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We study the minimum backlog problem (MBP). This online problem arises, e.g., in the 
context of sensor networks. We focus on two main variants of MBP.
The discrete MBP is a 2-person game played on a graph G = (V , E). The player is initially 
located at a vertex of the graph. In each time step, the adversary pours a total of one unit 
of water into cups that are located on the vertices of the graph, arbitrarily distributing 
the water among the cups. The player then moves from her current vertex to an adjacent 
vertex and empties the cup at that vertex. The player’s objective is to minimize the backlog, 
i.e., the maximum amount of water in any cup at any time.
The geometric MBP is a continuous-time version of the MBP: the cups are points in the 
two-dimensional plane, the adversary pours water continuously at a constant rate, and the 
player moves in the plane with unit speed. Again, the player’s objective is to minimize the 
backlog.
We show that the competitive ratio of any algorithm for the MBP has a lower bound of 
�(D), where D is the diameter of the graph (for the discrete MBP) or the diameter of the 
point set (for the geometric MBP). Therefore we focus on determining a strategy for the 
player that guarantees a uniform upper bound on the absolute value of the backlog.
For the absolute value of the backlog there is a trivial lower bound of �(D), and the 
deamortization analysis of Dietz and Sleator gives an upper bound of O (D log N) for N
cups. Our main result is a tight upper bound for the geometric MBP: we show that there is 
a strategy for the player that guarantees a backlog of O (D), independently of the number 
of cups.
We also study a localized version of the discrete MBP: the adversary has a location within 
the graph and must act locally (filling cups) with respect to his position, just as the player 
acts locally (emptying cups) with respect to her position. We prove that deciding the value 
of this game is PSPACE-hard.
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1. Introduction

We study the minimum backlog problem (MBP). This is an online problem in which an agent moves around a domain 
and services a set of locations, “emptying” a buffer at each location in an effort to make sure that no buffer gets too full. 
The MBP is related to the k-server problem [8,14,15,19,20,24] (with k = 1), in which requests are popping up at points in 
a metric space, and the k servers need to minimize the distance traveled to satisfy the requests. However, in the MBP, the 
objective is not to minimize the traveled distance, but to minimize the backlog, i.e., the maximum amount of data residing 
in any buffer at any point in time.

1.1. Motivation

A practical motivation for the MBP arises in the context of a sensor network that, e.g., performs motion-tracking for a 
set of objects that move within the sensor field. Each sensor acquires data about nearby objects. The total rate of data ac-
cumulation within the network remains approximately constant, assuming a relatively fixed set of objects being monitored; 
however, the distribution of the data rate over the field is nonuniform and unpredictable.

If the system is used for a field study where the data is not analyzed until the end of the experiment, it may be much 
more energy-efficient to store the bulk of the data locally on a memory card and let someone or something gather the data 
by physically visiting the sensor device (or a neighborhood of the device) [10,16,17,21,25]. During the experiment, each 
sensor only needs to report the amount of data in its local buffer. The objective of the data gatherer is to visit the sensors 
in an effective order, so that no sensor’s storage device is overfull.

An analogous problem arises in scheduling battery recharging/replacement in a field of wireless devices whose power 
consumption varies unpredictably with time and location.

1.2. Discrete MBP

We will now formalize three versions of the MBP that we study in this paper. We start with the discrete MBP. In 
this problem, we have an unweighted directed graph G = (V , E) with an (initially empty) cup on each vertex. There is 
a player, who moves from vertex to vertex along the edges of the graph emptying cups, and there is an adversary (not 
located anywhere in particular), who refills the cups with water. We talk about filling cups with water because of historical 
precedent [11].

The following game is played for an indefinite (but finite) number of rounds. In each round, the two opponents do the 
following:

• The adversary pours a total of one unit of water into the cups. The adversary is free to distribute the unit of water 
in any way he likes. The adversary may base his decision on the current location of the player and the current water 
levels in all of the cups.

