave VR. At this point, then, the VR,

controlled by the code it has loaded, will pass these calls on to the process

downstream until they reach the robot. Thus, this VR now has a more significant role

than merely passing messages to the robots; it is executing meaningful code that is

giving its own commands to the robot.

This second, more complicated scenario is ill ustrated in figure 5.9 below.

This figure shows the propagation and decomposition of a Supervisor’s command for

the robot to DrawSquare().

67

5.9 The execution of a dynamically loaded function. Note that only the top two VRs are aware of
the function DrawSquare (), which was loaded into the middle VR, and thus when the middle VR
decodes DrawSquare() into DrawLine() and Rotate() components as the supervisor
programmed, the lower VRs and the robot itself will be able to recognize and execute the
commands.

As was indicated previously, dividing new functionality among the virtual

robots results in different virtual robots each implementing different tasks with

different resource requirements. The implications of such are significant. Revisiting

the example of cutting shapes out of sheet metal illustrates this point. Previously, a

supervisor could dynamically load both stage1 (CPU intensive) and stage2 (priority

on network response time) functionality into the same VR. That VR, then, would

move to a different machine as it changed stages. Alternatively, the supervisor could

68

spawn two different VRs between the VS and the Robot. He or she could then load

the stage1 functionality into the VR closest to the supervisor and the stage2

functionality into the Base VR. Each VR would detect the resource needs of its

functionality and move to the most suitable computer, which would be different for

each of the VRs. Even though both VRs are controlli ng the same robot with only a

single command actually exposed (simply move arm), the VRs themselves differ in

the requirements of their wrapper functionality and thus optimize their location based

on their part of the overall task. This partial specialization of tasks is clearly more

efficient than a non-mobile agent that must execute the functionality on a computer

that will be well suited for one stage and not the other. It is also more efficient than a

mobile agent, which must incur the time overhead of testing out other agencies and

coordinating a move to a different computer when its task and thus resource

requirements change.

When the virtual robots load further functionality from the supervisor, their

responsibili ties change from merely command passing to actually executing code that

is relevant to the control of one or more robots. Yet because currently the

functionality of the robot is exposed and defined through standard interfaces that each

virtual robot uses, no change in the virtual agent’s interfaces is required after it loads

robot-specific functionality under the order of the supervisor. The new methods or

properties are simply reported and defined up the stream as if they were coming from

the robot itself. Each virtual robot, then, contains knowledge of the actual robotic

functionality as well as any dynamic functionality that they have loaded and any

functionality loaded into other virtual robots further down the chain.

69

It is interesting that as functionality is wrapped up along the chain of VRs, the

functionality that each VR contains represents that of class inheritance in any modern

object oriented language. Expanding the DrawSquare() example even further,

suppose the supervisor spawns three VRs named VRa, VRb, and VRc. The

supervisor then lines them up in a chain so that the virtual supervisor communicates

directly with VRa and VRc is the Base VR. First, the supervisor loads into VRc the

functionality for DrawSquare(), which is implemented as calls to DrawLine() and

Rotate(). Then the supervisor wishes VRb to implement the DrawDiamond()

function, which uses DrawSquare() and Rotate(), both of which are exposed to it by

its “robot” , VRc. The supervisor may then add a new function, DrawBaseballField ()

to VRa that calls upon DrawSquare() and DrawDiamond(). VRa still exposes

DrawLine(), Rotate(), DrawSquare() and DrawDiamond() to the supervisor, as well

as this new function. Note that at each level, the VR implements all of the

functionality of the VR downstream as well as any functionality that has been

dynamically loaded into itself. This closely mimics the concept of inheritance. The

robot acts as a base class, providing a standard set of functionality. Each VR built on

top of the robot contains all of the functionality of the downstream process and

possibly additional functionality, in parallel to a derived class. Additionally, when

the supervisor adds commands to a VR, he or she has the option of hiding previous

methods from upstream VRs. So when the supervisor loads the DrawDiamond ()

function into VRb that wraps up Rotate() and DrawSquare(), he or she has the option

to hide DrawSquare() from upstream VRs (and therefore the supervisor as well). In

that case, the example would fail because VRa, which is upstream of VRb, could not

70

call DrawSquare() and thus could not wrap that up into DrawBaseballField(). This

mimics private inheritance, where the members of the base class are taken as private

members of the derived class and may not be inherited by further derivations.

Also, note that this dynamic method loading takes place at a VR level, and it

has been previously established that a VR may control multiple slaves that may

control, directly or indirectly, a robot each. This means that when we add new

functionality that wraps up existent functionality, we have the ability to wrap up

functionality from multiple robots. This parallels multiple inheritance, where the

functionality from more than one base class is added to a single derived class. Even

more interesting is that some of the typical multiple inheritance problems that object

oriented languages contain, such as duplicate method names also appear within our

control architecture.

Although the technical implementations of theory are not always required nor

desirable, the concept of requiring robotic supervisors to write code that will be added

dynamically to an existent process has been treated with some skepticism by some in

industry. As a reaction to the hesitation to believe that it is feasible, with little effort,

to write code that can interact meaningfully with an existent virtual robot process,

some technical detail is merited, and follows. From a technical standpoint, the ability

to load code into the VR is quite feasible in a modern, reflexive language like C#.

