
Layered Multicast Scheduling for the L∞ Objective

Qingbo Cai∗ Vincenzo Liberatore†

Abstract

Layered multicast is a scalable solution to data dissemination

over the Internet. The performance of layered multicast

hinges upon the transmission schedule. In this paper,

we study the scheduling problem in the layered multicast

context. This work generalizes the extensively studied

multicast scheduling problem (layered and non-layered) by

introducing simultaneously the data popularity and the

interaction among layers, and addresses the strictest L∞
objective, i.e., to find a schedule which is good for all

individual layers. Compared to the previous work, this paper

presents a polynomial-time approximation algorithm that

uses a different approach and can address the general layered

multicast scheduling problem with an arbitrary number of

layers. This algorithm is 1.334-approximation for the two-

layer case and 1.862-approximation for the general multi-

layer cases.

1 Introduction.

Data dissemination scales to Internet numbers if servers
use multicast channels [17, 5]. However, a scalable
multicast server must accommodate a wide range of end-
to-end bandwidth available to clients. Heterogenous
bandwidth is addressed by layered multicast [27, 15,
16, 11, 25, 32], in which the multicast channel is
divided into layers. Each client individually decides
whether to receive data from each layer according to
its available bandwidth. If a client receives from a
layer, it also receives from all layers below it (i.e., layers
are cumulative) [27, 22, 16]. The transmission rate
doubles from one layer to the layer above it, thereby
guaranteeing that each client receives data at a rate of
at least 1

2 of its available bandwidth [27, 22]. Although
layered multicast has occasionally been investigated
with non-cumulative layers and different layer rates
(e.g., [11]), the mainstream model assumes cumulative
layers to enable overlapping multicast routes and adopts
rate doubling to simplify multicast scheduling while
maintaining high bandwidth utilization [27, 22, 15,
25, 26, 10, 33]. Applications of layered multicast

∗Division of Computer Science, Case Western Reserve Univer-
sity.

†Division of Computer Science, Case Western Reserve Univer-
sity.

include multimedia transmission [23, 14], Web contents
dissemination [28], software upgrades [30], broadcast
links (e.g., satellite, TV) [19], and layered multicast is
especially crucial in overlay networks [29, 34].

In a multicast system, the critical performance
metric is the average waiting time for clients to receive
the desired data. In turn, the client waiting time
depends on the frequency and order of transmission of
the desired data, and so it is a function of the server
transmission schedule. Layered Multicast Scheduling
(LMS) is an extension of the well-known Non-Layered
Multicast Scheduling (NLMS) problem [2, 3, 4, 6, 21],
and it is significantly more complicated since LMS
addresses the waiting times of heterogeneous clients.
The LMS problem has been extensively studied (e.g.,
[15, 10]). However, most previous LMS work has
ignored data popularity, which can be gathered by a
middleware [9, 34, 1] and is a central factor in NLMS.
This paper investigates the LMS problem with data
access probabilities (data popularity).

The LMS problem generalizes the NLMS problem
by introducing layers and their interaction. The NLMS
problem is to find a schedule for broadcasting a given set
of N data items over multiple channels, where each data
item is associated with an access probability pi. The ob-
jective is to minimize the average waiting time of a ran-
dom request for a data item. The simpler NLMS prob-
lem intuitively reduces to the following problem: given
a set of real numbers {τ1, τ2, . . . , τN}, find a “regular”
infinite sequence of the integers {1, 2, . . . , N} where the
integer i appears “approximately” every τi positions.
The NLMS problem can be solved in polynomial time
for the special case of two data items [8]. The golden
ratio sequence algorithm (GRS) was developed in [18]
and later proved to be 9

8 -approximation for NLMS [6].
GRS is based on the three distance theorem conjectured
by H. Steinhaus and independently verified by Vera T.
Sós and P. Erdös, et al . A polynomial-time approxima-
tion scheme (PTAS) was presented in [21]. Some NLMS
variants were also studied in [31, 20, 24, 7].

The LMS problem [15, 10] is a stronger version of
the NLMS problem, and intuitively corresponds to find-
ing a “regular” infinite sequence that also contains reg-
ular subsequences. More specifically, if we extract a
subsequence by taking one position out of 2 (4, 8, . . .),

the subsequences should also be regular in the sense that
the integer i appears approximately every τi positions.
In the layered multicast settings, subsequences corre-
spond to layers, and the LMS problem is fundamentally
to find a schedule with good subschedules. A similar
sequencing problem found applications in declustering
multidimensional data [13].

The LMS problem is a multi-objective optimization
problem since the costs should be minimized on all
layers. If the subscription profiles , i.e., the distribution
of users subscribing to each layer, is known, the multiple
per-layer objectives can be reconciled into the L1 form,
which is the weighted sum of the per-layer costs using
the subscription profiles as weighting coefficients. The
L∞ objective refers to the maximum of the per-layer
approximation ratios. It requires no knowledge of
subscription profiles and thus is more stringent. A 2-
approximation randomized algorithm is presented for
both the L1 and the L∞ objectives in [12]. However,
the derandomization only works for the L1 objective
due to the multi-objective nature of LMS. For the
L∞ objective, a combinatorial construction was given
with a performance guarantee of 1.6875 for two layers
only. This construction is inherently inextensible to
the general LMS problem with an arbitrary number of
layers.

In this paper, we study the general LMS problem
for the L∞ objective. We present a polynomial-time
approximation algorithm for LMS, which is fundamen-
tally different from the previous combinatorial construc-
tion and can address LMS with an arbitrary number
of layers. In brief, our approach constructs a periodic
schedule by concatenating several schedule blocks. Each
schedule block is carefully generated so that some lay-
ers (targets) have good costs and others (non-targets)
have moderate costs. Since targets are rotated among
the blocks, when averaging the per-layer cost across the
blocks in a period, the L∞ objective is minimized. Our
algorithm achieves a better approximation ratio (1.334)
than the combinatorial construction (1.6875) in the two-
layer case, and is at most 1.862-approximation in the
general multi-layer case.