• The player moves along an edge and empties the cup in its new location. The player can see the amount of water that 
the adversary has poured into each cup, and the player can use this information to make the decisions.

The problem is online, i.e., the player does not know how the water is distributed in the future. Thus, the player’s decision 
of which edge to traverse may be based only on the amount of the water that has been poured into all cups so far, but 
not on the future distribution of water. The objective of the player is to minimize the backlog, which is defined to be the 
maximum amount of water in any cup at any time.

1.3. Geometric MBP

It is straightforward to generalize the MBP to weighted, continuous scenarios. In this paper we will mainly focus on the 
following version which we call the geometric MBP; this version is of particular interest for sensor-network applications. Let 
P ⊆ R

2 be a finite planar set. There is a cup on each point of P . The two-player game proceeds as follows in a continuous 
manner:

• The adversary pours water into the cups P ; the total rate at which the water is poured into the cups is 1.
• The player moves in the plane with unit speed, starting at an arbitrary point. Whenever the player visits a cup, the cup 

is emptied.

Again, this is an online problem, and the goal of the player is to minimize the backlog.

1.4. Localized MBP

In the discrete and geometric versions of the MBP, the actions of the player are restricted by her location. To keep 
the game fair, we may also consider the following variant in which the actions of the adversary are also restricted by his 
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location; we call it the localized MBP. The game is a fairly straightforward adaptation of the discrete MBP; however, some 
of the details need more care, as we will be interested in deciding the exact value of this game.

The localized MBP is a two-player game played on a directed graph G = (V , E). Each vertex is a cup that carries some 
integer load (water level). An instance of the localized MBP consists of the graph, the initial loads of the cups, and the 
distinct starting positions of the two players.

At each time step, both the player and the adversary are located at some vertices. The player starts the game, and both 
participants take turns in moving from their respective current position along an outgoing edge to an adjacent node (they 
are not allowed to stay in place):

• A move by the player ends with her removing the load from the vertex she reached.
• A move by the adversary ends with him increasing the load on the vertex he reached by one unit.

The game ends when the player steps onto the vertex currently occupied by the adversary, or when the adversary manages 
to get the load on some vertex to a pre-specified target value. The player wins if she can keep the adversary from reaching 
the target value; the adversary wins if he can reach the target value.

1.5. Results

Throughout this work, we write N for the number of cups, and D for the maximum distance between the cups (i.e., the 
diameter of the graph G or the set P ). We start with the following simple observations (Section 3):

• Discrete and geometric MBP, competitive analysis: The competitive ratio of any algorithm for the problem may be as bad 
as �(D). Therefore we will focus on absolute bounds on the backlog in this paper.

• Discrete and geometric MBP, lower bounds: The adversary can guarantee a backlog of �(D). For the discrete version, the 
adversary can also guarantee a backlog of �(log N).

• Discrete and geometric MBP, upper bounds: The player can guarantee a backlog of O (D log N).

Our main results are as follows:

• Geometric MBP, upper bounds (Sections 5 and 6): We show that the player can achieve a backlog of O (D), independently 
of the number of cups. This is optimal up to constants.

• Localized MBP, hardness (Section 7): We show that deciding the value of the game is PSPACE-hard, even for the smallest 
nontrivial target value of 2.

2. Background and related work

This style of problem, with a player emptying one cup at a time and an adversary distributing water among cups, is a 
classic problem, which has been independently discovered and rediscovered many times. However, in previous formulations, 
there is no issue of locality—that is, the player can empty any single cup (or, depending on the formulation, any feasible 
subset of cups) in any time step, independently of her previous actions.

The earliest reference to cup emptying of which we are aware is the work of Dietz and Sleator [11], who used it as a 
technique for deamortizing data structures. They proved that if there are N cups, and the player always empties the fullest 
one, then no cup ever contains more than ln N water; they also showed that this bound is optimal. The bound leads to an 
optimal, worst-case-constant algorithm for the order-maintenance problem. This deamortization technique has been used 
many times since.