The language supports the ability to inject compiled assemblies into the executing

process at any time. In this context, an assembly refers to a compiled collection of

classes that form an exe or dll. The classes and member functions within those

classes are then accessible to the currently executing program immediately after the

71

assembly is loaded. There are two main challenges associated with dynamically

loading functionality within the context of the current architecture. First, there is the

fundamental problem of how this code is to be written and, once written and

compiled, how it can be loaded into the virtual robot from a remote point without

requiring a shutdown of the robot or a recompilation of the host VR. Secondly, the

communication between the loaded assembly and the virtual robot that loads that

assembly must be coordinated. The loaded assembly must inform the VR that there is

new functionality to expose, how that functionality should be reported, and how the

VR can invoke that functionality when a call comes to it from the virtual supervisor.

Since the virtual robots are written in C#, any language written on top of the

CLR may be compiled into an assembly and loaded by the process. The supervisor,

therefore, must write code in one of those languages, such as C#. While this sounds

undesirable, the alternative to reprogramming the virtual robot is reprogramming the

robot itself. To add functionality to a virtual robot, the supervisor must write code in

any of the dozens of languages on top of the CLR that will i nteract with the code

resident in a VR… code that will remain constant and familiar even though the VR

may be controlli ng vastly different robots. Should the supervisor be required to

reprogram the robots when an upgrade is necessary, then supervisor would be forced

to learn each robot’s multiple interfaces and multiple languages that make calls to

whatever proprietary operating system the robot or robotic controller was running.

Furthermore, the hardship involved in adding code that will i nteract with a virtual

robot’s functionality can be made significantly easier by careful planning by the

programmers writing the VR. These simplifications will be shown after the concern

72

involving VR communication with the loaded assembly is addressed.

The standard approach to interacting with dynamically loaded code is to

require the unknown code to implement well-known interfaces that will serve as a

contract for communication. This case is no different. When a supervisor wishes to

write code to be loaded into an agent as additional functionality, then, he must simply

write a class that derives from a known interface. In this case, there is one key

function, CreateMethods() that the interface requires of any newly loading classes.

The CreateMethods() function returns objects that represent the methods supported by

the dll. These objects are similar to the objects that the VR uses internally to

represent robot functionality, with one exception. The object contains one member

that is not found within a normal method description: a delegate that points to a

method contained within the loaded class. Crudely, a delegate is a C# wrapper

around a standard function pointer.

When a virtual robot loads up an assembly, it immediately executes the

assembly’s NewMethods method (which is guaranteed to exist since the loaded

assembly must derive from an interface that requires that method). The objects

returned, that describe the newly added methods, are stored by the VR. The VR then

reports this functionality to the process upstream, either another VR or the VS. This

is the standard protocol for exposing static robotic functionality. That is how the

virtual supervisor is made aware of the dynamically loaded functionality. When the

supervisor chooses to execute the new functionality through the VS, the call travels

downstream until i t reaches the virtual robot to which the supervisor sent the

compiled assembly. This is the same virtual robot that stores the object describing

73

this functionality. The virtual robot recognizes the command, finds the object

describing the command, and routes control to the function that the object specifies

with the parameters that the VS sent. This will i n turn execute the code inside the

assembly, passing it the parameters that have been passed down the stream from the

VS.

Below is the code for an assembly eligible to be dynamically loaded. In its

CreateMethods function, it creates one new method with a friendly name of “Laundry

if David’s close”. It accepts one parameter, of TypeText, with a name “Location”

and a description of David’s location. It has no default value. This method is added

to an arraylist along with a delegate to a method called DualMethod which is also

existent in the loaded class (and will be shown shortly). These methods are returned

and every VR above whatever VR loaded this assembly, as well as the VS, will

reflect a new method called “Laundry if David’s Close”. Note that the objects that

contain all the information necessary to describe this new method are of type

DynamicBotMethod, which is what the host VR will store and use to recognize when

commands being executed are intended for dynamically loaded code instead of its

downstream process.

public override ArrayList CreateMethods()
{
 ArrayList newMethods = new ArrayList();
 ArrayLis t parms = new ArrayList();
 parms.Add(new BotParam(new TypeText(), "Location", "David 's
 location.", null));
 DynamicBotMethod dbm = new DynamicBotMethod("dispatch_newDual",
 "Laundry if David's close", parms, true, new TypeBoolean(),
 MyName, new DynamicMethodDelegate(DualMethod));
 newMethods.Add(dbm);
 return newMethods;
}

74

 While this analysis reveals the communication feasibili ty from the virtual

robot to the dynamically loaded functionality, the reverse communication is much

more challenging. The difficulty arises when the assembly, which was written

without any of the virtual robot code to compile against, must be able to call methods

that are exposed to the virtual robot. To accomplish this, the writers of the assembly

must be provided something to compile against that will expose methods allowing

module writers to call functions that have been exposed to the current VR. These

‘helper functions’ will give module writers a way to ensure that they have correctly

formatted their calls. Additionally, the helper functions will take away a significant

amount of the complexity involved when executing a function. Although in-depth

discussion of all the helper functionality existent is beyond the purpose of this thesis,

a technical explanation of one should help ease concerns about the feasibili ty of

interfacing with the virtual robots. The main helper function within the base class is

