
Adam Feldman
Effects of Filler Traffic on IP Networks

18

Throughput vs. Latency - Similar to above, Figure 8 shows that regardless of the latency of the

central link, filler traffic has no effect on the throughput of the pre-existing traffic.

Average Throughput vs. Latency (Pre-existing)

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

Latency (ms)

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

(K
B

/s
ec

)

Trace 1 (With Filler)

Trace 1 (Without Filler)

Trace 2 (With Filler)

Trace 2 (Without Filler)

Trace 3 (With Filler)

Trace 3 (Without Filler)

Figure 8. Average Throughput vs. Latency (Pre-existing)

Dropped Packets vs. Latency - None of the experiments involving latency resulted in any

dropped packets (of pre-existing data). This is because the pre-existing buffer was set high

enough to account for the small delay the caused by the filler buffer without having to lose

packets. Specifically, the pre-existing buffer was set to 100 packets. The average packet size for

pre-existing traffic is about 269 bytes, making the buffer likely to be around 26.25KB.

 Figures 4-8 show specific examples of how pre-existing traffic reacts to the presence of

filler traffic. Reactions range from nothing at all, to a deterioration of behavior by several

Adam Feldman
Effects of Fill er Traffic on IP Networks

19

percent. For example, the throughput of the pre-existing traffic is totally unaffected by the

existence of fill er traffic. On the other hand, both average delay and percent of dropped packets

were affected, but mostly on a networks which are very close to starvation. The latency of the

central link had little to do with the unobtrusiveness of fill er traffic, as the average delay increase

was constant regardless of latency and there were no dropped packets whatsoever. However,

bandwidth played a larger role in determining fill er traffic unobtrusiveness - varying bandwidth

changed the amount that the fill er traffic affected the average delay and percent of dropped

packets of the pre-existing traffic. When the bandwidth and latency were low (producing a low

BDP network), the effects of fill er traffic were relatively high. Otherwise, the effects were

unremarkable. Thus, fill er traffic generally remains unobtrusive.

Filler Traffic Performance

 The last section determined that fill er traffic could be used without upsetting pre-existing

traffic. Now it must be shown that fill er traffic is not only unobtrusive, but can successfully

accomplish data transfers. To study this, the statistics of the packet dynamics of the fill er traffic

must be considered. While the throughput of the fill er traffic is very important in determining its

usefulness, it is not the only factor to be examined. Also, the percent of dropped packets shows

how much work must be wasted in resending lost packets. Finally, the average delay is

important because the length of the delay affects what can be used as fill er traffic – the higher the

delay, the more time-insensitive the fill er traffic must be. Thus, this section details how the

performance of fill er traffic is related to the link parameters bandwidth and latency. The figures

are modeled identically to those above, in colors and patterns, but these figures only concern

themselves with the statistics of the fill er traffic.

Adam Feldman
Effects of Fill er Traffic on IP Networks

20

Average Delay vs. Bandwidth – Fill er traffic behaves very similarly to varying bandwidth as pre-

existing traffic. As the bandwidth increases, packets are sent faster. Therefore, packets do not

have to wait as long in the queue before being sent. Figure 9 shows that as bandwidth increases,

the average delay decreases, due to the extra available bandwidth for fill er traffic. However,

once 6 Mbps is reached for the bandwidth, the average delay ceases decreasing. This is because

there is enough bandwidth to handle both fill er and pre-existing traffic quickly, and so the delay

due to the latency of the central link has become a large component of the total average delay.

Thus more bandwidth may provide more throughput (see below), but it does not decrease the

delay of the fill er traffic. Even at the worst, the delay on the fill er traffic is approximately 3

times the delay of the pre-existing traffic (with no fil ler present) at the same link bandwidth.

