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Multi-Agent Supervision of Generic Robots

Abstract by

David Rosas

This paper proposes a new architecture for remote robotic control that utilizes
sophisticated programs acting as intermediaries between the robot and the supervisor.
These processes are mobile agents and are capable of moving from one computer to
another autonomoudly as resource needs change. Through a predefined set of
interfaces and a simple language, the agents may communicate with each other as
well asthe robot and supervisor. This abstraction between the supervisor and the
robot alows the virtual robot to move to different computers with different resources
depending on the current task the robot is executing. Additionally, it permits a
programmer to add new functionality to the virtual robot that wraps up existent
robotic functionality. This allows a supervisor to create and inject new methods that
will control the robot without actually reprogramming the robot itself. We believe
that this framework provides alternative solutions to many remote robotic control

problems and alows for many exciting supervisory control possibilities.



1. Introduction

This thesis describes the theory behind and implementation of robotic supervisory
control using pee-to-pea processes. The Internet has become asolid infrastructure
upon which distributed applications of all sizes and puposes have been constructed.
Remote robotic control is becoming increasingly valuable as tasks are discovered that
could idedly be performed by robots without requiring human presence' 2. However,
there ae two main charaderistics that separate this projea from past remote robotic
control undertakings. First, most remote antrol architedures are unacceptable for
red world applications becaise of the time delays involved. If arobot was given
commands to move to spedfic locaionsin ndimensional space for instance, and
some unexpeded occurs, the aror must be reported badk to the supervisor. Upon
recaving notification of the robot’s error and current state, the supervisor must first
dedde how to corred the robot. Often the supervisor will want to make some small
change, such as causing the robot to move to some modified set of coordinates before
continuing along with itsjob. This feedbad must be assembled into a form that the
robot can understand and then shipped badk aaossthe Internet to the robot. This
much delay is often unacceptable, espedally when the robot and supervisor have a
low-bandwidth or long-distancelink. Our projed allows “virtual robot” processesto
take jobs from the supervisor and command the robot. More importantly, these
virtual robots may exist anywhere, such as on a mmputer that is at a nea-distance or
high-bandwidth link to the robot. The flexibility that this entail s allows us to perform

remote, supervisory control on a new classof Internet-cgpable robots. This class

LBill Adams. [2]
2 Khurshid Alam, Sudipto Mukherjee [3]



includes al robots that require quick response times or error correction for their tasks,
as long as the errors are somewhat expected and thus may be represented in a fashion
understandable to the virtual supervisor process. While the existence and use of these
peer-to-peer processes implies many things and grants us many more advantages than
just success over some time-delay problems, the second main advantage that this
project can tote over traditional attemptsisthe goal of gaining this control in a
generic fashion. By this we mean the following: it is our goal that any robot, aslong
asthat robot falls within a range of our classification, may announce its existence and
various details about its ahilities to a single, previoudly written supervisor program
which will then be able to control that robot. The details that the supervisor must
acquire include tasks that the robot can perform and things it can monitor, as well as
basic information about where and how it exists on the Internet. We accomplished
thisin away that will require a bare minimum amount of programming on the robot
and thus allow arelatively easy way to make any robot that fits our classification
compliant with our remote supervisor program. To be able to control any robot
regardless of its actual physical shape or its functionality without needing to rewrite
the program that does the supervison would be a step forward in remote robotic
control. After all, it would provide a standard control mechanism to all robots within
our specified class, allowing afamiliar set of controls to supervisors and, furthermore,
would eliminate the need to write a new supervisor program each time arobot isto be
controlled remotely.

Something that must be made clear at this point is that the supervisor program

must somehow adapt itself into aform that allows this control to take placein a



manner appropriate for the target robot. It is of little use to have a program that can
relay commands to any robot if it is not flexible enough to provide a meaningful
interface to the supervisor based on what robot is being controlled. However, the
supervisor program itself must not require any additional code or recompilation to
achieve this control of any generic robot. If the supervisor is only made to handle
robots with a gripper and is unable to change the layout of its GUI, then it does no
good to be able to control a mobile pathfinder-like robot, since the supervisor will
till only have access to that gripper control representation on the GUI and nothing
more.

The roadmap of thisthesisis asfollows. First, background information will
be given and a short description of the foundation upon which this research lies. This
includes topics like remote control, supervisory control, and Natural Admittance
Control aswell as a short discussion of current trends and practices. After this
background has been described, all of the third chapter will be devoted to describing
several goals for an ideal system for remote, supervisory control of robots. The rest
of the thesis paper is devoted to attempting to achieve those goals. Aseach godl is
discussed and a solution proposed, the overal control architecture is updated to
reflect our attempt to satisfy thisgoal. This control architecture starts off assuming a
strict master/dlave model, but eventually we are forced to change it in order to
achieve our objectives. This need is discussed in chapter five, and leadsto our final
control architecture, which we then illustrate as achieving the remaining goals. This

architecture is the primary result of our research and is the crux of the thesis.



2. Background And Basis For Work

In this chapter, the foundation of our work is discussed. It begins with descriptions of
afew basic concepts and terms and ends with a description of traditional robotic
control and the biggest problems it faces. It is hoped that this chapter will describe
the current state of remote robotic control, along with its strengths and weaknesses,

and set the stage for outlining our objectives.

2.1 Remote Control

The goal of refining remote robotic supervision is nothing new, with attempts
increasingly focused on Internet control. Internet control has proven itself to be an
excellent medium for remote control because there exist standard Internet protocols
which have been utilized by many robots and robotic controllers, both at the hardware
and software levels, and also because it provides us with much of the lower level
implementation that sending messages in a time-efficient manner require®. Previous
related projects at Case Western Reserve University include some of the earliest
network-based teleoperation with reflexive collision avoidance®, a prototype robot
that sorts laundry under the supervision of aremote homeowner, an industrial robotic
arm that sorts items with the assistance of a remote engineer, and the support for the

reprogramming of advanced production line robots from a remote laptop or PDA.

% Soraya Ghiasi [12]
4 \ttichote Chuckpaiwong []



2.2 Supervisory Control

Aside from reusing concepts surrounding remote control, we have dso geaed our
projed towards what has become known as robotic “supervision”. A complete
definition and explanation of this term will be provided within the main sedion of the
thesis. 1n short, robotic supervision implies that the robot is ssmewhat intelli gent and
performs and completes most tasks with a large degreeof autonomy, often requiring
input from the supervisor only to receve high-level objedives or to escgpe from an
undesirable state in which it findsitself. We have based our dedsion to use
supervisory control on the benefits it affords us relative to the wegnesses of IP
communication. For example, at CWRU we have demonstrated an exploratory case
of remote supervision using arobot that sorts laundry into whites and colors®. The
robot (Rhino) is composed of one am with a gripper (to pick upand pu down the
clothing) and two cameras (to dbserve the dothing). The robot uses pictures from the
cameras to classfy agrasped clothing item as white or color and then dropsit in the
appropriate basket. The robot usually proceels autonomously, but there ae caesin
which the robot is unable to make aclea distinction about the @lor (or ladk thereof)
of apieceof clothing. When this case occurs, the robot contads a remote human,
who can assess the state of the robot’s job through a Web browser that displays
pictures of the environment. The human supervisor is then able to instruct the robot
to perform diagnostic or functiona adions, which allow the robot to return to
productive work. This philosophy of supervisory control applies to many remote
control robotics stuations and we have found it to be an effedive excdlent pattern to

build into our control architecure.

5 Rhino



2.3 Natural Admittance Control and Virtual Attractors

Natural admittance ontrol (NAC) is control based upon a set of parameters that
prescribe desirable almittance dynamics that the robot should emulate®. Robot
control is achieved by setting these parameters to application-dependent values,
which are then used by the NAC controller locd to the robot. For example, washing
awindow, the robot would be instructed to behave relatively stiffly in diredions
tangent to the glassand compliant normal to the glass To open adoor, the robot
should behave relatively stiffly in the expeded dredion of motion, but should
comply gently in diredions corresponding with hinge @nstraints. The NAC
controller technology is sufficiently developed that it can be used as a foundation for
remote antrols.

Within NAC, a“virtual attrador” isa point in n-dimensional spaceto which
the robot end-effedor is virtually conneded by a means of a set of fictitious grings
and dampers of spedfied stiffnesses and damping. Through this use of virtual springs
and dampers, the robot is given goal points upon which it is encouraged to converge.
If there is an environmental forcein opposition to this convergence (perhaps from
contading kinematic constraint surfaces), there will be position and/or orientation
errors between the dtrador and the robot, resulting in stretch of the virtual springs.
Asaresult, virtual forces are produced. These virtual forces are part of the model
reference dynamics, and thus the robot will equili brate in contad with the
environment with interacion forces equal and opposite to the virtual forces. By this

means, one can both visualize and produce desirable interadion dynamics.

6 Brian Mathewson
" Nirut Naksuk



recent experiments at CWRU, the value of virtual dynamics to implement
strategic behaviors has been demonstrated with respect to assembly of automotive
transmission components. It is proposed here that capability is aso highly valuable in

accomplishing Internet based collaboration between humans and robots.

2.4 Traditional Robotic Control and Existent Problems

Traditional robotic control involves a myriad of varying components. Some
industrial robots are programmed directly while some are controlled through a
separate computer to which they must always remain attached. The operating system
that controls the robot or its computer controller differs from one manufacturer to the
next. Sometimes they are standard and often they are completely proprietary. The
engineers who wish to program these robots must learn not only the system calls that
correspond to the operating system at hand but also work within the confines of
languages that may be compiled or interpreted for that platform. The languagesin
which robotic controller code is developed aso vary greatly, typicaly being
proprietary to the robot manufacturer. With all of these differing factors, it quickly
becomes quite difficult to program or control multiple robots from differing
manufacturers without a matching set of trained engineers and programs written to be
compliant to each system. Thisis especially so when multiple robots must be
coordinated to cooperate in achieving a single objective®.

Traditional remote robotic control only adds to these problems of complexity.
Each robot typically has a static, centralized controller that exposes its own interface

with which interaction may take place. Using those interfaces, the remote controller

®Terrence Fong, Charles Thorpe, Charles Baur. [10]



may send messages in the language defined by the robot. Various attempts have been
made to make a standard language that all robots could recognize and thus simplify
the communication process’ 1° . Even with such attempts, a fully accepted universal
language for use in passing messages to robots far from areality. Part of this problem
is the wide range of activities that robots can perform makes the creation of a
language that can adequately describe all of them difficult. Trying to remotely

control two different robots, then, nearly always implies the need to work with vastly
different interfaces that accept messages formed in vastly different languages.

For &l of these reasons, traditional remote robotic control solutions have

struggled to expand their domain to problems requiring multiple robot coordination.
Additionally, it is difficult to augment the existing functionality of the robot,
particularly when the owner of the robot who desires these changesis not also the
manufacturer of the robot. First, an engineer must be found who understands both the
operating system and the language with which the robot was programmed.
Depending on how flexible the remote interfaces were programmed and how robust
the language that defines the robotic commands is, new interfaces must be added to
allow the utilization of any new functionality. Moreover, the robot must have some
way of informing any potential controller of its new functionality so that the person
controlling the robot will know that this functionality is now available, or else the

controller program must be updated and recompiled for usage as well.

® Michelle Munson, Todd Hodes, Thomas Fischer, Keung Hae Lee, Tobin Lehman, Ben Zhao. [16]
10 3. Bates, J. Bacon, K. Moody, and M. Spiteri [6]
1D, Gelernter. [11]



3. Overview And Rationale of Goals

Now that the foundation for our work has been explained, this chapter lays out the
objectives for ideal supervisory robotic control. The goals are meant to describe an
architecture that makes the most of the strengths of current systems and perhaps help
to supplement some of the weaknesses. Thus, each goal is an attempt either to
provide a better solution to one of the currently solved challenges of robotic control
or to propose a new feature altogether. Once the goals have been defined, their

proposed solutions and implementations may then be discussed in the next chapter.
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3.1 Enabling Remote, Generic Supervisory Control

One of our primary goals for an ided control system s to enable remote,
generic supervisory robotic control of a dassof robots. By generic control, we mean
that control should be possble regardlessof the computer, operating system, and
language asciated with the robot. Clealy, the dassof robots with which we wish
to enable remote, generic supervisory control must be a t¢assof robots that lends
itself to this control. Therefore, there ae some basic requirements for robots before
they are dassfied as amatch for our control architedure. We first require that the
robot be ale to be controlled remotely to a satisfadory degree Most often, this goal
will be atieved by using functions that the robot currently implements when the
supervisor wishes to exeaute aommon, well known tasks, using a virtua attrador and
impedance model to drive the robot through unexpeded, supervisor defined patterns,
or a aombination of the two. In addition, there will be some basic operational
requirements of the robots. There must be alowest common denominator for
communicaion that the remote control program may use and with which, therefore,
the robots must comply. It isimportant to note that these operational requirements
should not make it difficult for the average robot to be controlled—that is, the bar for
the lowest common denominator must be set low enough that it does not eliminate the
bulk of robots from compatibility with our architecure. Idedly, these operational
requirements should be nealy universally available acossmany various robotic
platforms and programming languages.

The final charaderistic that arobot must have in order to be dassfied asa

good match for our system of remote supervisory control is that it lendsitself to
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supervisory control in thefirst place Supervisory control means, in esence, that the
robot is given high-level, coarse goals with a high autonomy of control. In
supervisory control, the human robot controller ads exadly as sich—a supervisor.
The supervisor seesthe results of the robot’ s efforts, gives overall objedives and
desires for future output, and is able to obtain predse control over the robot when the
robot is confused or in an undesirable state. The supervisor is not required to step the
robot through ead micro operation, nor must he or she be present to watch the robot
perform its work. Often thislevel of job abstradion is achieved through pre-
programmed functionality that is present on the robot and which the supervisor

simply invokes in an ordered sequence  This resultsin the robot continuously
performing well-known tasks without requiring systematic instructions. Thisis
perfed for remote antrol scenarios, where often the time delay prohibits any

efficient fine-tuned control*2. Even though supervisory control requires the ability for
the robot to complete objedives with only coarse input, it does not eliminate the
posshility of low-level control. Occasionally, the supervisor may wish to use low-
level, or predsion, control in order to corred a supervised robot from an error state or
to perform some operation that the robot has not preprogrammed to do. When given
complete knowledge aout the robot being controlled, the task of giving that robot
meaningful, low-level commandsin order to manipulate the robot’s gate istrivial.
However, our work has been based around the concept of generic control: Instead of
complete information, virtually no knowledge is avail able to the virtual supervisor.
Acoordingly, it isour intent to provide this ssme fine-grain control through a virtual

attrador and impedance model, in which the supervisor has a much greder range of

12 Jeffrey B. Ellis[8]



12

control over the robot with no pre-programmed knowledge of the overall goal the
supervisor has in mind.