Adler et al. [1] used cup emptying as a technique for analyzing scheduling algorithms. In particular, they showed how 
to use cup emptying to produce “fair” job schedules. Chrobak et al. [7] introduced a generalization of cup emptying and 
applied it to multiprocessor scheduling with conflicts between tasks; there is subsequent work by, e.g., Bar-Noy et al. [3], 
Koga [18], and Rote [23]. In the problem, the player can empty more than one cup at a time, but there is a conflict graph 
between cups. If two cups conflict, only one of them can be emptied at a time. Here there is a graph, but there is still no 
issue of locality.

More recent work by Bodlaender et al. [6] considers a generalization of the game on an unweighted, undirected graph 
G = (V , E), in which one move by the adversary consists of arbitrarily distributing one unit of water among a subset S ⊆ V , 
while a move of the player is to empty all cups of an independent set. They show that the value of the game (the largest 
possible filling level of a cup that the adversary can force, and to which the player can limit the sequence) lies between the 
natural logarithm of the clique number and the natural logarithm of the chromatic number, settling the value of the game 
for all perfect graphs. They also consider the game on the simplest non-perfect graphs, i.e., odd holes and odd anti-holes, 
and show that a natural greedy strategy is generally not optimal. Bodlaender et al. [5] consider another variant on a ring 
graph with N nodes, where the player may empty an arbitrary group of c consecutive cups in each round, and compute the 
exact values for all N ≤ 12.
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To the best of our knowledge, in all previous work on cup emptying, there is no concept of locality of the player with 
respect to the cups. In contrast, the minimum backlog problem studied in this paper is specifically cup emptying with a 
player who moves around in graphs or geometric domains.

It is important to note that although the motivation for studying cup emptying in metric spaces came from online 
vehicle routing, the locality shows up in non-geometric contexts as well. For instance, in a job scheduling problem, there 
may be a (set-up) cost associated with switching from executing one job to executing another. This, in particular, makes 
the Traveling Salesman Problem, which originated as a geometric problem, applicable also to scheduling tasks [2,26,9]. 
Hence, although we state our problem and results in purely geometric terms, they are also relevant in some more general 
scheduling applications.

3. Preliminary observations

We start with preliminary observations on the discrete and geometric versions of the MBP.

3.1. Competitive analysis is doomed

It would be natural to try to give a competitive algorithm for the MBP. Unfortunately, an online algorithm with a good 
competitive ratio is not possible, unless we restrict ourselves to the case of N = O (1) or D = O (1). Indeed, consider either 
of the following scenarios, both of which have N cups and a diameter of D = N − 1:

1. discrete MBP: graph G is a path on N vertices,
2. geometric MBP: set P consists of the points (1, 0), (2, 0), . . . , (N, 0).

Number the cups by 1, 2, . . . , N so that cups 1 and N are the endpoints of the diameter. Suppose that the adversary picks 
a random permutation of the cups 2 through N − 1, and for the first N − 2 time steps pours a unit of water per step into 
the cups according to the permutation. Then, the adversary picks one of the endpoints of the path and pours the water 
there forever. The best offline strategy would be to rush to the endpoint and stay there—this yields a maximum backlog 
of 1. On the other hand, without prior knowledge of the “drenched” endpoint, any algorithm will put the player far from 
the endpoint (since the adversary may choose the endpoint that is farthest from the current player position), thus, making 
the performance of the algorithm �(N) = �(D).

Given that the competitive ratio of an online algorithm for the problem may be very high, we concentrate on providing 
uniform upper bounds on the performance, i.e., on giving universal bounds on the amount of water in any cup at any time.

3.2. Simple lower bounds

The performance of any algorithm has a lower bound of �(D): the adversary can simply pour water at the rate of 1/2
into the cups at the ends of the diameter. The same holds for both the discrete MBP and the geometric MBP.