RunMethod, which requires a method name to run, a list of parameters to pass that

method, and a boolean value indicating whether to continue exposing the functions

that have been exposed to the VR from downstream VRs (the equivalent of a switch

between public and private inheritance of methods).

public object RunMethod(string methodName, ArrayList parameters,

bool keepshowing)

The RunMethod function is an excellent example of how a base class helper

function can drastically simplify the work that module writers must undergo in order

to make their code compatible with the virtual robot architecture. First, RunMethod

75

(at runtime) retrieves a listing of all functions exposed by the VR that loaded the

assembly and ensures that the methodName passed to it by the derived assembly

matches to one of the exposed function. If not, then the dynamically loaded assembly

was attempting to call functionality that the virtual robot does not know. Secondly, it

packages up the information into the exact object that VR the needs to understand in

order to execute the method, so the module author does not need to concern himself

or herself with it. RunMethod then spins off a new process to handle the command

execution. When the command is executed on the robot and the return value is

passed back through the VRs, it eventually is passed to the VR that contains the

loaded assembly that initiated the command. There is one additional problem: the

architecture is set up so that multiple commands may be sent to the robot before any

return values are received. That is, the virtual robot does not have to wait for a return

value from one function before it can send the next command (which may be an

abort). However, the author of the module wishes to have one command executed

and its return value stored before the next line is processed. For example, “ int a =

base.RunMethod(foo,…)” is intended to have foo execute (via sockets) and return

value be stored in “a” before the next command is read. In order to make this non-

blocking process blocking, RunMethod uses a multithreading algorithm to block until

the return value is passed back to the base class. After receiving a return value for

foo, the base class allows the thread that called into RunMethod(foo,…) to continue,

and passes the thread the return value. This creates the ill usion that the execution

took place within one thread and allowing a return value to come back to the caller of

the function. Without the base class undergoing this functionality, there is no way

76

that the writer of the module could wait to receive return values from function calls

before executing the next line of code.

Using these helper functions, the module author may thus have an easier time

writing code to be injected into the VR chain. The helper functions and base classes,

in fact, are the means of simplification that erases the difficulty involved for

supervisors wishing to write modules to be injected into a VR. The base class does

nearly all of the work in integrating the assembly with the system and handling the

communication while leaving the supervisor to worry only about writing code related

to the desired robotic functionality.

 The DualMethod method that corresponds to the example “Laundry if David’s

close” example above then, is:

private object DualMethod(BotMethod bm)
{
 ArrayList p = new ArrayList();
 object ret = base.R unMethod("Slice Off David's Hand",
bm.parameters, true);
 string sret = ret.ToString();
 if (sret == "laundry machine")
 {
 p.Clear();
 ret = base.RunMethod("Do the laundry", p, true);
 return true;
 }
 return false;
}

This example shows that when DualMethod is executed (in response from the

supervisor executing the “Laundry if David’s Close” method exposed within

CreateMethods), it will pass in the parameters (which were specified in create

77

methods to be a single text parameter) to an existent function. If the return value

from that function is “ laundry machine”, then it will run an additional function and

return true. If not, the function will return false. The function that it calls happens to

return whatever its parameter was passed in to be. So, if “Laundry if David’s Close”

is given a parameter of “Laundry Machine”, it should execute two of the robot’s

functions, the second one being a “Do Laundry Machine”. If the parameter is not

“Laundry Machine”, it will execute only the first method, “Slice off David’s Hand”

(as mentioned earlier, a reference to a tense night in the lab).

 The amazing thing about this example is that the totality of the code for the

loaded assembly has now been displayed—just those two functions. CreateMethods

announced the existence of a new method, called “Laundry if David’s Close” and

mapped it to the second and final method of the class, DualMethod(). All the code

necessary to add functionality to a VR has been written in a few dozen, simplistic

lines.

The following figure (5.10) shows the functions available after setting up a

VS, one VR, and the same robot to which we have been demonstrating connections

throughout. They are the three functions that the robot itself supports.

78

5.10 The static methods available to the VS after connecting to a robot

Note that “Do the laundry” as well as “Slice off David’s Hand” are both

exposed to this VR, and are the two functions that the example module may call.

The next step is to send over an assembly for the program to load up while it

continues to run. This is done from the “Method Creation” tab on the virtual

supervisor, which allows the supervisor to browse his or her computer for pre-

compiled assemblies. Below, Figure 5.11 below shows the “Method Creation” tab

and the result of this action.

79

5.11 Sending over a pre-compiled assembly containing new functionality to the VR for loading

Now, the Robot Control tab display should have updated to reflect the dynamically

loaded functionality. This is indeed the case, as may be seen in figure 5.12 below,

which shows the “Robot Control” tab, this time with the new method.

80

5.12 The VS after a VR in its chain has loaded up the dynamic functionality. The new function
has been reported to the VS in the same fashion as the static robotic functions.

