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Multicast Scheduling for List Requests
Vincenzo Liberatore

Abstract—Advances in wireless and optical communication, as
well as in Internet multicast protocols, make broadcast and multi-
cast methods an effective solution to disseminate data. In partic-
ular, repetitive server-initiated broadcast is an effective technique
in wireless systems and is a scalable solution to relieve Internet hot
spots. A critical issue for the performance of multicast data dis-
semination is the multicast schedule. Previous work focused on a
model where each data item is requested by clients with a certain
probability that is independent of past accesses. In this paper, we
consider the more complex scenario where a client accesses pages
in blocks (e.g., a HTML file and all its embedded images), thereby
introducing dependencies in the pattern of accesses to data. We
present a sequence of heuristics that exploit page access dependen-
cies. We measured the resulting client-perceived delay on multiple
Web server traces, and observed an average speed-up over previ-
ous methods ranging from 8% to 91%. We conclude that schedul-
ing for multi-item requests is a critical factor for the performance
of repetitive broadcast.

Index Terms— Multicast, Scheduling, Web performance, Net-
work Applications, Wireless networks.

I. INTRODUCTION

SEVERAL emerging technologies and applications natu-
rally lead to the adoption of broadcast or multicast as the

primary method for data dissemination. Broadcast is the pri-
mary mode of operation of the physical layer in media such as
satellites and optical networks. As a result, it is natural to de-
velop broadcast applications for those media. Broadcast can
also be used in networks other than wireless and optical as a
method to solve scalability problems. For example, multicast
methods can relieve the scalability problems of Web hot spots
[1] and can support the operations of a content delivery network
[2]. Multicast methods can be combined with other perfor-
mance enhancing techniques, such as caching [3], [4]. Broad-
cast and multicast techniques have spawned research (e.g., [1],
[5]) and commercial ventures [6], [7], [8] that aim at higher
scalability.

A common data dissemination method is to use repetitive
server-initiated multicast [9], [5], [3], whereby a server cycli-
cally multicasts (or broadcasts) data to a large client population.
As a general data management technique, repetitive broadcast
can be used in both wired [5] and wireless [10] networks to dis-
seminate a variety of resource types, including Web contents [1]
and database records [11]. A critical issue for broadcast perfor-
mance is its organization. Some broadcast items will be more
popular than others, so it is natural to broadcast the hot items
more frequently. Page popularity has been modeled in the liter-
ature in terms of the probability pi that page i is requested by
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clients. For the model where the probabilities pi are stationary
and independent of past accesses, several algorithms have been
proposed [12], [13], [14]. Extensions include the cases when
broadcast pages have different sizes [15], [16] and when client
objectives are described by polynomial utility functions [17].

In general, clients are seldom interested in individual data
items, and attempt to download multiple items. For example,
Web clients are seldom interested in only one HTML resource,
but access almost always the HTML document along with all its
embedded images [18]. Analogously, database clients often ac-
cess multiple items to complete a read transaction [19]. In this
paper, we will examine novel scheduling strategies that keep
into account dependencies in the client accesses to resources.
The objective is to reduce client-perceived latency when she
downloads multi-item objects.

The presence of multi-item requests complicates the schedul-
ing of the broadcast, as shown by the following examples.

Example 1: Suppose that E is an image embedded in page
A. Consider a schedule that broadcasts E immediately after A.
A request {A,E} takes only slightly more than the time needed
to retrieve A only. If E and A were broadcast in an arbitrary
order that takes into account only their access frequencies, it is
possible that one document is broadcast a long time after the
other, thereby delaying the request completion time.

Example 2: Suppose that E is embedded in A as well as
in another page B. Consider now a request for {B,E}. By
the same token, E should be transmitted immediately after B.
However, if E is broadcast after A and after B, the repeated
transmission of E lengthens the broadcast cycles and could de-
lay other pending requests. A different method is to send the
three documents in the order . . . A,B,E . . . , which could po-
tentially have better performance than repeating E.

Example 3: Consider a request for {A1, A2, . . . , Ak}, where
A1, A2, . . . , Ak−1 are broadcast fairly often and Ak is seldom
broadcast. The completion time of this request is tied up to the
low transmission rate of Ak. In other words, frequent broad-
cast of hot items does not help the completion time of multi-
document requests involving colder items.

In general, multi-item requests create complex dependencies
in the document access pattern and can complicate the broad-
cast schedule. The paper will propose and analyze effective
heuristics for the problem of multicast scheduling under depen-
dencies in the request sequence. Algorithms are evaluated on
multiple server logs of Internet hot spots.

