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Abstract. Broadcast disks are an emerging paradigm for massive data dissemination. In a
broadcast disk, data is divided into n equal-sized pages, and pages are broadcast in a round-robin
fashion by a server. Broadcast disks are effective because many clients can simultaneously retrieve
any transmitted data. Paging is used by the clients to improve performance, much as in virtual
memory systems. However, paging on broadcast disks differs from virtual memory paging in at least
two fundamental aspects:

• A page fault in the broadcast disk model has a variable cost that depends on the requested
page as well as the current state of the broadcast.

• Prefetching is both natural and a provably essential mechanism for achieving significantly
better competitive ratios in broadcast disk paging.

In this paper, we design a deterministic algorithm that uses prefetching to achieve an O(n log k)
competitive ratio for the broadcast disk paging problem, where k denotes the size of the client’s
cache. We also show a matching lower bound of Ω(n log k) that applies even when the adversary is not
allowed to use prefetching. In contrast, we show that when prefetching is not allowed, no deterministic
online algorithm can achieve a competitive ratio better than Ω(nk). Moreover, we show a lower bound
of Ω(n log k) on the competitive ratio achievable by any nonprefetching randomized algorithm against
an oblivious adversary. These lower bounds are trivially matched from above by known results about
deterministic and randomized marking algorithms for paging. An interpretation of our results is that
in the broadcast disk paging, prefetching is a perfect substitute for randomization.
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1. Introduction. In traditional client-server architectures, such as the World
Wide Web, data transfers are initiated by clients that request information from
servers. Such an architecture is said to be a “pull” system because clients pull data
from the servers. An emerging alternative to pull systems is the “push” technology.
In a push system, the server repeatedly broadcasts data to clients; thus the server
now “pushes” information toward the clients.

Broadcast disks are a widely used type of push technology. In broadcast disks,
data are divided into pages of equal sizes, and pages are broadcast in a round-robin
fashion. The name “broadcast disk” derives from the broadcast program being a
circular repetition of pages.

1.1. A widespread application. Broadcast disks have been deployed since the
early 80’s by most national television companies in western Europe. Broadcast disk
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technology has since attained nationwide diffusion and reaches most households. It
provides a continuous information source and has deeply influenced the lifestyle of
the countries where it is operational [10, 17]. Broadcast disks have been used in high
throughput multiprocessor database systems over high bandwidth networks [6] and
wireless communication [11]. An interested reader is referred to the survey lecture
by Franklin and Zdonik [9] that reports results and research directions in the field
of broadcast disks. The client storage resources have been recently integrated in the
broadcast disk approach [1, 2]. The client decides which pages to keep in its local
cache and which pages to evict. If the client finds a requested page in its local cache,
then the page request can be satisfied at no cost. However, if the client does not
have the requested page, it will have to wait for that page to be broadcast again
by the server. The client’s objective is to minimize the completion time needed to
satisfy a sequence of page requests. The resulting paging system has some affinity to
the traditional virtual memory systems [4]. We refer to it as broadcast disk paging
(BDP). The objective of this paper is to study paging algorithms for BDP in the
framework of competitive analysis (see [5, 12, 18], for instance).

1.2. Theoretical significance. BDP is not reducible to traditional online pag-
ing and poses several unexplored theoretical problems. It differs from traditional
paging in at least two main ways:

• The cost of faulting on any page changes dynamically with time in the case
of BDP.

• Prefetching dramatically improves the competitive ratio of online algorithms
for BDP and brings in the same advantage as randomization.

We elaborate these two points next. In traditional paging models, either the cost
of a page fault is uniform [4] or depends only on the faulting page [15]. In contrast,
the cost of a fault in BDP is the time spent waiting for the requested page to be
transmitted. It depends on the time step reached during the transmission schedule
and could range from 1 (the desired page is currently being broadcast) to n (the
desired page was broadcast just before), where n is the total number of pages in the
server broadcast. As a result, the design and analysis of BDP algorithms involve
techniques and ideas that are often significantly different from those for traditional
paging. Moreover, the final behavior of the BDP problem is very different from virtual
memory paging as illustrated by the following elementary example. Suppose that the
server broadcasts n pages and that the client has a local cache of size k. We show
that, when n = k + 1, there is a 1-competitive deterministic BDP online algorithm.
Briefly, the 1-competitive algorithm keeps in the cache all pages except the one that is
about to be broadcast. Such an algorithm pays a constant cost per fault, and after at
most n faults it will have in the cache exactly the same pages as the adversary. Hence,
the algorithm cost is only an additive factor away from the optimum. This is to be
contrasted with virtual memory paging where the adversary can force a worst-case
competitive ratio of k.

BDP also differs from the traditional paging in the role played by prefetching .
Prefetching is essentially ruled out from traditional paging without loss of generality
[15]. In this paper, we will show that in BDP prefetching is critical to dramatically
improve the competitive ratio of online algorithms. In fact, we will show that prefetch-
ing is an exact substitute for randomization in BDP. The importance of prefetching
can be intuitively explained as follows. Prefetching makes it possible for a client to
reload a page recently evicted and, in some sense, allows the client to dynamically
revise its eviction decisions.
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1.3. New results. In the absence of any prefetching, the conventional caching
analysis can be extended to show that any marking algorithm is O(nk)-competitive.
But things are far from clear when either the adversary or the online algorithm is
allowed to prefetch arbitrary subsets of pages. Our main result is that there exists
a deterministic online algorithm that uses prefetching and is O(n log k)-competitive.
Our algorithm uses the history of the request sequence and prefetching to develop
a strategy that dynamically rectifies any potential eviction mistake. We also show
that no deterministic online algorithm can achieve a competitive ratio better than
Ω(n log k). Therefore, our algorithm is optimal up to a constant factor. In contrast,
we prove that in the absence of prefetching, no deterministic algorithm can achieve
a competitive ratio better than Ω(nk), and that even with the use of randomization,
there is a lower bound of Ω(n log k) against oblivious adversaries. The corresponding
randomized upper bound is O(n log k).

Finally, we extend all our results to a more general model, called the delay model,
where at any step, the adversary generates either a page request or a delay request.
The delay requests capture the fact that a client may use the pages in its cache for
variable amounts of time, before ever requesting an outside page. The difficulty is
that the adversary may introduce delays to disrupt the current state of the online
algorithm. But we show that all of our results hold unchanged in the general model.

1.4. Paging and scheduling. In traditional paging, the cost of a page fault
depends on the cache configuration. In BDP, the cost depends on a dynamic state that
is not confined only to the contents of the local cache but reflects the configuration of
other areas of the system. Specifically, the BDP cost is affected by the time reached
along the broadcast schedule. In fact, BDP is only one of many problems where
there is a strong interaction between caching and schedules. For example, paging
can be integrated with prefetching strategies and yields a problem where performance
depends on cache contents as well as on the current disk state [7]. We suspect that
the results in this paper might shed light also on other online problems where caching
is interrelated with scheduling problems.

1.5. Organization. In section 2, we formalize our problem, define our notation,
and establish some basic properties of BDP that are useful to our study. In section
3, we study a simple special case of BDP that highlights an important difference
between BDP and virtual memory paging. We next study deterministic as well as
randomized BDP algorithms that do not use prefetching in section 4. In section 5, we
establish our main results, namely, an O(n log k)-competitive deterministic algorithm
and an Ω(n log k) lower bound on the deterministic competitive ratio for BDP with
prefetching. In section 6, we examine the general delay model. We conclude the paper
in section 7.