To get another lower bound, the adversary may pick a set of K cups such that the distance between any two cups in the 
set is at least d, for some number d. The adversary will then pour the water evenly into never-emptied cups from the set. 
After dK steps, one of the cups will have

�
( d

K + d
K−1 + · · · + d

) = �(d ln K )

units of water.
In particular, for the discrete MBP with N cups, we can always choose d = 1 and K = N , and hence the adversary can 

ensure a backlog of �(max(D, log N)). There are also some families of graphs in which the adversary can guarantee a 
backlog of �(D log N): consider, for example, subdivisions of star graphs.

3.3. Simple upper bounds

As for the upper bounds, which is the main focus of the paper, a naïve algorithm has a performance of O (C), where C
is the length of the shortest closed path visiting all cups.

To find a better upper bound, let us first consider the discrete MBP on a complete graph (or, put otherwise, a game in which 
the player can empty any single cup in each round). Intuitively, always emptying the fullest cup is optimal, and a simple 
exchange argument validates this intuition. Dietz and Sleator [11] analyze the performance of this strategy.

Lemma 3.1. (See Dietz and Sleator [11, Theorem 5].) In the discrete MBP on a complete graph with N vertices, if the player always 
empties the fullest cup, then no cup ever contains more than ln N units of water.

We can apply the same strategy in the discrete and geometric MBP: the player repeatedly walks to the fullest cup (which 
takes at most D time units) and empties it. A simple application of Lemma 3.1 shows that the backlog of this strategy will 
be bounded by O (D log N), where N is the number of cups.
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This is the upper bound that we set out to beat in this paper. Recall from Section 3.2 that we cannot necessarily do any 
better in the discrete MBP. However, we show that in the geometric MBP the player always has a strategy that guarantees a 
backlog of O (D), independently of the number of cups.

4. Algorithmic techniques

We will now start to develop the algorithmic techniques that we will use to design our strategy for the geometric MBP. 
There are two main ingredients:

1. the (τ , k)-game (Section 4.1),
2. Few’s lemma (Section 4.2).

The (τ , k)-game is a purely combinatorial two-player game; we do not make any references to the geometric setting that 
we have in the geometric MBP. On the other hand, Few’s lemma is a purely geometric result; there is no game-theoretic 
element in the statement of the result. Section 5 shows how to put the two ingredients together in order to design a 
strategy for the geometric MBP.

4.1. The (τ , k)-game

The (τ , k)-game is a straightforward generalization of the empty-the-fullest strategy on a complete graph (recall 
Lemma 3.1). For each τ ∈ R, k ∈ N we define the (τ , k)-game as follows. There is a set of cups, initially empty, not lo-
cated in any particular metric space. At each time step the following takes place, in this order:

1. The adversary pours a total of τ units of water into the cups. The adversary is free to distribute the water in any way 
he likes.

2. The player empties k fullest cups.

The game is discrete—the player and the adversary take turns making moves during discrete time steps. The following 
lemma bounds the amount of water in any cup after r steps of the game; this is a direct extension of a result of Dietz and 
Sleator [11].

Lemma 4.1. The water level in any cup after r complete time steps of the (τ , k)-game is at most Hrτ/k, where Hr is the rth harmonic 
number.

Proof. We follow the analysis of Dietz and Sleator [11, Theorem 5]. Consider the water levels in the cups after time step j. 
Let X (i)

j be the amount of water in the cup that is ith fullest, and let

S j =
(r− j)k+1∑

i=1

X (i)
j

be the total amount of water in (r − j)k + 1 fullest cups at that time. Initially, j = 0, X (i)
0 = 0, and S0 = 0.

Let us consider what happens during time step j ∈ {1, 2, . . . , r}. The adversary pours τ units of water; the total amount 
of water in (r − ( j − 1))k + 1 fullest cups is therefore at most S j−1 + τ after the adversary’s move and before the player’s 
move (the worst case being that the adversary pours all water into (r − ( j − 1))k + 1 fullest cups).