It isimportant to note & this time that while the robot will certainly be
programmed with functionality that it may expose to the supervisor, the remote
control application that the supervisor usesis meant to be generic. It should be &le
to apply meaningfully to any robot without any pre-existent knowledge aout how the
robot works and what it does. Thisis a noteworthy endeazor—we must creae a
program that will allow a human supervisor to invoke any range of functionality on a

foreign robot that the program previously knew nothing about.

3.2 Generic Robotic Control Application

It isrudmentary that in order to control arobot remotely, there must exist
some program that the supervisor will use from a different, remote location, to send
commands to the robot. This program will be cdled the Virtual Supervisor, sinceit is
exadly that—a computer program that accepts the supervisor’s wishes and relays
them to the rest of the system. To the robot, it speaks with the voice and authority of
the supervisor himself. Currently, remote robotic control architedures are nealy
completely composed of master/dave models. The supervisor uses a program, the
virtual supervisor, as the master processto send commands that control one or more
robots, which play the roles of daves. We will be assuming this architecure for the
remainder of the analysis and requirements gathering portion of thisthesis. It isthe

nealy universal architedure used for current day remote robotic control applicaions,



13

and as such, it is an excdlent foundation to stand upon and assesswegknesses and
possble modifications.

This virtual supervisor should be, like the robots it hopesto control, generic
aaossoperating systems. Regardlessof what computer the supervisor himself wishes
to use, it would be highly desirable if the virtual supervisor could run on any
computer the supervisor desired, regardlessof locaion or operating system. This
would give the supervisor agred ded of flexibility in attaining control of a remotely

locaed robot.

3.3 Efficient and High-L evel Remote Communication

Our next goal isto utilize a efficient and high-level amodel for remote
communication as possble. While we recognize the neal to pander to the lowest
common denominator of robotic functionality, we wish to use protocols that faali tate
communication with the robot and the rest of our system in an efficient a fashion as
possble. With so many powerful ways to padkage data, such as Java’'s RMI (Remote
Method Invocation) protocol and the SOAP (Simple Objed AccessProtocol)
standard currently used by many corporations, it is unnecessarily inflexible to
continue to program sockets to send text strings from one processto another. Modern
communication protocols give programmers a high-level communication standard
that allows for easy transmisgon of awide range of data types between computers.
Additionally, they package the data in afar more efficient manner than sending

ASCII text strings aaoss ®ckets.
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3.4 Dynamic GUI Utilizing Intuitive, M odern Day Controls

Just aswe ae dtempting to accomplish communication in a high-level and
elegant fashion, the virtual supervisor should be required to adhere to these same
standards. The virtual supervisor should be aGUI with the powerful control
medhanisms that are asociated with modern-day GUI design. The advancement of
visual controls has reated a point in software development where the visual
representations of commonly requested inputs can be presented intuitively to the
average cmputer user.

This virtual supervisor must be bidiredional. The virtual supervisor must be
able to cdl afunction on the robot and then accept a return value from the robot after
it has processed the mommand. Additionally, the robot will have many different state
variables with values that it may wish to relay to the supervisor. These state variables
are esentially properties of the robot, such asits locaion and velocity, and the
robot’s environment, such as external temperature and pictures of its surroundings.
Idedly, the supervisor could recave updates of these properties in different fashions,
such as polling or upon a dange of their value, or upon a dhange of their value to
some definable degreeof significance Regardless two-way communication is
necessary for useful robotic control problems. There ae dso times when an
emergency may occur and the robot may wish to ensure that the human supervisor is
contaded in ways that exceal the normal abili ties of the virtual supervisor. Inthese
emergency cases, it is desirable for the virtual supervisor to be &le to give alditional
graphic warnings to the supervisor, possbly out of the scope of the virtual supervisor

program itself, or even perhaps out of the scope of the computer. For instance, if an
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assembly line robot were in a state of severe eror and could not continue to complete
itswork, it could send a message up to the virtual supervisor. The virtual supervisor
would immediately request supervisor input, and, should the supervisor not be & the
computer to giveit, the virtual supervisor might use the Internet to cdl the
supervisor’'s begoer number and send a message reporting the problem.

One of the biggest issues with making a highly robot-spedfic GUI within our
architedure isthat, as was previoudly stated, the virtual supervisor isto be generic to
the point that it has no preprogrammed knowledge aout any robot it must control.
Thus, instead of making a virtual supervisor that can interad with a single robot that
it has been programmed to know about, the virtual supervisor should be a visually
intuitive and high-level GUI for generic robots of which it has no foreknowledge. It
isaworthwhile dfort smply to expose functionality on any robot that the virtua
supervisor wishes to control while spedfying nothing about how fluid and intuitive
the virtual supervisor’s control mecdhanisms must be. However, it is even more
challenging and beneficial to producea GUI that uses modern day graphicd controls
and provides a user with an intuitive way to control arobot that was foreign to the
virtual supervisor at the time of its programming. We must define away that any
robot may inform the virtual supervisor about not only its raw functionality, but also
about what visual representation a human being would see @ a close parallel to that

functionality.
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3.5 Single Supervisor, M ultiple Robot Control

The achitedure of our system, then, must fadli tate routing commands from
the supervisor to multiple robots, thus allowing for single-supervisor control of those
robots. Accordingly, it must be ale to route return values and property updates from
multiple robots to a single virtual supervisor in a meaningful fashion. There ae many
cases in which controlling multiple robots from a single interfaceis beneficial. Many
of them are based around scenarios in which the robot participants would have
previoudly required dfferent GUIsin order to permit remote cntrol. Insuch a
scenario, alowing the cntrol of two robots from one GUI is a step forward. More
complicaed, yet equally desired, scenarios involve coordinating the inputs and
outputs of multiple robots not only with one virtual supervisor, but also with eah
other, thus allowing a network of robots to work colledively even though they are

being controlled only in a supervisory fashion.

3.6 Adding Dynamic Functionality to the Robot

Perhaps the most frustrating ramification of the greély varied operating
systems and programming languages that most current robots are built uponisthat in
order to fix a bug or to add functionality to such arobot, an enginee who is familiar
with the robot’ s platform and code base must be found. Many times this is frustrating
to industries that buy a robot and then find out later that it requires me maintenance
or an upgade in alanguage or on an operating system with which none of their
employees are familiar. Sincethe interfaces for the airrent functionality must be

discovered and stored by the virtual supervisor during the time of its control, it seems
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feasible that the virtual supervisor could somehow be @le to expose new
functionality to the supervisor based off what it knows currently exists on the robot.
In other words, it would be adesirable feaure if the virtual supervisor could offer the
supervisor the aaility to perform adions on the robot that the robot was not originally
programmed to perform. Thistrandatesinto the &bility to dynamicdly add
functionality to robots by using our knowledge of the robot’s preprogrammed

abili ties.

Currently, our goals permit the expeded case: If the robot has any
functionality it wishes to expose & all, the virtual supervisor currently will lean of
this functionality and expose its own controls to invoke the robot’ s functionality.
Should this new goal be adieved, then the following scenario could play out: The
supervisor, using the virtual supervisor program, conneds to some robot. Suppose
this robot exposes two functions, DrawLineg() and Rotate(), which draw aline on a
pieceof paper and rotate the robotic hand appropriately. The robot informsthe
virtual supervisor of its functionality, functions DrawLine() and Rotate(). The virtual
supervisor then these functions along with away for the supervisor to accessthem,
passng in whatever parameters are necessary (using some graphicd representation
per the previous requirement of a high-level GUI). Now, the supervisor wishes to add
some further functionality to the robot based off the robot’s current abilities. Inthe
simplest case this would involve perhaps making some function DrawSquare (),
which cdled DrawLine() and Rotate() four times. We now propose that instead of
reprogramming the robot using whatever robot-spedfic language and OS cdls

necessary, the supervisor instead reprogram the virtual supervisor to expose a
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function DrawLine() that cdls the robotic functions in the proper order. The virtual
supervisor, after all, has complete acceasto the robot and knows about both
DrawLing() and Rotate(). It istrivia for the virtual supervisor to make cdlsto these
robotic functions. After the virtual supervisor has been programmed to make those
cdls and expose it as a DrawSquare() command, this new command is exposed to the
supervisor asif it existed on the robot. Infad, since asupervisor who is not familiar
with the robot will gain all of his or her information about the robot from the virtual
supervisor, it would be impossble to tell what functions existed on the robot and
which ones were programmed into the virtual supervisor based on previoudly existent
functionality. After this method creaion had taken place the supervisor could invoke
his newly creaed DrawSquare() function on the virtual supervisor, which would, in
turn, invoke the DrawLing() and Rotate() functionality on the eistent robot.

Clealy, this godl is easily acaomplished should the virtual supervisor
program’s source code be updated and then recompiled by the supervisor wishing to
add feauresto the robot, but this approac hes threedrawbadks. First, should a
functionality tweak be necessary while the robot is operating, the virtual supervisor
(and thus, presumably the robots) would need to come to a safe state for shutdown
and then proceal to shutdown before the virtual supervisor program could be dosed.
After closure, a newly tweaked version that had been compiled could be run and
conned to the robots to begin controlling them anew. In short, the cdanges could not
be gplied while the system was running. Secondly, it bre&ks the ideaof a generic
virtual supervisor that may control any robot. Granted, the challenge of loading up

functionality dynamicdly is a separate and arguably more ambitious goal than the
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previous requirements, but to require avirtual supervisor that has a permanently
different binary from other virtual supervisorsthat are in use is extremely

undesirable. The am of this projed isto make one virtual supervisor program that
can be used for any robot. To require arecompilation into a different virtual
supervisor program leads to different versions of the virtual supervisor that are
compatible with different robots. Thisisnot accetable. Customization clealy neels
to take placeon a per-robot level, but staticdly modifying the aurrent generic product
is ot an attradive solution—adding onto it with a separate cmponent would be
much preferred.

The third and final drawbadk of recompili ng the virtual supervisor eat time
one wishes to add robotic functionality is the need for supervisor knowledge of the
virtual supervisor code. Reampilation would require the supervisor to not only
understand how the robot they wish to reprogram functions and what interfaces it
currently provides, but would demand moderate to high knowledge of the inner
workings of the virtual supervisor application aswell. Such knowledge should not be
required of the supervisor, who merely wishes to ded with the robot and have s little
contad with the inner workings of the virtual supervisor as possble. It isarguable
that requiring an enginee to learn the non-changing architedure and interfaces of the
virtual supervisor application would still be significantly easier than learning new
languages and OS cdls ead time adifferent robot was in need of additional
programming, but idedly, neither should be necessary.

We believe that this feaure should be espeaally attradive to supervisorsin

the industry who would much prefer smply to upload new code to transform their
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robot version 1.0 to robot version 2.0 without shutting the robot down or installing
new hardware. Thiskind of patching has certainly become the standard in the
software world, where the shipped product is constantly being updited, patched, and
exposing new functionality that was smply not quite ready when the time cane to
ship. Dynamicaly loading code to fulfill maintenance or update demands on remote
robotic controller applicaionsis afair application of this model.

Asafinal point on this requirement, it isimportant to note that when the
virtual supervisor may be required to control multiple robots it will contain
functionality from more than one robot. Should the supervisor wish to crede asingle
new method that wraps up functionality on multiple robots, this sould be entirely
feasble. By acdhieving this, the supervisor would achieve something that would have
been significantly more difficult if he or she was programming at the robot level
instead of the virtual supervisor level—multiple robot coordination. At the robot
level, thisinvolves stting upnew communicaion protocols that do trandation
betweean the command languages of the two robots and then having a new
communicaion link (robot to robot) in existence during exeaution. By programming
at the virtual supervisor level, the robots smply use the pre-existent communicaion
links and languages to communicae with a aordinator—the virtual supervisor
processitself. To the supervisor, this coordination till appeasto be wrapped upinto
one function cdl. Thus, he or she may exeaute afunction cdl to achieve some
objedive and without being aware (or needing to be avare), multiple robots may all

play a part in achieving the requested goal.
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3.7 Enabling Fine-Grain control

The final requirement that we wish to achieve isto allow for differing levels
of robotic control. Depending on what task is requested of some robot, the kind of
resources required by the robot to complete their objective changes drastically.
Network distance as well as computation cycles required are two excellent examples
of metrics whose importance changes drastically depending on the type of job
requested of the robot. Thus far, the requirements have been assuming arigid
master/save model, wherein the virtual supervisor talks directly to the robot
responsible for carrying out his or her commands. Assuming this model, the control
flow is static: regardless of what job is being requested of the robot, the supervisor
begins by manipulating the GUI on the computer that is running the virtual
supervisor. Those commands are then sent to the robot, which executes them and
sends feedback to the virtual supervisor. Often the response times are unacceptable™.
The desire to take advantage of the specific resource requirements of a remotely
controlled task is widely held™.

At thistime, it is helpful to introduce a practical example. Therefore, we will
introduce a robot that will serve as such. It isthe Paradex robot, and may be seen

below, in figure 3.1.

13 Ken Taylor, Barney Dalton, Australian National University. [21]
14 Rajrup Banerjee, Amitabha Mukerjee. [5]
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3.1 The Par adex robot

The Paradex is one of the robots at Case Western Reserve University and has sveral
arms that read down to a central tool disc. Thereis nothing about the Paradex robot
that makes it espedally well or poorly suited for our architedure. It does have the
advantage of having force sensors locaed inside eab of the six links from its base to
itstool disc, and with that an enhanced ability to sense and “fed” its way around the
environment. This makes it an excdlent candidate for NAC and thus supervisory
control, as was discussed in the introduction. However, there is nothing about the
Paradex, either physicdly or programmeticdly, that makes it speaal case for control
within our architedure. Consider the following case. The Paradex is st upin an
environment in which it may move itstoal disc aout fairly fredy. The Paradex
exposes only a single interfacethat allows the virtual supervisor to send it Cartesian
coordinates, to which the Paradex will move whatever tool is attadhed to its tool disc.
The virtual supervisor contads the robot and immediately gives the supervisor the

option of using the robot’ sinterface ad sending a destination point to the robot.
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Additionally, as per the dynamic loading of functionality requirement above, a
method that allows the supervisor the option to spedfy a cmplex path for the
Paradex’stoadl to follow has been added to the virtual supervisor. How the supervisor
defines the path isirrelevant, it is only necessary to stipulate that the supervisor has
the adility to meaningfully describe to the virtual supervisor the exad path it wishes
the Paradex’ stoal to follow, perhaps through a sketch pad control. Assume that the
virtual supervisor’s newly added operation may be broken down into two stages. In
the first, the virtual supervisor, with the image of the path the supervisor spedfied in
memory, caculates the adual coordinates that the Paradex must follow. Inthe
seaond stage, the virtual supervisor adually commands the Paradex to moveitstoadl
to ead point and thustravel the path that the supervisor spedfied.

