Department of Electrical Engineering and Computer Science
Case Western Reserve University

Circular Arrangements

V. Liberatore

Technical Report EECS-02-11, 2002

Abstract

Motivated by a scheduling problem in multicast environments, we consider the
problem of arranging a weighted graph around a circle so as to minimize the total
weighted arc length. We describe the first polynomial-time approximation algorithms
for this problem, and specifically an O(logn)-approximation algorithm for undirected
circular arrangements and a O(y/n)-approximation algorithm for directed circular ar-
rangements. We will show that a simplification of the latter algorithm has better
performance than previous heuristics on graphs obtained from a busy Web server log.

1 Introduction

A fundamental issue in server design is to ensure the server ability to support an arbitrarily
large number of requests (scalability) [PD00]. A scalable server has the tremendous advan-
tage of providing constant service time to clients even during request bursts and peak times.
Server scalability can be ensured by multicast, whereby a single data unit is duplicated
several times within the network infrastructure [Ste98]. Consequently, a single multicast
server needs only to send a data unit once to reach an arbitrarily large number of clients,
which guarantees the server scalability. Multicast methods have originated research (e.g.,
[KL00, KSY00, BLMR98]) and commercial companies [DF, HN, PAS]. Applications range
from heavily loaded Web servers [AAF98] to high-throughput database systems [HGLW87],
and we believe that multicast applications will revolutionize the way users download most
Web contents [CLPO1].

A fundamental question is the order in which the server should multicast data (schedul-
ing). The scheduling problem must take into account that client access patterns often show
dependencies between consecutive requests, so that the request for a data unit will make it
more likely or less likely that certain other data will be requested next. In this scenario,
we have modeled the server data set as a weighted directed graph where nodes represent
server data units and arc weights represent the strength of the dependency. The scheduling
problem becomes the following question in combinatorial optimization: given a weighted
directed graph G = (N, A), arrange the nodes N around a circle so as to minimize the total
weighted arc length [Lib02]. We call such question the directed circular arrangement problem
and show that it is NP-hard. The main objectives of this paper are to

e Present the first polynomial-time approximation algorithms for the circular arrange-
ment problem, and

e Measure algorithm performance on graphs obtained from the workload of a heavily
loaded Web site.

Arrangements: Circular and Linear. A problem related to circular arrangements is
that of finding linear arrangements, where the graph is to be arranged along a line (rather
than a circle) so as to minimize the total weighted length of the arrangement. If the graph

2
is directed, it is further required that the graph be acyclic and the linear arrangement

be a topological ordering. The linear arrangement problem is NP-hard [GJ79] and can
be approximated to within an O(logn) factor [RR98]. Furthermore, the minimum linear
arrangement problem admits a polynomial-time approximation scheme if the graph is dense
and weights are uniform [AFK96]. The linear arrangement problem naturally suggests its
analogous on a circle, but, in spite of superficial similarities, the two problems are unrelated
as far as the approximation ratio is concerned. Specifically, an optimum linear arrangement
can cost {2(n) times as much as a circular arrangement of the same directed graph, while an
O(n)-approximation algorithm for circular arrangements is trivial [Lib02]. Consequently, the
approximation of the two problems is in general unrelated. Indeed, the circular arrangement
problem poses a specific technical issue that we discuss next.

Technical Issues. The circular arrangement problem presents two main technical obsta-
cles. The first obstacle is the weakness of the linear relaxation of the problem. Such hurdle
is common to other sequencing problems such as linear arrangements [Bak74]. The second
difficulty is specific to circular arrangements and is due to the weakness of the divide-and-
conquer approach (e.g., [ENRS95, RR98]). Indeed, we will argue that the “divide” cost does
not depend only on the problem partition, but also on how each of the individual subprob-
lems is solved. In particular, an arc will “cross” to the other graph component depending
not only on how the top level separator is chosen but also on how the nodes are arranged
within one of the two components. Due to this issue, we will not be able to use the known
divide-and-conquer paradigm directly and we will provide a different approach to partition
the original instance into subinstances.

Our Results. In order to attack the directed circular arrangement problem, we will first
consider a version of the problem on undirected graphs. As it turns out, the undirected
version of the problem is simpler in that it can be reduced to linear arrangements. More
to the point, the reduction highlights certain structural properties that will be used for the
directed version of the problem. Our result on undirected graphs is that

Theorem 1.1. There is a polynomial-time O(logn)-approzimation algorithm for the opti-
mum undirected circular arrangement problem.

The directed version of the problem is the one that is directly applicable to our multicast
application. The directed problem will not be reduced to linear arrangements, and, actually,
the directed circular arrangement problem does not use in any way results for the linear
arrangement problem. However, the algorithm will use certain structural properties that we
originally proved for the undirected case. We obtain that

Theorem 1.2. There is a polynomial-time 5(\/73)—approximati0n algorithm for the optimum
directed circular arrangement problem.

Finally, we will show that a simplification of the algorithm in Theorem 1.2 has better
performance than previous heuristics on graphs obtained from a busy Web server log.

Figure 1: Example of edges that cross vertices. The canonical orientation of e is
(f710), f71(6)) (h(e) = 6) and the canonical orientation of g is (f~*(10), f~1(0)) (h(g) = 4).
Edge e crosses f71(0), f~(1),..., f~1(5) and edge g crosses f~1(10), f~1(11),..., f~1(13).

Contents The paper is organized as follows. Section 2 contains our results on undirected
graphs and section 3 contains our results on directed graphs. Section 4 reports on our
algorithm engineering and on our experimental results in the context of multicast-based
data dissemination. Several proofs are omitted from this abstract but are available on-line.

2 Undirected Graphs

We first consider the decision version of the optimum undirected circular arrangement prob-
lem, which we call the Undirected Circular Arrangement Problem (CA).

Instance: An undirected graph G = (V, E), positive arc weights w(e) € IN for each e € A,
and a positive integer K.

Question: Is there a one-to-one function f : V' — {0,1,...,n—1} such that }_ _, w(e)h(e) <
K, where n = |V| and h({u,v}) = min{(f(v) — f(u)) mod n, (f(u) — f(v)) mod n}?

Proposition 2.1. The Undirected Circular Arrangement Problem is NP-complete.

Proof Sketch. The proof is a reduction from the optimal linear arrangement problem (GT42)
[GJ79]. O]

We consider the minimum circular arrangement problem where we seek a solution that
minimizes K. We begin with some definitions. Henceforth, m = |E|. If X C E is a set of
edges, then we define w(X) = > . w(e). We will fix the canonical orientation of {u,v} € E
in the circular arrangement f to be (u,v) if (f(v) — f(u)) mod n < (f(u) — f(v)) mod n. If
(f(v) = f(u)) mod n = (f(u) — f(v)) mod n, we fix arc orientation arbitrarily. By definition,
h((u,v)) = (f(v) = f(u)) mod n. We will say that an edge (u,v) crosses € V in an
arrangement f if (f(z) — f(u)) mod n < h(e). Hence, e = (u,v) crosses exactly the h(e)
vertices in C((u,v)) = {z: (f(z) — f(u)) mod n < h(e)}. An example of these definition is
shown in Fig. 1.