The paper is organized as follows. In section II, we give
background information on broadcast data management tech-
niques and on broadcast scheduling. In sections III and V, we
present a sequence of algorithms for broadcast scheduling and
provide evidence of the limited applicability of known broad-
cast strategies. In section IV, we describe our experimental
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set-up. In section VI, we validate our algorithms on two more
traces that we did not use to tune parameters. In section VII, we
summarize work related to ours, and in section VIII we draw the
conclusions of our investigation.

II. BACKGROUND

Broadcast Environment: Cyclical server-initiated broad-
cast and multicast [9], [5], [3] can be used to execute data dis-
semination and are well suited for wireless and mobile environ-
ments, as well as for relieving Internet hot spots. A set of n
pages is cyclically broadcast by a server to a large client pop-
ulation. The broadcast is initiated without client requests, i.e.,
it follows a “push” style of data dissemination. Furthermore,
the broadcast is repetitive, that is, the server continuously cy-
cles through its set of broadcast data. Examples of broadcast
programs are illustrated in figure 1 and 2. When a client needs
to read the contents of page i, it waits for the data source to
broadcast i. The client does not need to listen continuously on
the broadcast for page i to be sent if an appropriate index is
broadcast as well; such index also allows the client to deter-
mine which contents are present in the broadcast data set [20],
[21], [22], [23]. In its purest implementation, the server accepts
no input from clients and simply cycles through its broadcast.
In more complex schemes, the server accepts update transac-
tions from clients [24], [19] or uses broadcast as a complement
to other dissemination methods [25]. For example, a server can
use broadcast to propagate hot documents, while it uses other
methods for colder items [1]. A critical performance metrics for
broadcast data dissemination is the amount of time that elapses
between a client request and the time when the client has down-
loaded all requested pages.
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Fig. 1. An example of a flat broadcast program. Pages are numbered from 0
to n− 1, and are cyclically transmitted by the server in that order.

The scope of the paper is to investigate algorithms to sched-
ule the broadcast at the server site so as to reduce client-
perceived latency. To focus on the scheduling problem, we
make the following assumptions:
• The broadcast schedule is fixed by the server, and is known

by clients.
• Pages are reliably received by the clients in the same order

as they are broadcast.
• Pages are read-only, and cannot be updated by either the

server or the clients.
• Clients receive pages only from a unique server broadcast

over a single broadcast layer.
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Fig. 2. A skewed broadcast schedule that is obtained by multiplexing on the
same physical channel the logical channels {1}, {2, 3}, {4, 5, 6}.

Term Definition Similar terms

Page Broadcast transmission -
unit

Document Data object that a client Resource, ADU
can identify by an id

Object Collection of resources -
target of client requests

Dependency Definition

Internal between pages belonging to
the same document

External between documents

TABLE I
SUMMARY OF DEFINITIONS USED IN THE PAPER.

• The set of broadcast pages does not change.
• Data is broadcast at a constant rate.

All these restrictions can be removed in an actual implemen-
tation, as will be explained in the next sections. However, a
more complex scenario would obscure the analysis of schedul-
ing strategies, and so we do not consider it in the rest of the
paper.

Broadcast Scheduling: The data source can schedule
pages for broadcast according to a variety of strategies. The
simplest broadcast strategy is to adopt a flat broadcast sched-
ule, whereby each page is transmitted once every n ticks. A
flat schedule is exemplified in figure 1. There are (n − 1)! dis-
tinct flat schedules, and section III will demonstrate that cer-
tain flat schedules have substantially better performance than
others. Non-flat schemes are desirable when some pages are
more popular than other, in which case hot pages should be de-
voted a larger fraction of available bandwidth. A simple way to
differentiate pages is through frequency multiplexing: the data
source partitions the data set across several physical channels
according to their popularity. Differentiated treatment arises
from aggregating a smaller amount of hot data on one channel
and a larger amount of colder data on another channel. Since
channel bandwidth is the same, the fewer hotter pages receive
a proportionally larger amount of bandwidth than colder pages.
Frequency multiplexing can be effective if multiple channels
are available, but is unfeasible otherwise. An alternative is
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time-division multiplexing, whereby pages are partitioned into
a set of logical channels, and the logical channels alternate
over the same physical channel [9]. The broadcast schedule
is flat within a single logical channel, but hotter channels con-
tain less pages or are scheduled for broadcast more frequently
than colder channels. Thus, hot pages are transmitted more of-
ten than colder ones. Figure 2 gives an example of a broad-
cast schedule that is the time-multiplexed combination of three
logical channels, each containing a different number of pages.
Time-division multiplexing is potentially more flexible than fre-
quency multiplexing in that it allows for a finer bandwidth parti-
tion. In particular, a logical channel can contain only one page,
which results in a fine per-page transmission schedule. When
the broadcast is scheduled on a per-page basis, pages are broad-
cast on the same physical channel with frequency proportional
to their popularity.