Average Delay vs. Bandwidth (Filler)

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 4 6 8 10 12 14 16

Bandwidth (Mbps)

A
ve

ra
g

e
D

el
ay

 (
se

c) Trace 1

Trace 2

Trace 3

Figure 9. Average Delay vs. Bandwidth (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

21

Dropped Packets vs. Bandwidth – The number of dropped packets decrease steadily as the

bandwidth increases. This corresponds to the delay of the packets decreasing. With a large

delay, the fill er buffer becomes full – this is when packets are forced to be dropped. As the delay

decreases (as explained above), packets move through the buffer faster, and therefore less are

dropped. It should be noted in Figure 10 that the as the bandwidth approaches and exceeds 10

Mbps, the rate of decrease in the percent of dropped packets lessens. The original Harvard trace

used a 10 Mbps central link, therefore at no point does the pre-existing traffic require more than

10 Mbps. Thus, as the bandwidth nears this point, there are fewer and fewer packets dropped

due to bursts of pre-existing traffic, and a certain percent is caused by packets dropped by the

congestion window overshooting. Regardless, the percent of dropped packets is very low –

never surpassing the percent of dropped pre-existing packets by more than 0.2.

Dropped Packets vs. Bandwidth (Filler)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 12 14 16

Bandwidth (Mbps)

D
ro

p
p

ed
 P

ac
ke

ts
 (

%
) Trace 1

Trace 2

Trace 3

Figure 10. Dropped Packets vs. Bandwidth (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

22

Throughput vs. Bandwidth – Throughput is the average number of bytes that cross the central

link in a second. Similarly, bandwidth is the number of bytes that can cross the link per second.

The throughput of the fill er traffic should ideally be a percentage of the bandwidth of the link

minus the throughput of the pre-existing traffic. It is only a percentage because TCP works by

gradually increasing the sending rate until a packet is dropped. At this point, TCP cuts the

sending speed and begins again. The throughput was simply a constant multiple (seen in

experiments to be around 82%) of the difference between the link bandwidth and the throughput

of the pre-existing traffic, which is a constant. As bandwidth increases, throughput increases, at

a linear rate. As shown by the trendlines, the slope of the lines are approximately 125. When

KB/sec is converted to Mbps, the slope becomes about 1. This indicates that as bandwidth

increases, almost all of it is put towards an increase in the throughput of the fill er traffic.

Throughput vs. Bandwidth (Filler)

y = 125.59x - 178.31 (Trace 1)

y = 124.89x - 201.02 (Trace 2)

y = 128.07x - 277.41 (Trace 3)

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14 16

Bandwidth (Mbps)

T
h

ro
u

g
h

p
u

t
(K

B
/s

ec
)

Trace 1

Trace 2

Trace 3

Linear (Trace 1)

Linear (Trace 2)

Linear (Trace 3)

 Figure 11. Throughput vs. Bandwidth (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

23

Average Delay vs. Latency – The delay is a measure of the time a packet waits in the buffer

before being sent, plus the amount of time it takes to send the packet across the central link.

Since the fill er buffer size is linear in terms of the link latency, average delay increases as the

sum of two linear terms. Thus the slope of the line is 1 (as shown in Figure 12). The smallest

two data points, as seen in Figure 12 are not at slope 1. This is due to using 16 KB as the

minimum fill er buffer. Because all fill er buffers which would be smaller than 16 KB (i.e. at a

latency of 3 ms) are raised to 16 KB, both 3 ms and 10 ms both used the same fill er buffer,

resulting in the increase in delay to be due solely to the increase in latency, which is still li near,

but with a lesser slope.

Average Delay vs. Latency (Filler)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160

Latency (ms)

A
ve

ra
g

e
D

el
ay

 (
se

c)

Trace 1

Trace 2

Trace 3

Figure 12. Average Delay vs. Latency (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

24

 Dropped Packets vs. Latency – Figure 13 shows that there is a rapid decrease in the percent of

dropped packets as latency increases. This is because of the granularity of the in congestion

window size. For example, when the latency is 3ms, the BDP is approximately 3.5 KB. With

the window so small, TCP congestion control is overshooting very often, each time causing

dropped packets. However, once the latency rises higher, the congestion window is much

bigger. This results in less packets because there is more time in between each time the

congestion window is overshot. Thus, the dropped packets are dropped due to normal TCP

functionality, and are not caused by the reduced priority of the fill er traffic.

Dropped Packets vs. Latency (Filler)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140 160

Latency (ms)

D
ro

p
p

ed
 P

ac
ke

ts
 (

%
)

Trace 1

Trace 2

Trace 3

Figure 13. Dropped Packets vs. Latency (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

25

 Throughput vs. Latency – Throughput is relatively unaffected by latency, as seen in Figure 14.