We will now turn to a series of lemmata on properties of edges crossing vertices, and we
postpone their proofs to the full paper.

Lemma 2.2. For any e € E, h(e) < n/2.

Lemma 2.3. Suppose that e crosses v, and let u be the vertex that e does not cross and that
minimizes the quantity (f(u) — f(v)) mod n. Then, u € e.

Lemma 2.4. The cost of a circular arrangement f is equal to), .\, pv, where p, = Ze:vEC(e) w(e)
1s the total weight of edges that cross v.

Definition 2.1. The nodes vy, vs,...,v; are placed next to each other in a cirular arrange-
ment f if f(vi41) = (f(vi) +1) mod n (1 <7 <1).

Lemma 2.5. Let U = {vy,vo,... v} CV with f(viy1) = (f(vi) + 1) modn (1 <i <), so
that vertices in U are placed next to each other. If eNU,e — U # (), then e crosses either v,

or fY((f(v1) — 1) mod n).

Definition 2.2. Let G = (V,E) be a graph, U C V, and f a circular arrangement of
G. A vertex u € U is the U-successor of a vertex v in the arrangement f if and only if
(f(u) — f(v)) modn < (f(x) — f(v)) mod n for all z € U.

The U-successor of node v in f will be denoted by s;y(v), or simply as s(v) when f and
U are clear from the context. It is immediate to see that s(v) is unique and belongs to U.

Definition 2.3. Let G = (V, F) be a graph, U C V, and f a circular arrangement of G.
A vertex u € U is the U-predecessor of a vertex v in the arrangement f if and only if

v =5, (s70(v)).
The following set I(v) basically represents all vertices between v and its successor s(v).

Definition 2.4. Let G = (V,E) and v € V. Let dsy(v) = (f(s(v)) — f(v)) mod n and
Iy() ={u:0<(f(u) = f(v)) modn < d(v)}.

Subscripts will be omitted when f and U are clear from the context. The following easy
properties are easily proven:

Lemma 2.6. The following properties hold on d(v) and I(v) for any f and U:
1. d(v) = |[I(v)| +1
2. I(v)NU =1
8 ForanyUCV, > ,dv)=n.
4. I(w)NI(u) =0 for all u,v € U, u # v.

Definition 2.5. A graph G = (V, FE) is said to be the unbiased union of graphs G; =
(V1, E1),Gy = (Va, Ey),...,Gy = (Vi, Ey) if and only if G is the union of Gy, G, ..., G,
VinV, =0, and Vi < [VI/2 (1 < i,j < b, i # 5).

5
Lemma 2.7. Let G = (V, E) be the unbiased union of G1 = (V4, E1), Gy = (Va, E3),...,Gr =

(Vk, Ex) and f any circular arrangement of G. If an edge e € E; crosses in f a vertexv € V},
then e crosses all vertices in Iy, (v).

Proof. Let n; = |V;| for 1 < j < k. Since v € V}, we have that n; > 0. We assume that
I(v) # (0 or else there is nothing to prove. The proof proceeds by contradiction, and so we
also assume that there is a vertex in I(v) that e does not cross. Let u € I(v) be the vertex
that e does not cross and that minimizes the quantity (f(u) — f(v)) mod n. Hence, Lemma
2.3 gives u € e C V;, which contradicts the claim I(v) N'V; = {) in Lemma 2.6. We conclude
that e crosses all vertices in I(v). O

Lemma 2.8. Let G = (V, E) be the unbiased union of G; = (V4, E1), Gy = (Va, Eo), ..., G =
(Vk, Ex). Let Cj(e) = C(e)NV;. Let p) = > eer;wec;(e) W(e) be the total weight of edges in E;

that cross v € V. Then, the cost of the circular arrangement is at least Z?Zl Zve\/}- pld(v).
Proof Sketch. The proof applies Lemma 2.6 and 2.7. O
The following lemma is critical in order to compare algorithm and optimum costs.

Lemma 2.9. Let G = (V, E) be the unbiased union of Gy = (Vi, E1), Gy = (Va, Es), ..., Gy =
(Vi, Ex). Then, any minimum circular arrangement places the vertices of V; next to each
other (1 <j<k).

Proof. The proof is by contradiction: if a circular arrangement f does not place the vertices
in V; next to each other, then we will show an arrangement g that costs less than f. The
intuition is that g will preserve the same ordering as f among vertices in Vj, but it will also
place them next to each other. The point where the V; are squeezed around has to be chosen
so as to minimize the value of p?.

Fix vertices v; = arg mingey; pf, (1 < j < k). Consider the following circular arrangement:

J

(v) = ni — 1 ifv =
g = g(sf(v)) — 1 otherwise

It is immediate to see that g establishes a one-to-one mapping g : V' — {0,1,...,n— 1} and
that g places the vertices of V}’s next to each other. Moreover, s;(v) = s,(v) for allv € V.

We claim that in ¢ an edge e = (z,y) € Ej; crosses only vertices in V; — {v;}. Let
V; = V — (V; — {v;}). By definition of unbiased union, |Vj| > n/2. By contradiction,
C(e) NV; # (. First, suppose that C(e) D Vj. Then, h(e) = |C(e)| > |V;| > n/2, which
contradicts Lemma 2.2. Next, suppose that V; — C(e) # @ (and again C(e) N V; # 0). By
definition of crossing, e crosses x € V;. Let u be the vertex in V; — C(e) that minimizes
(9(u) — g(z)) mod n. By Lemma 2.3 and = € C(e), we have that u = y, and since e C V},
we also have u = y = v;. However, by definition of crossing, e does not cross y, which is a
contradiction. Thus, e crosses in g only vertices that belong to V; — {v,}.