A family of scheduling algorithm for time-multiplexed
broadcast assumes that the data source has estimates of the
probabilities with which clients need pages. The square-root
law asserts that page i should be scheduled with frequency pro-
portional to

√
pi [13], where pi is the probability that i is re-

quested by clients. A simple and practical 2-approximation al-
gorithm is expressed by the MAD (Mean Aggregate Delay) rule
[12], [13]. The MAD algorithm maintains a value si associated
with each page i. The quantity si is the time since the last time
page i was broadcast. The MAD algorithm broadcasts a page
i with the maximum value of (si + 1)2pi. MAD guarantees
a cyclical schedule, and, in particular when all pi’s are equal,
MAD generates a flat broadcast. The access probabilities pi do
not express dependencies between data items. Consider the fol-
lowing elementary example. Pages A and B are not accessed
very frequently, but when A is accessed, page B is almost cer-
tainly accessed as well. In this scenario, the access probability
pB of page B is small, but the value of pB is not fully expressive
of the true access pattern to B.

We classify dependencies among pages in internal and ex-
ternal (table I). An external dependency arises when there is a
dependency between the original resources in the client access
pattern, as for example when the access probability of B is con-
ditional to the previous occurrence of a request for A. An in-
ternal dependency arises when the underlying transport forces
long documents to be broken in smaller portions. For example,
IP-based data dissemination, such as [1], uses IP multicast to
propagate data to a large client population. Since the broad-
cast can cross Internet links with different MTU’s and reach
clients with different reassembly buffer sizes, a document is
fragmented at the source into pages of approximately equal size
so that pages fit within the IP size limits [26], [27]. We make
the distinction between documents, which can be identified and
requested by clients through a resource identifier, and pages
which are broadcast units of roughly equal size and in which
original resources are partitioned. Documents can also be vari-
ously referred to as resources or Application Data Units (ADU).
We will call the dependency among pages from the same docu-
ment an internal dependency. A common definition in the liter-
ature is that of an object, which is a collection of resources that
are the target of a client request. With this terminology, doc-
uments within the same object show an external dependency,

while pages within the same document have an internal depen-
dency. Pages belong to only one document whereas documents
can belong to an arbitrary number of other objects. As a re-
sult, internal dependencies are likely to create a simpler sce-
nario than external dependencies. In this paper, we consider
both internal and external dependencies. Client-perceived de-
lays will be partitioned into two components: the seek time is
the time that clients wait to receive the first page of an object,
and the transfer time is the time that clients wait to receive the
rest of the object.

III. CIRCULAR ARRANGEMENT

In this section, we examine whether transfer time can be re-
duced within the context of flat broadcast schedules. Skewed
(i.e., non-flat) schedules will be examined later in section V.
Although flat schedules do not transmit a page any more fre-
quently than any other page, flat schedules performance can
vary significantly when there are dependencies between page
accesses. For example, suppose that page B is always requested
after page A. A random flat schedule takes about n broadcast
ticks in the expectation to retrieve the object {A,B}: n/2 ticks
to retrieve A followed by n/2 ticks to retrieve B. A flat sched-
ule that arranges B immediately after A takes only n/2 + 1
ticks to retrieve the same object {A,B}. Although the second
schedule did not reduce the seek time (i.e., the time to retrieve
A), it was extremely effective at reducing transfer time (i.e., the
time to retrieve B after A has been downloaded). In general,
a page can appear in multiple objects (e.g., a resource embed-
ded in several other documents), and so object pages cannot al-
ways be grouped in a contiguous broadcast interval. A possible
solution would be to replicate the page once for each contain-
ing object, but such approach could unnecessarily lengthen the
broadcast schedule and result in longer seek times. In section
V, we will explore a limited replication mechanisms that dupli-
cates the hottest pages for a controllable number of times. First,
however, we examine in which ways and to what extent transfer
times can be reduced solely in the context of flat schedules.

