Throughput vs. Latency - Similar to above, Figure 8 shows that regardless of the latency of the

central link, filler traffic has no effect on the throughput of the pre-existing traffic.

Average Throughput vs. Latency (Pre-existing)
250
g
onoful - = ----—-------------X;
<
= A
S 150
o
- o o
o [« » >« L | L | > < »
S _ . . . .
f:_’ 100 ——t—Trace 1 (With Filler) | |
— Trace 1 (Without Filler)
% == Trace 2 (With Filler)
o 50 Trace 2 (Without Filler)
Z = M Trace 3 (With Filler)
= @&  Trace 3 (Without Filler)
0 ‘ ‘ ‘ ; ; ; ;
0 20 40 60 80 100 120 140 160
Latency (ms)

Figure 8. Average Throughput vs. Latency (Pre-existing)

Dropped Packets vs. Latency - None of the experiments involving latency resulted in any
dropped packets (of pre-existing data). This is because the pre-existing buffer was set high
enough to account for the small delay the caused by the filler buffer without having to lose
packets. Specifically, the pre-existing buffer was set to 100 packets. The average packet size for

pre-existing traffic is about 269 bytes, making the buffer likely to be around 26.25KB.

Figures 4-8 show specific examples of how pre-existing traffic reacts to the presence of

filler traffic. Reactions range from nothing at all, to a deterioration of behavior by several

18



percent. For example, the throughput of the pre-existing traffic is totaly unaffeded by the
existence of filler traffic. On the other hand, both average delay and percent of dropped padets
were dfeded, but mostly on a networks which are very close to starvation. The latency of the
central link had little to do with the unobtrusivenessof fill er traffic, as the arerage delay increase
was constant regardless of latency and there were no dropped padets whatsoever. However,
bandwidth played a larger role in determining filler traffic unobtrusiveness - varying bandwidth
changed the amount that the filler traffic dfeded the average delay and percent of dropped
padkets of the pre-existing traffic. When the bandwidth and latency were low (producing a low
BDP network), the dfeds of filler traffic were relatively high. Otherwise, the dfeds were

unremarkable. Thus, fill er traffic generally remains unobtrusive.

Filler Traffic Performance

The last sedion determined that filler traffic could be used without upsetting pre-existing
traffic. Now it must be shown that filler traffic is not only unobtrusive, but can successully
acomplish data transfers. To study this, the statistics of the padet dynamics of the fill er traffic
must be considered. While the throughput of the filler traffic is very important in determining its
usefulness it is not the only fador to be examined. Also, the percent of dropped padets fows
how much work must be wasted in resending lost padckets. Finaly, the arerage delay is
important because the length of the delay affeds what can be used asfill er traffic — the higher the
delay, the more time-insengitive the filler traffic must be. Thus, this dion details how the
performance of filler traffic is related to the link parameters bandwidth and latency. The figures
are modeled identicdly to those &ove, in colors and patterns, but these figures only concern

themsalves with the statistics of the fill er traffic.

19



Average Delay vs. Bandwidth — Fill er traffic behaves very similarly to varying bandwidth as pre-
existing traffic. As the bandwidth increases, padkets are sent faster. Therefore, padkets do not
have to wait as long in the queue before being sent. Figure 9 shows that as bandwidth increases,
the average delay deaeases, due to the extra avallable bandwidth for filler traffic. However,
once 6 Mbps is readed for the bandwidth, the average delay ceaes deaeasing. Thisis becaise
there is enough bandwidth to handle both filler and pre-existing traffic quickly, and so the delay
due to the latency of the central link has become alarge component of the total average delay.
Thus more bandwidth may provide more throughput (see below), but it does not deaease the
delay of the filler traffic. Even at the worst, the delay on the filler traffic is approximately 3

times the delay of the pre-existing traffic (with o filler present) at the same link bandwidth.