We now introduce a charging scheme that will assign a cost to each node so as to upper
bound the actual p/ relative to the ordering g. The scheme has two cases, depending on

6
whether e originally crosses v; in f. Assume first that e does not cross v; in f. Since e does

not cross v; in g, and, sy(v) = s4(v) for all v € V, e crosses exactly the same vertices U C V;
in g as in f. In the charging scheme, the quantity p/ is charged w(e) for all nodes v € U.
Assume on the other hand that e = {u, v} crosses in f a set of vertices U with v; € U C V.
The edge e does not cross v; in g, and so it crosses V; — U at a cost of w(e)|V; — U|. The
charging scheme is that if edge e crosses in f a set U with v; € U C Vj, we charge w(e) to
U and n; — 1 to vj, so that the total charge is w(e)(n; — 1+ |U|) > w(e)|V;| > w(e)|V; — U|.
The charging scheme allows us to assume that each p/ remains unchanged from f to g for
all v # vj, and v; is charged (n; — 1)p} . In this scheme, the cost change within Gj is no

more than
Y A= 1)pl =D pld(v) A AC

veV;—{v;} veV; veEV;

< (nj = 2)ph, = ol > (dl

= (nj — 2)pl, — ph, (n — ny)
= p,(2(n; —1) —n)

<0.

because pZ;j <pl, Zvevj d(v) = n, and n; < n/2. Hence, g costs less than f, a contradiction
is reached, and the lemma is proven. O

We define a §-separator of G = (V) E) as a partition of V' into V; and V, with the property
that min{|V;|, [V2|} > Bn. A merely technical assumption that we will use later on is that
since |n/2| > min{|Vi|, |V2|} > [Bn], we can assume that [n/2]| > [Bn]. For example, if
B =2/5, then n > 4. The cost of the separator is defined as the cost of the edges that cross
from Vi to V5. An optimum [-separator has minimum cost among all S-separators. The
problem of finding a S-separator of small cost is NP-hard even when all edges have the same
weight [LR99.

Theorem 2.10 ([LR99]). There exists a polynomial-time algorithm that, given a weighted,
undirected graph G, finds a (1/3)-separator whose cost is o = O(logn) times the cost of an
optimum (2/5)-separator.

Lemma 2.11. Let G be a graph with more than n = 4 vertices. Let s* be the cost of
an optimum (2/5)-separator and a* the minimum cost of a circular arrangement. Then,
s* < (2a*)/n.

Proof Sketch. Our proof is reminiscent of Hansen’s for the case of linear arrangements

[Han89]. However, we also need to apply the structural properties expressed by Lemma
2.3 and 2.4.]

A component of our algorithm will be an approximate solution for the minimum linear
arrangement problem: given an undirected graph G = (V, E) with positive integer edge

7
weights w(e) for all e € E, find a one-to-one correspondence f : V — {1,2,...,|V|} that
minimizes Ze:{u,v}EE ’lU(e)|f(U) - f(U)‘

We can now state our approximation algorithm. First, we find a (1/3)-separator as in
Theorem 2.10, and denote by H; the smallest of the two sets of vertices. We remove H; and
all edges incident on H;, and find a (1/3)-separator for the rest of the graph. We call the
smallest vertex set of this second separator Hs and let H3 =V — H; — Hy. The decomposition
is illustrated in Fig. 2. Observe that |Hj|/n < (2/3)? < 1/2. We now run the O(logn)-

Figure 2: Decomposition of a graph into the components H;, H,, and Hs.

approximation algorithm for minimum linear arrangement independently on Hi, Hy, H3 to
obtain linear orderings fi, f2, f3. We finally patch the three linear orderings together:

filv) =1 ifve H,
fv)=4q fo(v) +|H| =1 ifv e Hy
fs(v) + |Hy| + |H3| — 1 otherwise

The analysis of the algorithm is based on the following definitions and general consider-
ations.

Definition 2.6. If X C A is a set of arcs and f a circular arrangement, then the contribution
of X to the cost of fis cp(X) =D .cx w(e)h(e).

The subscript f will be omitted when the circular arrangement is clear from the context.
The main idea of the analysis is as follows. Consider a subgraph G' = (V, E') of G = (V, E)
on the same vertex set V. Then, the minimum cicular arrangement of G’ does not cost
more than the cost a* of the minimum circular arrangement of G. Our algorithm considers
a sequence of graphs Gy, G; = (V, Ey),...,G3 = (V, E3). We define Gy = G, G, = (V, Ey)
as the graph obtained from G by removing edges that are incident on both H; and V — Hy,
G = (V, Es) as the graph obtained by removing from E) edges that are incident on both H,
and Hs, and G3 = (V, () (see Fig. 2). The decomposition has the properties that E; C E;,4
(0 <7< k). We will show that c;(E; — Eiy1) < aa™ for some a = O(logn). As a result, the
algorithm achieves an O(logn) approximation factor.

Lemma 2.12. The cost a* of the optimum circular arangement is at least equal to the sum
of the costs of the optimum linear arrangements of Hy, Hy, Hs (i.e., ¢(Es — E3) < a*).

8
Proof. If we remove the edges that are not contained within a single H; (1 < i < 3), we

do not increase the optimum cost. By Lemma 2.9, the optimum algorithm on the resulting
graph places vertices in H; next to each other. Since |H;| < n/2, an edge e C H; crosses
only vertices in H;. Therefore, the cost of the arrangement is equal to the sum of the costs
of the three independent linear arrangements, which proves the claim. O

Lemma 2.13. For the edge sets Ey and E; defined above, c¢(Ey — Ey) < aa* for some
a = 0O(logn).

Proof Sketch. Apply Theorem 2.10 and Lemma 2.11. O

Lemma 2.14. For the edge sets E; and E, defined above, c¢(E; — E;) < aa* for some
a = O(logn).

We can now prove the main result of this section:

Theorem 1.1. By summing up the identities in the three previous lemmata, we obtain that
c(E) =c(E — Ey) + c(By — Ey) + c¢(Ey) = aa”

for some o = O(logn), which proves the theorem. O

3 Directed Graphs

We consider the following decision version of the optimum circular arrangement problem,
which we call the Directed Circular Arrangement Problem (DCA):

Instance: A directed graph G = (N, A), non-negative arc weights w(e) € IN for each e € A,
and a positive integer K.

Question: Is there a one-to-one function f: N — {0,1,...,|N|—1} such that, for n = |N]|,

where n = |N| and h((u,v)) = (f(v) — f(u)) mod n?
Proposition 3.1 ([Lib02]). The Directed Circular Arrangement Problem is NP-complete.

Proof Sketch. The proof is a reduction from the directed optimal linear arrangement problem
(GT43 in [GJ79]). O

9
We consider the optimum circular arrangement problem where we seek a solution that

minimizes K. In order to simplify our notation, we make the following assumptions without
loss of generality. We assume that G contains no loops as they do not contribute to the
solution cost, and that m = |A| = n(n—1). If X C A is a set of arcs, then we define w(X) =
Y ecx w(e). We will say that an arc (u,v) crosses node z € N if (f(z) — f(u)) mod n <
(f(v) — f(u)) mod n. Hence, arc e = (u,v) crosses exactly the h(e) vertices in C((u,v)) =
{z: (f(z) = f(u)) mod n < (f(v) — f(u)) mod n}.