Asauming that the input the virtual supervisor recaves from the user isin any
significant abstradion layer above adual coordinates (afair assumption), the first part
of this processis very computationally intensive in comparison with an idle state or
with the seand stage. The virtual supervisor must deduce aseries of acual
coordinates from the relatively complex representation of the supervisor’'s desired
path. Sincethis sage doesrequire agrea ded of cdculations, the processng power
of the computer on which the virtual supervisor exists siddenly becomes important.
Conversdly, the second stage requires relatively little CPU cycles and agrea ded of
data transmisson speed. When the robot has readed atarget point, the next point
should come quickly, taking into consideration any error in convergence upon the
previous point. Should a serious error occur, such as the Paradex being bumped or

some problem occurring in the environment space the robot neals to receve
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commands to resolve the problem as quickly as possble. If the supervisor isin
another geographicd locaion and separated by alarge network distance, then many
seqonds may passwhile the state goes from the robot to the supervisor, a response
intended to corred the arrent state is given, and that response travels bad to the
robot. Alternatively, in the normal case when the Paradex has converged upon a
target point, it will wait, while the signal is sent to the virtual supervisor and next
coordinate is ®nt bad, cdibrated to fix any error in the cnvergenceto the first
point. Computational ability isnow afar lessimportant metric than a short round
trip time between the Paradex and the supervisor.

Supposg, then, that there were two computers from which the virtual
supervisor could be exeauted. One of them is on the same locd areanetwork
(LAN)™ as the Paradex and as such has a very good network connedion to the robot.
However, it is an outdated machine and not cgpable of fast performance. The other
computer islocaed at the supervisor’s home in a different geographicd locaion from
the Paradex and is on a modem conredion to the Internet. While the round trip time
between that machine and the robot is large, the computer is very powerful and
cgpable of performing massve anounts of cdculations in arelatively small amount
of time. If the virtual supervisor islaunched from the computer on the robot’s LAN,
it will perform well in the seaond stage of operation, but not the first. The oppositeis
true should the virtual supervisor be launched from the computer at the supervisor’'s

home.

15 A Local Area Network isa network that conneds computers that are dose to each other, usually in
the same building, linked by a cable.
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What we would like is for the remote control architecture to contain some
medhanism that will allow not only engaging in this high-level supervisory control
from remote locaions, but will also enable us to gain fine-grain control over the
controlled robot when the situation demandsit. In this case, it seansamost asif a
dual virtual supervisor solution would be cdled for—one virtual supervisor that
resides on the high performance madine and does the cdculations required in stage
one and then a second virtual supervisor that takes the results of those cdculations
and moves the Paradex’ s tool during stage two. Note that one highly undesirable
consequence of the need for running the virtual supervisor on different machines
during the course of one supervisory adion isthat the ac¢ual person who isthe
supervisor must travel to those madines to control the robot and receve feedbad.
In other words, during a phase that required emphasis on CPU, the supervisor would
go to a performance-oriented macdiine and launch the virtual supervisor. When
controlling the robot in a Situation where fast feedbadk was a priority, a different
computer would be desirable from which to host the remote @ntrol. Thisis highly

undesirable.



4. Goal Achievement and Corresponding Design Ar chitecture

Now that the full requirements for remote robotic control have been specified,
we may propose an architecture that we believe will allow us to achieve these goals.
Once that architecture has been put into place, some implementation details must be
listed and explained to prove that it isindeed a solution to the requirements. For
each requirement listed above, the high-level design as well as experimental results
and control scenarios will be discussed. Accordingly, the resulting robotic control
architecture will be revealed and discussed incrementally, so that each goal solution

yields a modified architecture that accommodates that solution.
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4.1 Enabling Remote, Generic Supervisory Control

As discussed in the requirements section, enabling remote, generic,
supervisory control of robotics requires the ability to interact meaningfully with an
unspecified robot regardless of operating system and programming language. This
requires a specific communication protocol and language that describes the robotic
commands to be put into practice that allows information communication between
our generic virtual supervisor and this robot, whose attributes and environment are
completely unspecified.

There is no one protocol on any level or in any category that all operating
systems utilize or with which al programming languages are compliant. However, a
method of communication that will act as the best possible lowest common
denominator must be selected. It should be basic enough that the vast majority of
systems and configurations that we encounter will be able to support it with minimal
difficulty while powerful enough to handle basic Internet communication concerns.
TCP/IP' sockets are a universal standard for communicating information and are
supported under nearly all operating systems, whether Unix or Windows based, hard,
soft, or not real time and are an attractive solution for the communications aspect of
this requirement. They will allow the programmer a standard communications
protocol with which he or she will amost certainly be familiar and which takes care
of much of the work required in transmitting data to a foreign host. Sockets are the

highest level of communications protocol that we can use to still be compliant with

' TCP/IPis Transmission Control Protocol over Internet Protocol. It is the most common
Internet transport layer protocol, defined in STD 7, RFC 793.This communications is based
on the Internet Protocol as its underlying protocol. TCP is connection-oriented and stream-
oriented, and provides for reliable communication
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most robots. Something more powerful, such as Jva's RMI or even Sun’s RPC
would not allow compatibili ty with many robots and, since the protocol must serve &
the lowest common denominator for any generic robot, are unacceptable.

Using sockets adhieves the generic communication asped of this requirement.
However, to interad with a foreign robot, the virtual supervisor must do more than be
able to send data to the robot, it must have apredetermined communication scheme
so that the two parties may interpret ead other. The atributes of the robot (that is,
the properties it contains and the methods it exposes) must be discovered and exposed
in such away that the virtual supervisor may interad with them. Thiswill require a
defined language for expressng robotic commands. Aswas dated in the problem
definition, this concept is nothing new to remote robotic control. This language must
be simple enough to be utili zed by any robot but at the same time complex enough to
adequately describe that robot. The smplest language would contain absolutely no
words or phrases, and would certainly be usable by all robots while not able to
describe ay. A very complicated language would allow absolute antrol down to the
rate & which the robot reads sgnals from the hardware, but would hardly be
applicable to the arerage robot that could be cmntrolled. A midde ground must be
found.

The language we dhose is text-based, which is again in ac@rdance with the
standard communication protocols used in modern remote robotic control. Inthis
language, commands sent to the robot may be one of threethings. property requests,
method exeautions, or control changes. In the first two cases, the name of the

requesting supervisor is snt to the robot along with the name of the property/function
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to exeaute, and in the cae of afunction exeaution, any parameters necessary. The
fina case involves control changes such aslogging onto or off of arobot, or
indicating the desire to begin supervisory control. Logging onto arobot is a seaurity
measure taken to ensure that persons who are not authorized to control arobot are not
ableto do so. After logging in and being authorized by the robot, a supervisor will
then be dle to exeaute methods and recave properties. Properties may be reported
through polling, upon their change, or upon a change of some significance (as
spedfied by the supervisor). Nealy all the outputs and inputs of robots may be
clasgfied by methods and properties. Strictly speking, nealy all software in the
modern world is built upon the mncept of a dass which contains either member
functions or member variables, relating to methods and properties respedively. If all
modern day software can be described through these two caegories, robotics $ould
be definable through the same methods.

When the robot wishes to report to the supervisor, it can send a
property update, a method return value, or a control communicaion. Asinthe cae
of supervisor to robot communication, the first two cases are straightforward. The
robot sends all required information to the supervisor to inform him of the method
completion or of the state diange. In a control communicaion, the robot transmits
messages that confirm or deny a supervisor’ s rights to control the robot. The robot
also uses control communicaions to define dl of its attributes. After a supervisor
first establishes the want and the authorization to control the robot they have

conneded to, the robot then sends the supervisor all the information that definesit.
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This information takes two forms, asis obvious by now. They are ather a property
definition or a method definition.

In the case of a property, the robot is responsible for sending enough details
about the property to defineit to the virtual supervisor'’. One of these details that
define aproperty is a notification level that indicates how important it is to notify the
supervisor about changes to the property. The notification level will eventually
determine how the virtual supervisor will respond to the property notificaion, ranging
from smply displaying a message on the screen to attempting to contad the
supervisor’'s begoer. For instance, when there isa diange in ambient temperature,
only a passve notification is needed. However, if a pieceof hardware malfunctioned
that was endangering the robot and its surroundings, much stronger attemptsto reat
the adual supervisor would be merited.

Method definitions are mostly similar'® in that the robot must transmit enough
information to the virtual supervisor to fully define its methods. Upon receaving this
information, it isthe virtual supervisor’s requirement to display the dtributes of the
robot in a meaningful fashion to the supervisor and also to map the supervisor’'s
requests into strings compliant with this language that may then be sent to the robot
for processng. Using this language, then, any robot should be ale to define itself to

the supervisor in away that permits stisfadory control.

17 spedfically, a property definition contains a dispatch name by which it isto be alled, afriendly
name that the supervisor will see a description, also for the supervisor’s benefit, the type of data the
property represents, whether or not to show the property to the supervisor by default, the initial value
of the property, and finally a representation of the notification level that is by default associated with
this property.

18 Spedfically, the roba is required to inform the supervisor the dispatch and friendly name of the
method, al of the parameters required to exeaute the method, whether or not to show this method by
default, and the type of thereturn value. Each parameter description must indicate aname, description,
type, and default value.
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It isimportant at this point to note the obvious: additional programming is
required on the robot before it will be compatible with the architecture. Thiswas
expected, however. It is obvious that some code must be written on a per-robot basis;
there is no other way each robot can conform to the communication standard being
put forth and expose their functionality. The goal isto make this code as smple as
possible and to allow each robot to communicate with the virtual supervisor using a
language that is powerful enough to fully define the robot. In practice, the owner of
the robot who wishes to plug it into this generic robotic control framework must write
the necessary code on the robotic controller, sometimes referred to as the robotic
proxy control stub, or RPCS. This code should be significantly easier to construct
than implementing a remote control architecture from scratch. The RPCS resides
wherever the bulk of the robotic control code exists; either on robot itself or on the
machine attached to the robot that directly controlsit. The RPCS is the component of
the architecture that is responsible for trandating between the methods and properties
of the robot itself and the language required by the rest of the control architecture.

With both the VS and the RPCS defined, the initial state of our proposed
architecture may now be established. In this architecture, a Virtual Supervisor is
used to communicate with arobot through an RPCS using sockets. The supervisor
will supervise the robot by interacting with the VS. The robot represents any generic
robot, regardless of programming language or operating system, with the RPCS
providing the interface to the rest of the architecture. In diagram 4.1, shown below,

the current architecture design is displayed.
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Proposed Control

Engineer <—__| Architecture

VS

Socket-based communication

Generic Robot running RPCS Translation between

on any operating message-passing language and
system, programmed in Robot actual robotic functionality

any language

4.1 Initial State of Proposed Ar chitecture

4.2 Achieving a Generic Remote Control Application

The virtual supervisor itself should be generic acossall operating systems
and computers. Additionally, nealy all descriptions of the robot’s attributes include a
value of a spedfied type. Methods involve parameters of various types as well as
return values of a spedfic type. Property updates have types and values. The adility
to interpret the value depends primarily on the aility to reaognize the type of that
value. A block of information that is cdling itself a number should be read much
differently than the same block of information cdling itself astring. As such, the
ability to use alanguage that contains variant or generic types that may be used to
refer to al types within that language would certainly be an advantage. Additionally,

alanguage that emphasizes 4rong type safety and refledion would be ahuge ad.
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Type safety of course refersto deding with variables of different typesin a strict
fashion, such that when performing operations on multiple different types the
programmer must explicitly state any situation in which he or she wishes to convert
datatypes. Additionally, type safe languages generally have built in optimizaions
when comparing types. Refledion isthe aility of a programming language to
investigate the type of avariable & run-time and allow the programmer accessto that
information. Thus, the programmer may ded with different types of data in different
ways, even if these different data types were obtained through a pointer to a base
classthat they share. If alanguage that met these requirements were found, then we
would not have to store the type information of ead value & it was edfied by the
robot. We oould instead use generics to represent al values and then use refledion to
determine what the value is and to display it appropriately. The two mainstream
languages at this time that best fit this profile ae Java and C# (pronounced C-Sharp).
Both are based completely on an objed model such that objeds may be used to
represent all data and then refledtion used to determine what data is being stored™®.
We dedded to use C# to creae the virtual supervisor. First, we used C# becaise,
being a newer language, C# has had the opportunity to learn from Java s mistakes and
clealy assessits advantages during usage in the programming world over many

yeas. A seoond reason for using C# was the universally acceted SOAP protocol for

communicaion, unlike Java's proprietary RMI. The biggest we&knessto a C#

19 At this point, a debate is usually raised about Java' s adherenceto this drict objed-oriented behavior.
Thefact that there exist within Java native types, such asthe standard int, that are not represented by
obeds and are grosdy different from theint classfound within Java slibrariesis troublesome even to
the most dedicated Java zalot. Still, Java has been found able to mee strongly objed oriented
requirements again and again in the past, despite its compromises on various points, and as sich is
considered a viable lingual option.
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implementation is that at this time, a CLR? exists only on Windows-based systems,
and thusit is at thistime not as generic as we hope it shall become a C# ages and

expands in popularity.

4.3 Efficient and High-L evel Remote Communication

Now that we have defined the existence of a virtual supervisor that is cgpable of
high level remote communicaion, this objedive is more feasible than ever.
However, we have drealy defined the communicaion protocol utilized by the robots
to be text strings nt acossnormal socket conredions. Therefore, in a master/dave
model such is currently being assumed, this high-level communication requirement
currently has no place We shall passover thisrequirement and returnto it at alater

point.

4.4 Achieving a Dynamic GUI Utilizing I ntuitive, M odern Day Controls

Summarizing this objedive, the virtual supervisor GUI should be &leto
display the attributes of the robot(s) to which it is conneded in an intuitive way
utili zing the standard graphicd controls that are so common in realy every modern
day pieceof software. The &ove achitedural statements have reveded C# asthe
language of implementation for the virtual supervisor. With C# comes a very rich
library of graphicd controls. Spedficdly, therefore, the half of this requirement that
demands using intuitive, modern day controls equates to nothing more than utili zing

the graphicd controls found within the domain of C#. The other half of this

20 CLR — Common Language Runtime. A (very) coarse ejuivalent to a Virtual Machine for Java
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requirement is dynamicdly changing the look and fed of the virtual supervisor
acording to the atributes of the robot to which it conneds. This half now equates to
creding these C# controls and padng them on the GUI after the virtual supervisor
has been exposed to the robot and has had the robots attributes (functions and
properties) defined. Once placed on the GUI, the supervisor may then interad with
these dynamicaly loaded controls and thereby control the robot that defined the
underlying functionality.