Average Delay vs. Bandwidth (Filler)
0.1
009 | X
w
o \ =—t—Trace 1
f"i 0.08 *\ m—h = Trace 2
E \“ = X =Trace3
©
A 007
o
o)
©
5 0.06
>
<
0.05 -
0.04 ;
2 4 6 8 10 12 14 16
Bandwidth (Mbps)

Figure 9. Average Delay vs. Bandwidth (Fill er)

20



Dropped Packets vs. Bandwidth — The number of dropped padkets deaesse steaily as the
bandwidth increases. This corresponds to the delay of the padkets deaeasing. With a large
delay, the filler buffer beaomes full — this is when padkets are forced to be dropped. As the delay
deaeases (as explained above), padkets move through the buffer faster, and therefore less are
dropped. It should be noted in Figure 10 that the a the bandwidth approades and exceals 10
Mbps, the rate of deaease in the percent of dropped padkets lessens. The original Harvard trace
used a 10 Mbps central link, therefore & no point does the pre-existing traffic require more than
10 Mbps. Thus, as the bandwidth reas this point, there ae fewer and fewer padets dropped
due to bursts of pre-existing traffic, and a cetain percent is caused by padets dropped by the
congestion window overshooting. Regardless the percent of dropped padets is very low —

never surpassng the percent of dropped pre-existing padkets by more than 0.2.

Dropped Packets vs. Bandwidth (Filler)
04

0.35 |
g 0.3 . =—¢—Trace 1
" & = ==Trace 2
5 0251 AN
~ \. = X =Trace3
Q
© ,
F o2
=]
® 015
o
o
A 0.1

0.05 |

0 ‘
2 4 6 8 10 12 14 16
Bandwidth (Mbps)

Figure 10. Dropped Packets vs. Bandwidth (Fill er)

21



Throughput vs. Bandwidth — Throughput is the average number of bytes that crossthe central
link in asecond. Similarly, bandwidth is the number of bytes that can crossthe link per second.
The throughput of the filler traffic should idedly be apercentage of the bandwidth of the link
minus the throughput of the pre-existing traffic. It is only a percentage becaise TCP works by
gradually increasing the sending rate until a padet is dropped. At this point, TCP cuts the
sending speed and begins again. The throughput was smply a @nstant multiple (seen in
experiments to be aound 8240) of the difference between the link bandwidth and the throughput
of the pre-existing traffic, which is a constant. As bandwidth increases, throughput increases, at
alinea rate. As gown by the trendlines, the slope of the lines are gproximately 125 When
KB/sec is converted to Mbps, the dope bemmes about 1. This indicaes that as bandwidth

increases, amost all of it is put towards an increase in the throughput of the fill er traffic.

Throughput vs. Bandwidth (Filler)

1800
y = 125.59x - 178.31 (Trace 1)

1600
y = 124.89x - 201.02 (Trace 2)

1400
y = 128.07x - 277.41 (Trace 3)

1200

1000
—— Trace 1

==df ==Trace 2
= ¥ =Trace3
Linear (Trace 1)

800

600 -

Throughput (KB/sec)

400

Linear (Trace 2)

200 | Linear (Trace 3)

2 4 6 8 10 12 14 16
Bandwidth (Mbps)

Figure 11. Throughput vs. Bandwidth (Fill er)
22



Average Delay vs. Latency — The delay is a measure of the time apadet waits in the buffer
before being sent, plus the anount of time it takes to send the padket aaossthe ceitra link.
Since the filler buffer size is linea in terms of the link latency, average delay increases as the
sum of two linea terms. Thus the dope of the lineis 1 (as wown in Figure 12). The smallest
two data points, as ®e in Figure 12 are not at slope 1. This is due to usng 16 KB as the
minimum filler buffer. Because dl filler buffers which would be smaller than 16 KB (i.e. a a
latency of 3 ms) are raised to 16 KB, both 3 ms and 10 ms both used the same filler buffer,
resulting in the increase in delay to be due solely to the increase in latency, which is gill li nea,

but with alesser dope.

Average Delay vs. Latency (Filler)

0.4

0.35

o
w
s

0.25

——Trace 1

Average Delay (sec)
o
N

0.15 =f ==Trace 2
= ¥ =Trace 3
0.1
0.05
0 ‘ ‘ ‘ ‘ ; ; ;
0 20 40 60 80 100 120 140 160

Latency (ms)

Figure 12. Average Delay vs. Latency (Fill er)

23



Dropped Packets vs. Latency — Figure 13 shows that there is a rapid deaease in the percent of
dropped padkets as latency increases. This is because of the granularity of the in congestion
window size For example, when the latency is 3ms, the BDP is approximately 3.5 KB. With
the window so small, TCP congestion control is overshooting very often, ead time causing
dropped padkets. However, once the latency rises higher, the cngestion window is much
bigger. This results in less padkets becaise there is more time in between ead time the
congestion window is overshot. Thus, the dropped padkets are dropped due to normal TCP

functionality, and are not caused by the reduced priority of thefill er traffic.