The new method, entitled “Laundry if David’s close” has appeared. It accepts one

text parameter, which the virtual supervisor uses a text box to represent, and returns a

boolean value. When the supervisor enters some value other than “Laundry

Machine” (in this case “Not the laundry machine”) and executes the method the

virtual supervisor responds as shown in figure 5.13 below:

81

5.13 Execution of the dynamically loaded functionality

Note that the return value (displayed in a listbox) came back false. When looking at

the output from the agent, it is clear to see what happened:

<6:32.48>{vr.raging.1}Relaying a call to vr.raging.1.Laundry if
David's close
<6:32.48>{executing Slice Off David's Hand}
Just got a base call to run a method; checking for validity.
<6:32.48>{executing Slice Off David's Hand}Valid request. Going to
attempt to execute.
<6:32.48>{executing Slice Off David's Hand}Waiting for a return to
come in.
<6:32.48>{executing official_sliceDavidsHand}Spun off a thread to
handle execution.
<6:32.48>{vr.raging.1}Relaying a call to Motoman formal name.Slice
Off David's Hand
<6:32.48>{vr.raging.1}Realizes that he's returning from a method
that he invoked dynamically.

82

<6:32.48>{Return in base}recevied a return for
official_sliceDavidsHand ... going to release waiting procs.
<6:32.48>{executing Slice Off David's Hand}A return came in for
official_sliceDavidsHand
<6:32.48>{executing Slice Off David's Hand}Returning to the derived
class with our return value.
<6:32.48>{ vr.raging.1}I actually received a return from the derived
class just now... it was False
<6:32.48>{vr.raging.1}Got a return value from vr.raging.1 for
dispatch_newDual(False)

This output is worth a simple analysis. First, a call was made to the vr for “Laundry

if David’s close”, which came from the VS. This call mapped to DualMethod(),

which used the base class to attempt to make a function call. The base class

recognized it as a valid method name and spun off a thread to handle the execution

and locked down the thread that made the call to the base class. This thread then

ordered the vr to relay the call to the robot, and then the next thing we see a return

value is coming back. The virtual robot realizes that the return value is for a function

that was created dynamically, and thus it must handle the return value instead of

continuing to pass it upwards. The VR releases the waiting processes and the process

that was waiting for the return value realizes that the value has come back and returns

back to the derived class with that return value. Since it was not “Laundry Machine”,

as the module hoped for, the module returned false without going through any

additional calls.

 As one final demonstration, observe what happens when a second assembly is

added to the virtual robot that had previously loaded the first. This time, a method

called “Tell Dual David’s by Laundry” is created that calls into the created

DualMethod() function and passes it a parameter of “Laundry Machine”. The new

method requires no parameters from the user and returns a boolean value,

specifically, the value that DualMethod() returns. The following is the complete code

83

for this new module:

public override ArrayList CreateMethods()
{
 ArrayList newMethods = new ArrayList();
 ArrayList parms = new ArrayList();
 DynamicBotMethod dbm = new DynamicBotMethod("Big_dual", "Tell

Dual David's by Laundry", parms, true, new TypeBoolean(),
 MyName, new DynamicMethodDelegate(BigDual));

 newMethods.Add(dbm);
 return newMethods;
}

private object BigDual(BotMethod bm)
{
 Console.WriteLine("Executing the big dual method.");

 bm.parameters.Add(new BotParam(new TypeText(), null, null,
 "laundry machine"));
 object ret = base.RunMethod("Laundry if David's close",

 bm.p arameters, true);
 if (ret is string)
 {
 ret = bool.Parse((string)ret);
 }
 bool bret = (bool)ret;
 return bret;
}

Again, load up the assembly, shown in Figure 5.14 below:

5.14 A second assembly is sent to a VR for loading. Note that the VR tracks the assemblies it has
loaded.

Note the new method, “Tell Dual David’s by Laundry” . Additionally, the

temperature property has been set up to report when any changes occur. When the

84

“Do Laundry” function is invoked, the temperature property is programmed to

increase by three degrees. Since the “Do Laundry” function has no return value, a

reported change in temperature is the easiest way of telli ng if this function has

executed, as is expected. The “Robot Control” tab, with both of the dynamically

loaded functions available, is shown in figure 5.15 below.

5.15 Selecting a 2nd dynamically loaded function that will call the first.

When the supervisor chooses to execute this new command, the Virtual Supervisor

will respond according to the loaded code. It is shown in figure 5.16 below, and will

be explained immediately afterwards.

85

5.16 The result of executing the 2nd dynamicall y loaded function. Note that the temperature has
changed, indicating that it successfull y called the 1st dynamicall y loaded function, which
evaluated the parameters and called into a static function, “ Do Laundry”

We see in figure 5.16 that Big_dual returned true, indicating that its call to

DualMethod with “Laundry Machine” returned true, indicating that the laundry

should have been done. This has occurred because the temperature property reported

an update. Thus, we have successfully ill ustrated two dynamically loaded functions,

the first wrapping up the second, which in turn wraps up actual robotic functionality.