2. Preliminaries. In this section, we formally describe various aspects of BDP
and establish our notation. In a broadcast disk, a server broadcasts a set P =
{0, 1, . . . , n − 1} of pages over a network in a round-robin fashion. The pages are
received by the clients in the same order as they are transmitted by the server. Each
client operates in perfect isolation from other clients and thus the performance of a
client is independent of the behavior of other clients. A client can cache at most k
pages. We will typically assume that a ≤ k ≤ bn for some positive integer a and a
positive real constant b < 1. The assumption reflects the fact that paging is usually
done only if there is enough space in the local cache for at least a small number of
pages and that the local cache size is typically much smaller than n. Applications
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Fig. 2.1. Examples of client configurations. Black circles represent cached pages and the outer
arrow the algorithm position.

running on the clients generate a sequence σ of page requests. We next define the
notion of configuration of a paging algorithm and describe the sequence of actions
taken by a client to service a sequence σ of page requests.

2.1. Configuration of an algorithm. The configuration of a BDP algorithm
G is the contents of its cache along with the step reached along the transmission
schedule. Formally, a configuration is a pair (M, i) ∈ 2P × P , where

• M is a subset of P of size at most k that is present in G’s local cache,
• the index i is the last page that was broadcast and received by the client.

If G’s configuration is (M, i), we will say that G is positioned over page i or that G’s
position is i. If M = {p1, p2, . . . , ph}, then we will denote the memory configuration
(M,ph) as {p1, p2, . . . , �(ph)}.

Example. Figure 2.1(a) represents a broadcast cycle and a configuration (M, i)
with M = {1, 3, 5} and i = 3. The inner arrow represents the order in which pages
are broadcast. The outer arrow gives the position of G, that is, the last page that
was received by the client. Black circles represent pages inM (contents of G’s cache),
and white circles represent pages that are not in M .

Let (M, i) be G’s configuration. Then, the next page that G will receive is page
i′ = (i + 1) mod n. As soon as G has received i′, it has the option of loading it into
the cache. Thus G’s new configuration is of the form (M ′, i′), where M ′ ⊆M ∪ {i′}.
Notice that if the cache was full (|M | = k) and i′ ∈ M ′ −M , then there must be a
page p ∈M −M ′ that is evicted from the cache to make room for i′.

2.2. Page requests. The sequence of page requests generated by a client is
denoted by σ = 〈σ1, σ2, . . . , σm〉 ∈ Pm. For notational convenience, let σ0 = k − 1.
The client services a request σj ∈ σ in an online fashion by repeatedly performing the
following sequence of actions: the client receives the next page i from the broadcast
and decides whether to cache it or not. This procedure terminates only when the
requested page σj is in the cache.

Remark. Notice that the client can stop the loop iteration when σj is in the
cache, but it does not have to stop the loop the first time σj is in the cache. If the
client finds it advantageous to keep listening to the broadcast after σj is received, it
can do so. On the other hand, if σj is already in the cache immediately before the
jth request is issued, then the client does not have to execute any loop iteration at
all. We will prove in Proposition 2.7 that, without loss of generality, clients will stop
as soon as σj is in the cache.
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The cost of a client is the total number of pages it has received from the broadcast,
or equivalently, the number of broadcast slots to which the client has listened.

Example. Assume the same set-up as in Figure 2.1(a) and suppose that a request
for page 6 is issued. Since page 6 is not in the client’s cache, the client listens to the
broadcast. Since the client is positioned over page 3, the next page on the broadcast
is page 4. The client receives it and decides whether to cache it or not. If it does,
it will have to choose a page in {1, 3, 5} to evict. In either case, page 6 is not in
the cache, so the client keeps listening to the broadcast. Then, page 5 is broadcast.
Again, the client can choose whether to cache page 5 or not and continues listening
to the broadcast again. Finally, page 6 is broadcast. The client can choose to cache
page 6. If it does, it can also choose whether it will keep listening to the broadcast for
page 7 or whether it will remain positioned over page 6 and process the next request
in σ. Figure 2.1(b) gives an example when pages 4, 5, and 6 have all been cached and
the client has stopped immediately after loading page 6. The total cost incurred is
three.

Remark. We remark that, according to the previous definition, only the number
of received pages contributes to the cost. The definition above entails that when a
requested page is in the cache and the client chooses not to move, the cost for that
request is zero. In section 6, we will consider a more complex cost model where local
computation could cause delays and force the client to skip items in the broadcast.
However, for the time being, we will not charge for page requests directly satisfied in
the cache.

Paging over a broadcast disk extends the virtual memory, except that now paging
is from the network rather than from a physical disk. Clearly, as in virtual memory
paging, a page replacement algorithm affects the performance of the system. Virtual
memory paging and BDP differ on the following essential point: paging replacement
algorithms aim at minimizing the number of page faults (since each fault costs the
same), whereas BDP replacement algorithms aim at minimizing the total time spent
waiting for pages to arrive from the network.

In what follows, we assume that G is a broadcast disk page replacement algorithm.
We will say that G prefetches a page p if G loads p even though p is not the currently
requested page. In BDP, some pages can be prefetched at no additional cost.

Example. In the example above, page 6 was requested, and page 4 and page 5
were loaded even though they were not requested. Hence page 4 and page 5 were
prefetched. Moreover, the client cost is three, independent of whether pages 4 and 5
are prefetched.

We introduce the following notation. The memory configuration reached by G
before the jth request will be denoted as M(G, j) or simply as M(G) when the time
index is clear from the context. Note that the index i in (M, i), and the index j in
M(G, j) = (M, i), denote different quantities. We will assume without loss of general-
ity that the initial configuration of any algorithm G isM(G, 1) = {0, 1, . . . , �(k−1)}.
If M(G) = (M,p), then we will write q ∈ M(G) if and only if q ∈ M . If the
jth request σj /∈ M(G, j), then we will say that G misses or faults on page σj . If
M(G, j) �=M(G, j +1), we will say that G moves at step j. The algorithm G moves
either when it changes cache contents or when it changes position. The cost of G on
σ will be denoted as c(G, σ) or simply as c(G).

Example. In the example above, G misses and moves from page 3 to page 6.
Eventually, G is positioned over page 6.

If p ∈ P is a page and i a nonnegative integer, then we will write p+ i instead of
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(p + i) mod n when no confusion can arise. If p, r ∈ P are pages then we will write
p − r instead of (p − r) mod n when no confusion can arise. Such notation is useful
for calculating costs and movements: if G moves from p to q, then its cost is q − p,
and it is positioned over q = p+ (q − p).

2.3. Rotations, transit, and ubiquity. We next define two concepts that we
use frequently in our analysis.

Definition 2.1. The algorithm G executes at least i rotations during σ if
c(G, σ) ≥ i · n.

Definition 2.2. The algorithm G is said to transit over page p at step j if it
moves from a page p− h to a page p+ l (h > 0, l ≥ 0) at step j.

Another notion is that of ubiquitous adversary. An adversary is said to be ubiqui-
tous if it pays only a unit cost per fault. Since a fault forces any algorithm to receive
at least one page, the ubiquitous adversary is at least as strong as an ordinary adver-
sary. We will use the ubiquitous adversary to extend competitiveness results to the
delay model. Henceforth, we will assume that the adversary is not ubiquitous unless
stated otherwise. A property of the ubiquitous adversary is that it will never prefetch
a page [15]. Actually, we could assume without loss of generality that the ubiquitous
adversary serves a request sequence in accordance with Belady’s algorithm [4], but
we will not use this fact.