Dropped Packets vs. Latency (Filler)
0.25
X
A
w

0.2 tA—X
S " ———Trace 1
12 A =—h ==Trace 2

\

% 0.15 1 = X =Trace 3
<
o
©
O 01
o
o
°
()]

0.05 -

0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160
Latency (ms)

Figure 13. Dropped Packets vs. Latency (Fill er)

24



Throughput vs. Latency — Throughput is relatively unaffeded by latency, as seen in Figure 14.
There is only lessthan a 4%, 5%, and 6.5% difference, respedively, between the highest value
and lowest value for eadt trace Latency has a fairly low affed on throughput because in our
experiments an increased latency does not change how much data can flow aaossthe ling, only
how long it takes. If the filler buffer remained the same from one experiment to another, as the
latency increased, it would eventually become high enough to cause the buffer to fill up and
padckets to be dropped. However, since the filler buffer is cdculated based on latency, it
increases at the same rate & latency does, and can therefore provide enough spaceto ke an
ever increasing number of padkets from being dropped. In the base cae, with trace?2 (this will

be examined more later), the throughput is about 1050KB/sec or 8.6 Mbps.

Throughput vs. Latency (Filler)

1150
——Trace 1
1100 | =d =Trace 2
) = X =Trace 3
1)
a4
v 1050 | A & e e~
N— — —
— \
2 X = X - -~ —
- )K’ - —
e " ey
S 1000 « ~~.. A
5 v ~ m
o b S .l
< S -
= =X
950 1
900 ‘ ‘ ‘ : : : :
0 20 40 60 80 100 120 140 160

Latency (ms)

Figure 14. Throughput vs. Latency (Fill er)

25



To ad as a basis of comparison, an experiment was conducted involving only fill er
traffic. First, the throughput of the pre-existing traffic of trace2 was found (about 1.34 Mbps).
This was aubtraded from the bandwidth of the central link in the base cae, learing 866 Mbps.
8.66 Mbps was then used as the link bandwidth in the experiment without pre-existing traffic.
The result was about 8.32 Mbps of throughput for the filler traffic, or about 96% utili zation.
This is compared to the throughput of the filler with the pre-existing traffic present. In Figure 14
it is shown that the filler traffic had a throughput of 8.60 Mbps. After adding in the pre-existing
traffic, the combined throughput is 1.31 Mbps. The total percent of utilizaion is Without the
bursts of the pre-existing traffic, it can be seen that filler traffic utilizes most of the available
bandwidth. Therefore, most of the unutilized bandwidth in the rest other experiments is due to
the bursts of the pre-existing traffic. It will be interesting to compare some of the darts above
(with filler an pre-existing traffics) with some new charts creaed from experiments with only
filler traffic, after subtrading out the bandwidth that would have been needed by the pre-existing
traffic.

Figures 9 through 14 show that filler traffic does perform useful data transfer. In many
cases the filler traffic performed nealy as well as the pre-existing traffic. With the bandwidth
set high enough that the network is not on the verge of starvation, the filler traffic’'s performance
is excdlent. Spedficdly, the arerage delay of filler padkets is very low. Further, once the
latency is around that of the base cae (20ms) or higher, the percent of dropped padkets
diminishes while the throughput increases gredly. Even in the experiments with a relatively low
latency or bandwidth, the filler traffic managed to provide useful data transmisson, while, as
shown above, remaining unobtrusive to the pre-existing traffic. Thus filler traffic can be very

useful.

26



Conclusion

To asessthe aility to use filler traffic on a network, two things must be @nsidered.
First, by nature, filler traffic should not affed the pre-existing traffic of a network. In light of
this, its unobtrusiveness or how much it does affed the pre-existing traffic, should be studied.
Additionally, filler traffic must perform useful transmisson of data, otherwise it serves no
purpose. Thus, its performance must be studied. These two fadors, filler unobtrusivenessand
performance, were studied via avariety of experiments. Ead experiment either tested filler's
impad on pre-existing traffic or the usefulnessof the fill er traffic itself.