There is only less than a 4%, 5%, and 6.5% difference, respectively, between the highest value

and lowest value for each trace. Latency has a fairly low affect on throughput because in our

experiments an increased latency does not change how much data can flow across the line, only

how long it takes. If the fill er buffer remained the same from one experiment to another, as the

latency increased, it would eventually become high enough to cause the buffer to fill up and

packets to be dropped. However, since the fill er buffer is calculated based on latency, it

increases at the same rate as latency does, and can therefore provide enough space to keep an

ever increasing number of packets from being dropped. In the base case, with trace 2 (this will

be examined more later), the throughput is about 1050 KB/sec, or 8.6 Mbps.

Throughput vs. Latency (Filler)

900

950

1000

1050

1100

1150

0 20 40 60 80 100 120 140 160

Latency (ms)

T
h

ro
u

g
h

p
u

t
(K

B
/s

ec
)

Trace 1

Trace 2

Trace 3

Figure 14. Throughput vs. Latency (Fill er)

Adam Feldman
Effects of Fill er Traffic on IP Networks

26

To act as a basis of comparison, an experiment was conducted involving only fill er

traffic. First, the throughput of the pre-existing traffic of trace 2 was found (about 1.34 Mbps).

This was subtracted from the bandwidth of the central link in the base case, leaving 8.66 Mbps.

8.66 Mbps was then used as the link bandwidth in the experiment without pre-existing traffic.

The result was about 8.32 Mbps of throughput for the fill er traffic, or about 96% utili zation.

This is compared to the throughput of the fill er with the pre-existing traffic present. In Figure 14

it is shown that the fill er traffic had a throughput of 8.60 Mbps. After adding in the pre-existing

traffic, the combined throughput is 1.31 Mbps. The total percent of utili zation is Without the

bursts of the pre-existing traffic, it can be seen that fill er traffic utili zes most of the available

bandwidth. Therefore, most of the unutili zed bandwidth in the rest other experiments is due to

the bursts of the pre-existing traffic. It will be interesting to compare some of the charts above

(with fill er an pre-existing traffics) with some new charts created from experiments with only

fill er traffic, after subtracting out the bandwidth that would have been needed by the pre-existing

traffic.

Figures 9 through 14 show that fill er traffic does perform useful data transfer. In many

cases the fil ler traffic performed nearly as well as the pre-existing traffic. With the bandwidth

set high enough that the network is not on the verge of starvation, the fill er traffic’s performance

is excellent. Specifically, the average delay of fill er packets is very low. Further, once the

latency is around that of the base case (20ms) or higher, the percent of dropped packets

diminishes while the throughput increases greatly. Even in the experiments with a relatively low

latency or bandwidth, the fill er traffic managed to provide useful data transmission, while, as

shown above, remaining unobtrusive to the pre-existing traffic. Thus fill er traffic can be very

useful.

Adam Feldman
Effects of Fill er Traffic on IP Networks

27

Conclusion

 To assess the abili ty to use fill er traffic on a network, two things must be considered.

First, by nature, fill er traffic should not affect the pre-existing traffic of a network. In light of

this, its unobtrusiveness, or how much it does affect the pre-existing traffic, should be studied.

Additionally, fill er traffic must perform useful transmission of data, otherwise it serves no

purpose. Thus, its performance must be studied. These two factors, fill er unobtrusiveness and

performance, were studied via a variety of experiments. Each experiment either tested fill er’s

impact on pre-existing traffic or the usefulness of the fill er traffic itself.

 The fill er traffic was found to have little affect on pre-existing traffic. The pre-existing

traffic appears to behave very similarly in the presence of fill er traffic as it did without. Average

delay only increased slightly, while the percent of dropped packets and throughput remained

virtually unchanged. Thus the fill er traffic behaves fairly unobtrusively.

 Additionally, the fill er traffic managed to accomplish useful data transmission. Between

pre-existing and fill er traffic together, over 95% of the bandwidth was utili zed.. Average delays

and percent of dropped packets remained low, often no higher than the values of the pre-existing

traffic. Even when they were higher, neither delays nor the number of packets dropped increased

to an unusable level.

 All of the experiments conducted involved networks with medium to high BDP.

Therefore, it has been determined that fill er traffic is a feasible option on these networks.