2.4. Lazy algorithms and hard sequences. We will now define the notions
of lazy algorithms and hard sequences for BDP, compare our definitions with the
analogous ones that are given in the context of virtual memory paging, and show that
we can assume without loss of generality that algorithms are lazy and sequences hard.
First, we define lazy algorithms.

Definition 2.3. A paging algorithm G is lazy for virtual memory paging if G
never prefetches a page.

It can be shown that any algorithm for virtual memory paging can be transformed
into a lazy algorithm without any degradation in performance [15]. The definition of
lazy algorithms in BDP is as follows.

Definition 2.4. A paging algorithm G is lazy for BDP (or simply lazy) if, when
G is positioned on page r and faults on page p, its cost is exactly p− r.

In other words, a lazy algorithm stops listening to the broadcast as soon as it
receives the faulting page. According to Definition 2.4, a lazy algorithm can prefetch
pages as long as those pages are loaded while waiting for the faulting page to be
broadcast. Then, a lazy algorithm is not necessarily lazy for virtual memory paging,
but a lazy algorithm for virtual memory paging is also lazy for BDP.

Definition 2.5. A request sequence σ is hard for G if G faults on every request
in σ.

The definition above coincides with the one used in virtual memory paging and
in BDP. We now claim in the spirit of [15] that it is enough to compare lazy online
algorithms to adversaries running lazy algorithms on hard sequences.

Lemma 2.6. For any (online) algorithm G, there is an (online) algorithm G′ that
satisfies c(G′) = c(G) and that has the property that, when G′ faults on page σj, it
always loads σj the first time G

′ transits over σj.
Proof. The proof is by induction on the length of σ. Suppose that G satisfies the

property before request σj , but it violates it on σj . The first time G transits over σj ,
it does not load it. Therefore, G will transit over σj a second time. Hence, G transits
over every page in P after it has transited over σj for the first time. The algorithm
G′ will exactly follow G until page σj is received for the first time. Then, G

′ loads
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σj and evicts a page p. Afterwards, G
′ emulates G until either G evicts p, in which

case G′ evicts σj , or G receives p. Notice that G receives p before it receives σj for
the second time. At that point, G′ evicts σj and reloads p. Now, the configurations
of the two algorithms are identical, and the cost of G′ is exactly equal to the cost of
G. Finally, we notice that G′ does not require any knowledge of the future beyond
G’s.

Proposition 2.7. For any (online) algorithm G, there is an (online) algorithm
G′ that is lazy and that satisfies c(G′) ≤ c(G).

Proof. The proof is by induction on the length of σ. Suppose that G is lazy before
request σj , but it violates that condition on request σj . We can assume without loss of
generality that G loads σj the first time it transits over it. Afterwards, G will receive
an additional set Q of pages. The algorithm G′ stops immediately after receiving σj .
If j = m, then G′ will not perform any further action and c(G′) < c(G). Otherwise,
G′ services σj+1 by first receiving all pages in Q and then by emulating G on σj+1.
Therefore, M(G, j + 2) =M(G′, j + 2) and c(G′) ≤ c(G). Finally, we notice that G′

does not require any knowledge of the future beyond G’s.
Proposition 2.8. If G is an algorithm that does not move for requests that do

not cause a fault, that does not base its eviction decision on nonfaulting requests, and
that is c-competitive on all of its hard sequences, then G is c-competitive.

Proof . Let σ be a sequence of request. Define σ′ to be the associated hard
sequence, that is, the subsequence of σ consisting of all requests where G faults. Then,
c(G, σ) = c(G, σ′). Let H be the optimum algorithm. Then, c(H,σ′) ≤ c(H,σ). It
follows that, for some constant b,

c(G, σ) = c(G, σ′) ≤ c · c(H,σ′) + b ≤ c · c(H,σ) + b.

If G is a lazy algorithm and σ is hard, then G is positioned on σj−1 before the
jth request.

3. BDP and virtual memory paging: The case n = k+1. In this section,
we will analyze the simple case n = k + 1 to highlight a fundamental difference
between traditional paging and BDP. In traditional paging, the adversary can force a
worst-case sequence when n = k + 1. In contrast, we show the following result.

Proposition 3.1. There is a 1-competitive deterministic online algorithm for
BDP when n = k + 1.

Proof. Let G be the algorithm that on a faulting request σj maintains M(G, j +
1) = {�(σj)} ∪ {i ∈ P : i �= σj + 1}. In other words, σj + 1 is the only page missing
from G’s fast memory. When G faults on σj , it evicts σj+1 and loads σj . So, G pays
a unit cost whenever it faults. Suppose without loss of generality that σ is hard for
G, and thus c(G, σ) = m. In fact, σj = k + j by induction on j.

Assume without loss of generality that the adversary follows a lazy algorithm H.
Suppose that H faults on σj1 , σj2 , . . . , σjh . The cost of H on σ is then

c(H,σ) =

h∑
l=1

(σjl − σjl−1
) =

h∑
l=1

(k + jl − k − jl−1) =

h∑
l=1

(jl − jl−1) = jh − 1.

Notice that any subsequence of at most n consecutive requests in σ consists of distinct
pages. Also, H does not fault on σj when j > jh, and so |{σjh+1, . . . , σm}| ≤ k−1 < n,
which implies that σjh+1, . . . , σm are all distinct and m − jh ≤ k − 1. Therefore,
c(G, σ)− c(H,σ) = m− (jh − 1) ≤ k, and the claim is proven.
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The case n = k + 1 sets up the general framework for finding lower bounds on
the competitive ratio of traditional paging algorithms. Clearly, the general paradigm
does not work for BDP. Instead, we will show that all lower bounds can be ultimately
traced back to the notion of algorithm in transit, as defined in the previous section.

4. BDP algorithms without prefetching. In this section, we will examine
the competitive ratio of online algorithms that do not allow prefetching. In terms of
Definition 2.3, such algorithms are lazy for virtual memory paging.

If G is a lazy algorithm for virtual memory paging, it induces an algorithm for
BDP that is lazy and whose memory contents after σj are exactly the same as G’s.
For simplicity, we will denote both the virtual memory paging algorithm and its
BDP counterpart with the same symbol. A strongly competitive deterministic paging
algorithm never incurs more than k times the optimum number of page faults. Since
its BDP counterpart is lazy, it follows that a page fault costs at most n− 1; the last
page that was broadcasted and received must be in the algorithm’s cache. Thus, any
strongly competitive paging algorithm, e.g., the marking algorithm [13], is trivially
(k(n− 1))-competitive for broadcast disk paging even against a ubiquitous adversary.
In fact, we can show a slightly better competitive ratio.

Theorem 4.1. Let G be a lazy α-competitive deterministic algorithm for paging.
Then, the competitive ratio of G for BDP is (α− 1)n+ 1.

Proof. We will assume without loss of generality that the sequence σ is hard for
G and that the adversary uses a lazy algorithm H. First, we notice that the cost of
H is at least equal to the number of page faults. Indeed, every time H brings a new
page into fast memory, H has to transit over that page, paying a unit cost.

Let rj be the page where the adversary is positioned before the jth request, and
define the potential function as Φ(j) = rj−σj−1. Let aj = (σj−σj−1)+Φ(j+1)−Φ(j)
be the amortized cost of G to serve request σj . Notice that if rj+1 = rj , then
aj = (σj−σj−1)+(rj−σj)− (rj−σj−1) ≤ n. If σj /∈ M(H, j), then Φ(j+1) = 0 and
aj = σj−σj−1+Φ(j+1)−Φ(j) = (σj−rj)+(rj−σj−1)−(rj−σj−1), which is the real
cost of the optimum on that request. Let l be the number of times that the optimum
algorithm faults. Then |σ| ≤ αl + b for some constant b. Moreover, l ≤ c(H,σ). The
resulting cost of G is c(G, σ) = (|σ| − l)n + c(H,σ) ≤ ((α − 1)l + b)n + c(H,σ) ≤
(n(α− 1) + 1)c(H,σ) + bn, which proves the theorem.