The filler traffic was found to have little dfed on pre-existing traffic. The pre-existing
traffic gopeas to behave very similarly in the presence of filler traffic asit did without. Average
delay only increased dightly, while the percent of dropped padkets and throughput remained
virtually unchanged. Thusthe fill er traffic behaves fairly unobtrusively.

Additionaly, the filler traffic managed to acawmplish useful data transmisson. Between
pre-existing and fill er traffic together, over 95% of the bandwidth was utilized.. Average delays
and percent of dropped padkets remained low, often no higher than the values of the pre-existing
traffic. Even when they were higher, neither delays nor the number of padkets dropped increased
to an unusable level.

All of the experiments conducted involved networks with medium to high BDP.
Therefore, it has been determined that filler treffic is a feasible option on these networks.
However, as BDP diminishes, so does filler traffic’s value. Because of this, future work is being

done to study filler traffic on a network which has a low BDP, such as a bank of modems (see

Appendix).

27



Appendix

A. Modem Traces

The eperiments we conducted show that varying bandwidth and latency did not cause
filler traffic to grealy affed pre-existing traffic. However, al of these experiments were
conducted on relatively high BDP networks. Ongoing work is being carried out to determine the
unobtrusiveness and performance of filler traffic on low BDP networks. Spedficdly, a set of
experimentsis being set up to test a modem bank conneded to the network.

The data was gathered by rearding incoming and outgoing padket information of a bank
of modems at an Internet Service Provider. Padket information was gathered using WinDump
[11] starting on Wednesday, January 12", 2001at 1:37pm. The traces contain one hour’s worth
of padket information. By configuring WinDump using command line parameters, only traffic
involving a modem on the sending or receving end was included in the output file. All modems
are 56k modems, which send data & a maximum of 33.6 Kbps and receve data & 53.3 Kbps.
There ae 74 modems conneded, as a group, to the Internet through aT1 (1.54 Mbps) link. Once
the tracefile is parsed and turned in to an rns-reay file, it will contain a filler and pre-existing
source/destination for eadn modem, and one more on the other side of the ceatra T1 link

representing the Internet.

28



Even though pre-existing traffic is at a higher priority than filler traffic, if a filler packet
is currently being sent when a pre-existing packet is queued, it will not be sent until the filler
packet is finished sending. Because of this, filler traffic could create a substantial delay on low
BDP networks due to the length of time it takes to send one complete packet. Figure 15 shows a
possible negative affect of filler traffic on pre-existing traffic. Two green pre-existing packets

must wait while the black filler packet is being sent for arelatively long time.

Filler Filler @
Destination Source

@ L | @
Pre-existing Pre-existing
Source

. Destination

Figure 15. Effects of Low BDP networks

29



B. Program Source

/I Adam Feldman
/I NS -2 Output Analyzer — Project.cc

#include "jkstring.h"
#include "jklist.h"
#include <iostream.h>
#include <fstream.h>
#incl ude <math.h>

#define TRUE 1
#define FALSE 0

#define NODE1 4

#define NODE2 5

#define ACK_SIZE 54

#define TCP_SIZE 1000.0

#define BREAKDOWN_SIZE 10000
#define BREAKDOWN_MULT 1000
#define MAX_PACKET_SIZE 50000

struct trace {
char eventType;
float time ;
int startNode;
int endNode;
string packetType;
int packetSize;
string flags;
int flowldentifier;
float packetSource;
float packetDestination;
int sequenceNumber;
int packetldentifier;

k

/I Reads in a line from the specified file str eam and returns it as a trace
trace GLine(bool flag);

/I Function that converts a numerical string into an int
int String2Int(string stringVal);