However, as BDP diminishes, so does fill er traffic’s value. Because of this, future work is being

done to study fill er traffic on a network which has a low BDP, such as a bank of modems (see

Appendix).

Adam Feldman
Effects of Fill er Traffic on IP Networks

28

Appendix

A. Modem Traces

 The experiments we conducted show that varying bandwidth and latency did not cause

fill er traffic to greatly affect pre-existing traffic. However, all of these experiments were

conducted on relatively high BDP networks. Ongoing work is being carried out to determine the

unobtrusiveness and performance of fill er traffic on low BDP networks. Specifically, a set of

experiments is being set up to test a modem bank connected to the network.

 The data was gathered by recording incoming and outgoing packet information of a bank

of modems at an Internet Service Provider. Packet information was gathered using WinDump

[11] starting on Wednesday, January 12th, 2001 at 1:37pm. The traces contain one hour’s worth

of packet information. By configuring WinDump using command line parameters, only traffic

involving a modem on the sending or receiving end was included in the output file. All modems

are 56k modems, which send data at a maximum of 33.6 Kbps and receive data at 53.3 Kbps.

There are 74 modems connected, as a group, to the Internet through a T1 (1.54 Mbps) link. Once

the trace file is parsed and turned in to an ns-ready file, it will contain a fill er and pre-existing

source/destination for each modem, and one more on the other side of the central T1 link

representing the Internet.

Adam Feldman
Effects of Filler Traffic on IP Networks

29

Even though pre-existing traffic is at a higher priority than filler traffic, if a filler packet

is currently being sent when a pre-existing packet is queued, it will not be sent until the filler

packet is finished sending. Because of this, filler traffic could create a substantial delay on low

BDP networks due to the length of time it takes to send one complete packet. Figure 15 shows a

possible negative affect of filler traffic on pre-existing traffic. Two green pre-existing packets

must wait while the black filler packet is being sent for a relatively long time.

Figure 15. Effects of Low BDP networks

Adam Feldman
Effects of Filler Traffic on IP Networks

30

B. Program Source

// Adam Feldman
// NS - 2 Output Analyzer – Project.cc

#include "jkstring.h"
#include "jklist.h"
#include <iostream.h>
#include <fstream.h>
#incl ude <math.h>

#define TRUE 1
#define FALSE 0

#define NODE1 4
#define NODE2 5
#define ACK_SIZE 54
#define TCP_SIZE 1000.0
#define BREAKDOWN_SIZE 10000
#define BREAKDOWN_MULT 1000
#define MAX_PACKET_SIZE 50000

struct trace {
 char eventType;
 float time ;
 int startNode;
 int endNode;
 string packetType;
 int packetSize;
 string flags;
 int flowIdentifier;
 float packetSource;
 float packetDestination;
 int sequenceNumber;
 int packetIdentifier;
};

// Reads in a line from the specified file str eam and returns it as a trace
trace GLine(bool flag);

// Function that converts a numerical string into an int
int String2Int(string stringVal);

// Global Variables
ifstream inFile;

int main(int argc, char *argv[]) {
 // Variable List
 ofstream out;
 ofstream charts("data.txt", ios::app); // Open file stream to append to file
 trace tempTrace;
 list<trace> traffic;
 int flow = 0, c = 0;
 int breakdown[4][BREAKDOWN_SIZE];
 list<int> BWBreakdown[4];
 double delay = 0;
 double avgBW[4], avgDelay[4], avgReg[4], ackCompRatio[4], regDelay[4], ackDelay[4];
 int numberReg[4], numberAcks[4];
 double total[4], totalBytes[4], received[4], receivedBytes[4], dropped[4], droppedBytes[4];
 double firstTime[4], lastTime[4], max[4], min[4];
 bool found = FA LSE, flag = FALSE;
 int seqNum = 0;

Adam Feldman
Effects of Filler Traffic on IP Networks

31

 // Set all elements of all arrays to 0
 for(int i = 0; i < 4; i++) {
 avgBW[i] = avgDelay[i] = avgReg[i] = ackCompRatio[i] =
 regDelay[i] = ackDelay[i] = total[i] = totalBytes[i] = received[i] =
 receiv edBytes[i] = dropped[i] = droppedBytes[i] = firstTime[i] = lastTime[i] =
 max[i] = min[i] = 0;
 numberReg[i] = numberAcks[i] = 0;
 for(int j = 0; j < BREAKDOWN_SIZE; j++)
 breakdown[i][j] = 0;