This paper is organized as follows. In Section 2, we
define the LMS problem. Then, Section 3 summarizes
our approach. In Section 4, we provide a subschedule
extraction algorithm which will be used as a building
block in the main algorithms. In Section 5, we present
the algorithms and performance analyses for LMS with
2 layers, 3 layers, and more than 3 layers, respectively.

2 Preliminaries.
The Schedule. A multicast server continuously

and repeatedly transmits N equal-size pages denoted as

1, . . . , N on L layers numbered 0, . . . , L−1 (L ≥ 2). The
time axis is divided into unit length time-slots, where
each time-slot is the duration to transmit one page on
layer 0. During each time-slot, the transmission rate
(i.e., the number of pages transmitted) on layer l is
defined as:

(2.1) rl =

{
1, l = 0;
2l−1, 1 ≤ l ≤ L − 1.

Let Rl =
∑l

j=0 rj denote the cumulative rate for
layer l, then Rl = 2l. W.l.o.g., we assume that
RL−1 = 2L−1 ≤ N . A schedule is a sequence
S = {Al,t : 0 ≤ l ≤ L − 1, t ≥ 1}, where Al,t denotes the
set of pages transmitted on layer l during time-slot t
(see Figure 1 for an example of a 3-layer schedule).
We also define a subschedule Sl for layer l as a se-
quence {Al,t : t ≥ 1}, and define a combined subsched-
ule Si,...,l for layer i, . . . , l as {Aj,t : i ≤ j ≤ l, t ≥ 1}.
A (sub)schedule block of S with length T is the
(sub)schedule S in T consecutive time-slots.

Layer 1

Layer 2

...

...

...

...15

4321

Time

4

10

1

5 9

3

8

7

1

6

5

2 1

11

10

Layer 0

S2

A0,1

A1,1

A2,1

A0,2

A1,2

A2,2

A1,3

A2,3 A2,4

A1,4

A0,4A0,3
S0

S1

Figure 1: An example of a 3-layer schedule.

The Input. The number of pages N , the access
probabilities pi associated with each page i where pi > 0
and

∑N
i=1 pi = 1.

The Objective. If a client receives pages from
layer l, it simultaneously receives pages from layers
0, . . . , l−1, i.e., layers are cumulative. The subscription
level of a client is the highest layer that it can receive
pages from. A client must eventually receive every
page independently of the subscription level (reliability
requirement).

Page requests are generated at the beginning of
each time-slot, and are independent and identically
distributed over time. Each page i is requested with
probability pi. Suppose that, at the beginning of time-
slot t, a request for page i is raised by a client with
subscription level l. This request will be satisfied at the
end of time-slot t′ (t′ ≥ t) where page i is transmitted
on at least one of layers 0, 1, . . . , l, i.e., i ∈ ⋃l

h=0 Ah,t′

and i /∈ ⋃t′−1
j=t

⋃l
h=0 Ah,j . Then, the client has to wait

wl,t(i) = t′ − t + 1 time-slots before page i can be
accessed. The cost Cost(S, l) of a schedule S on layer
l is defined as the average waiting time for a request
with subscription level l (where the average is taken
over the time and the page requested), i.e.,

(2.2) Cost(S, l) = lim sup
n→∞

1
n

n∑
t=1

N∑
i=1

piwl,t(i) .

Let OPTl = infS Cost(S, l) denote the optimal
value of Cost(S, l). Our goal is to minimize the
maximum of per-layer approximation ratios (the L∞
norm) ignoring an additive constant, i.e., to find a
schedule S that minimizes

(2.3) λL = max
0≤l≤L−1

{
Cost(S, l) − c

OPTl

}

for some constant c that does not depend on any
problem parameter.

We next define the state vector, and give an equiv-
alent definition of the cost in terms of the state vari-
ables in Lemma 2.1. At time-slot t ≥ 1, the state
vector is defined as

−→
st =

(−→
st
0 , . . . ,

−−→
st

L−1

)
, where

−→
st

l =(
st

l,1, . . . , s
t
l,N

)
and st

l,i ≥ 0 denotes the number of time-
slots elapsed from the most recent transmission of page
i on any of the layers 0, . . . , l. By definition, st

l,i = 0 if
i ∈ ⋃l

h=0 Ah,t, and st
l,i = st−1

l,i + 1 otherwise. Assume
that the 0th transmission of a page i is at some time-slot
before 0, then s0

l,i is arbitrary but fixed.

Lemma 2.1. (Time reversibility) For any schedule
S, the following equality holds:

(2.4) Cost(S, l) = lim sup
n→∞

1
n

n∑
t=1

N∑
i=1

pi

(
st

l,i + 1
)

.

Proof. [Sketch] The proof is standard and similar to
that in [20].

Hereafter, we will use the equivalent definition of
Cost(S, l) given in Lemma 2.1.

Lemma 2.2. If S is a periodic schedule with period T ,
then:

(2.5) Cost(S, l) =
1
T

T∑
t=1

N∑
i=1

pi

(
st

l,i + 1
)

.

Proof. This lemma holds due to Lemma 2.1 and the
properties of lim sup.