Using C# s built-in graphicd interfacelibrary, these objedives are very
adhievable. When arobot reports a method with some number of parameters and the
supervisor indicaes to the virtual supervisor that he or she has an interest in exeauting
that method, the virtual supervisor must smply dynamicdly creae wntrolsthat are
good representations of ead parameter’ stype. The supervisor can then manipulate
these newly creaed controls to reflea the parameter values he wishes to send to the
method. However, the aeaof difficulty has now become dea: how does the virtual
supervisor adualy map a datatype to a cntrol that provides the best representation
for that type? When the robot requests input of some spedfied type, what control
should the virtual supervisor cree to recave input from the supervisor? One simple
response to this question (indeed, the solution sometimes taken by robotic control
applications) isto simply accept al input intext. Textboxes are well recognized as
established methods of gaining input from a user on Web Pages and computer
applicaions alike. All parameter values must eventually beame text strings anyway,

when they are to be passed to the robot. While thisis aworkable solution, it does an
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unsatisfadory job of adhieving our true objedive: to provide intuitive cntrol of the
robot using a control that best represents the type of ead required value.

In order to use different controls for different data types, then, we need an
effedive way to map datatypesto controls. We wish to be more flexible than
assgning one @ntrol to one datatype, and instead offer the user various controls that
map well to the datatype he must provide. For instance, if the datatype is an integer,
then horizontal and verticd sliders may both be options, as would various other
controls, and the virtual supervisor would by default display one of the controlsin
that group. In other words, we neel to classfy which groups of controls are best able
to represent eat datatype. At present, al basic data types are ssociated with a dass
of controls that may be displayed on the virtual supervisor GUI. However, this
classficaion work is ongoing work. Controls and classfications alike ae being
added to the achitedure as users of the virtual supervisor request more cntrols are
used to represent various data types and also as robot methods require more and more
complex types asinput. Below, in figure 4.3, isthe GUI before arobotic connedion
ismade. Note that there ae no methods listed, nor are there any parameters
displayed on the form. The GUI is atemplate—it isinitially blank and uselessand

molds itself to fit the profile of whatever robot(s) it isinstructed to control.
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4.2 The Virtual Supervisor GUI in itsblank state; no connectionsto robots have been made.

The Paradex robot was introduced ealier in this chapter and, sinceit has an RPCS, is

able to recave oontrolling connedions from this architedure. Accordingly, the

Virtual Supervisor may be used to make a @nnedion to the Paradex, which will

result in the GUI automaticaly updating to refleda the Paradex’ s exposed methods. In

figure 4.2 below, we seethe updeted form. Severa new methods have ppeaed, eat

of which was exposed by the Paradex robot through the RPCS. Most of the methods

are related to manipulating the workspaceof the Paradex robot, a board with several
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controls attached to it. Inthisfigure, awindow is shown overtop of the GUI that isa
webcam image of the Paradex’ s workspace The Parradex robot itself is hanging in
the ar just above the board. After the supervisor indicates an interest in one of the
reorted methods, “Large Metal Switch”, the virtual supervisor program updates its

GUI. Thisisthe state that Figure 4.4 captures.

ﬂg\firtual Supervisor Panel

Agent Contral - Robot Contral |W'eb Tabl M ethod Creation |
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Method Invocation

vr.leashed 1 j . )

tethods:

ﬂg‘\veh Camera Panel
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SMALL METAL SWwITCH
WaLWE

Properties

4.3 The Virtual Supervisor after a connection has been made to the Par adex robot

The parameter required to exeaute the ‘Large Metal Switch’ method has been
graphicdly displayed in the upper right. It isaninput of type ‘range’. Range types
describe data that must fall within a cetain range of values, in this case one of three
values (corresponding to threestates of the large metal switch, either neutral or

switched to the left or right). The virtual supervisor seleded its default control to
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represent arange input, a horizontal dider. Each of the three stops along the dider
indicates a possible input. Upon holding the mouse cursor over the method name, a
tool tip has appeared, informing the supervisor of the name and return value of the
method (in this case thereis no return value). The virtual supervisor will render
controls to represent many different types of data and thus mold itself into the form of
whatever robot to which it connects.

It may also be noted that there is abox for robotic properties to be selected
and monitored, as well as for the feedback from method calls to be displayed. As
mentioned above, much of the virtual supervisor is crude and still under development.
Thereis currently a project at CWRU underway to continue to develop this concept
of dynamic controls based on type classification. The virtual supervisor is currently
the least developed component of our control architecture. Below, figure 4.5 displays
the updated diagram of our proposed control architecture. The Virtual Supervisor is
now defined to be a visual C# program that adapts to whatever robot(s) it controls,

thus fulfilling our requirement for a dynamic GUI.
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4.4 The Control Architecture after definition of theVS



5.Achieving Remaining Goals: A Need for Architecture M odification

Many of the goals thus far have been achieved and the cntrol architecure
defined and updhted per the solutions. However, there is a significant challenge
asciated with achieving the remainder of the goals from within the standard
master/dave architedural model. The desire to add dynamic functionality to the
robot through reprogramming the Virtual Supervisor has been discussed in detail, but
very little has been mentioned about exadly how to adchieve this objedive. In short,
the goal of allowing supervisors to add functionality to robots dynamicdly is as
follows: Upon evaluating the airrent functionality of the robot(s) under their control,
supervisors may dedde that there exists a need for the robot to have alditiona
functionality based on its current functionality. Inthat case, the supervisor should be
able to program a new method, based on existing methods and properties, that may be
loaded into the robot for exeaution. This new method would wrap upthe airrently
existent methods and properties in a supervisor-defined fashion. Sinceit certainly
may not be assumed that the robot itself may have the aility to dynamicdly load
code and expose this abili ty remotely, this dynamic code loading wasto occur inside
the virtual supervisor. Sincethe VS drealy is aware of al of the robot’s
functionality and is written in C#, dynamicaly loading a function based on existent
functionsisfeasible. If the supervisor could continually creae new functions that
wrapped upexistent functionality, the result is very comparable to an objed oriented
programming model. At ead level, functionality is wrapped upby member functions
that make use of the functionality from the level below. To illustrate, we return to our

DrawSquare() example proposed in the goals chapter. Suppose that a robot initialy
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had functions DrawLine() and Rotate(). A supervisor who knew nothing about the
implementation detail s of either of these functions could write anew function:
DrawSquare(). The DrawSquare() method could smply cdl the DrawLineg() and
Rotate() functions in whatever order and frequency and with whatever parameters are
required to adually draw a square. Then, the Supervisor could write a
DrawDiamond() function that wrapped upRotate() and DrawSquare(). Furthermore,
he wuld write afunction DrawBaseball Field() that used DrawSquare() and
DrawDiamond() to draw the basic infield damond and squares for the bases. At eath
level, the ommands are layered into higher and higher levels of abstradions just as
the dassesin modern day applications repeaedly abstraad away lower level
functionality.

When applied to the Paradex robot, the supervisor could have the opportunity
to write functions like EverythingOn() that moved all switches and buttons to the ‘on’
position, or ToggleAll(), that viewed the properties of the robot (the arrent positions
of the switches) and then toggled the state of ead switch. Using just this one high-
level command certainly saves the supervisor the trouble of having to exeaute eab
switch's controlling method one by one whenever he or she wishes to effea global
change.

Notethat at ead level, we have alayer that sees only the level below it.
Moreover, the mmmands at the layer below are what are considered the ‘robot’
functionality, even though the pre-existent robot functionality may have drealy been
abstraded by one or more layers before the airrent layer isreadhed. Note that when

the layer in question receves commands to exeaute functionality from the layer
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above, it appears as if those commands have come directly from the supervisor. In
summary, each level acts as a supervisor to the level below it and a robot to the level
aboveit. Each of these layers has its own drastically different set of functionality
and, associated with that, processor and networking requirements associated with it.
Each layer quickly takes on both the resource requirements and attributes that are
normally associated with an actual robot.

Taking a step away from this requirement for a second, we pause to look at
our intention to enable fine-grain control of the robot. Recapping the requirement, we
wish to provide a mode in which the process supervising the robot may achieve tight
control over the robot when needed or computational power may be provided to that
controlling robot when that characteristic is deemed important. Previoudly, this
requirement was determined equal to allowing the process that is actually responsible
for controlling the robot to be able to exist at different machines depending on its job
or stage of such. Although it is desirable for the process to exist at different
machines, it is highly undesirable to require the supervisor to have to physically move
from machine to machine as the process did. Idedlly, fulfilling this requirement
would involve having a process that exists independently of the virtual supervisor that
is responsible for carrying out commands for the virtual supervisor but may move to
whatever machine best fitsits needs. This process could abstract away the control of
the virtual supervisor, and report to the robot as a supervisor while reporting to the
supervisor asarobot. With full freedom for movement given to this process, the
control architecture would be flexible enough to alow for fine-grain control when

merited while till allowing for standard supervisory control from a remote location.



Summarizing these two sets of requirements, the following istrue: In order to
achieve dynamic code loading, the supervisor must be able to write object oriented
code fragments which act as robots to both the supervisor and to the code fragments
above them and act as supervisors to the robot and code fragments below them. Each
of these code fragments has its own task and CPU/latency requirements as well as
robot-like functionality and properties. To best fulfill the flexibility required allowing
for fine-grain control inside a primarily supervisory control architecture, a different
process needs to abstract away control from the Virtual Supervisor. This process, or
processes, would act as supervisors to the robot and as a robot to the supervisor, and
would be able to move from machine to machine as their requirements change along
with the task they are currently executing.

The result of combining these two requirementsiis clear: there exists a need
for anew type of process, a process that exists between the virtual supervisor and the
robot. These processes would take on the characteristics of the robot or other
processes below them and expose them to the supervisor or other processes above.
They must be capable of moving from one computer to another as their resource
requirements change. Furthermore, they would provide a very natural host for the
code fragments the supervisor would write to add functionality dynamically. Since
this functionality is at base a way to abstract the robot functionality from one layer to
another, this functionality could be added to the functionality of these processes, since
they are already existent in layers between the virtual supervisor and the robot. It
follows, then, that each process would encapsulate the functionality of the process

below it. Thisleadsto achain of processes between the supervisor to the robot, each
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reporting to the processabove and the processbelow in the dhain of command as if
they were the supervisor or the robot. These processes will be referred to as virtual
robots, or VRS, sincethat iswhat they appea to be from the perspedive of the
supervisor. It iscertainly plausible that more than one virtual robot could exist
between a virtual supervisor and the robot under its control. These virtual robots are
pea-to-pea processesthat will compose the very core of our architedure and will
allow usto circumvent many of the problems in remote robotic control surrounding

master/dave models?,

5.1 The Case for Mobile Agents

The ideaof putting alevel of abstradion between two processesin order to
adhieve agreder degreeof flexibility is not novel. Infad, there exists an
architedural control model that meds the achitedural needs. This model is cdled
the agent model, and it is based around the cncept of processes cdled agents that aa
in proxy for the user. The term agent isa confusing one, with many different
definitions. Grissand Pour while working for HP Labs provide us with one of the
ealiest definitions for an agent: "A proadive software component that interads with
its environment and other agents as a surrogate for itsuser”. But this definition is
very broad. Again, thereisalad of universal agreement on exadly what is required
to deem some processas an agent, but generally a processis considered an agent if it
displays one or more of the following charaderistics:

* Autonomous. ads on user's behalf independently

2L Giri Nipi, Amitabha Ghosh, K.Sriram. [17]
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» Adaptable: may be austomized or changed run-time

* Mobile: agent can move aound to different madines at different locations
» Collaborative: agents can work together

* Pergstent: ability to retain state over time

» Knowledgeable: can reason about its goals and users

Examples of smplistic agents include®

»  Shopbots and pricebots, which monitor product availability and price, then
negotiate and complete sales of goods and stocks to optimize businessto-
businessand businessto-consumer interadions.

* Personal agents which interad diredly with a user, presenting some
personality or charader, monitoring and adapting to the users’ adivities (eg
Microsoft Office Asgstant)

* Internet spidersthat autonomously move from computer to computer,
gathering information about the web sites they find there and reporting them

to a central data warehouse for access

Therole that the virtual robots fulfill within the aurrent control architecure med
nealy all of the requirements associated with mobile agents, and thus they may be
clasgfied as sophisticated mobile agents. The virtual robots are aitonomous: they aa
independently from the supervisor and dedde without input when it is beneficial to

move from one computer to another. The fad that the VRs will allow the loading of

22 \Wayne Pease. [18]
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code & run-time and then take on the functionality exposed by this code makes them
highly adaptable. They are mobile by definition; they will move from one cmputer
to another as the task they are charged with exeauting changes and gives different
prioritiesto various resources. Sincethe deasion about whether or not the VR
should move itself to another computer is based upon the resources available & its
current locaion and others, it is knowledgeable @out itself and surroundings. VRS
are ollaborative, sincethey must transmit information between themselves and also
the supervisor and the robots. Currently they are not persistent (oncethey are
destroyed, they will start over in ablank state), but thisis the only attribute that
agents may have that the VRs do not.

Including these virtual robots as mobile agents in our architedure is the
foundation of our proposed control architedure for supervisory control of generic
robots. A supervisor will use avirtual supervisor to control arobot. However, the
virtual supervisor does not ded diredly with the robot. Instead, it communicaesits
desiresto avirtual robot. That fix virtual robot has the adility to move to a different
computer when it concludes that the task it has been assgned could be more
optimally achieved elsewhere. That virtual robot will expressits commands to what
looks to be the robot below him. This ‘robot’ may be the a¢ual robot, or could be
another virtual robot posing asone. Should it be avirtual robot, then that processwill
be independently determining its own resource demands and where it would best be
locaed. If it isthe robot itself, then the command from the supervisor will have
traversed the full length of the VR chain. Figure 5.1 below shows the control

architedure dter its biggest change yet—the aldition of a layer of virtual robots.
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Engineer —___|
o VS
Intuitive C# GUI

Proposed Control
Architecture

Processes that house dynamically

that adapts to VR loaded functionality and move from
whatever robot(s) h-____““--one computer to another as their
it controls control requirements change
VR
4 Socket-based communication
Generic Robot running RPCS Translation between
on any operating message-passing language and
system, programmed in Robot actual robotic functionality
any language

5.1 Control Architecture after introduction of Virtual Robots (VRS)

5.2 Revisting Efficient and High-L evel Remote Communication

The remaining requirements can now be integrated into this revised control

architecture. Since we will have virtual robots that will exist between the supervisor
and the robot, there is the obvious need for them to communicate. These agents have
been written in C# for the same reasons that C# was chosen to implement the virtual

supervisor. Since the C# virtual robots must communicate, the previous requirements

of high-level, efficient communication whenever possible is immediately applicable.