Then the player empties k cups. These k fullest cups contained at least a fraction k/((r − ( j − 1))k + 1) of all water in 
the (r − ( j − 1))k + 1 fullest cups; the remaining (r − j)k + 1 cups are now the fullest. We obtain the inequality

S j ≤
(

1 − k

(r − ( j − 1))k + 1

)
(τ + S j−1)

or

S j

(r − j)k + 1
≤ τ

(r − ( j − 1))k + 1
+ S j−1

(r − ( j − 1))k + 1
.

Therefore the fullest cup after time step r has the water level at most

X (1)
r = Sr

k(r − r) + 1

≤ τ

1k + 1
+ τ

2k + 1
+ · · · + τ

rk + 1
+ S0

rk + 1

≤ τ

k

(
1

1
+ 1

2
+ · · · + 1

r

)
. �
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4.2. Few’s lemma

Let us next introduce the geometric ingredient that we will need. The following result is by Few [13]:

Lemma 4.2. (See Few [13, Theorem 1].) Given n points in a unit square, there is a path through the n points of length not exceeding √
2n + 1.75.

We make use of the following corollary:

Corollary 4.3. Let S be a D × D square. Let i ∈ {0, 1, . . .}. Let Q ⊆ S be a planar point set with |Q | = 25i and diam(Q ) = D. For any 
point p ∈ S there exists a closed tour of length at most 5i+1 D that starts at p, visits all points in Q , and returns to p.

Proof. If i > 0, by Lemma 4.2, there is tour of length at most

(√
2(25i + 1) + 1.75 + √

2
)

D ≤ 5i+1 D

that starts at p, visits all points in Q , and returns to p. If i = 0, there is a tour of length 2
√

2D ≤ 5D through p and |Q | = 1
points. �
5. Geometric MBP: player’s strategy

Now we are ready to present an asymptotically optimal algorithm for the geometric MBP. The player’s strategy is com-
posed of a number of coroutines, which we label with i ∈ {0, 1, . . .}. The coroutine i is invoked at times (10L + �)τi for 
each L ∈ {0, 1, . . .} and � ∈ {1, 2, . . . , 10}. Whenever a lower-numbered coroutine is invoked, higher-numbered coroutines are 
suspended until the lower-numbered coroutine returns.

5.1. Parameters

We choose the values τi as follows. For i ∈ {0, 1, 2, . . .}, let

ki = 25i,

τi = (2/5)i · 10Dki = 10i · 10D.

For L ∈ {0, 1, . . .} and � ∈ {1, 2, . . . , 10}, define (i, L, �)-water to be the water that was poured during the time interval 
[10Lτi, (10L + �)τi].
5.2. Coroutine i

The coroutine i performs the following tasks when invoked at time (10L + �)τi :

1. Determine which ki cups to empty. The coroutine chooses to empty ki cups with the largest amount of (i, L, �)-water.
2. Choose a cycle of length at most τi/2i+1 which visits the ki cups and returns back to the original position. This is 

possible due to Corollary 4.3 because 5i+1 D = τi/2i+1.
3. Guide the player through the chosen cycle.
4. Return.

Observe that when a coroutine returns, the player is back in the location from which the cycle started. Therefore invocations 
of lower-numbered coroutines do not interfere with any higher-number coroutines which are currently suspended; they just 
delay the completion of the higher-numbered coroutines.

The completion is not delayed for too long. Indeed, consider a time period [ jτi , ( j + 1)τi] between consecutive invoca-
tions of the coroutine i. For h ∈ {0, 1, . . . , i}, the coroutine h is invoked 10i−h times during the period (recall the definition 
of τi in Section 5.1). The cycles of the coroutine h have total length at most

10i−hτh/2h+1 = τi/2h+1.