/I Global Variables
ifstream inFile;

int main(int argc, char *argvf[]) {
/I Variable List
ofstream out;
ofstream charts("data.txt", ios::app); // Open file stream to append to file
trace tempTrace;
list<trace> traffic;
int flow =0, c =0;
int breakdown[4][BREAKDOWN_SIZE];
list<int> BWBreakdown[4];
double delay = 0;

double avgBWI[4], avgDelay[ 4], avgReg[4], ackCompRatio[4], regDelay[4], ackDelay[4];

int numberReg[4], numberAcks[4];

double total[4], totalBytes[4], received[4], receivedBytes[4], dropped[4], droppedBytes[4];
double firstTime[4], lastTime[4], max[4], min[4];

bool found = FA LSE, flag = FALSE;

int segNum = 0;

30



/I Set all elements of all arrays to 0
for(inti=0;i<4;i++){
avgBWI[i] = avgDelay[i] = avgReg]i] = ackCompRatio[i] =
regDelay[i] = ackDelay[i] = total[i] = totalBytes][i] = received]i] =
receiv edBytes][i] = dropped]i] = droppedBytes[i] = firstTime[i] = lastTime[i] =
max[i] = min[i] = 0;
numberReg[i] = numberAcksJi] = 0;
for(int j = 0; j < BREAKDOWN_SIZE; j++)
breakdownl[i][j] = 0;

/I Inform the correct usage and then exi tif incorrect
if(argc 1= 5) {
cerr << "Usage: program.exe <input> <output> <parameter> <value>" << endl,
cerr<<" or: program.exe x <output> <parameter> <value>" << endl;
cerr << "Second usage takes input from the stdin stream.” << endl|
return 1;

/I Open the input and output file streams
if(*fargv[1] '= 'x") {

flag = TRUE;

inFile.open(argv[1]);

}
out.open(argv[2]);

/I Output chart parameter and value for Excel
charts << argv[3] << ", " << argv[4] <<, ";

/I Get the first line of the input file, and convert to a trace (tempTrace)
tempTrace = GLine(flag);

/I For each line (event) in the input file, convert to a trace (tempTrace)
for(;tempTrace.eventType !='X'; tempTrace = GLine(flag)) {
Il'tis assumed that each event in the input file deals solely with the two middle nodes
/I Set flow to the correct value (0 -3)
flow = int(tempTrace.packetSource);

/l'If tempTrace is type + (enque), put event in traffic list

if(tempTrace.eventType =="+){
traffic += tempTrace;
}
/] Else if tempTrace is type - (deque)
else if(tempTrace.eventType =="' -4
if(BWBreakdown[flow].length() - 1l=int(tempTrace.time * 10)) {
BWBreakdown[flow] += tempTrace.packetSize;
}
else
BWBreakdown[flow][BWBreakdown[flow].length() - 1] +=tempTrace.packetSize;
}

/] Else if tempTrace is type r (receive)
else if(tempTrace.eventType == ") {
/I If Ack Packet, set seqNum
if(tempTrace.packetTyp e =="ack")
segqNum = tempTrace.sequenceNumber;

/I Increment total delay time of total received packets & bytes
received[flow]++;
receivedBytes[flow] += tempTrace.packetSize;

/I Set lastTime for this flow to this event's ti me (will end up being the time of last event)

lastTime[flow] = tempTrace.time;

31



}

/I Look through traffic to find event when this packet was deque'd at other middle node
for(int i = found = 0; i < traffic.length(); i++)
/I If the ev ent is found
if(tempTrace.packetldentifier == traffic[i].packetldentifier) {
/I Set the delay to the time from deque to receive

delay = tempTrace.time - traffic[i].time;
/I Remove event from traffic, set found, and ex it loop
traffic -=;
found = TRUE;
break;
}
/' If event is never found, output error and exit
if(ffound) {

cerr << "EVENT RECEIVED BUT NEVER ENQUED: " << tempTrace.packetldentifier << endl;
return 2;

}

/I Keep min and max set to the minimum and maximum delays so far
if(delay > max[flow]) {
max[flow] = delay;
/I If delay is bigger than should be allowed, output error and exit
if(delay > (BREAKDOWN_  SIZE / double(BREAKDOWN_MULT))) {

cerr << "DELAY GREATER THAN " << BREAKDOWN_SIZE / double(BREAKDOWN_MULT) <<™: "

<< delay << endl;
return 5;

}

else if(delay < min[flow])
min[flow] = delay ;