Since the virtual robots are both C# applications, they may make use of the remote

communication standard for that language. This communication protocol is, in fact,

not something C# or CLR specific, but is a protocol known as SOAP, or Simple

Object Access Protocol. SOAP is ahigh-level communication protocol that is
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analogous to Sun’'s RPC or Java s RMI. SOAP isauniversally acceted protocol that
came out of the dforts of several major corporations in the software industry.

Besides working over 1P, SOAP allows any data within the program to be transported
to remote instances of classes through a binary or XML-based payload, which
produces an efficient padkaging of data.

Since we have this high-level communicaion available to us, it is utili zed for
communication by the virtual supervisor and virtual robots. However, the robot itself
cannot communicate using SOAP; it isrequired only to be compliant with the lowest
common denominator of network communication found on typica robots.
Accordingly, the achitedure utilizes a communicaions hybrid model that uses
SOAP based communication throughout with the exception of the link between the
robot and the virtual robot that communicaes with the robot direaly. This bottom-
most virtual robot is referred to asthe ‘Base Virtual Robot’ or ‘Base VR’ and must
communicae with the robot through sockets. Figure 5.2 below shows the

architecure with the communication protocols defined between eat process
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Froposed Control
Architecture

Engineer 1-.,____’_* VS

Intuitive C# GUI
that adapts to
whatever robot{s})

Processes that house dynamically
loaded functionality and move from
one computer te another as their

it controls /comrol requiraments change
J Socket-based communication
Generic Rebot running RPCS Translation between
oh any operating message-passing language and
system, programmed in Robot actual robotic functionality
any language

5.2 The Control Architecture with the VR and VS links communicating via SOAP

From atedhnicd standpoint, all communicaion within the achitedureis
interfacedriven. Each VR, therefore, has no ideaif it is reporting upto another VR
or to the VS itself; only that it is an objed that inherits from an interfacethat accepts
upstrean functionality. The same is true downstream, the virtual supervisor knows
nothing about the processto which it passes method exeaution commands; only that it
inherits from an interfacethat allows for downstrean communication. This complete
abstraaion from the type of processin the dhain above or below a processin question
(the process neighbors) alows for virtual robotsto be alded or removed from the
chain without disturbanceto the rest of the dhain. Commands continue to be passed
down the dhain until arobot recaves them, and return values travel up the dhain.
When a virtual robot becmes mobile and changes its madine of residence, it merely

alertsits neighbors of its new IP, they re-establish communication, and the dhain
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remainsintad. If anew virtual robot is awned and placed just downstream of the
virtual supervisor, it notifies its neighbors, and the virtual robot that previously
reported to the virtual supervisor now reports to the new virtual robot using the same

interface

5.3 Setting Up the Control Architecture

Sinceit has been assumed that setup of these processes had already occurred
throughout this sedion, a short time will be spent discussng how that setup occurs.
Using the terminology associated with mobile agents, agents may only be constructed
on agencies, which are willi ng hosts ready to spawn new agents or accept existent
agents that are looking for a new home. The existence of hosts is what excludes these
mobile agents from the possbility of being caegorized as a virus—the host computer
must be willi ng to accept their presence. Sincethese agencies are not implicitly
known to the supervisor, nor to the virtual supervisor, aregistration server must be
employed that allows registration and lookup of agencies and currently existent
agents by any interested party. This server is cdled the CentralSite server. Currently,
there has been no effort made toward networking the registration servers with ead
other. In the future, we hope to network eadt server together so that eat CentralSite
server will have information about agencies that have been registered with any server.
The name CentralSite server was coined to refer to the hope that they would beaome
the center of agte for registration that may talk to other centers of registration sites
and fredy share registration information. Upon startup, the CentralSite server smply

waits for registration or lookupsto occur. Upon startup, the Agency processrequests
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to know the address of a CentralSite server where it may register itself and where it
may go to look up other agencies when it is considering amove. |t isnot necessary to
register an agency with a server, but then only supervisors who know about the
agency may spawn agents upon it (since they may not look it up), and the agents will
not have a server upon which to look up possible move locations. The addition of
this lookup server to our architecture is required, and thus figure 5.3 below shows its

inclusion.

Proposed Control

Engineer —____ VS Architecture
Intuitive C#:UI\‘ Processes that house dynamically

that adapts to loaded functionality and move from
whatever robot(s) h__-'“"‘-—-one computer to another as their

- it controls i
CentralSite control requirements change
registration and SOAP
lookup service
./Socket-based communication
Generic Robot running RPCS Translation between
on any operating message-passing language and
system, programmed in Robot actual robotic functionality
any language

5.3 The Control Architecture including the CentralSite registration and lookup process.

Below isthe agency process, upon start:

D: \ code\ ny code\t hesi s\ vr\agency\ bi n\ Debug>agency. exe

Pl ease enter the hostnane or I P of the Central Site nachine. ..
(enter nothing to not use a central site):

ragi ng. cwr u. edu
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Successfully connected to centralsite server and registered this
agency.
Agency activated. Press enter to quit (and deac tivate).

And the following is the CentralSite server process, upon start:

D:\ code \ my code \ thesis \vr \ CentralSite  \ bin \ Debug>CentralSite.exe
Central Site server activated. Press en ter to quit (and deactivate).
User: ke & Pass:  ¥rkkkkk added.

1 user adde d to permissions.

<2:21.14>(an agency @ 'raging' was added to the lookup service)

The registration server requires a user name and password before it allows the agency
to register, thus providing a security mechanism against hostile agencies from
registering to host agents.

When the Virtua Supervisor program is started, the user is asked to enter the
address of a central site server. Upon doing so, a listbox with all registered agencies
is populated. In this case, the CentralSite server and the Agency are both running on

the same computer, raging.cwru.edu. All of thisis shown in figure 5.4 below.
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Agent Control | Robot Eontroll Weh TabI t ethad Eleationl

—hgencies available: — Currently exiztant agents:

|raging.cwru.edu Go |

—LCreate a Mew Agent

Select an Agency

[Select an agency to spawn an agent]

Create |

—Agent Selection and Mobility

Enslave:
[Selected Agent]
|new agert j Go |
[ e Rebat Go | Imobility v[ Go |

5.4 The Central Site server shows one agency registered; an agency located at the computer
‘raging’.

Once an agency has been located, the supervisor may create an agent upon it. When
that agent is created, it may endave another existent agent, a new agent it can create,
or an actual robot. Once successfully endaved, the robot (virtual or not) is subject to
the control of the virtual supervisor. Of course, to endave another process, the
supervisor must first log on, and as was described earlier, the process of logging on

involves the transmission and approval of credentials. This meansthat it is not
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possble for any agency or robot to be endaved against itswill. In the example of
figure 5.5 below, two VRs have been creded on the same computer and then base VR

endaves arobot cdled ‘MotoMan’:

i

Agent Control | Robot Eontroll Weh TabI t ethad Eleationl

—hgencies available: — Currently exiztant agents:
|raging.cwru.edu Go | E|D wI.raging. 1
=l [#] vr.raging.2
- C]ROBOT:Motoman

—LCreate a Mew Agent

Select an Agency

Iraging j
Create |

—Agent Selection and Mobility

Enslave:
¥I.1aging. 2
|new agent j Go |
|Mu:|h:|man

tade a connection from wr.raging. 2 to the robot Maotaman

5.5 The Virtual Supervisor showing a chain of two VRsand an actual robot under itscontrol.
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The agency’ s output below shows that the supervisor (whose name is abstraded by
the word ‘User’) creaed and logged onto the first VR, vr.raging.1. Inthis
experiment, he then asked vr.raging.1 to creae anew virtual robot using his
credentials, and enslave it. Thus, we seethat vr.raging.2 is creaed by vr.raging.1.
Then the supervisor instructs the base VR, vr.raging.2, to conned to arobot,
Motoman. That VR reports a cnnedion with the robot, and then the VR upstream
from it, vr.raging.1, reports a connedion as well (since @nnedions are pased
upstream, signifying that if one VR isamaster to arobot, then all VRswho are a

master to the Base VR are dso mastersto the robot):

(enter nothing to not use a central site):

ragi ng. cwr u. edu

Successful ly connected to centralsite server and registered this
agency.

Agency activated. Press enter to quit (and deactivate).
<2:26.7>{vr.raging.1}User has |ogged onto this VR
<2:26.11>{vr.ragi ng. 2} User has | ogged onto this VR
<2:26.11>{vr.ragi ng. 1} Successfully created and | ogged on to a new VR
who is now one of ny slaves, named: vr.raging.?2

Going to attenpt to listen.

<2:26.15>{vr.raging. 2} vr.raging.2: reports connection wth Mtoman
formal nane

<2:26.15>{vr.raging. 1}vr.raging.1l: reports connection wth Mtoman
formal nane

This notification and control continues to be passed upto the supervisor himself who
now contains the definitions of the dtributes for the robot. These atributes include
threemethods as well as one property, which have dl appeaed on the Robot Control
tab. The oontrol for the parameter to the seleded function have been dynamicaly
creaed, as was discussed duing the intuitive GUI portion of thethesis. Infigure 5.6

below, this state may be seen from the perspedive of the Virtual Supervisor.
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[{H ¥irtual Supervisor Panel

Agent Control - Robat Contral |Web TabI M ethod Eleationl

r—Robat Information

wr.raging. 1

Methods:

=

Fick & number, 1-3
[ the [aundn
Shice Off David's Hand

Froperties

— Method Invocation

Ifreeing the camera

=101 ]

EE

—Feedback

tade a connection from wr.raging. 2 to the robot Maotaman

5.6 Thevirtual supervisor after contact has been established with a robot.

At this point, setup has been completed and the supervisor can now command the

virtual supervisor to execute functionality on the robot. The virtual supervisor will

pass those commands down through each VR until the command propagates to the

robot itself. The robot will then execute the command, send the return value (if any)

to the base VR, and the value will travel back upstream from there until it reaches the

supervisor.
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What follows is an example of such. The method was exposed on the robot in
referenceto nea lab mishap famous to some of the team members working on this
projed. In this mishap, this author’s hand was nealy injured while atempting to free
a camerafrom a supposedly unpowered robotic am that cameto life & a dangerous
time. The function itself smply returns the text string it was passed. The parameter

name requests a locaion and its value has been entered above & ‘freang the canera’.

<2:34.8>{vr.raging.1}Relaying a call to Motoman formal name.Slice
Off David's Hand

<2:34.8>{vr.raging.2}Relaying a call to Motoman formal name.Slice
Off David's Hand

<2:34.8>{vr.raging.2}Got a return value from Motoman formal name for
official_sliceDavids Hand(freeing the camera)
<2:34.8>{vr.raging.1}Got a return value from Motoman formal name for

official_sliceDavidsHand(freeing the camera)

5.4 Achieving Single Supervisor, M ultiple Robot Control

The goa of achieving single supervisor, multiple robot control has now
bemme fairly essy. Instea of requiring a one-to-one master-to-dave ratio, we dlow
amaster to endave multiple processes. Thus, the master takes on the functionality of
ead of its daves and more than one slave will passmessages upstrean through the
same VR. We do not allow, however, a dave to have more than one master. It is
unnecessary, for there ae no reasonable use scenarios in which it is advantageous to

alow avirtual robot to report to more than one master. Robots may only be
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controlled, after al, by asingle supervisor. Elimination of this possibility thus
excludes many frustrating problems encountered in peer-to-peer process algorithms,
such as cycles. When asingle VR is amaster to more than one robot (either directly
or through other VRs who are endaved), the functionality from al its davesis
accumulated and exposed to upper VRs and the Supervisor. Thus, our final
architectural control diagram has been constructed. It is displayed, in finished form,

by figure 5.7 below.

Engineer 4———m VS "_/SEP-" VR Proposed Control

Architecture

Intuitive C# GUI f .

that adapts to Mobile Agents

whatever rebot(s) VR capable of
CentralSite it contrals recemning

registration and SOAP ) dynamically
lookup service VR VR VR loaded

functionality
F 3
Socket-based communication l

RPCS RPCS RPCS

Robot Robot Robot

5.7) Thefinal control architecture, complete with Virtual Robotsin a 1:Many relationship

5.5 Achieving Fine-Grain control

With the control framework finalized, the remaining requirements may be
addressed without much effort. Since the virtual robots are mobile, they can move

from one computer to another when their duties change. Now, consider the previous
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fine-grain control example in which the Paradex was being commanded to move its
tool in a complex pattern. The virtual supervisor accepted a path from the supervisor,
and the processs that load functionality dynamicaly, must first trandate the image
into a point-by-point path for the robotic amto travel. While before it was unknown
what processes would load this functionality and thus it was assgned to the Virtual
Supervisor, we know now thisto be the role of the virtual robots. In the second stage,
then, a virtual robot must send the target points to the Paradex and monitor closely for
problems while acounting for errorsin convergence Inone example, the virtual
supervisor creaes the bare minimum — one virtual robot to accgpt commands from
the virtual supervisor and control the robot. This virtual robot has been loaded with
the functionality to cadculate the cordinates that the Paradex’stoal isto follow (stage
one), and knows how to send coordinates to the Paradex and monitor its progress
(stage two). Stage one requires a powerful procesor, and during stage two,
minimizing round trip time between the VR and the robot is of top priority. The
aaual loading of this functionality into the virtual robots will be discussed in the next
sedion of thisthesis. It isonly important at this point to note that the VR itself is
exeauting these cmmmands, not sending a request to cdculate the aordinates for the
path to the Paradex and then waiting for the robot to return the cdculations. Were
that the cae, then the location of the VR would be irrelevant—no matter where it was
locaed, the robot would still be doing al the work.

To start the scenario, the virtual supervisor exeautes the dynamicdly loaded
function on the VR, passng it some representation of the path for the Paradex’stodl

to follow. When the VR bre&s down this function cdl into the first stage,
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cdculating the aordinates, it is aware of its task and notices very quickly that it isa
CPU intensive task. The VR does alookup on the registration server and finds that
there ae other agenciesregistered. The VR procealsto colled information about
round trip times from ead agency to its dave, the Paradex, as well asthe
performance caabili ties of ead agency. Should this agent deducethat it isin its best
interests to move to aforeign agency, it will do so. Inthefirst stage, the virtua robot
will move to the powerful computer at the supervisor’'s home and cdculate the
desired coordinates. During the second stage, the virtual robot will move to the
computer on the Paradex’s LAN and engage in fine-grain control of the robot, passng
it coordinates and monitoring its progress Thus, without the Virtual Supervisor (and
thus the supervisor) moving to any other computers, the wntrol of the Paradex,
housed by the virtual robot, moves fredy throughout the agencies and is optimized
for thetask it isengaged in. This kind of mobility has been implemented and tested —
successully— as resource neals change avirtual robot will i ndeed survey its
surroundings and move to the computer best suited for its task.