Each piece of dynamically loaded code is able to check return values of the methods

they call and act accordingly, using any methods or properties that existed before it

86

was loaded, regardless of whether the attributes were exposed by the actual robot or

simply another Virtual Robot.

87

6. Future Work and Conclusion

6.1 Future Work

There is a significant amount of future work associated with expanding this project

into its final form. The work to this point has served the intended purpose:

researching an alternative architecture for robotic control and implementing the basic

solutions to prove their worth. The next step, however, is to continue to test the

solutions proposed in this thesis with differing robotic control scenarios as well as

using it as a foundation to be developed into a full-featured, fully tested architecture.

Much of this work will surround the virtual supervisor. There is a need to add

additional types into the architecture as robots that desire to transmit data in different

formats are discovered, just as the Paradex wished to deal with a RangeType instead

of merely an integer when controlling the large switch. These data types must be

turned into classifications and have default controls associated with them for display

on the GUI. Also, adding non-default controls to existent classifications and

providing the supervisor ways of saving his preferred control types for each

classification are both needed. Aside from specific data classification, there is also

the need for the Virtual Supervisor to handle different priorities of data. When a

return value with a high priority is reported to the Virtual Supervisor, it should react

accordingly. Currently, these priorities are being reported, but the Virtual Supervisor

does not react differently based on a priority. It is hoped that eventually high-priority

responses will cause the virtual supervisor to demand acknowledgement from the

Supervisor and, should it not be received, attempt to contact him via a cell phone or

pager.

88

Loading code into the VRs is in many ways a much easier process than it

could have been. There are well defined interfaces to access robotic functionality and

pass values to the Virtual Supervisor the Virtual Robot will recognize and thus the

Supervisor may code against. This code may be written in any .NET language, of

which there are dozens, since the architecture was written in C#, a .NET language

itself. However, to minimize the effort required to author dynamically loaded code, a

small visual development environment would be highly desirable. If supervisors

could use a visual interface to choose methods to call and parameters to pass in, it

would make writing these pieces of code even easier.

Although the architecture was built to accommodate multiple robots, very

little has been done to do multiple robot coordination, or to load dynamic

functionality that would do anything exciting with the two robots. Currently, the

extent of writing functions that wrap up basic methods on multiple robots has been

limited to functionality on each robot that is unrelated to the other. Thus, true

coordination has not yet been attempted. Moreover, a demonstration of writing

dynamically loaded code that reorganizes groups of robots to work in different teams

would be impressive, and is well within the scope of the architecture.

One of the problems with allowing such abstraction from the robots’ basic

commands, is that it becomes possible for the supervisor, who is unaware of the

actual implementation of the high level commands he or she is issuing, to request that

the robot perform actions that contradict each other. For instance, he could execute a

function to load into a VR controlli ng the Paradex robot that wrapped up calls to

turning a switch on and off. Should this function be executed, the Paradex will be

89

given conflicting commands that may or may not achieve what the supervisor

intended. If the virtual robots could track the dependencies of their dynamically

loaded functions and report an error when an ambiguous set of commands was

wrapped up, it would be a great addition to the architecture.

Finally, there is a great deal of work to surrounding the mobili ty of the virtual

robots. This is by far the area of future work that is the most complicated. Currently,

a simple algorithm is in place. Using this algorithm, a virtual robot looks at each

agency and records the available CPU as well as the round trip time to each of its

neighbors. The virtual robot then moves to the agency that provides it the best

resources. First, this algorithm does nothing to counter possible looping that may

occur. For example, AgentA is dissatisfied with the CPU performance of its current

machine. It looks up another agency on another machine and, upon running tests on

that agency, finds that the computer on which the agency runs is somewhat faster than

its current computer. Thus, it moves itself from its current computer to that agency.

But AgentB, which is located on that computer, now finds that with the drop of CPU

performance on its computer, it is better suited for AgentA’s old computer. Moving

there, AgentB then makes that computer undesirable for a third Agent, AgentC, who

had been sharing the computer with AgentA originally. AgentC gets up and moves to

computer B. This is the initial state for the same cycle to occur, with processes

reversing the direction of their move. Clearly, the local greedy solution is not

universally stable.

Additionally, there is the issue of priority. Perhaps AgentB is performing a

critical task, such as navigating a robot through a dangerous stretch of road. AgentA,

90

then, could possibly be performing some CPU consuming task as well, but of much

less importance to its supervisor relative to the importance of robotic navigation to

AgentB’s supervisor. If AgentA simply sees AgentB’s powerful computer and moves

there blindly, it may starve AgentB from getting its massive requirement of CPU

cycles, leading to a failure of an important task in the name of an efficiency increase

for an unimportant task. This situation is also undesirable.