/I Add to delay list, and increment total delay time of correct packet type (ack or reg)
breakdown][flow][int(delay*BREAKDOWN_MULT)]++;
if(tempTrace.packetSize == ACK_SIZE || tempTrace.packetType == "ack") {
numberAcks[flow]++;
ackDelay[flow] += delay;

else {
numberReg|[flow]++;
regDelay[flow] += delay;

/I If firstTime for this flow has not been set
if(ffirstTime[flow]) {
/I Set it to the time this packet dequed
firstTime[flow] = tempTrace.time - delay;
/Il Set initial max and min times
max[flow] = min[flow] = delay;

}

/] Else if tempTrace is type d (drop), increment dropped and droppedBytes, remove from traffic
else if(te mpTrace.eventType =="'d") {

/I Increment dropped and dropped Bytes to account for all dropped packets
dropped[flow]++;
droppedBytes[flow] += tempTrace.packetSize;

32



/I Look through traffic to find event when this packet was deque'd a t other middle node

for(int i = found = 0; i < traffic.length(); i++)
/I If the event is found
if(tempTrace.packetldentifier == traffic[i].packetldentifier) {
/I Remove event from traffic, set found, and exit loop
traffic -=;
found = TRUE;
break;

}

/' If event is never found, output error and exit
if('found) {
cerr << "EVENT DROPPED BUT NEVER ENQUED: " << tempTrace.packetldentifier << endl;
return 2;
}
}

/I Send a * to the screen every 50,000 lines to show that the program is still running
if(c++ == 50000) {
cerr << '
c=0;
}
}

/I Make sure that all undropped packets are accounted for (???)
if(traffic.length())
cerr << endl << "TOO MANY PACKETS LEFT OVER: " << traffic.length() << endl;

/I Close input file

if(flag)
inFile.close();

/I Fix the number of decimal places shown in output
out.setf(ios::fixed);

/I Output inFile information
if(flag)
out << "Input File: " << argv[l] << end|
<<" " << endl << endl;

/I For each flow i, from 0 to 3
for(inti=0;i<4;i++){
/I Compute statistics for each flow if there was at least 1 regular packet for
if(numberReq[i]) {
/I Find total packets and bytes
total[i] = received]i] + dropped][i];
totalBytes[i] = receivedBytes[i] + droppedBytes][il;

/I Find overall Average Delay
avgDelay[i] = (regDelay[i] + ackDelayf[i]) / received[i];

/I If there were any ack packets

if(numberAcksli]) {
/I Divide ackDelay by the number of ack delays (average ack delay)
ackDelay[i] /= numberAcks]i];

/I Divide delay by the number of regular packe ts (average regular packet delay)
regDelay[i] /= numberReg]i];

33

that flow



/! For each flowi, fromO to 3
for(int i =0; i < 4; i++) {
/] CQutput statistics for each flowif there was at |east 1 regular packet for that flow
if(received[i] > nunberAcks[i]) {
/1 Set ackConpRatio for this flow
ackConpRatio[i] = ackDelay[(i ~ 1)] / regDelay[i];

/1 Set precision to 7 decinal places
out. precision(7);

/1 CQutput the Flow nunber
out << "Flow From Node " << i << " to " << (i ~ 1) << endl << endl

/1 CQutput Delay information

out << "Average Reg Delay: " << regDelay[i] << " seconds" << endl

out << "Average Ack Delay: " << ackDelay[i] << " seconds" << endl

out << "Ack Conp. Rati o: " << ackCompRatio[i] << " Ack/Reg" << endl << endl
out << "M ni mum Del ay: "< mnl[i] << " seconds" << endl

out << "Maxi mum Del ay: "o<< max[i] << " seconds" << endl

out << "Average Del ay: " << avgDel ay[i] << " seconds" << endl << endl
out << "Delay Density:" << endl

out . precision(5);

/1 For each slot in breakdown, output the range and concentration
for(int j = 0; j] < BREAKDOMAN_SI ZE; j++) {
i f(breakdown[i][j] > 0) {
out << j [/ doubl e(BREAKDOMN_MJULT) << "s to "
<< (j + 1) / doubl e( BREAKDOMN_MULT) << "s: ";
for(int k =7; k-- > (int(log(breakdown[i][j]+1) / log(10)) + 1); out << " ");
out << breakdown[i][j] << endl
}
}