As discussed in the introduction, the divide-and-conquer approach (e.g., [ENRS95, RR98|)
fails in that the “divide” cost depends on how the individual subproblems are solved. Specif-
ically, suppose that the directed circular arrangement problem on a graph G is decomposed
to the subgraphs Hi, Hs, ..., Hy. In the divide-and-conquer approach, we would ordinarily
divide the cost into arcs that cross between two H;’s, and arcs that have both endpoints
within a single H;. Consider an arc (u,v) with u,v belonging to the same subgraph H;.
If we arrange f(v) = (f(u) + 1) mod n, then indeed arc (u,v) crosses only nodes in H;.
However, if f(u) = (f(v) + 1) mod n, then (u,v) can cross nodes that are not in H;. As
a result, the contribution of an arc depends not only on the node set partition, but also
on how nodes are arranged within a single partition. Thus, this fact is a major obstacle to
a divide-and-conquer approach. Our solution will balance partitions so as to sidestep this
problem.

Definition 3.1 ([AMO93]). Let G = (N, A) be a directed graph. The head of an arc (u,v)
is node v and the tail is node u.

Lemma 3.2. Suppose that e crosses u, and let u be the node that e does not cross and that
minimizes the quantity (f(u) — f(v)) mod n. Then, v is e’s head.

Lemma 3.3. The cost of a circular arrangement f is equal to), ., py, where p, = Ze:vEC(e) w(e)
is the total weight of arcs crossing v.

Lemma 3.4. Let G = (N, A) be a directed graph, and assume that the node set N can
be partitioned into Ny, Na, ..., Ny with the property that for e € A there is a unique N;
(1 < j < k) on which e is incident. Then, there is a minimum circular arrangement that
places the vertices of N; next to each other (1 < j <k).

The major differences between Lemma 2.9 and Lemma 3.4 are that |N;| can be larger
than n/2, and that a property of one optimum arrangement is described, rather than a
property of all optimum arrangements.

Proof Sketch. The proof is similar to that of Lemma 2.9, with the following difference. The
arcs that cross v; do not cross only nodes of N; in g, but have to circumnavigate around the
nodes in N — Nj. O

A first component of our algorithm is a polynomial-time approximation algorithm for
the minimum feedback arc set problem: given a directed graph G = (NN, A) with non-
negative integer arc weights w(e) for all e € A, find an arc set of minimum total weight that

10
intersects every directed cycle in the graph G. The minimum feedback arc set problem is

APX-complete [Kan92] and has a polynomial-time algorithm that approximates the optimum
solution to within an O(logn loglogn) factor [ENSS98]. Another component of our algorithm
is expressed by the following lemma, which will give the termination condition of a sequence
of separator computations.

Lemma 3.5. Let G = (N, A) be a directed acyclic graph and assume that the node set N
can be partitioned into N1, N, ..., Ny with the property that for e € A there is a unique N;
(1 < j < k) on which e is incident. Let A; be the set of arcs incidents on N; and consider
the cost £; of any linear arrangement of the graph (N;, A;). Then, £; < (|N;j| — 1)cp~(A;).

Proof. Let W = ZeeAj w(e) and observe that cp«(A;) > W because A; contains no loop.
Meanwhile, a linear arrangement of N; pays at most W (| N;|—1), thus proving the lemma. O

The main ideas of the proof are as follows. Consider a subgraph G' = (N, A") of G =
(N, A) on the same node set N. Then, the minimum circular arrangement of G’ costs no
more than the minimum circular arrangement of G. Our algorithm will then consider a
sequence of graphs Go,G; = (N, Ay),...,Gr = (N, Ag) with the properties that Gy = G,
that A;11 C A; (0 <i < k), that A, = 0, and that ¢;(A; — A;1) < Ba* for some 8 € O(y/n)
and where a* is the minimum cost of a circular arrangement of G. As a result, the algorithm
achieves an O(ky/n) approximation factor. Unlike the undirected case, we cannot show
a decomposition with & = O(1). Instead, we will remove a feedback arc set to make G
acyclic, then we will keep partitioning the graph until the size of each connected components
is so small that we can arrange those components with any topological ordering. Such
decomposition guarantees a value of £ = O(logn), so that the approximation factor will be
5(\/5) The graph G; = (N, A;) will be partitioned into components X;, Xy,..., X, C N
with the property that no arc is incident on more than one X;. In other words, the X;’s
contain weakly connected components of GG;. The cost of a circular arrangement of G; is the
sum of the costs due to the X;’s: c;(4;) = 377, Ze:(z,y):z,yer w(e)h(e). For the purpose
of the analysis, we will sometimes consider a subgraph G” obtained by removing nodes from
a (GG; along with all incident arcs and observe that a minimum circular arrangement of G”
costs no more than that of G;. We will also need the following definition.

Definition 3.2. Given a complete weighted directed graph G = (N, A), the graph obtained
by removing arc orientation from G is the complete weighted undirected graph G' = (N, E)
with weights w({u,v}) = w((u,v)) + w((v,u)) (u,v € N, u # v).

We can now state our approximation algorithm. In the first step, we remove arc ori-
entation from G. Then, we compute H;, Hy, H3 exactly as in the algorithm for undirected
graph. At this point, |H,|,|Hs|,|Hs| < n/2. Let G; be the directed graph obtained by
removing from G arcs incident on both H; and N — H; and G, be the directed graph ob-
tained by removing from (G; arc incident on both H, and N — H,. Observe that H, Hy, Hs
have the property that they contain weakly connected components of G5. Our algorithm
then computes a feedback arc set for G5 with an O(logn loglogn)-approximation algorithm

11
[ENSS98], removes the feedback arcs, and obtains a graph G3. At this point, G5 is acyclic

and we start a procedure to be described below that finds (1/3)-separators for the H;’s while
component size is bigger than a parameter § = y/nlogn. At any step of this recursive pro-
cedure, the graph G; = (N, A;) has the properties that the node set NV can be partitioned
into X, Xy, ..., X, and that arcs are incident on a unique X. In other words, the X;’s have
the property that they contain the weakly connected components of GG;. Initially, G35 has
X;=H,; (j =1,2,3). To obtain G;;; from G;, we remove arc orientation from G;, and for
each X, if |X;| > 6, we find a (1/3)-separator of the undirected subgraph induced by Xj,
and correspondingly break X; into X;; and Xj,. Thus, the previous X;’s contain the new
X;’s. The procedure continues until |X;| < 6 (1 <j <p).

Lemma 3.6. Let G = (N, A) be a directed acyclic graph and assume that the node set N
can be partitioned into Ni, Na, ..., Ny with the property that for e € A there is a unique
N; (1 < j < k) on which e is incident. Let A; be the set of arcs incident of N;. Then,

cr(A) =30 cp(4)).