Corollary 4.2. The marking algorithm is ((k − 1)n+ 1)-competitive.
We next establish an essentially matching lower bound.
Theorem 4.3. No deterministic online algorithm without prefetching can have

a competitive ratio better than Ω(nk) for 2 ≤ k ≤ n − 2 and any fixed b < 1, even if
the adversary is not allowed to do prefetching.

Proof. Let G be an online algorithm without prefetching and H be the algorithm
used by the adversary. The adversary proceeds in phases. We will maintain that,
at the beginning of a phase, M(G) contains the same pages as M(H), and that
H is positioned on a page q such that q + 1, q + 2 /∈ M(H). Define the set W =
M(H) ∪ {q + 1, q + 2} and call W the working set of the current phase. The gist of
the proof is as follows. Notice that |W | = k + 2, and so there are always two pages
in the working set W that are not in G’s fast memory. The adversary will request
those pages, and consequently G will fault at every step. Furthermore, we will use
the notion of transit to show that G pays Ω(n) on every two faults. The adversary
will generate Ω(k) requests in the phase and itself serves them at a cost of two. We
now detail the argument.

The adversary starts the phase by requesting page q + 1 followed by page q + 2.
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Thus, both G and H are now positioned at q + 2. The rest of the phase is divided
into segments. We will let r be the page where G is positioned at the beginning of a
current segment. For example, in the first segment, r = q+2. Let α and β be the two
pages that are in the working set W but not in G’s fast memory at the beginning of a
segment. Assume without loss of generality that β − r > α− r. Then, the adversary
requests β followed by α, and the segment is over. The algorithm G faults on the
request for β and transits over α while waiting for β to be transmitted; but it does not
load α because it is not allowed to prefetch. Therefore, G faults also on the request
for α. On the whole, G transits over α at least twice during the segment, and so it
executes at least one rotation per segment. We will now describe how many segments
are generated. The adversary counts the number of distinct pages that made G fault
during all the segments generated so far. The adversary generates segments until G
has faulted on a set F of at least k−2 distinct pages. Notice that F is contained in the
working set. Moreover, during each segment, G faults on at most two new pages, so
that |F | ∈ {k− 2, k− 1}. Hence, at least �(k− 2)/2� segments are generated. We will
now specify how H serves the requests in the phase. The algorithm H faults on q+1
and q + 2. At this point, its fast memory contains all the pages of F ∪ {q + 2}, plus
another arbitrary page from W if |F ∪ {q+ 2}| < k. Notice that H does not prefetch
any page and that H does not fault during any segment. If G and H’s fast memory
configurations still differ after all segments have been generated, the adversary keeps
requesting pages in H’s memory that are missing from G’s memory, until the two
memories coincide in their contents. Notice that if the two memories never coincide,
then this step will continue indefinitely, and G is not competitive. Henceforth, assume
that G’s and H’s memory contents will eventually be the same. At this point, the
phase is over. The cost of G in the phase is at least the cost in the segment, and so
hence at least n(k − 2)/2. The cost of H in the entire phase is 2—due only to the
initial faults on q + 1 and q + 2.

The adversary issues (n− k)/2 request phases paying only a cost of 2 per phase.
Then the adversary pays a cost of k and returns to the starting configuration
{0, 1, . . . , �(k−1)}. It then keeps requesting pages 0, 1, . . . , k−1 until the fast memory
configurations of G and H coincide. Therefore, the cost of the adversary on (n−k)/2
phases is n, while the cost of G is at least ((n − k)/2)(n(k − 2)/2), and the result
follows.

The construction above extends to a lower bound for randomized algorithms
against an adaptive online adversary.

Theorem 4.4. No randomized online algorithm without prefetching can have a
competitive ratio better than Ω(nk) against an adaptive online adversary for 3 ≤ k ≤
bn and any fixed b < 1, even if the adversary is not allowed to do prefetching.

Proof. The initial setup of the proof is the same as that of Theorem 4.3. The
main difference between the proofs of Theorem 4.3 and Theorem 4.4 is that, at the
beginning of a phase, the adversary does not know the set F of pages that make G
fault. We overcome the difficulty by letting the adversary guess F and showing that
the expected number of segments is Ω(k).

The adversary proceeds in phases. Assume that j is the step of the first phase
request, so that M(H, j) and M(G, j) denote the configurations of H and G im-
mediately before the current phase begins. We will maintain that M(G, j) con-
tains the same pages as M(H, j), and that H is positioned on a page q such that
q + 1, q + 2 /∈ M(H). Define the set W = M(H, j) ∪ {q + 1, q + 2} and call W the
working set of the current phase. The adversary starts the phase by requesting q + 1
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followed by q+2. Thus, both G and H are now positioned on q+2. The algorithm H
makes room for q+1 and q+2 by evicting two random pages r1 and r2 fromM(H, j),
so that now H’s configuration isM(H) = (M(H)−{r1, r2})∪{q+1, �(q+2)}. Notice
that r1, r2 ∈ M(H, j) implies {r1, r2}∩ {q+1, q+2} = ∅, a fact that we use later on.

The rest of the phase is divided into segments. A segment is defined exactly as in
the proof of Theorem 4.3 and consists of two page requests that force G to execute one
rotation. Both segment requests cause a fault for G but no fault for H. Therefore, the
adversary generates segments while |M(H)−M(G)| ≥ 2. Notice that the adversary
is adaptive, and so it can determine if |M(H)−M(G)| ≥ 2, which pages to request
in each segment, and in which order. However, the adversary cannot determine at
the beginning of a phase the set F of pages that will make G fault. It remains to
estimate the expected number of segments. At all steps, G keeps all the pages in the
working set W except two. Let α and β be the two pages that are in the working
set but not in G’s fast memory immediately after the ith segment has been serviced.
Notice that the adversary generates an (i+1)st segment only if |M(H)−M(G)| ≥ 2,
or, equivalently, only if {α, β} ∩ {r1, r2} = ∅. Therefore, G should choose α and β so
that {α, β} ∩ {r1, r2} �= ∅. In other words, G should choose the missing pages α and
β in order to guess H’s missing pages r1 and r2. Since {r1, r2}∩{q+1, q+2} = ∅, we
assume without loss of generality that G always keeps q+1 and q+2 in fast memory,
and so {α, β} ∩ {q + 1, q + 2} = ∅. We will now estimate the expected number of
segments by means of the following simple random experiment. We will have a bin
that contains k balls—a white ball for each page in M(H, j) − {r1, r2} and a black
ball each for r1 and r2. In each segment, G extracts two balls α and β from the bin. If
both α and β are white, then G gets another round; otherwise, either α or β are black
and the experiment stops. The number of segments � is exactly the number of rounds
needed to extract a black ball. Clearly, � is minimum if no ball is ever replaced in the
bin. Elementary combinatorics now yields E[�] = Θ(k). As an aside, we observe that
the case when balls are not replaced in the bin corresponds to the case when G keeps
in fast memory a different subset of the working set in different segments.