/1 CQutput a blank line
out << endl

/1 Set precision to 0 decinal places
out . precision(0);

/1 CQutput the total and dropped packet information
out << "Total Packets: " << total[i] << " (" << totalBytes[i] << " bytes)" << endl
out << "Dropped Packets: " << dropped[i] << " (" << droppedBytes[i] << " bytes)";

/1 Set precision to 5 decinmal places
out . preci sion(5);

/1 1f any packets were dropped, display the percentage infornmation
i f(dropped[i])
out << endl <<"Percent Dropped: " << dropped[i] * 100.000 / total[i] << "% ("
<< droppedBytes[i] * 100.000 / total Bytes[i] << "% of bytes)";

/1 CQutput a blank line
out << endl << endl

/1 Set precision to 2 decinal places
out . precision(2);

34



/I If firstTime and lastTime are not the same, output bandwidth information

if(lastTimeli] != firstTimel[i]) {
avgBWIi] = (totalBytes]i] - droppedBytes]i]) / 1024 / (I
out << "Average Bandwidth Across Center Nodes:" << endl
<<"  "<<avgBWIi] << " Kilobytes/second" << endl;

}

/I Output a blank line
out << endl;

/I Output Bandwidth CDF info
for(int j = O; j < BWBreakdownl[i].length(); j++)
out << BWBreakdown[i][j] << " "

/I Output a divider between the flows

astTime[i]

out << endl << endl << "

}

/I Out  put chart information for Excel
charts << avgDelay[i] << ", ";
if(droppedi[i])

charts << dropped][i] * 100.000 / total[i] << ", *;
else

charts << "0, ";
charts << ackCompRatioli] << ", " << avgBWI[i];
if(i 1= 3)

charts << .o

}

/I Output new Throughput info (in KB/sec)
charts << ", " << double(seqNum) * TCP_SIZE / 1024.0 / lastTime][0];

/I Output a blank line to charts
charts << endl;

/I Close output files
out.close();
charts.close();

/I Reset variab les
traffic.kill();

/I Exit smoothly
return O;

}

trace GLine(bool flag) {
/I Variable List
trace tempTrace;
char tempChar;

if(flag) {
inFile >> tempTrace.eventType;
inFile >> tempTrace.time >> tempTrace.startNode >> tempTrace.endNo
inFile >> tempTrace.packetType;
inFile >> tempTrace.packetSize;
inFile >> tempTrace.flags;
if(inFile.eof())
tempTrace.eventType = 'X';

de;

- firstTime[i]);

" << endl << endl;

inFile >> tempTrace.flowldentifier >> tempTrace.packetSource >> tempTrace.packetDestination

>> tempTrace.sequenceNumber >> tempTrace.packetldentifier;

35



else {
cin >> tempTrace.eventType;
cin >> tempTrace.time >> tempTrace.startNode >> tempTrace.endNode;
cin >> tempTrace.packetType;
cin >> tempTrace.packetSize;
cin >> tempTrace.flags;
cin >> tempTrace.flowldentifier >> tempTrace.packetSource >> tempTrace.packetDestination
>> tempTrace.sequenceNumber >> tempTrace.packetldentifier;

if(tempTrace.packetSize > MAX_PACKET_SIZE) {
tempTrace.even (Type ="X/,
}

}

return tempTrace;

}

int String2Int(string stringVal) {
/I Variable List
int value = 0, modifier = 1;

/I Convert each digit from a character to an int, and multiply

/I by the modifier which signifies place in the number

for(int i = stringVal.length() - 1> -1
value += (stringVal[i] - '0") * modifier;

-, modifier *= 10)

return value;

36



C. Program Documentation

project.cc (requiresjkstring.h and jklist.h)
Compiled to 'project’ using g++ - "g++ project.cc -w'

Purpose: This Dftwareis used to anayizethe output of ns-2 network smulator.
Usage 1. program.exe <input> <output> <parameter> <value>

<input>: Name of the file containing the output from NS-2, which isin this form:
+0.00107 4 5 udp 42----- 1203000

The length of the file is not limited, however, there should be no extraneous information
present (aside from blank lines a the exd). Currently, the input file should contain only
information relating to the 2 center nodes (nodes 4 and 5) - any other lines will be ignored.