Lemma 3.7. The total contribution to the circular arrangement cost of the arcs that have
endpoints in different H;’s is no more than an O(logn) factor away from the cost a* of an
optimum circular arrangement (i.e., c;(A — Ay) < aa* for some o = O(logn)).

Proof Sketch. Similar to the proof of Theorem 1.1, except that h(e) can be as high as n — 1.
However, this modification only doubles the constant factor. O

Lemma 3.8. The total contributions to the circular arrangement cost of the arcs in the
feedback arc set is no more than an O(lognloglogn)-factor away from the cost a* of an
optimum circular arrangement (i.e., c;(Ay — Az) < ya* for some v = O(lognloglogn).

Proof. The minimum cost of a circular arrangement of G, is not larger than the minimum cost
a* of a circular arrangement of G. By Lemma 3.4, we can assume without loss of generality
that the optimum arrangement f* of G5 places nodes in H; next to each other. Furthermore,
we can assume without loss of generality that the optimum circular arrangement f* places
the nodes of Hy in 1,2,...,|H;|. Let A’ is the set of arcs with both endpoints in H;, A®
be the feedback arc set that the approximation algorithm finds for Hy, and A€ be the set of
arcs (r,y) € A’ that cross nodes outside Hy in f*. Finally, let G' = (H;, A’) and A* be the
optimum feedback arc set on G'. Arcs in A’ — A¢ link nodes (z,y) with f*(y) > f*(x), and
so f* is a topological ordering of (H;, A’ — A°). Therefore, A° contains a feedback arc set of
G', so that w(A°) > w(A*). Moreover, h(e) > |Hy U H3| > n/2 for all e € A, so that a* >
cp+(A°) > nw(A*)/2. We now have that w(A®*) < yw(A*), for some v = O(lognloglogn).
Let f be the algorithm’s circular arrangement, and c;(A%) < nw(A?) < naw(A*) < 2aa’*.
Similar arguments for Hy and Hj conclude the proof. O

We now start with the DAG G5 and, for each of components, Hy, Hy, H3, we compute
an approximate (1/3)-separator. We continue breaking the components with approximate
(1/3)-separators until component size is no more than a threshold § = v/nlogn, at which
point we arrange nodes within each component in topological order.

12
Lemma 3.9. Let G be a directed graph with more than n = 4 vertices and G’ be undirected

graph obtained from G by removing arc orientation. Let s* be the cost of an optimum (2/5)-
separator of G' and a* the minimum cost of a circular arrangement of G. Then, s* < (2a*)/n.

Corollary 3.10. Let G = (N, A) be a weighted directed graph with o node subset H C N
such that |H| > 4 and there is no arc that is incident on both H and N — H. Let A’ be the
set of arcs incident on H. Let G' = (H, E") be the undirected subgraph obtained by removing
arc orientation from the subgraph of G induced by H. Let s* be the cost of an optimum

(2/5)-separator of G'. Then, s* < 2¢s«(A")/|H].

Proof. Consider G” = (H, A"”), the weighted directed subgraph of G induced by G. We
have that ¢« (A’) is at least equal to the minimum cost of a circular arrangement of (N, A'),
which in turn is at least equal to the minimum cost of a circular arrangement of (H, A’). By
the previous lemma, s* is at most |H| times the minimum cost of a circular arrangement of
(H, A"), which concludes the proof. O

Lemma 3.11. The arcs eliminated during each stage of the procedure above contribute to
the arrangement cost no more than O(y/nlogn) times the optimum cost a* of a circular

arrangement (i.e., cp(A; — Aip1) < /nlogn).

Proof. Consider a graph G; = (N, A;) that has been decomposed into X, Xo,...,X,. Let
B; be the set of arcs in A; — A4, that are incident on X;. Thus, A; — A;11 = U?ZlBj. We
will show that cf(B;) < Ocs-(B;) where § = /nlogn, and so

p p
cr(As = Aiy) =) ep(B)) <0 e (By) = ey (A — Aija)
=1 =1

where the first and last equality follows from Lemma 3.6. It remains to show that ¢;(B;) <
fcs-(B;). Consider a subset X; of nodes found at some stage by the separator procedure
above. If | X;| < 0, then the cost of arranging the arcs incident on X is less than 6 times their
contribution to the optimum cost by Lemma 3.5. If |X,| > 6, then we find a separator that
costs at most as*, where @ = O(logn) and s* is the cost of an optimum (2/5)-separator of the
undirected subgraph induceded by X ;. By Corollary 3.10, ¢;(B;) < nas* < 2anc(B;)/|X;]
which is no more than 6 times cs-(B;), and so the lemma is proven. O

Theorem 1.2. The discussion above and Lemmata 3.7, 3.8, and 3.11 yield a O(ky/n)-aproximation
algorithm. Since (1/3)-separators are guaranteed to split node subsets into subset contain-
ing at least 1/3 of the original number of nodes, the splitting procedure terminates after
k = O(logf) = O(logn) steps, thus yielding the theorem. O

4 Algorithm Engineering
We have implemented a fast version of our algorithm for directed graphs as well as three

previous algorithms for the same problem. The approximation algorithm in section 3 re-
quires the computation of feedback arc sets and balanced separators, which in turn require

13
the solution of multicommodity flow problems and the computation of spreading metrics.

Furthermore, spreading metrics require the solution of several linear programs with an ex-
ponential number of constrains by means of the ellipsoid method [ENSS98, Ha¢79]. Thus,
we do not believe that the algorithm can be practical in its original form and we made the
following simplifications. First, we do not directly compute balanced separators. Instead,
we find all the minimum s — ¢ cuts in the graph, which results in a separator tree [CH91].
Then, we start from the largest edge in the separator tree and we repeatedly add the largest
incident edge to the current component until we isolate a set of vertices of the desired size.
By construction, the resulting cut is a balanced separator and the cut value should not be
too large as the separator edges have greedily joined the chosen component. Thus, we believe
that the proposed heuristic is a reasonable way to compute a separator. The second sim-
plification is in the calculation of the feedback arc set, where we replace an approximation
algorithm with a greedy heuristic [CSS99]. The resulting algorithm is denoted as Bsep. In
addition to the Bsep algorithm, we experimented with the following three algorithms. The
first algorithm (Rnd) is a random ordering of the graph nodes. The second algorithm is based
on maximum spanning trees (MST) to cluster nodes close to each other [Lib02]. The final
algorithm originates from the observation that the heuristic for feedback arc set computes a
linear ordering of the underlying graph and then discards all arcs that violate the topologi-
cal ordering, that is, all arcs that link higher-numbered vertices to lower-numbered vertices
[CSS99]. Thus, such heuristic can also be used to obtain directly a circular arrangement of
the original graph, and it is the last algorithm that we consider in this paper (Fesh). We also
considered the application of integer linear programming to solve the circular arrangement
problem exactly. However, after two weeks of computation on a Sun Ultra60, Cplex had not
found any integer solution other than the one that we manually inserted as a starting point,
even when clique cuts and ordered sets were added. We explain such behavior by noticing
that the linear relaxation of the integer formulation places an equal fraction of every node in
each position of the circular arrangement, and that branch-and-cut algorithms suffer when
the relaxation does not effectively direct the selection process.