3 Summary of Approach.
Our approach to construct a periodic schedule S for L
layers is as follows. A period of S consists of j sched-
ule blocks B1, . . . , Bj of length T1, . . . , Tj respectively,
where the number of blocks j and the block lengths
T1, . . . , Tj depend on L. During each schedule block
Bj1 (1 ≤ j1 ≤ j), we carefully select a certain subset
of layers {l1, l2, . . . , li} (w.l.o.g., l1 < l2 < · · · < li) to
be target layers and attempt to minimize the cost of
S incurred in Bj1 on these layers. The target layers
are rotated across blocks so that each layer becomes a
target in some of the j blocks. Moreover, each block
Bj1 is generated so that each target layer lk has a good
cost Clk,j1 in block Bj1 and, simultaneously, each non-
target layer l(l �= l1, l2, . . . , li) has a moderate cost Cl,j1

in Bj1 . Then, by setting the block lengths T1, . . . , Tj

appropriately, rotating the targets across blocks, and
averaging the cost during a period (i.e., Cost(S, l) =
(Cl,1T1 +Cl,2T2 + · · ·+Cl,jTj)/(T1 +T2 + · · ·+Tj)), the
per-layer approximation ratios are close to each other
and the maximum is minimized.

The core element of our construction is the target
selection and the schedule block generation. Generally,
we set the distance between adjacent targets to be 3.
The reason is two-fold. First, the subschedule for the
layer immediately below a target layer can be obtained
by subschedule extraction with a performance guarantee
as in Algorithm 1 (Section 4), which greedily generates a
one-level subschedule for lower layers from a schedule or
a combined subschedule without degrading the perfor-
mance on higher layers. Second, the layer immediately
above a target layer can be helped by lower layers with
a moderate cost due to the cumulative structure of lay-
ers. However, exceptions of target selection exist when
L = 2 or 3 and will be revisited in Section 5.1 and 5.2.
The schedule block generation has two steps: the target
optimization and the non-target optimization. During
the target optimization, given a target set {l1, l2, . . . , li},
we independently generate the combined subschedules
S0,...,l1 , Sl1+1,...,l2 , . . . , Sli−1+1,...,li using the PTAS for
NLMS [21]. Notice that, for a target layer lk > l1,
only a fraction of the cumulative rate Rlk is dedicated
to the combined subschedule Slk−1+1,...,lk . However, we
will prove that the approximation ratios for the target
layers are constant even with a fractional use of their cu-
mulative rates, which will be good enough for our con-
struction. As for the non-target layers, the subschedules
Sl (0 ≤ l < li, l �= l1, . . . , li) are extracted from the com-
bined subschedules obtained in the previous step. The
extraction is done either arbitrarily or by Algorithm 1.
Arbitrary extraction is suitable for a non-target layer
which is immediately above a target layer, since due to
the cumulative structure, a non-target can rely on the

lower target layer subschedule, which is good. However,
the performance of arbitrary extraction deteriorates if
applied to a non-target which is two layers above a tar-
get layer. Therefore, we devise an algorithm that greed-
ily extracts a good subschedule. For the remaining non-
targets l (li < l ≤ L − 1), subschedules are generated
by the PTAS or by arbitrary extraction. Hence, we
can generate schedule blocks with good costs for target
layers and moderate costs for non-target layers simulta-
neously.

Another issue in the construction is the inter-block
dependency. The schedule in a block Bj1 has an impact
on the schedule cost in the next block Bj1+1 in the
form of the state variables. This is because the cost
in block Bj1+1 depends on the initial state variables of
Bj1+1, which in turn depend on the state variables at
the end of the previous block Bj1 by the definition of
state variables (Section 2). Our strategy is to bound the
state variables by applying Algorithm 1 and the PTAS
for NLMS (Proposition 5.1). Then, by setting the block
lengths T1, . . . , Tj to be large enough, the impact of this
inter-block dependency is averaged in blocks and is only
an additive constant.

4 Subschedule Extraction.
We next present an algorithm which extracts a good
subschedule block from a periodic NLMS schedule. This
algorithm works by greedily selecting a subset of pages
from the set of pages transmitted in an NLMS schedule
at each time-slot. It is not directly applicable to the
general LMS problem, but will be exploited as a building
block in the LMS construction in Section 5. Since it
relies on a good algorithm for NLMS (Definition 4.1),
we next briefly recall the NLMS definitions [20].

4.1 NLMS Definitions. The cost Cost(S) of an
NLMS schedule S is defined similarly to the LMS cost
in Equation 2.2, and the time reversibility also holds
for the NLMS cost [6, 20]. At time-slot t (t > 0), let
st

i denote the number of time-slots elapsed from the
most recent transmission of page i in S. The cost
of S incurred at time-slot t is defined as C(S, t) =∑N

i=1 pi(st
i + 1). Let Cost(S, n) be the average cost of

S incurred over time-slots 1, . . . , n, i.e., Cost(S, n) =
1
n

∑n
t=1 C(S, t). Then, we can express the cost of

S as Cost(S) = lim supn→∞ Cost(S, n). Notice that
Cost(S) = Cost(S, T ′) if T ′ is a period of S.

4.2 Subschedule Extraction. Let S(W) (W > 0)
be an NLMS schedule when W pages can be sched-
uled during each time-slot. Given a schedule S(W)

produced by some algorithm A, Algorithm 1 will ex-
tract a subschedule block S(V), where at each time-

slot, V pages from the W pages in S(W) are scheduled
(V = β · W ∈ IN, 0 < β < 1). Moreover, we will estab-
lish an upper bound on the performance of Algorithm
1 as a function of the approximation ratio α of A. In
the LMS settings, S(W) will be a combined subschedule
for layers i, . . . , l + 1 (i ≤ l ≤ L − 2), and Algorithm 1
will be exploited to divide the W pages at each time-
slot in S(W) between the subschedule Sl+1 on layer l+1
and the combined subschedule Si,...,l = S(V) for layers
i, . . . , l. This page assignment does not change the cost
of layer l + 1 since layers are cumulative, but it affects
the cost of layer l, which will be bounded by the perfor-
mance guarantee of Algorithm 1. Algorithm 1 relies on
a good algorithm A for NLMS that is defined as follows.