 }
 // Inform the correct usage and then exi t if incorrect
 if(argc != 5) {
 cerr << "Usage: program.exe <input> <output> <parameter> <value>" << endl;
 cerr << " or: program.exe x <output> <parameter> <value>" << endl;
 cerr << "Second usage takes input from the stdin stream." << endl ;
 return 1;
 }
 // Open the input and output file streams
 if(*argv[1] != 'x') {
 flag = TRUE;
 inFile.open(argv[1]);
 }
 out.open(argv[2]);

 // Output chart parameter and value for Excel
 charts << argv[3] << ", " << argv[4] << ", ";

 // Get the first line of the input file, and convert to a trace (tempTrace)
 tempTrace = GLine(flag);

 // For each line (event) in the input file, convert to a trace (tempTrace)
 for(;tempTrace.eventType != 'X'; tempTrace = GLine(flag)) {
 // It is assumed that each event in the input file deals solely with the two middle nodes
 // Set flow to the correct value (0 - 3)
 flow = int(tempTrace.packetSource);

 // If tempTrace is type + (enque), put event in traffic list
 if(tempTrace.eventType == '+') {
 traffic += tempTrace;
 }

 // Else if tempTrace is type - (deque)
 else if(tempTrace.eventType == ' - ') {
 if(BWBreakdown[flow].length() - 1 != int(tempTrace.time * 10)) {
 BWBreakdown[flow] += tempTrace.packetSize;
 }
 else
 BWBreakdown[flow][BWBreakdown[flow].length() - 1] += tempTrace.packetSize;
 }

 // Else if tempTrace is type r (receive)
 else if(tempTrace.eventType == 'r') {
 // If Ack Packet, set seqNum
 if(tempTrace.packetTyp e == "ack")
 seqNum = tempTrace.sequenceNumber;

 // Increment total delay time of total received packets & bytes
 received[flow]++;
 receivedBytes[flow] += tempTrace.packetSize;

 // Set lastTime for this flow to this event's ti me (will end up being the time of last event)
 lastTime[flow] = tempTrace.time;

Adam Feldman
Effects of Filler Traffic on IP Networks

32

 // Look through traffic to find event when this packet was deque'd at other middle node
 for(int i = found = 0; i < traffic.length(); i++)
 // If the ev ent is found
 if(tempTrace.packetIdentifier == traffic[i].packetIdentifier) {
 // Set the delay to the time from deque to receive
 delay = tempTrace.time - traffic[i].time;

 // Remove event from traffic, set found, and ex it loop
 traffic - = i;
 found = TRUE;
 break;
 }

 // If event is never found, output error and exit
 if(!found) {
 cerr << "EVENT RECEIVED BUT NEVER ENQUED: " << tempTrace.packetIdentifier << endl;
 return 2;
 }

 // Keep min and max set to the minimum and maximum delays so far
 if(delay > max[flow]) {
 max[flow] = delay;
 // If delay is bigger than should be allowed, output error and exit
 if(delay > (BREAKDOWN_ SIZE / double(BREAKDOWN_MULT))) {
 cerr << "DELAY GREATER THAN " << BREAKDOWN_SIZE / double(BREAKDOWN_MULT) << ": "
 << delay << endl;
 return 5;
 }
 }
 else if(delay < min[flow])
 min[flow] = delay ;

 // Add to delay list, and increment total delay time of correct packet type (ack or reg)
 breakdown[flow][int(delay*BREAKDOWN_MULT)]++;
 if(tempTrace.packetSize == ACK_SIZE || tempTrace.packetType == "ack") {
 numberAcks[flow]++;
 ackDelay[flow] += delay;
 }
 else {
 numberReg[flow]++;
 regDelay[flow] += delay;
 }

 // If firstTime for this flow has not been set
 if(!firstTime[flow]) {
 // Set it to the time this packet dequed
 firstTime[flow] = tempTrace.time - delay;
 // Set initial max and min times
 max[flow] = min[flow] = delay;
 }
 }

 // Else if tempTrace is type d (drop), increment dropped and droppedBytes, remove from traffic
 else if(te mpTrace.eventType == 'd') {
 // Increment dropped and dropped Bytes to account for all dropped packets
 dropped[flow]++;
 droppedBytes[flow] += tempTrace.packetSize;