We have tested the algorithms in the context of multicast-based data dissemination on
directed graphs obtained from the access pattern to the Web server of the World Cup 98.
The World Cup trace includes more than one billion requests over a period of 1 1/2 month
and is one of the largest trace analyzed to date [AJ99]. Furthermore, the World Cup servers
received up to 10 million requests per hour. As a result, the World Cup site is one of the
most busy recorded so far, which makes it an ideal testbed for multicast data dissemination.
Additional information on this workload can be found in [AJ99, Lib02].

The four algorithms are compared in table 1. The Rnd cost is roughly n/2, and in most
cases the other algorithms improve over it. The MST and Fesh algorithm had comparable
cost on graph 3 and 4, but MST is better than Fesh on graph 1 and Fesh is better than
MST on graph 2. Thus, we believe that in general the performance of MST and Fesh is
roughly comparable. Finally, the Bsep algorithm had the best performance in three graphs
out of four, and on the other graph, its performance trails the best algorithm by 3%. Thus,
we believe that Bsep is overall the best algorithm in terms of circular arrangement cost.

| Graph 1 | Graph 2 Graph 3 | Graph 4
n 225 174 206 200
Rnd | 112.2294 4 0.7440 | 87.0159 + 1.2416 | 102.7072 £+ 0.5072 | 100.0331 = 1.5135
MST 107.26 79.6681 97.6602 103.693
Fesh 99.0344 88.6276 98.052 103.619
Bsep 97.1283 82.2139 89.5094 95.4161

14

Table 1: Cost of the circular arrangement returned by the four algorithms. Additionally,
the worst-case cost on these graphs is n — 1, where n is the number of nodes in the graph.
Thirty random arrangements were tried, and we report their cost in the form of average +
standard deviation.

However, Bsep is slower than the other algorithms even with all the simplifications above.
For example, Bsep took 17.3s on an unloaded Ultra60 for graph 1 while Fesh took only 1s
on the same machine and with the same compiler (g++ -0).

Acknowledgments

This work has been supported in part under NSF grant ANI-0123929.

References

[AAF9S]

[AFK96]

[AJ99]

[AMO93]

[Bak74]

K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery of Web pages using
cyclic best-effort (UDP) multicast. In Proceedings of the Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM 1998), 1998.

Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure for the
assignment problem with applications to dense graph arrangement problems. In
37th Annual Symposium on Foundations of Computer Science (Burlington, VT,
1996), pages 21-30. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

Martin Arlitt and Tai Jin. Workload characterization of the 1998 World Cup
web site. Technical Report HPL-1999-35R1, HP Labs, 1999.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows.
Prentice Hall Inc., Englewood Cliffs, NJ, 1993. Theory, algorithms, and applica-
tions.

Kenneth R. Baker. Introduction to sequencing and scheduling. Wiley, New York,
1974.

[BLMR9S]

[CHO1]

[CLPO1]

[CSS99]

[DF]
[ENRS95]

[ENSS98)]

[GIT9]

[Hac79)]

[Han89]

[HGLW87]

[HN]

[Kan92]

15
John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A

digital fountain approach to reliable distribution of bulk data. In Proc. Sigcomm,
1998.

C. K. Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal cut
functions. Ann. Oper. Res., 33(1-4):199-213, 1991. Topological network design
(Copenhagen, 1989).

Panos K. Chrysanthis, Vincenzo Liberatore, and Kirk Pruhs. Middleware sup-
port for multicast-based data dissemination: A working reality. White paper,
2001.

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order
things. Journal of Artificial Intelligence Research, 10:243-270, 19909.

http://www.digitalfountain.com/.

Guy Even, Joseph (Seffi) Naor, Satish Rao, and Baruch Schieber. Divide-and-
conquer approximation algorithms via spreading metrics. In Proceedings of the
36th Annual Symposium on Foundations of Computer Science, pages 62-71, Oc-
tober 1995.

G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica, 20(2):151-174, 1998.

Michael R. Garey and David S. Johnson. Computers and intractability. W. H.
Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-
completeness, A Series of Books in the Mathematical Sciences.

L. G. Hacijan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk
SSSR, 244(5):1093-1096, 1979.

Mark D. Hansen. Approximation algorithms for geometric embeddings in the
plane with applications to parallel processing problems. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, pages 604-609,
19809.

Gary Herman, Gita Gopal, K. C. Lee, and Abel Weinrib. The datacycle archi-
tecture for very high throughput database systems. In Proceedings of the 1987
ACM SIGMOD Conference International Conference on Management of Data,
pages 97-103, 1987.

http://www.hns.com/.

V. Kann. On the Approximability of NP-complete Optimization Problems. PhD
thesis, Royal Institute of Technology, Stockholm, 1992.

[KLOO]

[KSY00]

[Lib02]

[LR99]

[PAS]
[PDO0]

[RR9S]

[Ste98|

16
Sanjeev Khanna and Vincenzo Liberatore. On broadcast disk paging. SIAM

Journal on Computing, 29(5):1683-1702, 2000.

Claire Kenyon, Nicolas Schabanel, and Neal Young. Polynomial-time approx-
imation scheme for data broadcast. In Proceedings of the Thirtisecond ACM
Symposium on the Theory of Computing, 2000.

Vincenzo Liberatore. Multicast scheduling for list requests. In 21st Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM
2002), 2002. To appear.

Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999.

http://www.panamsat.com/.

Larry L. Peterson and Bruce S. Davie. Computer Networks. Morgan Kaufmann,
2000.

Satish Rao and Andréa W. Richa. New approximation techniques for some
ordering problems. In Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (San Francisco, CA, 1998), pages 211-218, New York,
1998. ACM.

W. Richard Stevens. Unixz Network Programming. PTR PH, 1998.

A Omitted Proofs 17

The proof of Proposition 2.1 is a reduction from the Optimal Linear Arrangement Problem
(OLA) [GJ79]:

Instance: Graph G = (V, E), positive integer K.

Question: Is there a one-to-one unction f: V — {1,2,..., |V} such that >, ,cp[f(u)—
f) < K?