Problem Model: We model the problem of reducing trans-
fer time as the following graph optimization problem. We asso-
ciate a node to each page and insert an arc (i, j) from page i to
page j when there is a dependency between i and j that makes
j more likely to be accessed after page i. We will also associate
a weight to the arc (i, j) proportional to the strength of the de-
pendency. We call such graph the dependency graph of a trace
because its arcs express dependencies between pages and arc
weight express the strength of the dependency. We then seek to
arrange pages around a broadcast cycle so that the weighted arc
length is minimized. More precisely, we define the Minimum
Circular Arrangement (MCA) problem as

Instance: A directed graph G = (N,A) and non-negative
arc weights w(e) ∈ IN for each e ∈ A.

Question: Find a one-to-one function f : N →
{0, 1, . . . , n− 1} that minimizes

∑

e=(u,v)∈A

w(e)`(e) (1)

where n = |N | and `(e) = ((f(v)− f(u)) mod n).
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Fig. 3. A directed linear arrangement (left) whose cost is a Ω(n) factor away from the cost of the optimum circular arrangement (right). The value of h for the
arc of weight W is n− 1 in the topological arrangement and is only 1 in the circular arrangement. The value of h for the back arc in the circular arrangement is
2, and was 1 in the linear arrangement. Thus, the cost for the heavy arc can be substantially reduced with minimal changes in the cost of other arcs.

MST algorithm
Given a dependency graph G = (N,A)
Let P be a partition of the nodes of the graph G, initialized to n singleton sets.
(The algorithm maintains an ordering of each set in P )
for all arcs e = (u, v) of G in non-increasing order of weight:

Let Pu be the component of P that contains u and Pv be the component that contains v
if Pu 6= Pv

Insert e in the spanning tree T
Unite Pv and Pu and append the ordering of Pv after the ordering of Pu

Concatenate all orderings of sets in P and
return such ordering.

Fig. 4. The MST algorithm.

The quantity `(e) is the distance between arc endpoints in the
circular arrangement f and will be said to be the length of arc e
in f . In the MCA model, there is some degree of latitude in the
choice of the objective function. We chose a linear objective (1)
because it forces related pages to be clustered next to each other
while the objective function remains relatively easy to analyze.

A question related to MCA is the linear arrangement prob-
lem, where the graph nodes are to be arranged along a line (in-
stead of a circle) and the graph is assumed to be acyclic. The
minimum linear arrangement has been extensively studied: it is
NP-hard [28] and several approximation algorithms have been
proposed [29], [30], [31], [32]. A simple example shows that
the linear and circular arrangement problems are intrinsically
and radically different, so that approximation algorithms for
linear arrangement are most likely irrelevant in the context of
circular arrangements. Specifically, we demonstrate that the op-
timum linear arrangement can cost Ω(n) times as much as a cir-
cular arrangement even when the underlying graph G is acyclic.
Consider the graph in figure 3, and observe that it has a unique
topological ordering 1, 2, . . . , n at a cost of (n − 1)(W + 1),
whereas the circular arrangement 1, n, 2, . . . , n − 1 has a cost
of W + n + 1. We then take W = Ω(n) to make the cost ratio
Ω(n). On the other hand, if we consider any circular arrange-
ment, the cost due to an arc is at most n − 1 times the cost
that the optimum pays for the same arc. As a result, an O(n)-
approximation algorithm is trivial. We conclude that circular
and linear arrangement problems are in general unrelated.

Hardness: We consider the theoretical solvability for
MCA, and to this end we introduce the following decision ver-
sion of the optimum circular arrangement problem, which we
call the Circular Arrangement Problem (CA):

Instance: A directed graph G = (N,A), non-negative arc
weights w(e) ∈ IN for each e ∈ A, and a positive
integer K.

Question: Is there a one-to-one function f : N →

{0, 1, . . . , n− 1} such that
∑

e=(u,v)∈A

w(e)`(e) ≤ K?

where n = |N | and `(e) = ((f(v)− f(u)) mod n).
Proposition 1: The Circular Arrangement Problem (CA) is

NP-complete.
Proof: [Sketch] The proof is a reduction from the direct

linear arrangement problem.
MST Heuristic: Although no polynomial-time algorithm

is likely to solve MCA optimally, a reasonably good solution
can be obtained through a heuristic applied to the dependency
graph. Our procedure is based on a topological ordering of
a maximum spanning tree (MST) of the dependency graph.
Specifically, the algorithm maintains a partition of the node set
and an ordering for the nodes within each partition. Initially,
the node partition consists of n singleton, one for each node
of the original graph. Then, our procedure computes the maxi-
mum spanning tree of the dependency graph with Kruskal’s al-
gorithm [33], and, when the algorithm combines two node sets,
the heuristics also combines the two component orderings. On
the whole, the algorithm is in figure 4.