Adam Feldman
Effects of Filler Traffic on IP Networks

33

 // Look through traffic to find event when this packet was deque'd a t other middle node
 for(int i = found = 0; i < traffic.length(); i++)
 // If the event is found
 if(tempTrace.packetIdentifier == traffic[i].packetIdentifier) {
 // Remove event from traffic, set found, and exit loop
 traffic - = i;
 found = TRUE;
 break;
 }

 // If event is never found, output error and exit
 if(!found) {
 cerr << "EVENT DROPPED BUT NEVER ENQUED: " << tempTrace.packetIdentifier << endl;
 return 2;
 }
 }

 // Send a * to the screen every 50,000 lines to show that the program is still running
 if(c++ == 50000) {
 cerr << '*';
 c = 0;
 }
 }

 // Make sure that all undropped packets are accounted for (???)
 if(traffic.length())
 cerr << endl << "TOO MANY PACKETS LEFT OVER: " << traffic.length() << endl;

 // Close input file
 if(flag)
 inFile.close();

 // Fix the number of decimal places shown in output
 out.setf(ios::fixed);

 // Output inFile information
 if(flag)
 out << "Input File: " << argv[1] << endl
 << " ------------------------------ " << endl << endl;

 // For each flow i, from 0 to 3
 for(int i = 0; i < 4; i++) {
 // Compute statistics for each flow if there was at least 1 regular packet for that flow
 if(numberReg[i]) {
 // Find total packets and bytes
 total[i] = received[i] + dropped[i];
 totalBytes[i] = receivedBytes[i] + droppedBytes[i];

 // Find overall Average Delay
 avgDelay[i] = (regDelay[i] + ackDelay[i]) / received[i];

 // If there were any ack packets
 if(numberAcks[i]) {
 // Divide ackDelay by the number of ack delays (average ack delay)
 ackDelay[i] /= numberAcks[i];
 }

 // Divide delay by the number of regular packe ts (average regular packet delay)
 regDelay[i] /= numberReg[i];
 }
 }

Adam Feldman
Effects of Filler Traffic on IP Networks

34

 // For each flow i, from 0 to 3
 for(int i = 0; i < 4; i++) {
 // Output statistics for each flow if there was at least 1 regular packet for that flow
 if(received[i] > numberAcks[i]) {
 // Set ackCompRatio for this flow
 ackCompRatio[i] = ackDelay[(i ^ 1)] / regDelay[i];

 // Set precision to 7 decimal places
 out.precision(7);

 // Output the Flow number
 out << "Flow From Node " << i << " to " << (i ^ 1) << endl << endl;

 // Output Delay information
 out << "Average Reg Delay: " << regDelay[i] << " seconds" << endl;
 out << "Average Ack Delay: " << ackDelay[i] << " seconds" << endl;
 out << "Ack Comp. Ratio: " << ackCompRatio[i] << " Ack/Reg" << endl << endl;

 out << "Minimum Delay: " << min[i] << " seconds" << endl;
 out << "Maximum Delay: " << max[i] << " seconds" << endl;
 out << "Average Delay: " << avgDelay[i] << " seconds" << endl << endl;

 out << "Delay Density:" << endl;

 out.precision(5);

 // For each slot in breakdown, output the range and concentration
 for(int j = 0; j < BREAKDOWN_SIZE; j++) {
 if(breakdown[i][j] > 0) {
 out << j / double(BREAKDOWN_MULT) << "s to "
 << (j + 1) / double(BREAKDOWN_MULT) << "s: ";
 for(int k = 7; k-- > (int(log(breakdown[i][j]+1) / log(10)) + 1); out << " ");
 out << breakdown[i][j] << endl;
 }
 }

 // Output a blank line
 out << endl;

 // Set precision to 0 decimal places
 out.precision(0);

 // Output the total and dropped packet information
 out << "Total Packets: " << total[i] << " (" << totalBytes[i] << " bytes)" << endl;
 out << "Dropped Packets: " << dropped[i] << " (" << droppedBytes[i] << " bytes)";

 // Set precision to 5 decimal places
 out.precision(5);