In grand total, all coroutines 0, 1, . . . , i invoked during the time period take time

i∑
h=0

τi/2h+1 < τi .

Therefore all coroutines invoked during the time period are able to complete within it. This proves that the execution of the 
coroutines can be scheduled as described.



M.A. Bender et al. / Theoretical Computer Science 605 (2015) 51–61 57
6. Geometric MBP: analysis

We now analyze the backlog under the strategy of Section 5. For any points in time 0 ≤ t1 ≤ t2 ≤ t3, we write 
W ([t1, t2], t3) for the maximum per-cup amount of water that was poured during the time interval [t1, t2] and is still 
in the cups at time t3.

We need to show that W ([0, t], t) is bounded by a constant that does not depend on t . To this end, we first bound the 
amount of (i, L, �)-water present in the cups at the time (10L + � + 1)τi . Then we bound the maximum per-cup amount of 
water at an arbitrary moment of time by decomposing the water into (i, L, �)-waters and a small remainder.

We make use of the following simple properties of W ([·, ·], ·). Consider any four points in time 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. 
First, the backlog for old water is nonincreasing: W ([t1, t2], t4) ≤ W ([t1, t2], t3). Second, we can decompose the backlog into 
smaller parts: W ([t1, t3], t4) ≤ W ([t1, t2], t4) + W ([t2, t3], t4).

6.1. (i, L, �)-Water at time (10L + � + 1)τi

Let i ∈ {0, 1, . . .}, L ∈ {0, 1, . . .}, and � ∈ {1, 2, . . . , 10}. Consider (i, L, �)-water and the activities of the coroutine i when it 
was invoked at the times (10L + 1)τi, (10L + 2)τi, . . . , (10L + �)τi .

The crucial observation is the following. By the time (10L + � + 1)τi , the coroutine i has, in essence, played a 
(τi, ki)-game for � rounds with (i, L, �)-water. The difference is that the coroutine cannot empty the cups immediately 
after the adversary’s move; instead, the cup-emptying takes place during the adversary’s next move. Temporarily, some 
cups may be fuller than in the (τi, ki)-game. However, once we wait for τi time units to let the coroutine i complete its 
clean-up tour, the maximum level of the water that has arrived before the beginning of the clean-up tour is at most that in 
the (τi, ki)-game.

The fact that the emptying of the cups is delayed can only hurt the adversary, as during the clean-up tour the player 
may also accidentally undo some of the cup-filling that the adversary has performed on his turn. The same applies to the 
intervening lower-numbered coroutines.

Therefore, by Lemma 4.1, we have

W
([

10Lτi, (10L + �)τi
]
, (10L + � + 1)τi

) ≤ H� · τi/ki < 3τi/ki, (1)

using the fact that H� < 3 for every � ≤ 10.

6.2. Decomposing arbitrary time t

Let t be an arbitrary instant of time. We can write t as t = T τ0 + ε for a nonnegative integer T and some remainder 
0 ≤ ε < τ0. Furthermore, we can represent the integer T as

T = �0 + 10�1 + · · · + 10N�N

for some integers N ∈ {0, 1, . . .} and �i ∈ {1, 2, . . . , 10}. Since the range is 1 ≤ �i ≤ 10, not 0 ≤ �i ≤ 9, this is not quite the 
usual decimal representation; we chose this range for �i to make sure that �i is never equal to 0.

We also need partial sums

Li = �i+1 + 10�i+2 + · · · + 10N−i−1�N .

Put otherwise, for each i ∈ {0, 1, . . . , N} we have

T = �0 + 10�1 + · · · + 10i�i + 10i+1Li

and therefore

t = ε + �0τ0 + �1τ1 + · · · + �NτN

= ε + �0τ0 + �1τ1 + · · · + �iτi + 10Liτi

(recall from Section 5.1 that 10iτ0 = 10i · 10D = τi ).
We partition the time from 0 to t − ε into long and short periods. The long period i ∈ {0, 1, . . . , N} is of the form [

10Liτi, (10Li + �i − 1)τi
]

and the short period i is of the form 
[
(10Li + �i − 1)τi, (10Li + �i)τi

]
. See Fig. 1 for an illustration. 