After the last segment, |M(H)−M(G)| ≤ 1. If |M(H)−M(G)| = 0, thenM(G)
contains the same pages asM(H), and another phase starts. If |M(H)−M(G)| = 1,
then the adversary keeps requesting pages inM(H)−M(G) untilM(G) contains the
same pages asM(H). Again, the adversary is adaptive and knows ifM(G) coincides
with M(H). There are two cases, depending on whether this step ends or not. The
expected cost of G conditioned to the event that M(G) never coincides with M(H)
is infinite, and so G is not competitive. The expected cost of G conditioned to the
event that M(G) eventually coincides with M(H) is nonnegative. We will assume
from now on that indeed G’s memory will eventually coincide with H’s. After M(G)
and M(H) contain the same pages, a new phase starts. The expected cost of G in
a phase is at least equal to the expected cost in the segments, and so it is at least
nE[�] = Ω(nk). Meanwhile, the cost of H in the entire phase is due only to the initial
faults on q+1 and q+2, and so it is 2. The adversary issues (n−k)/2 request phases
paying only a cost of two per phase. Then the adversary pays a cost of k and returns
to the starting configuration {0, 1, . . . , �(k − 1)}. It will then keep requesting pages
0, 1, . . . , k − 1 until the fast memory configurations of G and H coincide. Therefore,
the cost of the adversary on (n − k)/2 phases is n, while the expected cost of G is
Ω(nk(n− k)), and the result follows.

We next establish an Ω(n log k) lower bound on the competitive ratio of random-
ized online algorithms without prefetching against an oblivious adversary. We start
with the following simple proposition.
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Lemma 4.5. Let G be a deterministic lazy algorithm, σ = (〈σ1, σ2, . . . σl〉)h
for some l ≤ k. If {σ1, σ2, . . . , σl} − M(G, lh) �= ∅, then c(G, σ) ≥ h − 1 for all
configurations M(G, 1).

Proof. The proof is by induction on c. The claim clearly is true for c = 1.
Let Σ = {σ1, σ2, . . . , σl} and σ′ = 〈σ1, σ2, . . . , σl〉. Suppose that Σ − M(G, l(h)) �=
∅. Since G is lazy, M(G) will remain unchanged as soon as Σ ⊆ M(G). Then,
Σ−M(G, l(h−1)) �= ∅, and by induction hypothesis c(G, (σ′)h−1) ≥ h−2. Moreover,
G faults at least once during the last repetition of σ′, and the lemma follows.

Theorem 4.6. No randomized online algorithm without prefetching can have a
competitive ratio better than Ω(n log k) for 3 ≤ k ≤ bn and any fixed b < 1, even if
the adversary is not allowed to do prefetching.

By the minimax theorem [5], it will be enough to show that there is a probability
distribution P over sequences of page requests such that for any lazy deterministic
algorithm G, EP{c(G, σ)} ≥ c · c(H,σ) where c = Ω(n log k) and H is an optimal
offline strategy.

Proof. The main difference between the proofs of Theorem 4.4 and Theorem 4.6 is
that the adversary cannot foresee what pages α and β are in the working set but not
in G’s fast memory. We sidestep the difficulty by showing that with some probability
the adversary is still able to force G to execute one rotation.

The request sequence. The page request sequence σ is of the form σ =
(Γ1 . . .Γ(n−k)/2Γ0)

l, where l is a positive integer, Γ0 = 〈0, 1, . . . , k − 1〉, and Γi

(1 ≤ i ≤ (n− k)/2) will be defined later. Roughly speaking, the subsequences Γi for
i ≥ 1 are the analogues of phases in the previous proofs, and Γ0 corresponds to the
final coordination step that brings about the initial configuration {0, 1, . . . , �(k− 1)}.
We will now describe the phase Γi, a few quantities determined by the Γi’s, and the
value of these quantities at the beginning of Γi. A phase Γi depends on the set Si−1,
which is defined recursively: let S0 = {0, 1, . . . , k − 1}, and Si contains all the pages
requested during the phase Γi. Throughout we will maintain the following properties:

• |Si| = k for 1 ≤ i ≤ (n− k)/2.
• H holds Si−1 in fast memory immediately before the start of phase Γi.
• The pages qi + 1, qi + 2 /∈ Si−1, where qi = k − 1 + 2i. In other words,
we maintain that qi + 1 and qi + 2 are not in H’s fast memory immediately
before phase Γi starts. For example, k and k+ 1 are not in H’s fast memory
immediately before Γ1.

Define the working set in phase Γi to be the set Wi = Si−1 ∪ {qi + 1, qi + 2}.
Let γ1, γ2, . . . , γk be a random k-permutation of the working set Wi; define Si =
{γ1, γ2, . . . , γk}. The basic plan of the adversary is to request the pages in Si in
the given order γ1, γ2, . . . , γk. However, the adversary will also request a sequence
of other pages between the first request for a page γj and the first request for page
γj+1, 1 ≤ j ≤ (k − 1), in order to force G’s memory configuration. Specifically,
Γi = ρ0〈γ1〉ρ1〈γ2〉ρ2 . . . 〈γk〉, where

• ρ0 is a repetition for c+ 1 times of Si−1, and
• ρj = (〈γ1, γ2, . . . , γj〉)c+1, where 1 ≤ j ≤ k.

We will now turn to estimate the expected cost of G during Γi conditioned to the
event that either (i) a page in Si−1 is not in G’s cache immediately before the first
request to γ1, or (ii) one of the γ1, . . . , γj−1 is not in G’s cache immediately before
the first request to γj (2 ≤ j ≤ k). Suppose that there is a page in Si−1 missing
from G’s cache immediately before the request to γ1. By the previous lemma, G pays
at least c = Ω(n log k) on ρ0. Analogously, suppose that there is one of γ1, . . . , γj−1
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Fig. 4.1. Lower bound for randomized algorithms without prefetching.

missing from G’s cache immediately before the request to γj (1 ≤ j ≤ k). By the
previous lemma, G pays at least c = Ω(n log k) on ρj−1. Therefore, Ω(n log k) bounds
G’s expected cost conditioned to the event that either (i) or (ii) occurred. It remains
to show that G’s expected cost is Ω(n log k) even when neither (i) nor (ii) occurred.
We will condition the rest of the analysis to such event, and so we will assume that
G has γ1, . . . , γj−1 in fast memory before the request for γj where j = 2, . . . , k, and
G has all the elements in Si−1 before γ1.

Costs of G and H. The adversary’s algorithmH keeps Si in fast memory through-
out Γi. Therefore, H pays a cost of at most n on the sequence Γ1 . . .Γ(n−k)/2Γ0,
exactly as in the previous proofs. We will now show that the expected cost of G on
Γi (1 ≤ i ≤ (n− k)/2) is Ω(n log k). Let

tj =

{
1 if G transits over page 0 while serving γj ,
0 otherwise.

The quantity tj will be referred to as the transit cost of G for γj . Define t =
∑k

j=1 tj
to be the transit cost of G in the phase Γi. Observe that G executes at least t − 1
rotations during Γi, and so G’s cost during Γi is at least n(t− 1). Hence, it is enough
to show that t = Ω(log k).