Proof of Proposition 2.1. The Undirected Circular Arrangement problem is obviously in NP.
We now reduce OLA to CA. First, notice that OLA’s optimal solution costs at most n?,

where n = |V|. Hence, we can consider without loss of generality only values of K <
n®. Let v = n® + 1. We construct an instance of CA as follows. Let G' = (V', F')
where V! =V U {z1,29,...,2,}, ©1,22,..., 2, are newly introduced nodes, and £’ = E U

{{zi,zis1} : 1 < i < y}. We associate a unit weight to all edges e € E and w(e) = v
for e € E' — E. Finally, we set K’ = K + v(y — 1) and ask if there is a CA solution
for G' that costs no more than K’. Observe that K' < 2, a fact that we will use later
on. If there is a solution f to OLA that costs at most K, then there is a solution to
CA that costs at most K': simply assign the index f(u) to all nodes u € V and assign
f(z;) = (n + i) mod n' to the z;’s, where n' = |V'| = n + 7. Conversely, suppose that
there is a CA solution that costs no more than K'. First, f(z;x1) = (f(z;) + 1) mod n’,
otherwise)/ _| w({xz,xzﬂ}) ({zi,wi01}) > v(y = 1)+ = +? > K'. Hence, f(z;41) =
(f(z:) + 1) mod n' and 377 w({xi, zis1 })h({xi, i1 }) = ¥(y — 1). Moreover, vertices in V'
are assigned consecutive indices, and we can renumber so that those indices are in the range
{1,2,...,|N|}. We then have that such index assignment costs no more than K, which
concludes the proof. O

Proof of Lemma 2.2. Write e = {u,v} and observe that (f(v) — f(u)) modn + (f(u) —
f(w)) mod n =n and h(e) = min{(f(v) — f(u)) mod n, (f(u) — f(v)) mod n}. O

Lemma A.1l. Ife = (z,y) crosses u, then (f(u) — f(x)) mod n < n/2.
Proof of Lemma A.1. Since e = (z,y) crosses u, (f(u) — f(z)) mod n < h(e) < n/2. O
Lemma A.2. If e crosses u, e does not cross v, and f(v) = (f(u) + 1) mod n, then v € e.

Proof. Write e = (x,y) and assume by contradiction y # v. Since e crosses u and does not
cross v, (f(v) — f(z)) modn > (f(y) — f(z)) mod n > (f(u) — f(z)) mod n. Since y # v,
we also have (f(v) — f(z)) mod n > (f(y) — f(z)) mod n. Hence, (f(v) — f(x)) mod n >
(f(u) — f(z)) mod n + 2, which contradicts the hypothesis (f(v) — f(u)) mod n = 1. O

Proof of Lemma 2.3. Since u minimizes (f(u) — f(v)) mod n among all non-crossed vertices,
then e crosses z = f~((f(u) — 1) mod n). Apply the previous lemma to x and u to obtain
u € e. U

18
Proof of Lemma 2.4. An edge e = {u,v} crosses h(e) vertices and contributes w(e)h(e) to

the arrangement cost:

Suiand =3 w0 S 1= 5 wo=La.

eckE ecE veC(e veV eweC(e) veV
Thus, the lemma follows. O

Proof of Lemma 2.5. Let x € V and u € U. Observe that if (f(z) — f(u)) mod n < (f(v;) —
f(u)) mod n then z € U. Analogously, if (f(u) — f(z)) mod n < (f(v1) — f(z) mod n, then
z€U. Let e ={u,v},u € U,and v € V —U. If the canonical orientation of e is (u, v), then
v ¢ U implies (f(v)—f(u)) mod n > (f(v;)—f(u)) mod n, and so e crosses v;. If the canonical
orientation is (v,u), then v ¢ U implies (f(u) — f(v)) mod n > (f(v1) — f(v)) mod n, and
so e crosses f'((f(vy) — 1) mod n). O

Proof of Lemma 2.8. By Lemma 2.7, we have that C(e) 2 Cj(e)UlU,ec,(e) L(v) = Upec, (L (0)U
{v}). By Lemma 2.6, the sets I(v) U{v} are disjoint, so that h(e) = |C(e)| > Zuecj(e) d(v).
We can express the cost of f as

S w@ne) =3 D w@h@) =D 3 wledw) =D Y sd()

eckE]:1 CEE]‘ -: eeE] ’UEC (8)]:1 UEV}'
]

Proof of Lemma 2.11. Let n' = [2n/5]. Consider an optimum circular arrangement f. Let
U= f1({i,(i+1) mod n,..., (i+n'—1) mod n} (0 < ¢ < n). If an edge e crosses from U; to
V —U,, that is eNU;, e —U; # (), then, by Lemma 2.5, e crosses either u = f1((i—1) mod n)
orv = f(i+n' —1) modn). Let & be the sum of the weights of the edges that cross u
or v, that is, § = pu + py. By optimality of s*, & > s*. By Lemma 2.4, a* = > ., p» =
S &/2 > ns* /2, which proves the claim. O

Proof of Lemma 2.13. The cost due to an e € E — F; is w(e)h(e) < nw(e)/2. Moreover,
edge e belongs to an approximate (1/3)-separator of G. Hence, the total weight of edges
in E — E; is no more than asj, where s is the minimum cost of a (2/5)-separator of G
and o = O(logn). Hence, ¢(E — E1) < nasy/2 < aa* by Lemma 2.11, which concludes the
proof. O

Proof of Lemma 2.14. Let G' = (V — Hy, E'), where E' is the set of edges contained in E;
that are not incident in Hj, and let s} be the minimum cost of a (2/5)-separator of G'.
The optimum circular arrangement of G costs at least as much as the optimum circular
arrangement of G'. Hence, st < (2a*)/|V — H;| < (4a*)/n, so that the cost for the edges in
E, — E, is at most nas} /2 < 2aa*, which proves the claim. O

The proof of Proposition 3.1 is a reduction from the Directed Optimal Linear Arrange-
ment Problem (DOLA) [GJ79]:

19
Instance: A directed graph G = (N, A) and a positive integer K.

Question: Is there a topological ordering f : N — {1,2,...,|N|} of N such that 3, ,,c4(f(v)—
fw)) < K7