Ideally, a stable global optimal solution would be calculated before any

movement occurred, in which the importance, or priority, of each agent was taken

into consideration as well as their current task and current task requirements. It may

not be best for any one process or even for any process at all, but overall would be the

best solution available and thus stable, until requirements changed or additional

processes were added. This problem is known as the agent-planning problem, and is

an emerging field of research. It has been compared to many well-known problems,

including the problem of distributed data storage and the traveling salesperson23. A

complete analysis of this diff icult, currently unsolved problem is well beyond the

scope of this thesis. However, when applied specifically to the proposed virtual

robots, the problem reduces fairly well to that of obtaining a globally optimal solution

for similar processes that are engaged in performing different tasks that are each

requesting space on a finite number of computers with finite resources. This problem

has been researched for many years under the heading of web page caching on

servers. Users each want their common pages cached on a local server instead of

requiring those pages to be reloaded from the page’s main server each time. The

local servers have a limited number of resources, most notably space, to be spread

23 Katsuhiro Moizumi. [15]

91

across all the users that want to cache their web pages there. Therefore, researching

the best way to find the globally optimal arrangement of VRs meant relating it to the

problem of web caching and applying the research and results of that work to our

problem.

 Currently, there are a number of different web caching algorithms in usage.

These include Greedy Dual Size24, LRU, LFU, LRU-Threshhold25, LogLRU26,

HYPER-G27, Pitkow/Recker28, Lowest-Latency First29, and Hybrid30. Out of these,

the best algorithms are generally agreed to be Greedy Dual Size and the Hybrid when

calculation time for the algorithm itself is disregarded31 32. In the Hybrid model, a

function is computed for each document in the cache. The function is designed to

capture the utility of retaining a given document in the cache, and the document with

the smallest function value is evicted. The function for a document depends on the

time to connect with the server on which the page is located, the bandwidth of that

server, the number of times the page has been requested since it was brought into the

cache, and the size of the document. Greedy Dual Size bases its decisions about

which page to evict from the cache on an equation as well, but uses some slightly

different factors. These factors are the locality of the page, the size of the page, and

the latency/cost concerns of caching the page instead of fetching it each time. The

two methods are very similar and use similar parameters, differing in ways too minute

24 comparison of online
25 LRU THRESH
26 loglru
27 hyper-g
28 pitkow/recker
29 lowest latency first
30 hybrid
31 greedy
32 compare

92

to be listed here. Also favored as a web-caching algorithm is the LRU method, which

simply removes the least recently used page from the cache before adding the new

page. It does not produce as optimal a solution as other algorithms (like Greedy Dual

Size), but it achieves its calculations in O(1) vs. O(log n)33 for the more complicated

algorithms where n is the number of pages in the cache. Also, LRU does not require

additional space, of which many other algorithms require a significant amount.

 The bottom line for web caching is that all of the algorithms look at the

currently cached pages and attempt to find the page that has fewest of the

characteristics the algorithm holds to be important. Most algorithms are based

completely on LRU or incorporate it heavily into their equations along with other

factors, such as size and latency. In future research, we hope to apply this principle to

the arrangement of our virtual robots. We must analyze the currently existent VRs

against a set of characteristics that we hold valuable and give the best spots to the

VRs that are rated the highest. Some of the parameters in web caching have no clear

counterpart in our situation. For instance, the size of a page is usually considered, but

the size of virtual agents will be very consistent. However, other web page factors

have clear associations with our agents; locality of the page’s server, for instance,

parallels well to the distance between an agent and his slaves and master. The agent’s

message must travel different distances depending on which agency it utili zes, just as

the time to reload a page depends on the time to contact the page’s server or the time

to contact a cache of that page on a local server. There is also a parallel between LFU

(Least Frequently Used) and LRU (Least Recently Used) to the frequency of message

33 Some implementations of GDS may obtain a running time of O(1), but the constants in the time
complexity analysis are so large that those implementations are rarely seen in practice

93

passing and command execution by the virtual robots. And there are certainly other

factors to take into account with virtual robots that have no clear counterpart in the

web-caching world, like job priority. We believe that calculating a globally optimal

solution for virtual robot placement is plausible should factors be correctly assessed

in an equation that can meaningfully incorporate information about each agent.

6.2 Conclusion

There are many challenges involved in the remote control of robotics. Many

of these challenges have been met by current solutions, yet there remain many

difficult objectives that have not been satisfactorily achieved. We believe that a

revision to the architectural model of robotic control allows the accomplishment of

many of these objectives as well as permitting the incorporation of several features to

the realm of remote robotic control that had not been previously possible. This

revision involves two main components. First, the introduction of peer-to-peer

processes that serve as intermediaries between the remote control application (the

virtual supervisor) and the robot itself. These processes are viewed as the supervisor

from the perspective of the robot and as robots to the supervisor, and are therefore

called virtual robots. Secondly, the architecture is designed to allow control of robots

generically. This means that the virtual supervisor, as well as the virtual robots that

exist between the virtual supervisor and the robot, are merely templates. They were

written with no preexistent knowledge of the robot they are intended to control, and

therefore do not have any programming to reflect the methods and properties any

specific robot has exposed for remote interaction.