Definition 4.1. An algorithm A is said to be good for
NLMS if and only if it satisfies:
(i) A runs in polynomial time;
(ii) A has an approximation ratio of α;
(iii) A generates periodic schedules whose period T ′ is
bounded from above by a polynomial function of 1

α−1 and
N and is independent of the transmission rate.

An example for such an algorithm A is the PTAS
in [21] where α = 1 + ε and T ′ = N2+N

ε .
Given S(W), let τ

(j)
i (j = 1, 2, . . .) be the number of

time-slots between the (j−1)st and the jth transmission
of page i in S(W). W.l.o.g., we can assume that no pages
are scheduled more than once at any time-slot, and that
the 0th transmission of a page i is at some time-slot
before 0. Then, τ

(1)
i is arbitrary but fixed. Let N(i, t)

be the number of transmissions of page i in the first t
time-slots in S(W). In particular, N(i, 0) = 0. Let gi,t

be the number of time-slots between time-slot t and the
next transmission (i.e., the (N(i, t)+1)st transmission)
of page i in S(W). At time-slot t, we define st

V,i as
the number of time-slots elapsed from the most recent
transmission of page i in S(V). Therefore, τ

(j)
i , N(i, t),

and gi,t depend on S(W), and st
V,i depends on S(V).

For example, in Figure 2, W = 2, V = 1, and
the (j − 1)st and jth transmission of page i = 6 are
in time-slot (t − 3) and (t + 2) respectively. Then, by
the definition of st

V,i, N(i, t), τ
(j)
i , and gi,t, we obtain

st
1,6 = 3, N(6, t) = j − 1, τ

(j)
6 = 5, and g6,t = 2.

If Ut denotes the set of W pages transmitted at
time-slot t in S(W), then, by definition, we have

(4.6) st
W,i =

{
0, i ∈ Ut;
st−1

W,i + 1, i /∈ Ut;

S(2)

...

......

... 2

4

5

7 8

6

10

Time

S(1)

Time

of page 6
the (j-1)st transmission

t

t

36 4 5

1 3 9

6 3

of page 6
the jth transmission

Figure 2: An example of subschedule extraction.

(4.7) N(i, t) =

{
N(i, t − 1) + 1, i ∈ Ut;
N(i, t − 1), i /∈ Ut;

(4.8) gi,t =

{
τ

(N(i,t)+1)
i , i ∈ Ut;

gi,t−1 − 1, i /∈ Ut;

and

(4.9) gi,t−1 = 1, i ∈ Ut .

Algorithm 1 Subschedule extraction
Input: A schedule S(W) generated by a good algorithm

A for NLMS, its period T ′, a constant β (0 < β <
1, βW ∈ IN), and a positive integer T ′

1;
Output: A subschedule block S(V) (V = βW) with

length T ′
1;

1: for t = 1 to T ′
1 do

2: J := ∅;
3: for i := 1 to V do
4: find page j ∈ (Ut \ J) that maximizes

pj

(
st−1

V,j + 1
)∑∞

x=1 (1 − β)x τ
(N(j,t)+x)
j ;

5: J := J ∪ {j};
6: end for
7: schedule the page set J ;
8: end for

Algorithm 1 is a greedy algorithm to extract a
subschedule S(V) from S(W). The main intuition of
Algorithm 1 is to minimize the amortized cost of S(V)

by a greedy selection of the page set J . Note that the
infinite sum in step 4 can be calculated in O(WT ′) time,
since S(W) is periodic with period T ′.

For the performance analysis, we define the poten-
tial of S(V) at time-slot t as

Φ
(
S(V), t

)

=
N∑

i=1

pis
t
V,i

(
gi,t +

∞∑
x=1

(1 − β)x τ
(N(i,t)+1+x)
i

)
.

(4.10)

This potential function incorporates the properties of
both the schedule S(W) (in the form of gi,t, N(i, t),
and τ j

i) and the subschedule S(V) (in the form of st
V,i).

Obviously, Φ(S(V), t) ≥ 0 (t ≥ 0). In particular,
observe that Φ

(
S(V), 0

)
is a function of (i) gi,0 and

τ
(j)
i (j > 1), which depend on S(W) by definitions;

and (ii) s0
V,i, which is arbitrary but fixed and non-

negative. Therefore, Φ
(
S(V), 0

)
is arbitrary but fixed

for any given S(W). If a schedule S is constructed
by concatenating schedule blocks (as later in Section
5), then, for a block S(V) obtained by Algorithm 1 in
the middle of S, the initial potential value Φ(S(V), 0)
depends on s0

V,i, which is no longer arbitrary but in
turn depends on the most recent transmission of page
i in the previous blocks for any given S(W) due to the
shifted origin.

Let OPT (W) = infS(W) Cost(S(W)) be the optimal
cost of an NLMS schedule with transmission rate W .
Then, we have the following theorem.

Theorem 4.1. Given a schedule S(W) generated by a
good algorithm A for NLMS, its period T ′, a constant
β (0 < β < 1), and T ′

1 = Ω(T ′2), Algorithm 1 generates
a schedule block S(V) (V = βW) with length T ′

1 that has
the following property:

Cost
(
S(V), T ′

1

)
≤ (2 − β)α · OPT (V) + O(α) +

1
T ′

1

· Φ
(
S(V), 0

)
,

where Φ(S(V), 0) is the initial potential value.

Proof. [Sketch] Since the proof is rather technical, only
the general idea is given here. We first define the aver-
age cost Avg(t) of S(V) at time t (t > 0) as Avg(t) =∑N

i=1 pi

(
gi,t−1 +

∑∞
x=1 (1 − β)x

τ
(N(i,t−1)+1+x)
i

)
.