 // If any packets were dropped, display the percentage information
 if(dropped[i])
 out << endl <<"Percent Dropped: " << dropped[i] * 100.000 / total[i] << "% ("
 << droppedBytes[i] * 100.000 / totalBytes[i] << "% of bytes)";

 // Output a blank line
 out << endl << endl;

 // Set precision to 2 decimal places
 out.precision(2);

Adam Feldman
Effects of Filler Traffic on IP Networks

35

 // If firstTime and lastTime are not the same, output bandwidth information
 if(lastTime[i] != firstTime[i]) {
 avgBW[i] = (totalBytes[i] - droppedBytes[i]) / 1024 / (l astTime[i] - firstTime[i]);
 out << "Average Bandwidth Across Center Nodes:" << endl
 << " " << avgBW[i] << " Kilobytes/second" << endl;
 }

 // Output a blank line
 out << endl;

 // Output Bandwidth CDF info
 for(int j = 0; j < BWBreakdown[i].length(); j++)
 out << BWBreakdown[i][j] << " ";

 // Output a divider between the flows
 out << endl << endl << "===" << endl << endl;
 }

 // Out put chart information for Excel
 charts << avgDelay[i] << ", ";
 if(dropped[i])
 charts << dropped[i] * 100.000 / total[i] << ", ";
 else
 charts << "0, ";
 charts << ackCompRatio[i] << ", " << avgBW[i];
 if(i != 3)
 charts << ", ";
 }

 // Output new Throughput info (in KB/sec)
 charts << ", " << double(seqNum) * TCP_SIZE / 1024.0 / lastTime[0];

 // Output a blank line to charts
 charts << endl;

 // Close output files
 out.close();
 charts.close();

 // Reset variab les
 traffic.kill();

 // Exit smoothly
 return 0;
}

trace GLine(bool flag) {
 // Variable List
 trace tempTrace;
 char tempChar;

 if(flag) {
 inFile >> tempTrace.eventType;
 inFile >> tempTrace.time >> tempTrace.startNode >> tempTrace.endNo de;
 inFile >> tempTrace.packetType;
 inFile >> tempTrace.packetSize;
 inFile >> tempTrace.flags;
 if(inFile.eof())
 tempTrace.eventType = 'X';
 inFile >> tempTrace.flowIdentifier >> tempTrace.packetSource >> tempTrace.packetDestination
 >> tempTrace.sequenceNumber >> tempTrace.packetIdentifier;
 }

Adam Feldman
Effects of Filler Traffic on IP Networks

36

 else {
 cin >> tempTrace.eventType;
 cin >> tempTrace.time >> tempTrace.startNode >> tempTrace.endNode;
 cin >> tempTrace.packetType;
 cin >> tempTrace.packetSize;
 cin >> tempTrace.flags;
 cin >> tempTrace.flowIdentifier >> tempTrace.packetSource >> tempTrace.packetDestination
 >> tempTrace.sequenceNumber >> tempTrace.packetIdentifier;

 if(tempTrace.packetSize > MAX_PACKET_SIZE) {
 tempTrace.even tType = 'X';
 }
 }

 return tempTrace;
}

int String2Int(string stringVal) {
 // Variable List
 int value = 0, modifier = 1;

 // Convert each digit from a character to an int, and multiply
 // by the modifier which signifies place in the number
 for(int i = stringVal.length() - 1; i > - 1; i -- , modifier *= 10)
 value += (stringVal[i] - '0') * modifier;

 return value;
}

Adam Feldman
Effects of Fill er Traffic on IP Networks

37

C. Program Documentation

project.cc (requires jkstring.h and jklist.h)
Compiled to 'project' using g++ - "g++ project.cc -w"

Purpose: This software is used to analyize the output of ns-2 network simulator.

Usage 1: program.exe <input> <output> <parameter> <value>

<input>: Name of the file containing the output from NS-2, which is in this form:

+ 0.00107 4 5 udp 42 ------- 1 2.0 3.0 0 0

 The length of the file is not limited, however, there should be no extraneous information
present (aside from blank lines at the end). Currently, the input file should contain only
information relating to the 2 center nodes (nodes 4 and 5) - any other lines will be ignored.

<output>: Name of the file where the output is sent. Format of output is described below.