Short periods are always nonempty, but the long period i is empty if �i = 1.

6.3. Any water at arbitrary time t

Now we make use of the decomposition of an arbitrary time interval [0, t] defined in the previous section: we have long 
periods i ∈ {0, 1, . . . , N}, short periods i ∈ {0, 1, . . . , N}, and the remainder [t − ε, t].
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Fig. 1. Decomposition of the time; in this example, N = 3. The illustration is not in scale; actually τi = 10τi−1.

Consider the long period i. We bound the backlog from this period by considering the point in time (10Li + �i)τi ≤ t . If 
the period is nonempty, that is, �i > 1, then we have by (1)

W
([

10Liτi, (10Li + �i − 1)τi
]
, t

) ≤ W
([

10Liτi, (10Li + �i − 1)τi
]
, (10Li + �i)τi

)
< 3τi/ki, (2)

using the fact that

W
([

10Liτi, (10Li + �i − 1)τi
]
, (10Li + �i)τi

) ≤ W
([

10Liτi, (10Li + �i)τi
]
, (10Li + �i + 1)τi

)
.

Naturally, if the period is empty, then (2) holds as well.
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Consider a short period i for i > 0. It will be more convenient to write the short period in the form [10L′
iτi−1, (10L′

i +
10)τi−1] where L′

i = 10Li + �i − 1 is a nonnegative integer (this is illustrated in Fig. 1 for i = 3). We bound the backlog from 
this period by considering the point in time (10L′

i + 11)τi−1 ≤ t . By (1) we have

W
([

(10Li + �i − 1)τi, (10Li + �i)τi
]
, t

) = W
([

10L′
iτi−1, (10L′

i + 10)τi−1
]
, t

)
≤ W

([
10L′

iτi−1, (10L′
i + 10)τi−1

]
, (10Li + 11)τi−1

)
< 3τi−1/ki−1. (3)

Next consider the short period i = 0. We have the trivial bound τ0 for the water that arrived during the period. Therefore

W
([

(10L0 + �0 − 1)τ0, (10L0 + �0)τ0
]
, t

) ≤ τ0. (4)

Finally, we have the time segment from t − ε to t . Again, we have the trivial bound ε for the water that arrived during 
the time segment. Therefore

W
([

t − ε, t
]
, t

) ≤ ε < τ0. (5)

Now we can obtain an upper bound for the backlog at time t . Summing up (2), (3), (4), and (5), we have the maximum 
backlog

W
([

0, t
]
, t

) ≤
N∑

i=0

W
([

10Liτi, (10Li + �i − 1)τi
]
, t

) +
N∑

i=0

W
([

(10Li + �i − 1)τi, (10Li + �i)τi
]
, t

)

+ W
([

t − ε, t
]
, t

)

≤
N∑

i=0

3τi/ki +
N∑

i=1

3τi−1/ki−1 + 2τ0

≤
∞∑

i=0

6τi/ki + 2τ0

= 60D
∞∑

i=0

(2/5)i + 20D = 120D ∈ O (D).

7. Localized MBP: hardness

Recall from Section 1.4 that in the localized MBP the player wins if she catches the adversary (or otherwise keeps the 
adversary from reaching the target value) and the adversary wins if he reaches the target value somewhere. In this section, 
we prove the following theorem:

Theorem 7.1. The localized MBP is PSPACE-hard, even for a target value of 2.