The most complicated portion of this processis the logic pertaining to the
VRs dedsionto move. Inthe arrent implementation, if the agent finds that the
available CPU and network location of a foreign agency’s computer are better suited
for its current task than its current computer, it deddes that a move would be
advantageous and proceeds. In other words, a greedy algorithm bent on locd
optimization is utili zed in which the VR optimizesits own state. There ae severd
outstanding issues with this method that will be discussed in the Future Work sedion

at the end of the thesis.
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One technical concern about agent mobility is simply coordinating their
moves. Although there are many well known distributed algorithms, applying
distributed programming techniques to a series of processes that decide
autonomously when to move and must be responsible for passing messages both up
and down the chain is challenging. Virtual robots need to coordinate their move such
that two neighbors may not move at once, or else they would be unable to find each
other to report their new location. VRs also may not move when they are currently
executing any functionality. If a message is attempting to pass through a VR that is
currently moving, the VR must store the message and deliver it to the master or dave
process upon completion of its move. The classic distributed algorithm that solves
this coordination problem involves setting up a coordinator process that grants or
denies the processes the right to move. However, there is the danger of avery sow
coordination effort. When the task being executed has alow response time priority,
the virtual robots may have moved themselves to powerful computers at large
network distances from each other. Should network response time be a priority, it is
probable that one virtual robot will move in close proximity to the robot to achieve
this fine-grain control while the others remain far apart. Therefore, because our
virtual robots are mobile and flexible, there is never a guarantee of a centrally located
coordinator process. In fact, the processes will most likely be at a close proximity to
their neighbors, but the virtual robots at opposite ends of the control chain may be at
large network distances from one another. Therefore, any algorithm that relies too
heavily on the virtual supervisor as a coordinator is potentially spending a long time

sending packets back and forth and wasting more time than might be gained by the
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benefits of avirtual robot’s requested move. An agorithm that utili zes minimal
supervisor moderation and heary coordination with neighboring processes was
utili zed. Thisis merely aminor technica detail, but noteworthy becaise of the
unusual perspedive required when approaching such a dassc distributed application

coordination problem.

5.6 Achieving the Addition of Dynamic Functionality to the Robot

The only requirement that is not currently in the control model is allowing the
supervisor to dynamicaly load functionality that may apply to the robot. Originaly,
in amaster/dave achitedure, the virtual supervisor was required to dynamicdly load
functionality in order to adchieve this requirement. However, in our current
architedure, the virtual robots are aurrently abstrading away the control of the robot
in layers, ading as intermediaries between the virtual supervisor and the robot. They
are dso cgpable of moving from one computer to another as their job requirement
changes, and thus efficiently exeaute ade themselves instead of merely passng on
instructionsto the robot. Because of these two fads, adding dynamic functionality to
the virtua robotsisthe logicd progresson of their role within the achitedure. Thus,
it is not the robot that isto be modified, nor the virtual supervisor, but rather the
virtual robots that exist between the two. Because the virtual robots do exist as
supervisors to robots and virtual robots below them and as robots to any virtual robots
or the virtual supervisor above, they provide us a natural medium in which to
partition up added functionality that will wrap upexistent robot commands and

abstrad them to a supervisor.
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If arobot exposes functions DrawLine() and Rotate() through the
architedure' sremote cntrol interface then avirtual robot could be programmed with
a ade fragment that cdls DrawLine() and Rotate() four times and encgpsulatesit in a
function it exposes as DrawSquare(). This VR, then, which previously was
responsible only for transmitting the aili ties of the robot may now report
functionality of its own along with that of the robot. The VR exposes the sum of
these functionalities to the processupstream, which eventually reades the supervisor.
The supervisor may now exeaute the DrawLine(), Rotate(), or DrawSquare()
methods, acording to what the VR reported. Thisisillustrated by figure 5.8 below,
which lists ead processinvolved in the achitedure dong with the cmmands they
are avare of. When read top to bottom, it shows how the methods the supervisor is
cgpable of exeauting may be decomposed into function cdls that the robot itself

understands.
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Believes that the rohot it is

V5 controlling implements
DrawLine{), Rotate(), and
; DrawSquare().
VR Reports DrawLine{}, Rotate(),
: and DrawSquare() upstream
VR [ynamically loaded with
DrawSquare(), reports it upstream
: along with rehotic functionality.
VR Reports DrawLine() and Rotate()
T upstream
RPCS

Implememts only DrawlLine() and

Robaot
Fotate()

5.8 The methods reported when a VR has dynamically loaded a function. Note that each process
believesthat the process below it isthe actual robot and that the process above isthe actual
virtual supervisor, thusthe DrawL ine(), Rotate(), and DrawSquar e() commands all appear as
actual robotic commandstotheVS.

Should the supervisor choose to execute the DrawLing() or Rotate()
commands, the normal case commences. the command is issued down the chain until
it reaches the robot, who will execute the requested function and then pass the return
value (if any) back up the chain to the virtual supervisor. Only the robot itself
executes any meaningful code, the virtual robots act only as messengers, passing the
execution command down and the return value up. However, should the supervisor
choose to execute DrawSquare(), the command that exists on the virtual robot, a
dightly different case will commence. The command execution will travel

downstream from VR to VR. Each VR between the VR that actually implements
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DrawSquare() and the VS is under the impresson that the robot adually exposes
DrawSquare(). Thisis natural, since ead one of those VRs will believe that the
processjust downstream is the adual robot, and that ‘robot’ was the processthat
exposed and reported the DrawSquare() command. When the DrawSquare()
exeaution command readies the VR that houses its functionality, that VR cdlsinto its
functionality instead of cdling the next VR (who, of course, would not know what
DrawSquare() was). That functionality, in this example, will cal DrawLineg() and
Rotate() four times on the gpropriate dave VR. At this point, then, the VR,
controlled by the ade it has loaded, will passthese cdlson to the process
downstream until they read the robot. Thus, this VR now has a more significant role
than merely passng messages to the robots; it is exeauting meaningful code that is
giving its own commands to the robot.

This :oond, more complicated scenario isillustrated in figure 5.9 below.
This figure shows the propagation and decomposition of a Supervisor’s command for

the robot to DrawSquare().
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VS Executes DrawSquare()
VR Passes DrawSquare()
downstream

Realizes that it inplements

VR DrawsSquared), calls DrawLine()
: and Rotate() four times, in order
VR Never receives a call for

¢ DrawsSquared), passes DrawLine()
and Rotate commands downstream

RPCS

Robat Execwutes DrawLine() and Rotate()
four times, thus drawing a square

5.9 The execution of a dynamically loaded function. Note that only the top two VRs ar e awar e of
the function DrawSquar e (), which was loaded into the middle VR, and thus when the middle VR
decodes DrawSquar &) into DrawL ine() and Rotate() components as the super visor

programmed, the lower VRs and the robot itself will be able to recognize and execute the
commands.

Aswas indicated previoudly, dividing new functionality among the virtual
robots results in different virtual robots each implementing different tasks with
different resource requirements. The implications of such are significant. Revisiting
the example of cutting shapes out of sheet metal illustrates this point. Previoudly, a
supervisor could dynamically load both stagel (CPU intensive) and stage? (priority
on network response time) functionality into the same VR. That VR, then, would

move to a different machine as it changed stages. Alternatively, the supervisor could



68

spawn two different VRs between the VS and the Robot. He or she could then load
the stagel functionality into the VR closest to the supervisor and the stage?
functionality into the Base VR. Eadh VR would deted the resource needs of its
functionality and move to the most suitable computer, which would be different for
ead of the VRs. Even though both VRs are antrolling the same robot with only a
single command adually exposed (simply move am), the VRs themselves differ in
the requirements of their wrapper functionality and thus optimize their locaion based
on their part of the overal task. This partial speaalizaion of tasksis clealy more
efficient than a non-mobile agent that must exeaute the functionality on a mmputer
that will be well suited for one stage and not the other. It isalso more dficient than a
mobile ayent, which must incur the time overhead of testing out other agencies and
coordinating a move to a different computer when its task and thus resource
requirements change.

When the virtual robots load further functionality from the supervisor, their
responsibili ties change from merely command passng to acually exeauting code that
isrelevant to the antrol of one or more robots. Y et because currently the
functionality of the robot is exposed and defined through standard interfaces that eah
virtual robot uses, no change in the virtual agent’ s interfacesisrequired after it loads
robot-spedfic functionality under the order of the supervisor. The new methods or
properties are Smply reported and defined upthe stream as if they were coming from
the robot itself. Ead virtual robot, then, contains knowledge of the ad¢ual robotic
functionality as well as any dynamic functionality that they have loaded and any

functionality loaded into other virtual robots further down the dain.
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It isinteresting that as functionality is wrapped upaong the dain of VRs, the
functionality that ead VR contains represents that of classinheritance in any modern
objed oriented language. Expanding the DrawSquare() example even further,
suppose the supervisor spawns threeVRs named VRa, VRDb, and VRc. The
supervisor then lines them upin a dhain so that the virtual supervisor communicaes
direaly with VRa and VRc isthe Base VR. First, the supervisor loads into VRc the
functionality for DrawSquare(), which is implemented as cdlsto DrawLine() and
Rotate(). Then the supervisor wishes VRb to implement the DrawDiamond()
function, which uses DrawSquare() and Rotate(), both of which are exposed to it by
its“robot”, VRc. The supervisor may then add a new function, DrawBaseball Field ()
to VRathat cdls upon DrawSquare() and DrawDiamond(). VRastill exposes
DrawLing(), Rotate(), DrawSquare() and DrawDiamond() to the supervisor, as well
asthis new function. Note that at ead level, the VR implements all of the
functionality of the VR downstream as well as any functionality that has been
dynamicdly loaded into itself. This closely mimics the concept of inheritance The
robot ads as a base dass providing a standard set of functionality. Eadh VR built on
top of the robot contains al of the functionality of the downstrean processand
possbly additional functionality, in parallel to a derived class Additionally, when
the supervisor adds commands to a VR, he or she has the option of hiding previous
methods from upstrean VRs. So when the supervisor loads the DrawDiamond ()
function into VRb that wraps up Rotate() and DrawSquare(), he or she has the option
to hide DrawSquare() from upstream VRs (and therefore the supervisor aswell). In

that case, the example would fall because VRa, which is upstream of VRb, could not
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call DrawSquare() and thus could not wrap that up into DrawBaseballField(). This
mimics private inheritance, where the members of the base class are taken as private
members of the derived class and may not be inherited by further derivations.

Also, note that this dynamic method loading takes place at a VR level, and it
has been previoudly established that a VR may control multiple slaves that may
control, directly or indirectly, arobot each. This means that when we add new
functionality that wraps up existent functionality, we have the ability to wrap up
functionality from multiple robots. This parallels multiple inheritance, where the
functionality from more than one base classis added to a single derived class. Even
more interesting is that some of the typical multiple inheritance problems that object
oriented languages contain, such as duplicate method names also appear within our
control architecture.

Although the technical implementations of theory are not always required nor
desirable, the concept of requiring robotic supervisorsto write code that will be added
dynamically to an existent process has been treated with some skepticism by somein
industry. Asareaction to the hesitation to believe that it is feasible, with little effort,
to write code that can interact meaningfully with an existent virtual robot process,
some technical detail is merited, and follows. From atechnical standpoint, the ability
to load code into the VR is quite feasible in a modern, reflexive language like C#.
The language supports the ability to inject compiled assemblies into the executing
process at any time. In this context, an assembly refers to a compiled collection of
classes that form an exe or dil. The classes and member functions within those

classes are then accessible to the currently executing program immediately after the
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assembly isloaded. There ae two main challenges asociated with dynamicaly
loading functionality within the mntext of the aurrent architedure. First, thereisthe
fundamental problem of how this code is to be written and, once written and
compiled, how it can be loaded into the virtual robot from aremote point without
requiring a shutdown of the robot or arecompilation of the host VR. Seandly, the
communicaion between the loaded assembly and the virtual robot that loads that
assembly must be aordinated. The loaded assembly must inform the VR that thereis
new functionality to expose, how that functionality should be reported, and how the
VR can invoke that functionality when a cdl comes to it from the virtual supervisor.
Sincethe virtual robots are written in C#, any language written on top of the
CLR may be compiled into an assembly and loaded by the process The supervisor,
therefore, must write ade in one of those languages, such as C#.  While this ounds
undesirable, the alternative to reprogramming the virtual robot is reprogramming the
robot itself. To add functionality to a virtua robot, the supervisor must write mde in
any of the dozens of languages on top of the CLR that will i nterad with the cde
resdent inaVR... code that will remain constant and familiar even though the VR
may be antrolling vastly different robots. Should the supervisor be required to
reprogram the robots when an upgade is necessary, then supervisor would be forced
to lean eadt robot’s multiple interfaces and multiple languages that make cdlsto
whatever proprietary operating system the robot or robotic controller was running.
Furthermore, the hardship involved in adding code that will i nterad with a virtual
robot’ s functionality can be made significantly easier by careful planning by the

programmers writing the VR. These simplifications will be shown after the mncern
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involving VR communication with the loaded assembly is addressed.

The standard approach to interading with dynamicdly loaded code isto
require the unknown code to implement well-known interfaces that will serve s a
contrad for communication. This caseis no different. When a supervisor wishesto
write @de to be loaded into an agent as additional functionality, then, he must smply
write a ¢assthat derives from aknown interface Inthis case, there is one key
function, CreaeMethods() that the interfacerequires of any newly loading classes.
The CreaeMethods() function returns objeds that represent the methods supported by
thedll. These objeds are similar to the objeds that the VR uses internaly to
represent robot functionality, with one exception. The objed contains one member
that is not found within a normal method description: a delegate that pointsto a
method contained within the loaded class Crudely, a delegate is a C# wrapper
around a standard function pointer.

When a virtua robot loads up an asembly, it immediately exeautes the
asembly’s NewMethods method (which is guaranteed to exist sincethe loaded
asembly must derive from an interfacethat requires that method). The objeds
returned, that describe the newly added methods, are stored by the VR. The VR then
reports this functionality to the processupstream, either another VR or the VS, This
is the standard protocol for exposing static robotic functionality. That is how the
virtual supervisor is made awvare of the dynamicdly loaded functionality. When the
supervisor chooses to exeaute the new functionality through the VS, the cdl travels
downstream until it reades the virtual robot to which the supervisor sent the

compiled aseembly. Thisisthe same virtual robot that stores the objed describing
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this functionality. The virtual robot recognizes the command, finds the objed
describing the command, and routes control to the function that the objed speafies
with the parametersthat the VS sent. Thiswill i n turn execute the ade inside the
asembly, passng it the parameters that have been passed down the strean from the
VS.