<parameter> <value>: This is the name and value of the parameter which is being changed in
this experiment. They are included on the command line for the purpose of associating the data
in data.txt with this experiment. data.txt is used to easily create an Excel chart for studying the
results of multiple experiments. Format of data.txt is described below.

Usage 2: project x <output> <parameter> <value>
The only change for this second usage is that the first parameter is an 'x' instead of a filename.
This is to allow the program to take input from the standard input stream (instead of a file), so
that the program will run on the output directly from NS-2 (or any other program, such as gzip),
without having to first save the data to disk.

Output file: If the program is executed via usage 1, the output file first contains the name of the
input file. Next is the label of which flow the data pertains to. Each of the four flows is only
included if any packets traveled across that link. The first data for each flow is basic data about
delays and the ack compression ratio in an easy to read format. Next is a breakdown of the delay
cdf – the number of packets which had a delay in the specified time range. This is followed by
dropped packet information and average bandwidth utili zation. Finally, is a list of the size of
data crossing the central link in 0.01 second increments.

Data.txt file: Each line in this file is comma delimited, and represents one experiment. A single
line in data.txt corresponds to this format:

BW, 10, 0.00537133, 6.51442, 0, 116.857, 0, 0, 0, 0, 0.00600353, 0.039953, 0.82705, 132.335,
0.00735259, 0.00163182, 0.599299, 183.515, 101.314

 The first block (BW) is the name of the changing parameter (<parameter>), while the
second (10) is the value of that parameter for this experiment (<value>). The next four blocks
correspond to values for the flow from node 0 to node 1 (0.00537133, 6.51442, 0, and 116.857).
In order, they are delay (in seconds), percent of packets dropped, the ack compression (ratio of

Adam Feldman
Effects of Fill er Traffic on IP Networks

38

regular packets divided by ack packets), and the average bandwidth (in KB/sec). The next four
blocks are the same values for the flow from node 1 to node 0 (0, 0, 0, and 0, in this case). The
next eight blocks are for node 2 to node 3 (0.00600353, 0.039953, 0.82705, and 132.335), then
from node 3 to node 2 (0.00735259, 0.00163182, 0.599299, and 183.515). The final block is the
value for calculating the throughput, which is to take the highest packet number received,
multiply by the packet size, and divide by the length of the experiment.

2_Bandwidth.xls: This is an example Excel chart file which can be easily produced by using the
numbers in data.txt. Simply order the rows from lowest to highest (by changing parameter), and
enter all of the rows, 4 columns at a time, into the appropriate flow's cells. This will
automatically cause the charts to graph the correct data. If creating a chart from one of a
different type (using one from Bandwidth to fill i n Latency, for example), be sure to correct the
values of the parameter, which are used to plot on the x-axis. Finally, label the chart as desired,
and it is complete.

Adam Feldman
Effects of Fill er Traffic on IP Networks

39

D. References

[1] W. Willi nger and V. Paxson. Where Mathematics Meets the Internet. Notices of the

AMS, 45(8):961-970, Sept. 1998.

[2] A. Odlyzko. The Internet and Other Networks: Utili zation Rates and Their Implications.

Technical Report 99-07, DIMACS, 1999.

[3] B. Leida. A Cost Model of Internet Service Providers: Implications for Internet

Telephony and Yield Management. Master’s thesis, 1998.

[4] A. Odlyzko. Data Networks are Lightly Utili zed, and Will Stay That Way. Technical

Report 99-10, DIMACS, 1999.

[5] V. N. Padmanabhan and R. H. Katz. TCP Fast Start: A Technique For Speeding Up Web

Transfers. In Proc. IEEE Globecom ’98 Internet Mini-Conference, 1998.

[6] B. D. Davison and V. Liberatore. Pushing Politely: Improving Web Responsiveness

One Packet at a Time. Technical Report DCS-TR-415, Department of Computer
Science, Rutgers University, June 2000.

[7] NS-2 is located at: http://www.isi.edu/nsnam/ns/

[8] Traces and related information can be found at: http://www.eecs.harvard.edu/net-traces/

[9] M. Allman. A Web Server’s View of the Transport Later. ACM Computer

Communication Review, 30(5), October 2000.

[10] S. K. Schneyer. Survey Paper on TCP. University of Karlstad, November 1998.

[11] Information about WinDump can be found at: http://netgroup-serv.polito.it/windump/