Then we prove that the greedy choice of the page
set J in Algorithm 1 ensures that, for any T

′
1 > 0,

the cost of the first T
′
1 time-slot Cost

(
S(V), T

′
1

)
≤

1
T

′
1

(∑T
′
1+1

t=1 Avg(t) + Φ
(
S(V), 0

))
. Finally, we show

that, for a constant 0 < β < 1, if T
′
1 = Ω(T ′2), then

1
T

′
1

∑T
′
1+1

t=1 Avg(t) ≤ (2 − β)α · OPT (V) + O(α) and
conclude the proof.

5 Layered Multicast Schedule Construction.

In this section, we present our main schedule construc-
tion algorithms. The periodic schedule constructions
are presented for 2 layers (L = 2) and more than 3 lay-
ers (L > 3) in Section 5.1 and 5.3 respectively, since
the 2-layer construction has a different target selection
strategy from the L > 3 case and can help us to un-
derstand the more complicated L > 3 case. The 3-layer
construction is in principle similar to the 2-layer case
and therefore is briefly described in Section 5.2.

5.1 A Schedule Construction When L = 2. As
outlined in Section 3, there is dependency between
adjacent blocks. More specifically, the cost of S in a
block B depends not only on how S is generated in B
but also on the initial state variables s0

i in B. When
a schedule is constructed by concatenating schedule
blocks, for the cost analysis of S in a block B, the
origin of the time axis shifts to the beginning of B
and consequently the initial state variables s0

i depend
on the most recent transmission of page i in the blocks
before B. Therefore, the state variables st

V,i should
be bounded in the output subschedule block S(V) of
Algorithm 1 so that S(V) only incurs a small cost to the
next schedule block. This is achieved by adopting the
PTAS in [21] as the good algorithm A, where α = 1 + ε

and T ′ = N2+N
ε , and is proved in Proposition 5.1.

Moreover, the impact of the dependency is only an
additive constant by properly setting the block lengths
in Algorithm 2.

Proposition 5.1. If the PTAS in [21] is adopted as the
good Algorithm A, Algorithm 1 generates a subschedule
block S(V) of any length T ′

1 such that every page is
transmitted at least once in T ′ = N2+N

ε time-slots.

Proof. [Sketch] The PTAS generates a schedule with the
property that the set of all N pages appear contiguously
every T ′ = N2+N

ε time-slots. Moreover, the greedy
choice in Algorithm 1 always selects these contiguous
N pages into S(V). Hence, the proposition follows.

A consequence of Proposition 5.1 is that the state
variables st

V,i are bounded by T ′ except in the first
T ′ time-slots, where st

V,i depends on the initial state
variables s0

V,i. Moreover, when we generate a schedule
by concatenating several schedule blocks, the upper
bound on st

V,i helps to bound the inter-block dependence
between a schedule block and its adjacent blocks.

The periodic schedule construction for two layers is
given in Algorithm 2, where the PTAS is used as the
good algorithm A.

Algorithm 2 Schedule construction for 2 layers
Input: The number of pages N , the access probabilities

pi (1 ≤ i ≤ N);
Output: A schedule S for 2 layers with a period of

3T ′2;
1: in the first T ′2 time-slots block B1:
2: set the target set to be {0};
3: generate S(1) with a period of T ′ for the sub-

schedule S0 using the PTAS, and repeat T ′

periods to fit in B1; /*target optimization*/
4: set the subschedule S1 to be empty;

/*non-target optimization*/
5: in the following 2T ′2 time-slots block B2:
6: set the target set to be {1};
7: generate S(2) with period T ′ for the combined

subschedule S0,...,1 using the PTAS, and repeat
2T ′ periods to fit in B2; /*target optimization*/

8: apply Algorithm 1 to extract subschedule S(1)

from S0,...,1 by letting β = 1
2 and T ′

1 = 2T ′2, and
set S0 to be S(1); schedule the pages that are not
extracted into S(1) to transmit on layer 1;
/*non-target optimization*/

9: repeat the resulting 3T ′2 time-slots period to obtain
an infinite schedule S;

Remark 5.1. When a schedule is constructed by con-
catenating several schedule blocks, for a schedule block
obtained by extraction as in Algorithm 1, the initial po-
tential value Φ(S(V), 0) in Theorem 4.1 is not arbitrary
any longer but depends on the previous block in the con-
struction.

The optimal cost OPT (·) discussed so far is in the
NLMS settings, and we next bridge the optimal cost in
NLMS and LMS in the following lemma.

Lemma 5.1. For any positive integer l, OPT (2l) ≤
OPTl.

Proof. The set of feasible schedules for LMS is a proper
subset of the set of feasible schedules for the NLMS
problem due to the reliability requirement for LMS
schedules. Then, by the definitions of OPT (2l) and
OPTl, we obtain this lemma.

Corollary 5.1. If W = 2l+1, V = 2l, i.e., β = 1/2,
then Algorithm 1 generates S(V) of length T ′

1 with the
following property:

Cost
(
S(V), T ′

1

)
≤ 3

2
α · OPTl + O(α) +

1
T ′

1

Φ(S(V), 0) .

Proof. It follows from Theorem 4.1 and Lemma 5.1.

Lemma 5.2. A schedule S generated by Algorithm 2 has
the following property:

Cost(S, 0) ≤ 4
3
(1 + ε)OPT0 + O(1) .