Below isthe ade for an aseembly eligible to be dynamicdly loaded. Inits
CredeMethods function, it creaes one new method with a friendly name of “Laundry
if David'sclose”. It accepts one parameter, of TypeText, with a name “Locaion”
and a description of David's locaion. It has no default value. This method is added
to an arraylist along with a delegate to a method cdled DualMethod which is aso
existent in the loaded class(and will be shown shortly). These methods are returned
and every VR above whatever VR loaded this assembly, as well asthe VS, will
refled anew method cdled “Laundry if David’'s Close”. Note that the objeds that
contain al the information necessary to describe this new method are of type
DynamicBotMethod, which iswhat the host VR will store and use to recognize when
commands being exeauted are intended for dynamicdly loaded code insteal of its

downstream process

public override ArrayList CreateMethods()
{
ArrayList newMethods = new ArrayList();
ArrayLis t parms = new ArrayList();
parms.Add(new BotParam(new TypeText(), "Location”, "David 's
location."”, null));
DynamicBotMethod dbm = new DynamicBotMethod("dispatch_newDual",
"Laundry if David's close", parms, true, new TypeBoolean(),
MyName, new DynamicMethodDelegate(DualMethod));
newMethods.Add(dbm);
return newMethods;
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While this analysis reveds the ammmunicaion feasibility from the virtual
robot to the dynamicadly loaded functionality, the reverse cmmmunicaion is much
more dhalenging. The difficulty arises when the assembly, which was written
without any of the virtual robot code to compile against, must be ale to cdl methods
that are exposed to the virtual robot. To accomplish this, the writers of the assembly
must be provided something to compile against that will expose methods allowing
module writersto cdl functions that have been exposed to the aurrent VR. These
‘helper functions’ will give module writers away to ensure that they have wrredly
formatted their cdls. Additionally, the helper functions will take avay a significant
amount of the cmplexity involved when exeauting a function. Although in-depth
discusson of all the helper functionality existent is beyond the purpose of this thesis,
atednicd explanation of one should help ease mncerns about the feasibility of
interfadng with the virtual robots. The main helper function within the base dassis
RunMethod, which requires a method name to run, alist of parametersto passthat
method, and a boolean value indicaing whether to continue exposing the functions
that have been exposed to the VR from downstrean VRs (the equivalent of a switch

between public and private inheritance of methods).

public object RunMet hod(string net hodNane, Arraylist paraneters,

bool keepshow ng)

The RunMethod function is an excdlent example of how a base dasshelper
function can drasticdly smplify the work that module writers must undergo in order

to make their code compatible with the virtual robot architedure. First, RunMethod
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(at runtime) retrieves a listing of all functions exposed by the VR that loaded the
assembly and ensures that the methodName passed to it by the derived assembly
matches to one of the exposed function. If not, then the dynamicadly loaded assembly
was attempting to cdl functionality that the virtual robot does not know. Seandly, it
padkages up the information into the exad objed that VR the needs to understand in
order to exeaute the method, so the module author does not need to concern hmself
or herself with it. RunMethod then spins off a new processto handle the coommand
exeaution. When the command is exeauted on the robot and the return value is
passed bad through the VRS, it eventualy is passed to the VR that contains the
loaded assembly that initiated the coommand. There is one alditional problem: the
architedureis £t up so that multiple cmmands may be sent to the robot before ay
return values are recaved. That is, the virtual robot does not have to wait for areturn
value from one function before it can send the next command (which may be an
abort). However, the author of the module wishes to have one cmmmand exeauted
and its return value stored before the next line is processed. For example, “int a =
base.RunMethod(foo,...)” isintended to have foo exeaute (via sockets) and return
value be stored in “a’ before the next command isread. In order to make this non-
blocking processblocking, RunMethod uses a multithreading algorithm to block until
the return value is passd bad to the base dass After recaving areturn value for
foo, the base dassallows the thread that cdled into RunMethod(foo,...) to continue,
and passes the thread the return value. This creaestheillusion that the exeaution
took placewithin one thread and allowing areturn value to come badk to the cdler of

the function. Without the base dassundergoing this functionality, there is no way
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that the writer of the module wmuld wait to recave return values from function cals
before exeauting the next line of code.

Using these helper functions, the module author may thus have an easier time
writing code to be injeded into the VR chain. The helper functions and base dasses,
in fad, are the means of smplification that erases the difficulty involved for
supervisors wishing to write modules to be injeded into aVR. The base dassdoes
nealy al of the work in integrating the assembly with the system and handling the
communication while leaving the supervisor to worry only about writing code related
to the desired robotic functionality.

The DualMethod method that corresponds to the example “Laundry if David's

close” example aove then, is:

private object DualMethod(BotMethod bm)
{

ArrayList p = new ArrayList();

object ret = base.R unMethod("Slice Off David's Hand",
bm.parameters, true);

string sret = ret.ToString();

if (sret == "laundry machine")

p.Clear();
ret = base.RunMethod("Do the laundry"”, p, true);
return true;

}

return false;

}

This example shows that when DualMethod is exeauted (in response from the
supervisor exeauting the “Laundry if David’s Close” method exposed within

CreaeMethods), it will passin the parameters (which were spedfied in creae
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methods to be asingle text parameter) to an existent function. If the return value
from that function is “laundry maaine”, then it will run an additional function and
return true. If not, the function will return false. The function that it cdls happens to
return whatever its parameter was passed into be. So, if “Laundry if David's Close”
is given a parameter of “Laundry Madine”, it should exeaute two of the robot’s
functions, the second one being a“Do Laundry Madine”. |If the parameter is not
“Laundry Madhine”, it will exeaute only the first method, “Slice off David’ s Hand”
(as mentioned ealier, areferenceto atense night in the lab).

The amazng thing about this example isthat the totality of the code for the
loaded aseembly has now been displayed—just those two functions. CreaeMethods
announced the existence of a new method, cdled “Laundry if David's Close” and
mapped it to the second and final method of the dass DuaMethod(). All the cde
necessry to add functionality to a VR has been written in afew dozen, smplistic
lines.

The following figure (5.10) shows the functions available dter setting upa
VS, one VR, and the same robot to which we have been demonstrating connedions

throughout. They are the threefunctions that the robot itself supports.
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Agent Control - Robat Contral |Web TabI M ethod Eleationl

r—Robat Information

— Method Invocation

Methods:

Fick & number, 1-3
Do the laundry
Shice Qff David's Hand

EE

—Feedback

Froperties

ternperature

tade a connection from wr.raging.] to the robot Maotaman

5.10 The static methods available to the VS after connecting to a robot

Note that “Do the laundry” as well as“Slice off David’s Hand” are both
exposed to this VR, and are the two functions that the example module may cdl.
The next step isto send over an assembly for the program to load upwhile it
continues to run. Thisis done from the “Method Credion” tab on the virtual
supervisor, which allows the supervisor to browse his or her computer for pre-
compiled aseemblies. Below, Figure 5.11 below shows the “Method Creaion” tab

and the result of this adion.
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[1® ittual Supervisor Panel o ] |

Agent Contmll Fiobot Contmll ‘wieb Tab Method Creation |

Iw.laging.'l "I Load Azzembly

Motakdethiods

5.11 Sending over a pre-compiled assembly containing new functionality to the VR for loading

Now, the Robot Control tab display should have updated to refled the dynamicdly
loaded functionality. Thisisindeed the cae, as may be seen in figure 5.12 below,

which shows the “Robot Control” tab, this time with the new method.
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[{H ¥irtual Supervisor Panel

Agent Control - Robat Contral |Web TabI M ethod Eleationl

r—Robat Information

wr.raging. 1

Methods:
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Laundry if David's close
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— Method Invocation
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Returns: Boolzan

ternperature

—Feedback

=101 ]

EE

Iy loaded ¢

5.12 The VSafter a VR in itschain hasloaded up the dynamic functionality. The new function

has been reported to the VSin the same fashion asthe static robotic functions.

The new method, entitled “Laundry if David’s close” has appeaed. It accetsone

text parameter, which the virtual supervisor uses atext box to represent, and returns a

boolean value. When the supervisor enters some vaue other than “Laundry

Madine” (in this case “Not the laundry machine”) and exeautes the method the

virtual supervisor responds as siown in figure 5.13 below:



81

i

Agent Control - Robat Contral |Web TabI M ethod Eleationl
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— Method Invocation
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Methods:
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Shice QFf David's Hand
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ully pazzed on erecution command ta wrraging. ]

5.13 Execution of the dynamically loaded functionality

Note that the return value (displayed in alistbox) came back false. When looking at

the output from the agent, it is clear to see what happened:

<6:32.48>{vr.raging.1}Relaying a call to vr.raging.1.Laundry if

David's close
<6:32.48>{executing Slice Off David's Hand}
Just got a base call to run a method; checking for validity.

<6:32.48>{executing Slice Off David's Hand}Valid request. Going to

attempt to execute.

<6:32.48>{executing Slice Off David's Hand}Waiting for a return to

come in.

<6:32.48>{executing official_sliceDavidsHand}Spun off athread to
handle execution.

<6:32.48>{vr.raging.1}Relaying a call to Motoman formal name.Slice

Off David's Hand

<6:32.48>{vr.raging.1}Realizes that he's returning from a method

that he invoked dynamically.
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<6:32.48>{Return in base}recevied a return for

official_sliceDavidsHand ... going to release waiting procs.
<6:32.48>{executing Slice Off David's Hand}A return came in for

official_sliceDavidsHand

<6:32.48>{executing Slice Off David's Hand}Returning to the derived
class with our return value.

<6:32.48>{ vr.raging.1}l actually received a return from the derived
class just now... it was False

<6:32.48>{vr.raging.1}Got a return value from vr.raging.1 for
dispatch_newDual(False)

Thisoutput isworth asimple anaysis. First, a cdl was made to the vr for “Laundry

if David's close”, which came fromthe VS. This cdl mapped to DualMethod(),
which used the base dassto attempt to make afunction cdl. The base dass
reagnized it as a valid method name and spun off athread to handle the exeaution
and locked down the thread that made the cdl to the base dass Thisthread then
ordered the vr to relay the cdl to the robot, and then the next thing we see areturn
value is coming badk. The virtual robot redizesthat the return value is for afunction
that was creaed dynamicdly, and thusit must handle the return value instead of
continuing to passit upwards. The VR releases the waiting processes and the process
that was waiting for the return value redizes that the value has come badk and returns
badk to the derived classwith that return value. Sinceit was not “Laundry Madine”,
as the module hoped for, the module returned false without going through any
additional cdls.

As one fina demonstration, observe what happens when a seaond assembly is
added to the virtual robot that had previously loaded the first. Thistime, a method
cdled “Tell Dua David’'s by Laundry” is creded that cdlsinto the aeaed
DuaMethod() function and passsit a parameter of “Laundry Madine”. The new
method requires no parameters from the user and returns a boolean value,

spedficdly, the value that DualMethod() returns. The following isthe complete code
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for this new module:

public override ArrayList CreateMethods()
{
ArrayList newMethods = new ArrayList();
ArrayList parms = new ArrayList();
DynamicBotMethod dbm = new DynamicBotMethod("Big_dual", "Tell
Dual David's by Laundry”, parms, true, new TypeBoolean(),
MyName, new DynamicMethodDelegate(BigDual));
newMethods.Add(dbm);
return newMethods;

}

private object BigDual(BotMethod bm)
{

Console.WriteLine("Executing the big dual method.");

bm.parameters.Add(new BotParam(new TypeText(), null, null,
"laundry machine™));

object ret = base.RunMethod("Laundry if David's close",
bm.p arameters, true);

if (ret is string)

ret = bool.Parse((string)ret);

bool bret = (bool)ret;
return bret;

Again, load upthe assembly, shown in Figure 5.14 below:

i
Agent Eontroll Fobot Eontroll ‘wieb Tab  Method Creation |

Ivr.raging.'l vl

Mato2
Maotokdethods

5.14 A second assembly issent toa VR for loading. Note that the VR tracksthe assembliesit has
loaded.

Note the new method, “Tell Dual David’'s by Laundry”. Additionally, the

temperature property has been set up to report when any changes occur. When the
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“Do Laundry” function is invoked, the temperature property is programmed to

increase by threedegrees. Sincethe “Do Laundry” function has no return value, a

reported change in temperature isthe eaiest way of telling if this function has

exeauted, asis expeded. The “Robot Control” tab, with both of the dynamicdly

loaded functions available, is wown in figure 5.15 below.

[{H ¥irtual Supervisor Panel

Agent Control  Robot Control |Web Tab | Method Creation |

—Robat Infarmation

vr.raging. 1

Methods:

=

Fick & number, 1-3
[1o the [aundr

Shice Qff David's Hand
Laundry if David's close

Properties

Tell Dual David's by Laundny

— Method Invocation

Friendly name: Tel
Returns: Boolean

Dual David's by Laundry

ternperature

=101 ]

EE

—Feedback

[wr.raging. 1:dizpatch_newDual) = False

5.15 Selecting a 2" dynamically loaded function that will call the first.

When the supervisor chooses to exeaute this new command, the Virtual Supervisor

will respond acmrding to the loaded code. It is dwown in figure 5.16 below, and will

be explained immediately afterwards.
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Agent Control - Robat Contral |Web TabI M ethod Eleationl
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— Method Invocation

Methods:
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Tell Dual Dawid's by Laundry
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—Feedback

[Matoman formal name: official_temp) = 88
[wr.raging 1:Big_dual] = True
[vr.raging 1:dizpatch_newDual) = False

Froperties

5.16 The result of exeauting the 2" dynamically loaded function. Notethat the temperature has
changed, indicating that it successully called the 1 dynamically loaded function, which
evaluated the parametersand called into a static function, “ Do Laundry”

We seein figure 5.16 that Big_dual returned true, indicating that its cdl to
DualMethod with “Laundry Madhine” returned true, indicating that the laundry
should have been done. This has occurred because the temperature property reported
anupdate. Thus, we have succesdully ill ustrated two dynamicadly loaded functions,
the first wrapping upthe second, which in turn wraps up adual robotic functionality.
Ead pieceof dynamicdly loaded code is able to chedk return values of the methods

they cdl and ad acwrdingly, using any methods or properties that existed before it
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was loaded, regardiess of whether the attributes were exposed by the actual robot or

simply another Virtual Robot.