94

We believe that since our model is focused on having a single application that

may control robots generically, it will be appealing to industry users. Currently, to

enable remote supervision of a robot, a language to describe the robot’s abili ties and

pass supervisory commands must be established, robotic functionality must be

exposed to communicate with a controlli ng application, and, finally, the controlli ng

application must be programmed. This controlli ng application must accept user input

and then translate it into a message that can be understood by the robot before

sending that message over the Internet. In contrast, when using our architecture, the

robot needs only to have a small stub written that defines its attributes in a well-

defined language. The virtual supervisor will then mold itself to accept user input

relevant to the robot in question and send commands to the robotic stub. The virtual

supervisor will place visual controls on its GUI that correspond to the robot’s

methods and are intuitive to users of modern-day software. In addition, the virtual

supervisor will communicate with the rest of the remote architecture as efficiently as

possible when sending the messages across the Internet. In short, the architecture

makes it trivially easy to enable remote control of nearly any robot through a rich,

user-intuitive GUI that is completely pre-written.

Because our control model uses peer-to-peer processes, virtual robots, to

abstract away the control of the supervisor and the functionality of the robot, we are

able to boast several advantages over traditional master/slave remote control. One

immediate advantage is that because the virtual supervisor does not interact directly

with a robot, it is easy to build a structure of a virtual supervisor directly or indirectly

95

controlli ng multiple virtual robots, each of which control a robot. Thus, achieving

single supervisor control of multiple robots is effortlessly achieved.

There are also advantages to this structure that rely on the advanced

capabili ties of these virtual robots. The virtual robot processes are actually mobile

agents that are capable of evaluating their current task and the resource requirements

associated with that task, as well as gauging the resources available on various,

registered host computers. Upon finding a more desirable computer, these processes

are able to move themselves, along with the task they are executing, to that new host

before continuing their execution. This results in an inherent flexibili ty to the types

of resources required by the objective the supervisor assigned. When a supervisor

orders a robot to perform a job that requires fine-grain control, for instance, the

virtual robot that is carrying out the supervisor’s command will recognize the need

for a short round trip time to the robot and move itself to a computer that can provide

it with such. The same is true when a virtual robot realizes that its supervisor is

requesting a computationally intensive task. All of this flexibili ty and run-time

reaction to the supervisor’s commands happens in such a fashion that the virtual

supervisor program itself, and thus the supervisor, need not themselves move to a

different computer or direct the mobili ty of the virtual robots in any way.

The virtual robots have also been programmed to accept additional

functionality from the supervisor. Thus, to add new functionality to a robot based on

currently existent abili ties, the supervisor may simply write code for the new

function, compile it into an assembly, and send it to a virtual robot. The virtual robot

is aware of the robot’s functions as well as how to invoke them, since it must use this

96

knowledge whenever a supervisor wishes to know what abili ties a robot may have or

wishes to invoke one such abili ty. This virtual robot then reports the abili ty to

execute this new function as a robotic abili ty to the virtual supervisor along with the

functionality that is actually programmed into the robot. When the virtual supervisor

executes this new function, the command reaches the virtual robot that loaded the

supervisor’s assembly, and that VR passes control to the assembly. The assembly

executes the supervisor’s program, including calls to the robot’s current functionality.

This is an especially exciting feature, since it allows a supervisor to upgrade the

abili ties of a robot without directly reprogramming the robot in whatever language

and operating system the robot requires. Instead, the supervisor may reprogram the

virtual robots and follow the same steps to add functionality to any robot that fits

within our architecture. This upgrade will take place dynamically, without a need to

recompile the virtual robot program or even halt operation of the robot in question.

Additionally, since a virtual robot may control multiple robots, a function may be

loaded dynamically that, upon execution by the supervisor, actually executes

commands on multiple robots in a coordinated effort.

This abili ty to load functionality into a virtual robot results in a supervisor’s

abili ty to repeatedly wrap up existent functionality in an object-oriented fashion, so

that layers of abstraction are established. By layering functionality and thus

providing the abili ty to program the robots against higher and higher level

abstractions (that may include one or more robots), the supervisor is able to write

powerful command sequences using relatively little effort, much as using classes

greatly simplifies modern software development. Furthermore, by enabling the

97

robots’ abili ties to be modified while they are running, the control architecture allows

the supervisor to react to the conditions his or her robots encounter with a new degree

of flexibili ty. If the environment to which the robot must be deployed is mostly

unknown to a supervisor, he or she may program in a significant portion of the

robot’s actual functionality after the robot has arrived in its target environment and

reported its surroundings. In addition, by loading functionality that involves multiple

robots, a supervisor could dynamically reorganize teams of robots depending on what

unexpected challenges the environment may pose to a team of robots that must

accomplish some task.

We feel that because of its fresh approach, our control architecture represents

a step forward in remote robotic control. First, it provides an easy way to allow the

remote, supervisory control of generic robots. This control takes place from within a

rich GUI that molds itself to the target robot. Our architecture also solves many of

the current diff iculties of robotic control, such as flexible, fine-grain control and

facili tating the coordination of multiple robots from within a single application.

Finally, it offers the impressive feature of enabling the supervisor to dynamically load

functionality into virtual robots. By modifying the abili ties of a robot as it executes,

the supervisor may wrap up and abstract away lower-level functionality into higher-

level methods that allow a more powerful programming model.

 98

5.7 Bibliography

[1] Acharya, Anurag M; Saltz, Ranganathan Joel. “Sumatra: A Language for
Resource-aware Mobile Programs” (1997).