Proof. We first prove that the inter-block dependency
only incurs an additive constant to the cost of a block.
Block B1 is the target phase for layer 0, and the PTAS
is used to generate S0 with period T ′ where every page
is transmitted. Therefore, for layer 0, only the cost of
the first T ′ time-slots in B1 depend on the previous non-
target phase block. Further, since all N pages appear
at least once every T ′ time-slots in the previous non-
target phase block due to Proposition 5.1, the initial
state variables of B1 are bounded by T ′. Hence, the
sum of the cost in the first T ′ time-slots in B1 is at
most (T ′ + 1) + (T ′ + 2) + · · · + (T ′ + T ′) = T ′2 +
T ′(T ′ + 1)/2 = O(T ′2). On the other hand, the sum of
the cost in the remaining (T ′2 − T ′) time-slots in B1 is
(T ′2 − T ′)(1 + ε)OPT0 for some constant ε due to the
PTAS. Hence, in B1, layer 0 has an average cost no more
than O(T ′2)+(T ′2−T ′)(1+ε)OPT0

T ′2 = (1 + ε)OPT0 + O(1).
Block B2 is the non-target phase of layer 0, and S0

is generated by subschedule extraction in Algorithm 1.
By Remark 5.1, the initial potential value Φ(S(V), 0) in
Theorem 4.1 depends on the previous target phase in the
construction. We now prove that the value of Φ(S(V), 0)
is bounded by O(T ′2). First, by the definitions of gi,t

and τ
(j)
i , we know gi,0 ≤ T ′ and τ

(j)
i ≤ T ′ (j > 1),

because gi,t and τ
(j)
i depend on S0,...,1 and S0,...,1 in

B2 has a period of T ′ due to the PTAS. Second, since
S0 in B1 is generated by the PTAS and has a period
of T ′, we have s0

V,i ≤ T ′ for B2. Hence, we obtain
Φ(S(V), 0) = O(T ′2) by the definition of Φ in Equation
(4.10). Then, by Corollary 5.1, the cost of layer 0 in B2

is no more than 3
2 (1 + ε)OPT0 + O(1).

Therefore, this lemma follows by averaging the cost
of layer 0 in a period.

Lemma 5.3. A schedule S generated by Algorithm 2 has
the following property:

Cost(S, 1) ≤ 4
3
(1 + ε)OPT1 + O(1) .

Proof. [Sketch] The idea is similar to that of Lemma
5.2. The cost of layer 1 is at most 2(1 + ε)OPT1 + O(1)
in B1, and (1 + ε)OPT1 + O(1) in B2.

Proposition 5.2. A schedule S generated by Algo-
rithm 2 has the following property for some constants
ε:

λ2 ≤ 4
3
(1 + ε) ≈ 1.333(1 + ε) .

Proof. It immediately follows from Lemma 5.2 and 5.3.

5.2 A Schedule Construction When L = 3.
Algorithm 3 shows how to construct a schedule for 3
layers. The 3-layer construction differs from the 2-layer
case in the target selection and block lengths. Moreover,
in block B1 in Algorithm 3, only a fraction (3

4) of the
cumulative rate R2 is dedicated to layer 2, i.e., the
combined subschedule S1,...,2.

Algorithm 3 Schedule construction for 3 layers
Input: The number of pages N , the access probabilities

pi (1 ≤ i ≤ N);
Output: A schedule S for 3 layers with a period of

5T ′2;
1: in the first 3T ′2 time-slots block B1:
2: set the target set to be {0, 2};
3: generate S(1) for the subschedule S0 and S(3) for

the combined subschedule S1...2 using the PTAS;
4: arbitrarily extract a subschedule S1 from S1...2;
5: in the next 2T ′2 time-slots block B2:
6: set the target set to be {1};
7: generate S(2) for the combined subschedule S0...1

using the PTAS;
8: set S2 to be an empty subschedule;
9: apply Algorithm 1 to extract S(1) from S0...1,

and set S0 to be S(1);
10: repeat the resulting 5T ′2 time-slots block to obtain

a infinite schedule S;

Lemma 5.4. Given a constant γ (0 < γ < 1) and two
integers a and b (b = γa), the following inequalities hold:

1. OPT (b) ≤ 1
γ OPT (a) + O(1);

2. OPT (a) ≤ γOPT (b) + O(1).

Proof. The proof works by simple schedule reorganiza-
tions.

By Lemma 5.4 and 5.1, the cost of S2 in block B1

is no more than 4
3OPT2 + O(1).

Proposition 5.3. A schedule S generated by Algo-
rithm 3 has the following property for some constant
ε:

λ3 ≤ 8
5
(1 + ε) = 1.6(1 + ε) .

Proof. The proof is essentially similar to that of Propo-
sition 5.2.

5.3 A Construction When L > 3. A construction
for more than 3 layers is given in Algorithm 4. Let
S

(W)
PTAS denote a schedule block obtained from truncat-

ing an infinite schedule, which is generated by the PTAS
with transmission rate W .

In Algorithm 4, a period of the output schedule S
consists of three schedule blocks of length T1, T2, and
T3, respectively. The length of each block depends on
L and is carefully chosen to minimize the objective λL

(see Table 1). During each block, we select a target
layer every three layers, except that layer 0 is always
in the target set in the third block. The target layers
are rotated among the blocks. For example, if L = 10,
then the target layer set for each block in a period are
{0, 3, 6, 9}, {1, 4, 7}, and {0, 2, 5, 8}, respectively.
Observe that each layer becomes a target in one block
and non-target in the other two blocks, except that layer
0 is a target in two blocks since layer 0 is unlike other
layers in that it has no lower layers to rely on. As
outlined in Section 3, the reason to set the distance
between adjacent targets in a target set to be 3 is that
a non-target layer can achieve moderate cost if it is
immediately below or immediately above some target
layer. Therefore, we can generate schedule blocks with
good costs for target layers (by the PTAS) and moderate
costs for non-target layers simultaneously.

Number of layers (L) T1 T2 T3

4 7T ′2 18T ′2 28T ′2

5 10T ′2 9T ′2 13T ′2

6 134T ′2 66T ′2 91T ′2

≥ 7 67T ′2 54T ′2 44T ′2

Table 1: Schedule block lengths in Algorithm 4.