The algorithm is greedy, in that it arranges nodes as close as
possible if there is an arc with a large weight between them. At
the beginning, the algorithm arranges the nodes (i.e., pages) u
and v next to each other if the arc (u, v) has maximum weight
(i.e., if v appears in the same object as u for the maximum num-
ber of times). As the algorithm progresses, the algorithm com-
bines the ordering of Pu and Pv if the arc (u, v) has maximum
weight among all remaining arcs (i.e., the page orderings are
combined if there is a page v that appears in the same object
as u for the maximum number of times). As a result, the algo-
rithm can be viewed as producing a sequence of page clusters
P and combining two clusters on the basis of dependencies be-
tween two pages; as clusters are combined, their orderings are
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length Broadcast trace
trace begin (coord. univ. time) end (coord. univ. time) log sanitized n clients m objreq sngobj

1 [30/Jun/1998:15:00:00] [01/Jul/1998:00:00:00] 57639163 90.36% 225 127256 80046572 7626200 28.40%
2 [01/Jul/1998:15:00:00] [02/Jul/1998:00:00:00] 9079767 94.29% 174 67261 9967240 896297 25.12%
3 [08/Jul/1998:20:00:00] [09/Jul/1998:00:30:00] 15500700 90.95% 206 59479 20473599 2083034 28.98%
4 [09/Jul/1998:20:00:00] [10/Jul/1998:00:00:00] 1986787 94.36% 200 17563 2449844 199169 21.29%

TABLE II
CHARACTERISTICS OF CLIENT WEB TRACES COLLECTED FROM THE WORLD CUP 98 SERVER TRACE.

concatenated as well. Therefore, the algorithm gives as a by-
product a page clustering that depends on the frequency with
which pages belong to the same object. The MST algorithm
takes O(n2 log n) time in the worst case and, on our simula-
tions (section IV), it always ran in less than 600 ms on a Ultra
60 workstation with a 450Mhz CPU, 4MB L2 cache, 512 MB
of memory, Solaris 8, g++ compiler, and LEDA data structures
libraries [34].

IV. EVALUATION

Methodology: We limit our empirical analysis to Web logs
of Internet of hot spots. Although the concepts in this paper
should be applicable to both wired and wireless networks and
to several applications, the restriction allows us to obtain more
exhaustive results and to use several publicly available traces.
Experiments were executed with traces that were extracted from
the log of the HTTP servers for the Soccer World Cup 98. The
World Cup trace includes more than one billion requests over a
period of 1 1/2 month and is one of the largest trace analyzed
to date [35]. Furthermore, the World Cup servers received up
to 10 million requests per hour. As a result, the World Cup
site is one of the most busy recorded so far, which makes it an
ideal testbed for multicast data dissemination. Additional traces
will be considered in section VI to execute a blind validation of
algorithms.
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Fig. 5. Cumulative percentage of bytes requested with at least the given fre-
quency.

The server logs report only requests that percolate to the ori-
gin server, and in particular, the logs do not report requests
that are satisfied by intermediate caches. We extracted from
the complete server logs a set of four subtraces that correspond
to the four most active periods (table II). We kept requests that
fell in the target busy interval, that are GET or HEAD meth-
ods for HTML, image, Java, or compressed resources, and that
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Fig. 6. Tail of the distribution of the number of pages per object. The vertical
axis gives the frequency with which an object had at least the number of pages
on the horizontal axis.

gave rise to 200 (ok) and 304 (not modified) response codes.
Some document sizes changed during the course of the trace.
Size change is due either to interrupted transfers or to docu-
ment contents updates. Although updates can be incorporated
in broadcast environments [19], [24], our logs do not allow us
to determine the origin or nature of size changes, and so we re-
strict this study to fixed-size documents. After documents with
changing sizes were eliminated, the resulting subtraces contain
more than 90% of the transfers made during the chosen inter-
vals (table II, column “sanitized”).