[2] Adams, Bill . US Army Maneuver Support Center. “Robotics and Unmanned
Vehicles: The Future”. (December 13, 2001).

[3] Alam, Khurshid; Mukherjee, Sudipto. “ROMP: Remotely Operated Mobile
Platform.” (June 1995).

[4] Anderson, R. J.; Spong, M. W.. "Bilateral Control of Teleoperators with Time
Delay". Proceedings of the 27th Conference on Decision and Control, pp. 167-170.
(Dec 1988).

[5] Banerjee, Rajrup; Mukerjee, Amitabha. “Implementation Of Parallel Watershed
Algorithm On a Network Based Environment.” (March 2001).

[6] Bates, J.; Bacon, J; Moody, K; Spiteri, M. “Using Events for the Scalable
Federation of Heterogeneous Components.” (September 1998).

[7] Brooks, Rodney A. Massachusetts Institute of Technology Artificial Intelli gence
Labs. “A Robust Layered Control System For A Mobile Robot” . (1985).

[8] Elli s, Jeffrey Brent. University of Cincinnati. “An Investigation of Predictive and
Adaptive Model-Based Methods for Direct Ground-to-Space Teleoperation with
Time Delay” (1988).

[9] Ferrell, Willi am R. Massachusetts Institute of Technology “Remote
manipulation with transmission delay” . (January 1964).

[10] Fong, Terrance; Baur, Charles. “Multi-robot driving with collaborative control.”
(July 2002).

[11] Gelernter, D. “Generative Communication in Linda”. (January 1985).

[12] Ghiasi, Soraya; Zorn, Benjamin. University of Colorado. “A Reusable
Framework for Web-based Teleoperation of Robotic Devices” (June 2000).

[13] Lehman, Tobin J; McLaughry, Stephen W.; Wyckoff, Peter. “T Spaces: The
Next Wave”. (1999).

[14] Meynard, Jean Paul. Linkoping Studies in Science and Technology. “Control of
industrial robots through high-level task programming.” (May 2000)

99

[15] Moizumi, Katsuhiro. Dartmouth College. “Mobile Agent Planning Problems”.
(1998).

[16] Munson, Michelle; Hodes, Todd; Fischer, Thomas; Lee, Keung Hae; Lehman,
Tobin; Zhao, Ben. IBM/Berkley. "Flexible Internetworking of Devices and
Controls". (1999).

[17] Nipi, Giri; Ghosh, Amitabha; Sriram, K. “Design and Developement of a master
slave teleoperated robot.” (October, 1999).

[18] Pease, Wayne. University of Southern Queensland. “E-Commerce Enabling
Technologies” (2001).

[19] Silva, Alberto; Delgado, Jose. INESC & IST Technical University of Lisbon.
“The Agent Pattern for Mobile Agent Systems”. (1998).

[20] Stein, Matthew. Grasp Laboratory, University of Pennslyvania. “Behavior-
Based Control for Time-Delayed Teleoperation” (1993).

[21] Taylor, Ken; Dalton, Barney. Australian National University. “Issues in Internet
Telerobotics.” International Conference on Field and Service. (1997).

[22] Venema, Steven C.; Bejczy, Antal K.. Jet Propulsion Laboratory, California
Institute of Technology. “The Phantom Robot: Predictive Displays for Teleoperation
with Time Delay” . (1997).

[23] Whittaker, Red; Wettergreen, David; Bares, John. Carnegie Mellon University
Robotics Institute. “Configuration of a Walking Robot for Volcano Exploration”
(1998).

[] Chuckpaiwong, Ittichote. Case Western Reserve University. “Reflexive Colli sion
Avoidance for a Novel Parallel Manipulator” (2001).

[] Naksuk, Nirut. Case Western Reserve University. “The Implementation of a
Natural Admittance Controller for an Industrial Robot” (2000)

[] Mathewson, Brian. Case Western Reserve University. “Integration of Force
Strategies and Natural Admittance Control” (1993)

[]Cao, Pei; Irani, Sandy. University of Wisconsin-Madison and University of
California-Irving. “Cost-Aware WWW Proxy Caching Algorithms” (1997)

R. Wooster and M. Abrams. Proxy Caching the Estimates Page Load Delays. In the
6th International World Wide Web Conference, April 7-11, 1997, Santa Clara, CA.

100

http://www6.nttlabs.com/HyperNews/get/ PAPER250.html.
�

 Hybrid and lowest
latency first

M. Abrams, C.R. Standbridge, G.Abdulla, S. Williams and E.A. Fox. Caching
Proxies: Limitations and Potentials. WWW-4, Boston Conference, December, 1995-
>LRU Thresh & LOG size

S. . Williams, M. Abrams, C.R. Standbridge, G.Abdulla and E.A. Fox. Removal
Policies in Network Caches for World-Wide Web Documents. In Proceedings of the
ACM Sigcomm96, August, 1996, Stanford University.->hyper G and Pitkow Recter

P. Lorenzetti, L. Rizzo and L. Vicisano. Replacement Policies for a Proxy Cache.
http://www.iet.unipi.it/ luigi/research.html.

�
comparison 2