Before estimating t, we will make some definitions and observations. Let Yij be
the set of pages in Wi that have not been requested prior to the first request for γj ,
that is, Yij = Wi − {γ1, . . . , γj−1}, j = 1, . . . , k. Then by assumptions (i) and (ii)
above, there are at least two pages in Yij that are missing from G’s fast memory
before γj is requested. Let αj , βj ∈ Yij be two such pages and assume without loss
of generality that αj < βj , as depicted in Figure 4.1. Notice that if G does not fault
on γj , then G does not move and αj+1 = αj and βj+1 = βj . Let rj be the position
taken by G before the request for γj . It can be seen that rj ∈ Wi by induction on j.
Moreover, G is lazy and so rj �= αj , βj . As depicted in Figure 4.1, let

• Aj = {p ∈Wi : p < αj},
• Bj = {p ∈Wi : αj < p < βj}, and
• Cj = {p ∈Wi : βj < p}.

Notice that rj ∈ Aj ∪Bj ∪ Cj .
We now turn to estimate the transit cost tj . Define the potential of G immediately

before γj as
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Φ(j) =

{
1
2 if rj ∈ Bj ∪ Cj ,
0 otherwise

and the amortized transit cost of G as tj + Φ(j + 1) − Φ(j). We will show that the
expected amortized transit cost of G during Γi is Ω(log k). Since the real transit cost
of G is equal to the amortized transit cost minus O(1), we obtain that the real transit
cost of G during Γi is t = Ω(log k). Putting together, it will then follow that the
actual cost of G during Γi is Ω(n log k).

If rj ∈ Aj and βj = γj , then the potential increases by 1/2. Moreover, βj = γj
with probability 1/|Yij | = 1/(k + 3− j), so that G’s expected amortized transit cost
when rj ∈ Aj is at least (1/2)/(k + 3 − j). If rj ∈ Bj ∪ Cj and αj = γj , then G
pays a real transit cost at least equal to 1, and the potential drops by no more than
1/2. Moreover, αj = γj with probability 1/|Yij | = 1/(k+3− j), so that G’s expected
amortized transit cost when rj ∈ Bj ∪Cj is at least (1/2)/(k + 3− j). The expected
amortized transit cost of G during Γi is at least

k∑
j=1

(
1

2

1

k + 3− j
)
=
1

2

k+2∑
j=3

1

j
= Ω(log k).

Consequently, t = Ω(log k), and the actual cost of G during Γi is Ω(n log k).
Finally, we recall that on Γ1Γ2 . . .Γ(n−k)/2Γ0, the cost of H is n, and the cost of

G is Ω(n2 log k), which proves the theorem.
Conversely, the competitive randomized algorithms in [3, 8, 16] immediately imply

an O(n log k)-competitive randomized algorithm for BDP even against a ubiquitous
adversary.

5. BDP algorithms with prefetching. In this section, we will establish our
main theorems. We will first show a lower bound of Ω(n log k) on the competitive ratio
of any deterministic online algorithm that uses prefetching, even when compared to an
adversary that does not do any prefetching. We will then present a deterministic online
algorithm that achieves a competitive ratio of O(n log k) and therefore is optimal up
to a constant factor.

5.1. A lower bound. We first prove the lower bound.
Theorem 5.1. No deterministic algorithm for BDP can achieve a competitive

ratio better than Ω(n log k) when 3 ≤ k ≤ bn for any fixed b < 1 even if the adversary
is not allowed to do prefetching.

Proof. The main difference between the present proof and that of Theorem 4.3
is that G might reload α when it faults on β, and so the online algorithm cannot
be made to execute one rotation every other request. In fact, we will typically need
several requests to have the online algorithm complete a rotation. The basic plan
of the adversary is as follows: repeatedly request a page that is not in the online
algorithm G’s fast memory and is farthest from the page where G is positioned. We
will assume without loss of generality that G is lazy. Let H be the algorithm that the
adversary uses to satisfy the request sequence.

The request sequence. The adversary proceeds in phases. We will maintain that,
at the beginning of a phase, G and H hold the same set of pages W in fast memory
and that H is positioned on a page q such that q + 1, q + 2 /∈ W . In this proof, the
set W will take the function that the working set had in the previous proofs, namely,
we will extract requests from W in order to make G fault. The adversary starts the
phase by requesting page q+1 followed by page q+2. We will maintain that there are
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always at least two pages in W that G does not have. The adversary will request one
of those pages, and if r is the page where G is currently positioned, the adversary will
issue a request for the missing page α that maximizes the quantity α−r. However, the
adversary will also insert other page requests to force G’s fast memory configuration.
On the whole, the phase has the form 〈q+1, q+2〉ρ1〈γ1〉ρ2〈γ2〉 . . . ρk−2〈γk−2〉, where

• γj is the page in W that is not in G’s fast memory, and that is farthest from
the current position r of G, 1 ≤ j ≤ k − 2,

• ρj denotes the sequence of requests ρj = (〈q+1, q+2, γ1, . . . , γj−1〉)c+1, where
c = Ω(n log k) and 1 ≤ j ≤ k − 2.

Suppose that G and H do not have the same set of pages in fast memory after
the request for γk−2. In that case, the adversary keeps requesting a page that H has,
but G does not. Eventually, G and H will have the same set of pages in fast memory,
or else G is not competitive, and another phase starts.

Costs of G and H in each phase. Let Rj = {q+1, q+2, γ1, . . . , γj−1} denote the
set of pages requested in the sequence ρj . Notice that Rj is precisely the set of pages
requested since the beginning of the phase until the request γj , and that Rj ⊂ Rj+1.
The algorithm H keeps Rk−1 throughout the phase and pays a cost of two. We can
assume the following about the behavior of the algorithm G by Lemma 4.5: (i) G has
Rj in its fast memory before the request for γj , and (ii) G does not move at all during
the ρj ’s, but that it moves only to service the requests for the γj ’s. Thus from here
on we can simply assume that a phase merely consists of the sequence of requests
〈q + 1, q + 2, γ1, γ2, . . . , γk−2〉. By this assumption, γj+1 is the page in W that is not
in G’s fast memory and that maximizes γj+1 − γj .

We will now show that the cost of G is Ω(n log k) on the sequence Γ = 〈q+1, q+
2, γ1, γ2, . . . , γk−2〉. To estimate G’s cost, we will divide a phase into subphases with
the property that G executes one rotation per subphase. Then, it will be enough to
count the number of subphases. Specifically, we define subsequences Z1, Z2, . . . , Zt

such that
• Z1Z2 . . . Zt = Γ, and
• Z1Z2 . . . Zi is the smallest prefix of Γ on which G completes i rotations (1 ≤
i < t).

Since G executes at least t− 1 rotations in the phase, it suffices to show that t =
Ω(log k). The idea is to show that |Zi| decreases as i increases, and then it will follow
that t is large. Let xi denote the number of pages in W that have not been requested
prior to the start of the subsequence Zi. Then we claim that |Zi| ≤ �(xi+1)/2�. This
easily follows from the observations that at each step G has at least 2 pages missing
from the setW and we always request the missing page that is farthest. Thus G must
complete a rotation after �(xi + 1)/2� requests.

Observe that x1 = k and that upon termination, xt+1 = 2, and so 2 ≤ xi ≤ k for
all i = 1, 2, . . . , t + 1. Furthermore, xi+1 = xi − |Zi| ≥ �(xi − 1)/2� ≥ (xi/2) − 1. It
is then straightforward to see that t = Ω(log k). The cost of G during a phase is thus
at least nt = Ω(n log k).

Putting it all together. Observe that the adversary can issue (n−k)/2 consecutive
phases. Then, it will reload {0, 1, . . . , �(k − 1)} and another sequence of (n − k)/2
phases starts. The total cost of the adversary in such a sequence of phases is n while
the total cost of G is Ω(n2 log k), and the result follows.