<output>: Name of the file where the output is nt. Format of output is described below.

<parameter> <value>: This is the name and value of the parameter which is being changed in
this experiment. They are included on the command line for the purpose of asociating the data
in data.txt with this experiment. data.txt is used to easly crede an Excd chart for studying the
results of multiple experiments. Format of data.txt is described below.

Usage 2: projed x <output> <parameter> <value>

The only change for this sond usage is that the first parameter is an X' instead of a filename.
This is to alow the program to take input from the standard input stream (instead of afile), so
that the program will run on the output diredly from NS-2 (or any other program, such as gzip),
without having to first save the data to disk.

Output file: If the program is exeauted via usage 1, the outpt file first contains the name of the
input file. Next is the label of which flow the data pertains to. Ead of the four flows is only
included if any padkets traveled aadossthat link. The first data for ead flow is basic data aout
delays and the adk compresson ratio in an easy to read format. Next is a breskdown of the delay
cdf — the number of padkets which had a delay in the spedfied time range. This is followed by
dropped padket information and average bandwidth utilization. Finadlly, is a list of the size of
data aossng the cantral link in 0.01 second increments.

Datatxt file: Ead line in this file is comma delimited, and represents one experiment. A single

line in data.txt corresponds to this format:
BW, 10, 0.005371336.51442 0, 116857, 0, 0, 0, 0, 0.006003530.039953 0.82705 132335,
0.00735%9, 0.001631820.599299 183515, 101314

The first block (BW) is the name of the danging parameter (<parameter>), while the
seoond (10) is the value of that parameter for this experiment (<value>). The next four blocks
correspond to values for the flow from node O to node 1 (0.005371336.51442 0, and 116857).
In order, they are delay (in seaonds), percent of padets dropped, the ak compresson (ratio of

37



regular padkets divided by adk padets), and the arerage bandwidth (in KB/sed). The next four
blocks are the same values for the flow from node 1 to node O (0, 0, O, and O, in thiscase). The
next eight blocks are for node 2 to node 3 (0.006003530.039953 0.82705 and 132335), then
from node 3 to node 2 (0.007352590.001631820.599299 and 183.515). The final block isthe
vaue for cdculating the throughput, which is to take the highest padket number receved,
multiply by the padket size, and divide by the length of the experiment.

2_Bandwidth.xls: This is an example Excd chart file which can be eaily produced by using the
numbers in data.txt. Simply order the rows from lowest to highest (by changing parameter), and
enter al of the rows, 4 columns a a time, into the gpropriate flow's cdls. This will
automaticdly cause the darts to graph the crred data. If creding a dart from one of a
different type (using one from Bandwidth to fill in Latency, for example), be sure to corred the
values of the parameter, which are used to plot on the x-axis. Finally, label the dhart as desired,
and it is complete.

38



D. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

W. Willinger and V. Paxson. Where Mathematics Meds the Internet. Notices of the
AMS 45(8):961-970, Sept. 1998

A. Odlyzko. The Internet and Other Networks: Ultili zation Rates and Their Implications.
Tednicd Report 99-07, DIMACS, 1999

B. Leida. A Cost Model of Internet Service Providers. Implicaions for Internet
Telephony and Yield Management. Master’sthesis, 1998

A. Odlyzko. Data Networks are Lightly Utilized, and Will Stay That Way. Tednicd
Report 99-10, DIMACS, 1999

V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Tedhnique For Speeding Up Web
Transfers. In Proc. |IEEE Globeoom '98 Internet Mini-Conference, 1998

B. D. Davison and V. Liberatore. Pushing Politely: Improving Web Responsiveness
One Packet at a Time. Tedncd Report DCS-TR-415 Department of Computer
Science, Rutgers University, June 200Q

NS-2islocaed at: http://www.is.edwnsnam/ng

Traces and related information can be found at: http://www.eed.harvard.edwnet-traces/

M. Allman. A Web Server's View of the Transport Later. ACM Computer
Communicaion Review, 30(5), October 200Q

S. K. Schneyer. Survey Paper on TCP. University of Karlstad, November 1998

Information about WinDump can be found at: http://netgroup-serv.poalito.it/windump/

39