In Algorithm 4, after setting the target set in each
block (Line 3-5), we generate each schedule block ver-
tically from lower layers to higher ones (Line 6-21) in
three steps. First, we schedule the lowest target layer
l1 and the layer below it if any (Line 8-9). For layer l1,
its cumulative rate Rl1 is dedicated to it, and the layer
below it if any is scheduled by subschedule extraction
using Algorithm 1. Second, the subschedules on layers
between the lowest and highest target layer are gen-
erated (Line 10-14). We obtain a combined subsched-
ule Slh−1+1,...,lh for each target layer lh (l1 < lh ≤ lk).
Notice that only a fraction of the cumulative rate Rlh

is dedicated to the combined subschedule Slh−1+1,...,lh .
Then, for the intermediate layers between adjacent tar-
get layers, we generate subschedules for them by incre-
mental extractions. Finally, we deal with the subsched-
ules on layers above the highest target layer lk (Line

Algorithm 4 Schedule construction for L (L > 3)
layers
Input: The number of pages N and the access proba-

bilities pi (1 ≤ i ≤ N);
Output: A schedule S for L layers with a period of

(T1 + T2 + T3);
1: T1, T2, and T3 are the lengths of three consecutive

blocks B1, B2, B3 respectively, and are given in
Table 1;

2: let IT1, IT2, IT3 be the target sets in B1, B2, B3

respectively;
3: IT1 := {0, 3, 6, . . . , 3i, . . .}, where i ∈ IN and 3i ≤

L − 1;
4: IT2 := {1, 4, 7, . . . , 3i + 1, . . . }, where i ∈ IN and

3i + 1 ≤ L − 1;
5: IT3 := {0, 2, 5, 8, . . . , 3i + 2, . . . }, where i ∈ IN and

3i + 2 ≤ L − 1;
6: for each block Bj (j = 1, 2, 3) do
7: let ITj = {l1, l2, . . . , lk}, where l1, . . . , lk ∈ IN

and l1 < l2 < · · · < lk;
/*schedule layers 0, . . . , l1 */

8: S0,...,l1 := S
(Rl1)

PTAS of length Tj;
9: if l1 = 1 then S0 := a schedule block S(V)

extracted by Algorithm 1 letting S(W) =
S0,...,1, T ′

1 = Tj, and V = 1;
/*schedule layers l1 + 1, . . . , lk */

10: for each target layer lh ∈ ITj and h > 1 do

11: Slh−1+1,...,lh := S
(Rlh

−Rlh−1)

PTAS of length Tj;
12: Slh−1+1,...,lh−1 := a schedule block S(V)

extracted by Algorithm 1 letting S(W) =
Slh−1+1,...,lh , T ′

1 = Tj , and V = Rlh−1−
Rlh−1 ;

13: if lh−1 + 1 = lh − 2 then Slh−1+1 :=
a subschedule arbitrarily extracted from
Slh−1+1,...,lh−1;

14: end for
/*schedule layers lk + 1, . . . , L − 1 */

15: if (k ≥ 1) (i.e., there is more than one targets)
or (lk + 1 = L − 1) then

16: Sl := S
(rl)
PTAS of length Tj , for l = lk + 1, . . . ,

L − 1;
17: else
18: Slk+1,...,L−1 := S

(3RL−1/4)
PTAS of length Tj ;

19: Slk+1 := a subschedule arbitrarily extracted
from Slk+1,...,L−1;

20: end if
21: end for
22: concatenate blocks B1, B2, and B3 to obtain a

period of an infinite schedule S;

15-20). These layers need special handling, for exam-
ple, the subschedule on the highest layer L−1 cannot be
obtained via subschedule extraction. The performance
guarantee of Algorithm 4 is given in Theorem 5.1.

Theorem 5.1. For any constant ε > 0, an L layer
schedule S can be constructed in polynomial time with
the following property:
(i) λL = 1 + ε when L = 1;
(ii) λL = 4

3 (1 + ε) ≈ 1.333(1 + ε) when L = 2;
(iii) λL = 8

5 (1 + ε) = 1.6(1 + ε) when L = 3;
(iv) λL = 88

53 (1 + ε) ≈ 1.660(1 + ε) when L = 4;
(v) λL = 197

112 (1 + ε) ≈ 1.759(1 + ε) when L = 5;
(vi) λL = 11216

6111 (1 + ε) ≈ 1.835(1 + ε) when L = 6;
(vii) λL = 6448

3465 (1 + ε) ≈ 1.861(1 + ε) when L ≥ 7.

Proof. [Sketch] Claim (i) immediately follows, since if
L = 1, the LMS problem becomes the NLMS problem
where the PTAS can be applied. Claim (ii) and (iii) have
been verified in Proposition 5.2 and 5.3 respectively, and
the remaining claims can be proved using similar ideas
as in Claim (ii) and therefore are omitted.

References

[1] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W.
Shapiro, S. Zdonik: DBIS Toolkit: Adaptable Middle-
ware for Large Scale Data Delivery. In Proc. of ACM
SIGMOD, 1999.