In Internet data delivery, documents that are referenced spo-
radically are not usually multicast [1], [36]. Figure 5 gives the
cumulative size (as a fraction) of resources that were requested
with at least a certain frequency. The distribution has a knee in
correspondence of χ = 7 · 10−4. In other words, if the hottest
χ fraction of bytes is broadcast, the broadcast will contain ex-
tremely popular items, but a further increase of the broadcast
size n would quickly result in significantly colder items oc-
cupying the broadcast schedule. Consequently, we inserted in
the broadcast only the resources corresponding to the hottest χ
fraction of bytes. An alternative choice is based on a dynamic
assessment of document popularity [36]. We did not use any
dynamic schemes in this paper because we were interested in
isolating the performance of scheduling algorithms from that of
other methods. We envisage that a real implementation would
need to support both scheduling and dynamic document selec-
tion. As in [1], broadcast documents were divided into 512B
pages. A GET method translates into a request for all document
pages, a HEAD request for the appropriate number of pages at
the beginning of the document, and a non-modified reply into a
request for the first page of that document. In practice, clients
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Fig. 7. Average latency expressed as number of broadcast ticks. Seek latency is the number of ticks required to retrieve the first document page. Transfer latency
is the number of ticks to retrieve the remaining document pages.

are often interested in a collection of related documents, such
as an HTML file and its embedded images. The HTTP protocol
does not aggregate document requests into object requests. In
these cases, a heuristic is that if two documents are requested
within one second of each other in the trace, they belong to the
same logical object [37]. In our experiments, the client trig-
gers requests for all other pages in the object upon reception of
the first object page; such scheme can be implemented through
prefetching hints embedded in the first object page [38]. As
cached resources do not appear in the server logs, the client re-
quests are akin to GETLIST method invocations [18]. Table
II gives the number n of pages in the simulated server broad-
cast, the number of unique IP addresses generating requests for
broadcast pages, the number m of page requests, the number
objreq of object requests, and the percentage sngobj of single
page object requests. Some objects are big, but, depending on
the trace, 21% to 29% of objects contained only one page. Fig-
ure 6 plots the distribution of the number of pages within ob-
jects.

Another design choice is the speed at which data is broadcast.
Previous work suggests an optimal rate of 256 Kbps for IP mul-
ticast [1]. For comparison, if a single unicast-based server had
been connected at the same rate, it would not have scaled to sat-
isfy logged requests for broadcast resources in the World Cup
traces. We simulated several rates ranging from 48 Kbps (to
support most modems) to 1.544 Mbps (a T1 line). Most of these
rates are also within the capacity of short-range or 3G wireless
technology. A broadcast tick is the time needed to transmit a
page. The duration of a broadcast tick clearly depends on the
broadcast rate. Latencies were measured both in seconds and as
number of ticks; in the latter case (latency as number of ticks),
delays did not significantly depend on the broadcast rate. The
simulations will employ only static values of available band-
width. The more general problem of dynamically adjusting the
transmission rate to the available bandwidth is explored in [39],
[5], [40].

Results: Figure 7 compares a random flat broadcast, a
MAD broadcast [12], [13], which is based solely on stationary
access probabilities, and the MST heuristic. The figure shows
the average delays expressed as number of broadcast ticks.
For comparison, at the given broadcast rate, a unicast server
would not have been able to satisfy the requests for broadcast
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Fig. 8. Total latency in the 99th percentile expressed as number of broadcast
ticks.

resources. The reported delays are for requests to the origin
server, and so any performance improvement is in addition to
those due to caching. In these experiments, MAD schedules
lead to improvements over flat schedules of the order of 6%
to 13%. MAD schedules were particularly effective at reduc-
ing seek time (from 4% to 26%), but did not provide a clear
advantage in terms of transfer time (from -3% to 6%). The
MST algorithms outperformed MAD by 5% to 34%. Not sur-
prisingly, MST seek time was comparable to that of a random
schedule and it was roughly n/2. However, MST resulted in a
substantial reduction of transfer times, which in two traces was
half as much as MAD’s. The waiting time reduction is more
marked for trace 2 and 4; we believe that the more pronounced
improvement is due to the smaller percentage of single objects
request in those traces (table II).

The distribution of the delays was collected as well and figure
8 shows the 99th percentile of the delays. Flat schedules, and
MST in particular, never take more than 2n ticks to download
an object, whereas no worst-case bound holds for MAD. Corre-
spondigly, figure 8 shows that the delay of MST and random is
always below 2n, whereas MAD exceed 2n on both trace 1 and
3. It can be also noticed that if in a trace MAD did better on the
average, it did more poorly in the 99th percentile. Intuitively,
MAD attempts to optimize for the average case at the expenses
of the tail whenever possible.

In summary:

Random flat broadcast is not a particularly good strategy on
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Heavy algorithm
Construct an MST schedule f and determine all θ-heavy arcs
for each page v that is the head of a heavy arc

Locate v’s position in the MST ordering and, starting from this position,
do

Scan the MST ordering in the reverse direction of the broadcast order
until the tail u of a heavy arc is (u, v) is found

if u is more than ` ticks away from the next time v will be broadcast,
then Insert v in the broadcast after u

until the scan returns to v’s original position
return the resulting schedule.