5.2. An upper bound: The gray algorithm. We will now design a paging
algorithm G, referred to as the gray algorithm, that is O(n log k)-competitive. The
gray algorithm uses a set of three marks {black, gray, white} and maintains a mark
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for each page in P . Notice that G’s marking policy is somewhat different from that
of the marking algorithm [13] that uses only two marks and marks only the pages in
fast memory. We define bj to be the number of black pages immediately before the
jth request. The gray algorithm G works as follows:

• Initially, G marks the pages {0, 1, . . . , k− 1} black and all other pages white.
• G ignores all requests that do not cause a fault. Henceforth, assume that σ
is hard for G.

• G works in phases:
– A new phase is started when bj = k.
– At the beginning of a phase, G marks all gray pages white and all black
pages gray.

• When G faults on σj , G loads σj and marks it black.
• Before the jth request, G keeps in its fast memory

– the bj black pages, plus
– the set of qj = k− bj gray pages γ1, γ2, . . . , γqj that have the qj smallest
values of σj−1 − γi (i = 1, 2, . . . , qj). In other words, the gray pages
γ1, γ2, . . . , γqj are the qj gray pages that are most expensive to reload
from σj−1.

We have stated the gray algorithm by assuming that a mark is associated with
all n pages. In fact, G needs only to keep track of the black and gray pages, and
a straightforward induction shows that, at any step, there are at most 2k gray and
black pages.

It is not obvious that the gray algorithm could be implemented to maintain the
prescribed set of gray pages without paying a large overhead. The following lemma
shows that G is lazy.

Lemma 5.2. The gray algorithm G is lazy.
Proof. Let σ be a hard sequence for G. Suppose that p ∈ M(G, j+1)−M(G, j) and

p �= σj+1. First, we show that p is gray at both step j and j + 1. Since p /∈ M(G, j),
p is not black at step j, and since p �= σj+1, p is not black at step j + 1. Since
p ∈ M(G, j + 1), p is not white at step j + 1, and so it is not white at step j. It
follows that p is gray at both steps. If p is in the interval from σj to σj+1, then
it can be prefetched at no cost while G moves from σj to σj+1. We now show that
no page that lies in the interval from σj+1 to σj is prefetched by G. Suppose, by
contradiction, that such a page p is prefetched. First, we observe that σj+1 does not
start a new phase. Indeed, if σj+1 started a new phase, then M(G, j) is exactly the
set of gray pages immediately before step j + 1. However, p is gray and p /∈ M(G, j).
We conclude that σj+1 did not start a new phase. Therefore, bj+1 = bj + 1 and so
qj+1 = qj − 1. Let ζj be the number of gray pages remaining after the jth request
and notice that ζj+1 ≥ ζj − 1. Since p ∈ M(G, j + 1), p has one of the qj+1 largest
values of p− σj+1 among all ζj+1 pages that are gray at step j + 1. Therefore, there
are at least ζj+1 − qj+1 ≥ ζj − qj gray pages between σj+1 and p. Since p /∈ M(G, j),
p does not have one of the qj largest values of p− σj among all ζj gray pages at step
j. Therefore, there are at most ζ = ζj − qj − 1 gray pages between σj and p at step
j. Since the number of gray pages never increases during a phase, there are at most
ζ gray pages between σj and p at step j +1. However, p− σj+1 < p− σj , which is to
say that the interval from σj+1 to p is contained in the interval from σj to p. Hence,
there are at most ζ < ζj+1 − qj+1 gray pages between σj+1 and p. Thus, we reach a
contradiction and the lemma is proven.

Remark. The gray algorithm is similar to a marking algorithm once we identify
black pages with the marked pages and white pages with the unmarked pages. How-
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ever, the gray algorithm differs from the marking algorithm in one important respect:
an evicted page might be prefetched and reloaded later on in the phase, without being
requested again. By Lemma 5.2, the prefetch operation is executed at no cost. Thus,
the gray algorithm adjusts the eviction pattern dynamically according to the requests
in a phase. We would like to point out here that an analysis of the standard marking
algorithm explicitly uses three marks and marks all n pages [3].

Theorem 5.3. The gray algorithm G is O(n log k)-competitive even against a
ubiquitous adversary.

In the rest of the section, we will prove Theorem 5.3. Let H be the adversary’s
algorithm and assume without loss of generality that H is lazy. We will assume
without loss of generality that the request sequence σ is hard for G. No page is
requested more than once in a phase and there are exactly k requests in a phase.
Since all black pages are in G’s fast memory, all requests are for gray and white pages.
Correspondingly, we will say that a request is gray (white) if the requested page is
gray (white) immediately before it is requested. The first request of a phase is white
because all gray pages are in G’s fast memory at the beginning of the phase.

The proof is structured as follows.
• We begin by defining the notion of a segment ; segments allow us to give a
lower bound on the cost of H.

• We proceed to examine G’s cost on gray requests in a given segment, and
show that it is at most O(wn log k), where w is the total number of white
requests in the segment.

• Finally, we use a potential function argument to show that the amortized cost
of G is no more than O(n log k) times the cost of H.

5.3. Segments. We now define the notion of segments. Segments start from the
second request of a phase and end with the first request of the next phase.

Definition 5.4. A segment is a subsequence of the form

〈σik+2, σik+3, . . . , σ(i+1)k+1〉

for some i ≥ 0.
The notion of segment will be central to the rest of the proof because segments

allow us to compute algorithm cost. We will estimate the cost of G and H on each
segment and prove that the cost of G in a segment is no more than O(n log k) the cost
of H in the same segment.

From now on, we will fix our attention on the first segment for simplicity of
notation and without loss of generality. The first segment consists of the request
sequence 〈σ2, σ3, . . . , σk+1〉. Recall that σk+1 is a white request.

5.4. Cost of H. We turn now to examine the cost of H in a segment. Define
wN to be the number of white pages that are requested in the segment and that cause
H to fault. Clearly, the cost of H is at least wN . Suppose that on a white request for
a page p, H already has p in its fast memory. Then the ratio of the actual costs of G
and H for the request to p is infinity. This scenario thus requires a careful analysis
as we describe below.

Definition 5.5. A page p is hidden at step j if p is white before the jth request
and p ∈ M(H, j).

Broadly speaking, our objective is to show that H also implicitly pays a cost on
the hidden white pages. We will prove that the cost of H on the segment is at least
D, where D is the number of hidden pages at step k + 1.
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Lemma 5.6. If a page p is hidden at step k+ 1, then p has not been requested in
the segment.

Proof . If p ∈ {σ2, . . . , σk}, then p is black after step k and becomes gray before
step k + 1. Therefore, p is not white at step k + 1 and so p is not hidden at step
k + 1.

Let p be a hidden page at step k + 1. Notice that p ∈ M(H, k + 1), p was not
requested in the segment, and H has not prefetched p. We conclude that p has been
in M(H) throughout the segment.

Lemma 5.7. The cost of H in a segment is at least D.
Proof. The proof is reminiscent of those in [12, 13, 18]. Clearly, σ1 ∈ M(H, 2).

Moreover, the previous lemma implies that all D pages hidden at step k + 1 are in
M(H, 2). Within a segment, the requests σ2, . . . , σk are for pages that are not hidden
at step k + 1 and that are not σ1. At most k − D − 1 of those k − 1 pages are in
M(H, 2), and so the cost of H is at least k − 1− (k −D − 1) = D.

On the whole, the cost of H in the segment is at least max{wN , D} ≥ (wN+D)/2.