Proof of Proposition 3.1. The Circular Arrangement problem is obviously in NP. We now
reduce DOLA to CA. First, notice that DOLA’s optimal solution costs at most n®, where n =
|N|. Hence, we can consider without loss of generality only values of K < n®. Let v = n3+1.
We construct an instance of CA as follows. Let G' = (N', A’) where N' = NU{x1, 2, ..., 2},
T1,Z,...,%, are newly introduced nodes, and A’ = AU {(z;,zi41) : 1 < @ < v} We
associate a unit weight to all arcs e € A and w(e) = v for e € A" — A. Finally, we set
K' = K + «(y — 1) and ask if there is a CA solution for G’ that costs no more than K’.
Observe that K’ < 2, a fact that we will often use later on. If there is a solution to DOLA
that costs at most K, then there is a solution to CA that costs at most K': simply assign
the index f(u) to all nodes u € N and assign f(z;) = (n + i) mod n' to the z;’s, where
n' = |N'| = n + . Conversely, suppose that there is a CA solution that costs no more than
K'. First, f(ziy1) = (f(z;) + 1) mod n', otherwise > w((z, $z+1)((f($i+1) — f(z;)) mod
W) > 92 > K'. Hence, f(@i1) = (f(z;) + 1) mod n’ and > i w(@mip) ((f (i) —
f(z;)) mod n') = (v — 1). Moreover, nodes in N are assigned consecutive indices, and
we can renumber so that those indices are in the range {1,2,...,|N|}. We next claim
that such index assignment is a topological ordering. Suppose by contradiction that there
is an arc e = (u,v) € A with f(v) < f(u). Then, (f(v) — f(u)) modn’ > v and so
(f(v) — f(w)) mod n' + 37 w((w,2i1) ((f(wir1) — f(2:)) mod n') > % > K'. We then have
that the index assignment f induces a topological ordering of N and f’s cost is at most K,
which concludes the proof. O

Lemma A.3. If e crosses u, e does not cross v, and f(v) = (f(u) + 1) mod n, then v is e’s
head.

Proof. Write e = (z,y) and assume by contradiction y # v. Since e crosses u and does not
cross v, (f(v) — f(z)) modn > (f(y) — f(z)) mod n > (f(u) — f(z)) mod n. Since y # v,
we also have (f(v) — f(z)) mod n > (f(y) — f(z)) mod n. Hence, (f(v) — f(x)) mod n >
(f(u) — f(z)) mod n + 2, which contradicts the hypothesis (f(v) — f(u)) mod n = 1. O

Proof of Lemma 8.2. Since u minimizes (f(u) — f(v)) mod n among all non-crossed vertices,
then e crosses z = f~!((f(u) — 1) mod n). Apply the previous lemma to z and u to obtain
that u is e’s head. O

Proof of Lemma 3.3. An arc e = (u,v) crosses h(e) vertices and contributes w(e)h(e) to the
arrangement cost:

IUCUEEDRICD SEES o DRTCED IS

ecA ecA veC(e) vEN eweCle vEN

Thus, the lemma follows. 0

20
Proof of Lemma 3.4. The proof is by contradiction. Let n; = |N,|, let A; be the set of arcs

that have both endpoints in N;, and let G; = (N;,4;) (1 < j < k). We will say that
a vertex u € Nj is the successor of a vertex v € N; in the arrangement f if and only if
(f(u) = f(v)) mod n < (f(z) — f(v)) mod n for all z € N;. The successor of v € N; in f is
unique, belongs to N; and will be denoted as s(v). We define d(v) = (f(s(v)) — f(v)) mod n
and observe that ZvEN d(v) = n for all j’s. Define I(v) ={u:0 < (f(u) — f(v)) mod n <

d(v)}. We have that \I()| = d(v)—1. Moreover, by definition of s¢(v), we have I(v)NN; = ()
when v € V. It is easy to see that I(v)NI(u) = 0 for allu,v € N;. We now claim that if an arc
e Crosses v and I(v) # 0, edge e also crosses all nodes in I(v). Suppose that this is not the case
and let v € I(v) be the node that e does not cross and that minimizes (f(u) — f(v)) mod n.
Hence, arc e crosses the node x = f~'((f(u) —1) mod n) € I(v) U{v}. Lemma 3.2 now gives
that w is e’s tail, which contradicts I(v)NV; = (). We conclude that e crosses all nodes in I(v).
Let Cy(e) = C(e) N ;. We have that C(e) 2 C5(e) UUye) 10) = Usee, I (0) U {}).
Since the sets I(v) U{v} are disjoint for v € N;, we have that h(e) = [C(e)| > 3 c (e d(v)-
Let p/ be the total weight of arcs in E; that cross v, that is, p) = ZeEVj:veC(e) w(e). We can
express the cost of f as

S u@h) =3 Y w@h© =Y Y w@de) =3 Y pdw)

e€cA Jj=1 e€A; j=1 e€Aj veCl(e) j=1 vEN;

Fix nodes v; with p{'}j = Mingey;, pl (1 < j < k). Consider the following circular arrange-
ment:
_n;—1 ifv=uv;
9(v) = g(sf(v)) — 1 otherwise
It is immediate to see that g establishes a one-to-one mapping g : N — {0,1,...,n—1} and
that g places the vertices in the N;’s next to each other. It remains to show that g costs less

than f does. Since g preserves the successor sf(v) within nodes in N;, we have that arcs
cross exactly the same nodes of N; in g as in f. The cost change due to G is no more than

Y. Arm—ny+1)pl =Y pldw) = pl(n=—n)= Y pld(v) - 1)

vEN; —{v;} vEN; vEN; —{v;}

< ph(n—ny) = pl. Y (dv) —1)

vEN;

because d(v) > 1, p{, < pl, Zuevj d(v) = n. Hence, g costs less than f, a contradiction is
reached, and the lemma is proven. O

Proof of Lemma 8.9. The proof is similar to that of Lemma 2.11. Let n’ = [2n/5]. Consider
an optimum circular arrangement f and let U; = f~1({4, (i+1) mod n, ..., (i4+n'—1) mod n}
(0 < i < n). If an arc e has one endpoint in U;, then, by Lemma 3.2, e crosses either
f~4((i—1) mod n) or f~}((:+n'—1) mod n). By optimality of s*, p; > s*. By Lemma 3.3,
a* > 3" ' pi/2 > ns*/2, which proves the claim. O

21
Proof of Lemma 3.7. Let G; = (N, A;) be the subgraph obtained from G by removing arcs

that are incident on both Hy and N — Hy. Then, w(A— A;) = asf, where s§ is the minimum
cost of a (2/5)-separator on the undirected graph induced by G and a = O(logn). The
total contribution of A — A; to the arrangement cost is at most nasy < 2aa® by Lemma 3.9.
Consider next G' = (N — H;, A") obtained by removing from G; the node set H; and all
incident arcs. Let s be the minimum cost of a (2/5)-separator of the undirected version of
G'. The optimum circular arrangement of G costs at least as much as the optimum circular
arrangement of G'. Hence, s} < (2a*)/|N — Hy| < (4a*)/n, so that the cost for the arcs
between Hy and Hj is at most nas; < 8aa*. Since a = O(logn), the proof is complete. [