[2] M.H. Ammar, J.W. Wong: The Design of Teletext
Broadcast Cycles. Performance Evaluations. 5:4 (1985)
235–242

[3] M.H. Ammar, J.W. Wong: On the Optimality of Cyclic
Transmission in Teletext Systems. IEEE Transactions
on Communications.35:1 (1987) 68–73

[4] S. Anily, C. A. Glass, R. Hassin: The scheduling of
maintenance service. Discrete Applied Mathematics.
80 (1998) 27–42

[5] S. Banerjee, B. Bhattacharjee, C. Kommareddy: Scal-
able Application Layer Multicast. In Proc. of SIG-
COMM 2002. 205–217

[6] A. Bar-Noy, R. Bhatia, J. Naor, B. Schieber: Minimiz-
ing Service and Operation Costs of Periodic Schedul-
ing. Mathematics of Operations Research. 27:3 (2002)
518–544

[7] A. Bar-Noy, B. Patt-Shamir, I. Ziper: Broadcast
Disks with Polynomial Cost Functions. Proc. of IEEE
INFOCOM’00. 575–584

[8] A. Bar-Noy, Y. Shilo: Optimal Broadcasting of Two
Files over an Asymmetric Channel. Journal of Parallel
and Distributed Computing. 60:4 (2000) 474–493

[9] J. Beaver, N. Morsillo, K. Pruhs, P. K. Chrysanthis, V.
Liberatore: Scalable Dissemination: What’s Hot and
What’s Not. Proc. of WebDB 2004. 31–36

[10] Y. Birk, D. Crupnicoff: A Multicast Transmission
Schedule for Scalable Multi-Rate Distribution of Bulk
Data using Non-Scalable Erasure-Correcting Codes.
Proc. of IEEE INFOCOM’03. 1033–1043

[11] J. Byers, M. Luby, M. Mitzenmacher: Fine-grained
Layered Multicast. Proc. of IEEE INFOCOM’01. 1143–
1151

[12] Q. Cai, V. Liberatore: Approximation Algorithms for
Layered Multicast Scheduling. Proceedings of the 16th
International Symposium on Algorithms and Compu-
tation (ISAAC). (2005) 974–983

[13] C. Chen, R. Bhatia, R. K. Sinha: Multidimensional
Declustering Schemes Using Golden Ratio and Kro-
necker Sequences. IEEE Transactions on Knowledge
and Data Engineering, vol 15, no 3, 2003. 659–670

[14] P. A. Chou, A. E. Mohr, A. Wang, S. Mehrotra: Error
Control for Receiver-driven Layered Multicast of Audio
and Video. IEEE Transactions on Multimedia, Vol. 3,
No. 1, 2001.

[15] M. J. Donahoo, M. H. Ammar, E. W. Zegura:
Multiple-Channel Multicast Scheduling for Scalable
Bulk-data Transport. Proc. of IEEE INFOCOM’99.
847–855.

[16] I. El Khayat, G. Leduc: Congestion Control for Lay-
ered Multicast Transmission. Networking and Informa-
tion Systems Journal, vol. 3, 2000. 559–573

[17] S. Floyd, V. Jacobson, CG. Liu, S. McCanne, L.
Zhang: A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM
Transactions on Networking, 1997. 784–803

[18] A. Itai, Z. Rosberg: A golden ratio control policy
for a multiple-access channel. IEEE Transactions on
Automatic Control. 29:8 (1984) 712–718

[19] M. Jung, J. Nonnenmacher, E. W. Biersack: Reli-
able Multicast via Satellite: Uni-directional vs. Bi-
directional Communication. Proc. of KiVS, 1999.

[20] C. Kenyon, N. Schabanel: The Data Broadcast Prob-
lem with Non-Uniform Transmission Times. Algorith-
mica. 35 (2003) 146–175

[21] C. Kenyon, N. Schabanel, N. Young: Polynomial-Time
Approximation Scheme for Data Broadcast. Proceed-
ings of the 32nd Annual ACM Symp. on Theory of
Computing (STOC). (2000) 659–666

[22] A. Legout, E. W. Biersack: PLM: Fast Convergence for
Cumulative Layered Multicast Transmission Schemes.
In Proc. of ACM SIGMETRICS’2000. 13–22

[23] X. Li, S. Paul, M. Ammar: Layered Video Multicast
with Retransmission (LVMR): Evaluation of Hierarchi-
cal Rate Control. Proc. of IEEE INFOCOM’98.

[24] V. Liberatore: Multicast scheduling for list requests.
Proc. of IEEE INFOCOM’02. 1129–1137

[25] J. Liu, B. Li, Y. Zhang: A Hybrid Adaptation Protocol
for TCP-friendly Layered Multicast and its Optimal
Rate Allocation. Proc. of IEEE INFOCOM’02. 1520–
1529.

[26] J. Liu, B. Li, Y. Zhang: An End-to-End Adaptation
Protocol for Layered Video Multicast Using Optimal
Rate Allocation. IEEE Transactions on multimedia, 6

(2004):1. 87–102
[27] S. McCanne, V. Jacobson, M. Vetterli: Receiver-driven

Layered Multicast. ACM Special Interest Group on
Data Communication (SIGCOMM 1996). 117–130

[28] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham,
R. Tewari: Cooperative leases: Scalable consistency
maintenance in content distribution networks. Proc. of
International WWW Conference, 2002.

[29] L. Peterson, D. Culler, T. Anderson, T. Roscoe: A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proc. of the 1st Workshop on Hot Top-
ics in Networks (HotNets-I), Princeton, New Jersey,
USA, October 2002.

[30] R. Rummler, A. H. Aghvami: End-to-end IP multicast
for software upgrades of reconfigurable user terminals
within IMT-2000/UMTS networks. IEEE International
Conference on communications, vol. 1, 2002. 502–506

[31] N. Schabanel: The Data Broadcast Problem with
Preemption. Proc of the 17th International Symp. on
Theoretical Computer Science (STACS 2000). 181–192

[32] P. A. Silva Gonçalves, J. F. Rezende, O. C. M. B.
Duarte, G. Pujolle: Improving Feedback Merging for
Source-Adaptive Layered Multicast Schemes. Cluster
Computing, vol 8, no. 1, 2005. 77–88

[33] L. Vicisano, J. Crowcroft, L. Rizzo: TCP-like Con-
gestion Control for Layered Multicast Data Transfer.
Proc. of IEEE INFOCOM’98.

[34] W. Zhang, W. Li, V. Liberatore: Application-
Perceived Multicast Push Performance. Proc. of
IPDPS 2004.