Fig. 9. The Heavy algorithm.

the average, but it provides a worst-case bound (2n).
MAD improved on a random flat broadcast by 6% to 13% on

the average, but it provides no worst-case guarantees.
MST improved over MAD by 5% to 34% on the average

by exploiting access pattern dependencies, and, since
it follows a flat broadcast, it has the same worst-case
bound (2n) as the random flat schedule.

V. BEYOND FLAT SCHEDULES

We have dealt so far with two types of scheduling strategies:
skewed schedules that exploit stationary access probabilities
(i.e., MAD) and flat schedules that exploit page dependencies
(i.e., MST). Up to this point, we viewed the two approaches
as antithetic. In this section, we examine ways to combine the
two paradigms to reduce client-perceived latencies. The result-
ing schedule should be skewed to favor hotter pages over colder
ones and should be arranged in such a way as to reduce user-
perceived latency.

Heavy Arcs: An MCA solution f can contain arcs that
have a large value of w(e)`(e) and that consequently contribute
to a large fraction of the CA objective value.

Definition V.1: An arc is θ-heavy if w(e)`(e) ≥ θ for a
threshold value θ. If the value of the threshold θ is clear from
the context, we will simply designate such arcs as heavy.

A flat schedule is inherently limited in its ability to eliminate
heavy arcs. For example, suppose that the dependency graph
has an arc from every node u to a designated vertex v and that
the weights of the arcs e = (u, v) are large, e.g., w(e) > 2θ/n.
Then, there are Ω(n) arcs with w(e)`(e) ≥ w(e)n/2 ≥ θ.

Definition V.2—[33]: Let G = (N,A) be a directed graph.
The head of an arc (u, v) is node v and the tail is node u.
A method to reduce the impact of heavy arcs is to broadcast
the page corresponding to the arc head soon after the tail. As a
result, the arc length `(e) is reduced and so is its contribution
w(e)`(e) to the CA objective value. The drawback is that the
schedule contains more pages, and so the length of other arcs
can increase. Therefore, a schedule should not replicate an ex-
cessive number of arc heads for an excessive number of times.
The degree of replication can be controlled by tuning two pa-
rameters. The first parameter is the threshold θ for an arc to
be considered heavy. The second parameter is the maximum
length ¯̀of a heavy arc in the new schedule. A larger value of
¯̀allows a heavy arc to be longer in the new schedule, and thus
the arc head v to be replicated a smaller number of times. To

simplify the implementation, we ignored outgoing arcs from a
replicated node. A simple greedy strategy calculates the small-
est number of times a page is replicated along a schedule so that
heavy arc length is no more than ¯̀. The resulting algorithm is
in figure 9.

We found that good parameter values are θ = 1 and ¯̀ = 32
across all traces; such algorithms will be denoted as the heavy
algorithm. The heavy algorithm is fast (no more than 640 ms on
the same machine and traces as in section III). Figure 7 gives
the latency for the resulting strategy for the four traces; MAD
was outperformed from 8% to 33% by the heavy algorithm.

Square-Root Scheduling: We have attempted several
methods to integrate MST and heavy scheduling with other
methods based on independent probabilities and on the square
root law, but we were not able to achieve any appreciable per-
formance improvement over the heavy algorithm. We believe
that this is due to the page access distribution in our traces. Fig-
ure 10 plots page access frequency as a function of page rank.
The most popular page is assigned a rank of 1 and the least
popular page a rank of n. In a log-log plot, a Zipf distribu-
tion Pr[i] ∝ i−α would appear as a line with slope −α. Page
popularity can be explained by a Zipf distribution, although
with rather low confidence (0.65 ≤ R2 ≤ 0.76). Further-
more, the fitted Zipf distribution is only mildly skewed, with
0.65 ≤ α ≤ 0.76. Such result is consistent with the analysis
in [35], where lack of skewness was attributed to factors such
as the use of the most popular embedded images across most
of the site objects and the presence of caches interposed be-
tween clients and servers. At any rate, low values of α lead
to an almost flat square-root broadcast and so they hamper the
potential for improvement of schedules based on independent
probabilities. We conclude that square-root schedules are inher-
ently limited in their ability to address satisfactorily this type of
workloads.