6. Future Work and Conclusion

6.1 Future Work

There is a significant amount of future work associated with expanding this project
into itsfinal form. The work to this point has served the intended purpose:
researching an alternative architecture for robotic control and implementing the basic
solutions to prove their worth. The next step, however, isto continue to test the
solutions proposed in this thesis with differing robotic control scenarios as well as
using it as a foundation to be developed into afull-featured, fully tested architecture.
Much of thiswork will surround the virtual supervisor. Thereisaneed to add
additional types into the architecture as robots that desire to transmit data in different
formats are discovered, just as the Paradex wished to deal with a RangeType instead
of merely an integer when controlling the large switch. These data types must be
turned into classifications and have default controls associated with them for display
on the GUI. Also, adding non-default controlsto existent classifications and
providing the supervisor ways of saving his preferred control types for each
classification are both needed. Aside from specific data classfication, thereis also
the need for the Virtual Supervisor to handle different priorities of data. When a
return value with a high priority is reported to the Virtual Supervisor, it should react
accordingly. Currently, these priorities are being reported, but the Virtual Supervisor
does not react differently based on a priority. It ishoped that eventually high-priority
responses will cause the virtual supervisor to demand acknowledgement from the

Supervisor and, should it not be received, attempt to contact him via a cell phone or

pager.
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Loading code into the VRsisin many ways a much easier processthan it
could have been. There ae well defined interfaces to accessrobotic functionality and
passvalues to the Virtual Supervisor the Virtual Robot will reagnize and thus the
Supervisor may code aainst. This code may be written in any .NET language, of
which there ae dozens, sincethe achitedure was written in C#, a.NET language
itself. However, to minimizethe dfort required to author dynamicdly loaded code, a
small visual development environment would be highly desirable. If supervisors
could use avisual interfaceto choose methodsto cdl and parametersto passin, it
would make writing these pieces of code even easier.

Although the achiteaure was built to accoommodate multiple robots, very
little has been done to do multiple robot coordination, or to load dynamic
functionality that would do anything exciting with the two robots. Currently, the
extent of writing functions that wrap upbasic methods on multiple robots has been
limited to functionality on ead robot that is unrelated to the other. Thus, true
coordination has not yet been attempted. Moreover, a demonstration of writing
dynamicdly loaded code that reorganizes groups of robots to work in different teams
would be impressve, and is well within the scope of the achitedure.

One of the problems with allowing such abstradion from the robots' basic
commands, is that it becomes possble for the supervisor, who is unaware of the
adual implementation of the high level commands he or she isisaling, to request that
the robot perform adions that contradict ead other. For instance he could exeaute a
function to load into a VR controlling the Paradex robot that wrapped upcdlsto

turning a switch on and off. Should this function be exeauted, the Paradex will be
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given conflicting commands that may or may not achieve what the supervisor
intended. If the virtual robots could tradk the dependencies of their dynamicaly
loaded functions and report an error when an ambiguous st of commands was
wrapped up, it would be agrea addition to the achitedure.

Finaly, thereisagrea ded of work to surrounding the mohili ty of the virtual
robots. Thisisby far the aeaof future work that is the most complicated. Currently,
asmple dgorithm isin place Using this algorithm, a virtual robot looks at eat
agency and reards the available CPU as well as the round trip time to ead of its
neighbors. The virtual robot then moves to the agency that providesit the best
resources. First, this algorithm does nothing to counter possble looping that may
occur. For example, AgentA is dissatisfied with the CPU performance of its current
madhine. It looks up another agency on another machine and, upon running tests on
that agency, finds that the computer on which the agency runsis ssmewhat faster than
its current computer. Thus, it moves itself from its current computer to that agency.
But AgentB, which islocaed on that computer, now finds that with the drop of CPU
performance on its computer, it is better suited for AgentA’s old computer. Moving
there, AgentB then makes that computer undesirable for athird Agent, AgentC, who
had been sharing the computer with AgentA originally. AgentC gets up and moves to
computer B. Thisisthe initial state for the same ¢ycle to occur, with processes
reversing the diredion of their move. Clealy, the locd greedy solution is not
universally stable.

Additionaly, there isthe issue of priority. Perhaps AgentB is performing a

critical task, such as navigating arobot through a dangerous gretch of road. AgentA,
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then, could posshbly be performing some CPU consuming task as well, but of much
lessimportanceto its supervisor relative to the importance of robotic navigation to
AgentB’s supervisor. If AgentA smply sees AgentB’s powerful computer and moves
there blindly, it may starve AgentB from getting its massve requirement of CPU
cycles, lealing to afailure of an important task in the name of an efficiency increase
for an unimportant task. This stuation is also undesirable.

Idedly, a stable global optimal solution would be cdculated before ay
movement occurred, in which the importance, or priority, of ead agent was taken
into consideration as well astheir current task and current task requirements. 1t may
not be best for any one processor even for any processat all, but overall would be the
best solution available and thus gable, until requirements changed or additional
proceses were alded. This problem is known as the agent-planning problem, and is
an emerging field of reseacch. It has been compared to many well-known problems,
including the problem of distributed data storage and the traveling salesperson®. A
complete analysis of this difficult, currently unsolved problem is well beyond the
scope of thisthesis. However, when applied spedficdly to the proposed virtual
robots, the problem reduces fairly well to that of obtaining a globally optimal solution
for similar processes that are engaged in performing dfferent tasksthat are eat
requesting spaceon a finite number of computers with finite resources. This problem
has been reseached for many yea's under the heading of web page cading on
servers. Users ead want their common pages cadied on alocd server instead of
requiring those pages to be reloaded from the page' s main server ead time. The

locd servers have alimited number of resources, most notably space to be spread

3 K atsuhiro Moizumi. [15]
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across all the users that want to cache their web pages there. Therefore, researching
the best way to find the globally optimal arrangement of VRs meant relating it to the
problem of web caching and applying the research and results of that work to our
problem.

Currently, there are a number of different web caching algorithmsin usage.
These include Greedy Dual Size*, LRU, LFU, LRU-Threshhold®, LogLRU%,
HY PER-G*, Pitkow/Recker?®, Lowest-Latency First?, and Hybrid®®. Out of these,
the best algorithms are generaly agreed to be Greedy Dual Size and the Hybrid when
calculation time for the algorithm itself is disregarded® 3. In the Hybrid model, a
function is computed for each document in the cache. The function is designed to
capture the utility of retaining a given document in the cache, and the document with
the smallest function value is evicted. The function for a document depends on the
time to connect with the server on which the page is located, the bandwidth of that
server, the number of times the page has been requested since it was brought into the
cache, and the size of the document. Greedy Dua Size bases its decisions about
which page to evict from the cache on an equation as well, but uses some dightly
different factors. These factors are the locality of the page, the size of the page, and
the latency/cost concerns of caching the page instead of fetching it each time. The

two methods are very similar and use similar parameters, differing in ways too minute
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to be listed here. Also favored as a web-cadiing algorithm is the LRU method, which
simply removes the least recently used page from the cade before adding the new
page. It does not produce & optimal a solution as other algorithms (like Greedy Dual
Size), but it achievesits cdculationsin O(1) vs. O(log n)*? for the more mmplicaed
algorithms where n is the number of pagesin the cate. Also, LRU does not require
additional space of which many other algorithms require asignificant amount.

The bottom line for web cading isthat all of the dgorithmslook at the
currently caded pages and attempt to find the page that has fewest of the
charaderistics the dgorithm holds to be important. Most algorithms are based
completely on LRU or incorporate it heavily into their equations along with other
fadors, such as sze and latency. In future reseach, we hope to apply this principle to
the arangement of our virtual robots. We must analyzethe arrently existent VRs
against a set of charaderistics that we hold valuable and gve the best spotsto the
VRsthat are rated the highest. Some of the parametersin web cating have no clea
counterpart in our situation. For instance the size of a page is usually considered, but
the size of virtual agents will be very consistent. However, other web page fadors
have dea asciations with our agents; locdlity of the page's srver, for instance,
parallels well to the distance between an agent and his daves and master. The aent’s
message must travel different distances depending on which agency it utili zes, just as
the time to reload a page depends on the time to contad the page’s srver or the time
to contad a cade of that page on alocd server. Thereisalso aparalel between LFU

(Least Frequently Used) and LRU (Least Recantly Used) to the frequency of message

33 Some implementations of GDS may obtain a running time of O(1), but the @mnstants in the time
complexity analysis are so large that those implementations are rarely seen in practice
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passing and command execution by the virtual robots. And there are certainly other
factors to take into account with virtual robots that have no clear counterpart in the
web-caching world, like job priority. We believe that calculating a globally optimal

solution for virtual robot placement is plausible should factors be correctly assessed

in an equation that can meaningfully incorporate information about each agent.

6.2 Conclusion

There are many challenges involved in the remote control of robotics. Many
of these challenges have been met by current solutions, yet there remain many
difficult objectives that have not been satisfactorily achieved. We believe that a
revision to the architectural model of robotic control alows the accomplishment of
many of these objectives as well as permitting the incorporation of several features to
the realm of remote robotic control that had not been previoudly possible. This
revision involves two main components. First, the introduction of peer-to-peer
processes that serve as intermediaries between the remote control application (the
virtual supervisor) and the robot itself. These processes are viewed as the supervisor
from the perspective of the robot and as robots to the supervisor, and are therefore
called virtual robots. Secondly, the architecture is designed to allow control of robots
generically. This meansthat the virtual supervisor, as well as the virtual robots that
exist between the virtual supervisor and the robot, are merely templates. They were
written with no preexistent knowledge of the robot they are intended to control, and
therefore do not have any programming to reflect the methods and properties any

specific robot has exposed for remote interaction.
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We believe that since our model is focused on having a single goplication that
may control robots genericdly, it will be gopeding to industry users. Currently, to
enable remote supervision of arobot, alanguage to describe the robot’s abili ties and
passsupervisory commands must be established, robotic functionality must be
exposed to communicae with a cntrolling application, and, finally, the controlling
application must be programmed. This controlling application must accet user input
and then trandate it into a message that can be understood by the robot before
sending that message over the Internet. In contrast, when using our architedure, the
robot needs only to have asmall stub written that defines its attributes in a well-
defined language. The virtual supervisor will then mold itself to accept user input
relevant to the robot in question and send commands to the robotic stub. The virtua
supervisor will placevisual controls on its GUI that correspond to the robot’s
methods and are intuitive to users of modern-day software. In addition, the virtual
supervisor will communicate with the rest of the remote achitedure &s efficiently as
possble when sending the messages aaossthe Internet. In short, the achitedure
makes it trivially easy to enable remote wntrol of nealy any robot through arich,
user-intuitive GUI that is completely pre-written.

Because our control model uses pee-to-peea processs, virtual robots, to
abstraad away the antrol of the supervisor and the functionality of the robot, we ae
able to boast several advantages over traditional master/dave remote control. One
immediate advantage is that because the virtual supervisor does not interad diredly

with arobot, it is easy to build a structure of avirtual supervisor direaly or indiredly
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controlling multiple virtual robots, ead of which control arobot. Thus, achieving
single supervisor control of multiple robots is effortlesdy adhieved.

There ae dso advantages to this gructure that rely on the advanced
cgpabilities of these virtual robots. The virtual robot processes are acually mobile
agentsthat are cgable of evaluating their current task and the resource requirements
asciated with that task, as well as gauging the resources avail able on various,
registered host computers. Upon finding a more desirable computer, these processes
are dle to move themselves, aong with the task they are exeauting, to that new host
before continuing their exeaution. This results in an inherent flexibili ty to the types
of resources required by the objedive the supervisor assgned. When a supervisor
orders arobot to perform ajob that requires fine-grain control, for instance, the
virtual robot that is carrying out the supervisor’s command will recognize the need
for a short round trip time to the robot and move itself to a computer that can provide
it with such. The same is true when a virtual robot redizes that its supervisor is
requesting a aomputationaly intensive task. All of this flexibility and run-time
reacion to the supervisor’s commands happens in such a fashion that the virtual
supervisor program itself, and thus the supervisor, neel not themselves moveto a
different computer or dired the mobility of the virtual robots in any way.

The virtual robots have dso been programmed to accept additiona
functionality from the supervisor. Thus, to add new functionality to a robot based on
currently existent abili ties, the supervisor may smply write code for the new
function, compile it into an assembly, and send it to avirtual robot. The virtual robot

is aware of the robot’s functions as well as how to invoke them, sinceit must use this
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knowledge whenever a supervisor wishes to know what abili ties a robot may have or
wishes to invoke one such ability. This virtual robot then reports the aility to
exeaute this new function as arobotic abili ty to the virtual supervisor aong with the
functionality that is actually programmed into the robot. When the virtual supervisor
exeautes this new function, the command reades the virtual robot that loaded the
supervisor’'s assembly, and that VR passes control to the assembly. The assembly
exeautes the supervisor’s program, including cdls to the robot’s current functionality.
Thisis an espedally exciting feaure, sinceit allows a supervisor to upgade the
abilities of arobot without diredly reprogramming the robot in whatever language
and operating system the robot requires. Instead, the supervisor may reprogram the
virtual robots and follow the same steps to add functionality to any robot that fits
within our architedure. Thisupgade will take place dynamicdly, without a neel to
recompil e the virtual robot program or even halt operation of the robot in question.
Additionally, since avirtual robot may control multiple robots, a function may be
loaded dynamicdly that, upon exeaution by the supervisor, adually exeautes
commands on multiple robotsin a aordinated effort.

This ability to load functionality into a virtual robot resultsin a supervisor’s
ability to repeaedly wrap upexistent functionality in an objed-oriented fashion, so
that layers of abstradion are established. By layering functionality and thus
providing the aility to program the robots against higher and higher level
abstraaions (that may include one or more robots), the supervisor is able to write
powerful command sequences using relatively little dfort, much as using classes

grealy smplifies modern software development. Furthermore, by enabling the
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robots' abilities to be modified while they are running, the control architecure dlows
the supervisor to read to the anditions his or her robots encounter with a new degree
of flexibility. If the eavironment to which the robot must be deployed is mostly
unknown to a supervisor, he or she may program in a significant portion of the
robot’s adual functionality after the robot has arrived in its target environment and
reported its surroundings. 1n addition, by loading functionality that involves multiple
robots, a supervisor could dynamicdly reorganize teams of robots depending on what
unexpeded challenges the environment may pose to a team of robots that must
acomplish some task.

We fed that because of its fresh approad, our control architedure represents
a step forward in remote robotic control. First, it provides an easy way to alow the
remote, supervisory control of generic robots. This control takes placefrom within a
rich GUI that moldsitself to the target robot. Our architedure also solves many of
the arrent difficulties of robotic control, such as flexible, fine-grain control and
fadlitating the ordination of multiple robots from within a single gplication.
Findly, it offers the impressve feaure of enabling the supervisor to dynamicaly load
functionality into virtual robots. By modifying the &bilities of arobot asit exeautes,
the supervisor may wrap upand abstrad away lower-level functionality into higher-

level methods that allow a more powerful programming model.
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