5.5. Potential function. Let us turn now to evaluate the cost of G in the same
segment. Let γ = 3(n−1)+n ln k. We will denote by Dj the number of hidden pages
at step j, and so D = Dk+1. Define the potential function at step j to be

Φ(j) = (3(n− 1) + n ln k)Dj = γDj .

Clearly, Φ(j) ≥ 0 for all j’s. We will analyze the amortized cost of G by considering
the following cases:

• In the first case, G does not pay any real cost, but the potential might increase
as a consequence of an increase of the number Dj of hidden pages.

• In the next two cases, G indeed pays a real cost.
– We will examine the cost of G on gray requests, and finally
– we will examine the cost of G on white requests.

5.6. Potential increase. First, we show that the potential increases only at the
end of a phase. We will need the following lemma.

Lemma 5.8. If a page p is hidden at step j (2 ≤ j ≤ k), then p was hidden at
step 2.

Proof. It is enough to show that if a page p is hidden at step j (2 < j ≤ k + 1),
then p was hidden at step j − 1. Suppose to the contrary that p is hidden at step j,
but not at step j − 1. Then, either p is not white at step j − 1 or p /∈ M(H, j − 1).
However, j ≤ k, so that no gray page has turned white. Hence, it must be the case
that p /∈ M(H, j − 1). Since H does not prefetch, p = σj−1, and so p is black at step
j, which is a contradiction, and the lemma is proven.

Lemma 5.8 implies that Dj−1 ≥ Dj for j = 2, . . . , k. It follows that the potential
increase increases only at the end of a phase when some gray pages become hidden
white pages. The potential increase is γD.

5.7. Gray requests. We now evaluate G’s cost on the gray requests. Define a
gray block as a maximal sequence of gray requests followed by a white request. The
segment can be partitioned into a sequence of gray blocks that alternate with white
requests. Notice that there are at most w gray blocks in a phase, where w was defined
as the number of white requests in the segment. Actually, the first phase request and
the last segment request are both white, so that w is also the number of white requests
in the phase. We will argue that the cost incurred by G during the gray blocks does
not exceed w(2(n− 1) + n ln k).
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Consider a gray block Bi = 〈σj , σj+1, . . . , σj+q〉. Since σk+1 is a white request,
j + q ≤ k. G’s cost for σj is at most n − 1. We now estimate G’s cost in the rest of
the block. In what follows, we denote

• by αl, the number of gray pages that are missing from G’s fast memory before
the lth request (j ≤ l ≤ j + q),

• by βl, the number of pages that are gray at the lth request (j ≤ l ≤ j + q),
• by gl, the number of gray pages requested from the beginning of the phase
up to step l − 1 inclusive,

• by wl, the number of white pages requested from the beginning of the phase
up to step l − 1 inclusive, and

• by bl = wl + gl, the number of black pages before the lth request.
The notation βl is related to that in Lemma 5.2 by βl = ζl−1. Notice that βl = k− gl
and that αl = βl − ql = k − gl − (k − bl) = gl + wl − gl = wl = wj is a constant
throughout the current gray block. Moreover, αl ≤ wk+1. Observe that wk+1 is the
number of white requests in 〈σ1, σ2, . . . , σk〉, w is the number of white requests in
〈σ2, . . . , σk, σk+1〉, and both σ1 and σk+1 are white requests. Therefore, wk+1 = w
and αl ≤ w.

M(G, l) contains all but at most w gray pages, and the missing gray pages are
the closest to its current position σl−1. Thus, once G is positioned at σl−1, no more
than w gray pages lie in the closed interval between σl−1 and σl (l = j+1, . . . , j+ q).
Hence, if G starts from σj and moves for more than n units, then there are at most

βj −
⌈
βj+1
w

⌉
≤ βj

(
1− 1

w

)
pages that are still gray. Hence, if during the block Bi, G

pays rin+ a, for some a < n, then βj+q+1 ≤ (1− 1/w)riβj . On the other hand, since
β2 = k, if

∑
ri > w ln k, no gray pages could be remaining since

(
1− 1

w

)∑ ri

k <

(
1

e

)ln k

k = 1.

We conclude that
∑
ri ≤ w ln k. Notice that the quantity a contributes for at most

n − 1 per gray block to the cost on gray requests. Recall that σj contributed for
another n − 1 term per gray block. Since there are at most w gray blocks, the cost
paid during all gray blocks is at most 2w(n− 1) + n∑ ri ≤ w(2(n− 1) + n ln k).

5.8. White requests. Henceforth, we will assume that G processes gray re-
quests for free, but each white request is charged 2(n − 1) + n ln k. Such a charge is
in addition to the cost required to process the white request itself. Notice that on
any white request, G pays a real cost of at most n − 1, is charged 2(n − 1) + n ln k
for gray requests, and so G’s amortized cost is 3(n− 1) + n ln k = γ plus any increase
of the potential function. Suppose that σj is a white request that causes H to fault.
The potential does not increase, and G’s amortized cost is γ. Suppose now that σj
is a white request that does not cause H to fault. Then, p is hidden, the potential
decreases by γ, and G’s amortized cost is naught. Finally, G pays a cost of γD at the
end of the phase. On the whole, G’s cost in the segment is wNγ + Dγ, which is no
more than 2γ = O(n log k) times the actual cost of H in the segment, and the proof
is complete.

6. Delay model. We will now describe the delay model for BDP. In the delay
model, the adversary has the power of issuing requests of two types: page requests,
like in the ordinary BDP, and delays, where one delay request forces any algorithm to
listen to one more page. Hence, if the algorithm G is positioned over page i before a



BROADCAST DISK PAGING 1701

delay request, G will be positioned over i+ 1 after the delay request. The algorithm
G is free to decide whether page i+1 should be cached or not. Let G be an algorithm
for BDP. The algorithm G can be turned into a BDP algorithm GD in the delay
model as follows. On a page request, GD behaves exactly as the algorithm G would
on that request. However, when GD receives a delay request, it executes at most one
full rotation after serving the delay request and returns to the configuration that it
had before the delay.

Proposition 6.1. If G is c-competitive for BDP against a ubiquitous adversary
for some c = Ω(n), then GD is O(c)-competitive in the delay model.

Proof. Let σD be a request sequence consisting of page requests and delays, σ
the request sequence where all delays have been removed, and d the number of delay
requests in σD. Let f be the minimum number of faults on σ and H be the adversary
algorithm. Observe that c(H,σD) ≥ f + d. Then, c(GD, σD) = c(G, σ) + nd ≤
cf + nd + b ≤ O(c)(f + d) + b ≤ O(c)c(H,σD) + b for some constant b. It is then
proved that G is O(c)-competitive.

An immediate corollary of the above proposition is as follows.

Corollary 6.2. There is an O(n log k)-competitive randomized algorithm for
the delay model with no prefetching and an O(n log k) deterministic algorithm for the
delay model with prefetching.

Proof . The first result follows from the O(log k)-competitive lazy randomized
algorithm for virtual memory paging [3, 8, 16], whereas the second result follows
from the fact that the gray algorithm is O(n log k)-competitive against an ubiquitous
adversary.

7. Concluding remarks. We studied deterministic as well as randomized al-
gorithms for broadcast disk paging. An interesting question not resolved by our work
is that of the competitive ratio of randomized prefetching algorithms. A lower bound
of Ω(n) is easy to show. It is conceivable that a simultaneous use of randomization
and prefetching yields an algorithm that is o(n log k)-competitive.

Recently, the second author performed an empirical evaluation of the gray algo-
rithm on both synthetic and Web traces and found that the gray algorithm always
and consistently outperformed the least recently used (LRU) algorithm [14].
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