VI. VALIDATION

Up to this point, we have used the same traces both to mea-
sure scheduling performance and to tune parameters, such as
χ, θ, and ¯̀. We then validated our methods on two additional
traces with no further algorithm modification or parameter tun-
ing. Our objective was to perform a “blind” test of our methods.
We collected the trace of HTTP requests to the main Web server
of the Computer Science department at Rutgers University be-
tween 12 p.m. and 4 p.m. on December 18, 1999. The other
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Fig. 10. Concentration of references (reference count plotted against page
rank).

trace is the NASA server trace collected between 12 p.m. and 4
p.m. on August 3, 1995. Similarly to the preprocessing of the
World Cup traces, we eliminated all but the χ = 0.07% of the
hottest bytes and simulated a cyclical broadcast at the rate of
256 Kbps. User-perceived latency in term of broadcast ticks is
shown in Figure 11. The heavy algorithm outperformed MAD
by 73% to 91%. The heavy and MST methods had seek time
comparable to that of a random schedule, but reduced transfer
time by a factor ranging from 4 to 7.

VII. RELATED WORK

Broadcast scheduling has been the subject of extensive in-
vestigation, mostly under the hypothesis that pages have sta-
tionary access probabilities [12], [13], [14]. Furthermore, Am-
mar gives analytical expressions to estimate client waiting time
in the presence of conditional access probabilities and Poisson
OFF periods [38]. To the best of our knowledge, no previous
work examines the case where a client requests simultaneously
multiple resources. Broadcast with non-uniform page sizes has
been considered as well [15]. Variable-size pages cannot be di-
rectly identified with objects in that multiple objects can have
common pages. Alternative scheduling methods use a pyra-
mid scheme that is particularly suited to streaming media [41].
Clustering through spanning trees is a well-known technique
[33], which we adapt to broadcast scheduling in the presence of
access pattern dependencies. Additional background was sum-
marized in Section II and IV.

VIII. CONCLUSIONS

Discussion: Broadcast is the primary mode of operation
for several wireless and optical media and leads naturally to
transport and application solutions. Analogously, multicast has
the potential of effectively relieving Internet hot spots, thereby
leading to scalable applications. Multicast can also be used in
CDN backbones and it can be employed in conjunction with
caching. A critical issue in broadcast management is the orga-
nization of the broadcast. Typical broadcast schedules, such as
MAD, transmit hot pages more often than colder ones. Mean-
while, clients are often interested in downloading lists of pages
from the server. This scenario leads to strong dependencies
in the access pattern, and if such dependencies are taken into
account, substantial performance improvements are possible.
We have a proposed a simple greedy algorithm (MST) for flat
schedules and a refinement (Heavy) that leads to a (slightly)
skewed schedule. The algorithms are fast in theory and in prac-
tice and it is easy to update their schedule if underlying depen-
dencies change. Moreover, the algorithms give as a by-product
a clustering of pages according to their access dependencies.

The algorithms were extensively analyzed on multiple Web
traces. Furthermore, an additional set of two more traces was
considered in order to perform a “blind” validation of algo-
rithms, i.e., an algorithm validation without any further pa-
rameter tuning. Our final algorithm (Heavy) leads to improve-
ments in client-perceived latency ranging from 8% to 33% on
the World Cup traces, and up to 91% on the blind validations.
The MST algorithm generates a flat schedule and so, in addi-
tion to improving average access time, it offers a worst-case
bound on the acces time. We conclude that substantial perfor-
mance improvements can be efficiently obtained by considering
dependencies in the access pattern.

Methodological Implications: From a methodological
perspective, we observe that most broadcast data management
research has been conducted under the independent reference
assumption: page i is requested at time t according to a station-
ary probability pi that is independent of past accesses. Much
research in broadcast scheduling and caching assumes indepen-
dent references with stationary probabilities. We believe that
the independent reference assumption is in most cases a good
first order approximation that leads to valuable algorithms and
to a first conceptual clarification of the problem at hand. We
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also venture that substantial performance improvements and a
better understanding can be derived from bringing to light the
complex dependencies in data access patterns.

Future Work: The techniques in this paper have been vali-
dated in the context of multicast dissemination of Web contents.
It is natural to conjecture that access pattern dependencies ex-
ist in other contexts as well, and so the algorithms in this paper
should be applicable to a variety of other scenarios, as for exam-
ple, wireless information stations or satellite-supported CDN’s.
We are actively working at extending the scope of our mea-
surements. Furthermore, we plan to implement a platform to
support data management issues for Internet data dissemina-
tion [42], which would, among other objectives, allow us to ob-
tain more direct measurements for the performance of our algo-
rithms and their interaction with document selection, caching,
congestion control, and layering.
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