Proof. We present a reduction from Quantified 3SAT (Q3SAT), where the Boolean formula F , containing m clauses 
c1, c2, . . . , cm and n variables x1, x2, . . . , xn , is in conjunctive normal form with 3 literals per clause; without loss of gen-
erality, we assume that n is even. A Q3SAT instance I F asks for the truthfulness of the expression ∀x1∃x2∀x3 . . .∃xn :
c1 ∧ c2 ∧ . . . ∧ cm . It is helpful to think of this as a game between the player and the adversary who take turns at set-
ting the variables in ascending order of indices; the player tries to set the odd variables in a way that will keep F from 
being true, while the adversary sets the even variables in a way that aims at F ending up satisfied.

Now we construct an instance of the localized MBP by specifying the digraph D = (V , A) on which it is played; for 
more details of a somewhat related construction, see Fekete et al. [12]. The initial vertices for player and adversary are u−1
and u0, respectively, and the player starts the game. We use the vertex set V = {xi, xi, ui : 1 ≤ i ≤ n} ∪ {u−1, u0} ∪ {c j, c j, d j :
1 ≤ j ≤ m} and the edge set

A = {(xi, ui), (xi, ui) : 1 ≤ i ≤ n} ∪ {(ui, xi+2), (ui, xi+2) : −1 ≤ i ≤ n − 2}
∪ {(un, c j), (un−1, c j), (c j,d j) : 1 ≤ j ≤ m} ∪ {(c j, ck) : 1 ≤ j ≤ m,k = j}
∪ {(c j, xi), (d j, xi) : iff c j contains xi, 1 ≤ j ≤ m, 1 ≤ i ≤ n}
∪ {(c j, xi), (d j, xi) : iff c j contains xi, 1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We single out the subset V C = {x2i−1, x2i−1 : 1 ≤ i ≤ n/2} ⊆ V of vertices that start with an initial load of one; all other 
vertices start with an initial load of zero. Note that |V | = O (m + n), |V C | = O (n), |A| = O (m2 + n), so the construction is 
clearly polynomial. The construction is illustrated in Figs. 2 and 3.



60 M.A. Bender et al. / Theoretical Computer Science 605 (2015) 51–61
Fig. 2. The variable gadget: The player chooses a truth setting for the odd variables by running from u−1 to un−1, while the adversary chooses a truth 
setting for the even variables by running from u0 to un . Note that initially, the odd-numbered vertices carry a load of 1 (indicated by circles), while all 
other vertices start out with a load of 0.

Fig. 3. A clause gadget: The player picks a clause by moving to a clause selector vertex c j , which is connected to all clause nodes ck for k = j. This forces 
the adversary to move to c j in order to avoid being caught prematurely. Then the player moves to d j , catching the adversary after he moves to one of the 
three variable vertices corresponding to the clause c j . The adversary wins if and only if that vertex already carries a load of 1, i.e., if the corresponding 
variable satisfies the clause.

Now consider the game on D . For easier reference, we denote by diamonds the subgraphs induced by (ui−1, xi, xi, ui). 
The player and the adversary traverse the diamonds according to their chosen truth assignments in the given instance of 
Q3SAT, i.e., the adversary traverses xi if xi = 1 and otherwise traverses xi ; analogously, the player traverses xi if xi = 1 and 
otherwise traverses xi ; obviously, both participants are forced to move this way, implying a corresponding truth assignment. 
After the player (resp., adversary) arrives at un−1 (resp., un), for each i exactly one of the vertices xi or xi has a load of one. 
We argue in the following that the adversary wins if and only if all clauses are satisfied.

After arriving at vertex un−1, the player selects a clause c j by moving to the corresponding clause selector vertex c j
(recall from Section 1.4 that the player starts first, and hence arrives to un−1 before the adversary arrives at un). This forces 
the adversary to move by (un, c j) in order to avoid being caught (note that there is no edge (c j, c j)). As the player has no 
way of catching the adversary in her next move, the adversary wins if the clause vertex c j is adjacent to a variable vertex 
with load one, i.e., the corresponding variable setting satisfies the clause. On the other hand, the player can prevent the 
adversary from reaching a load of two if the clause is unsatisfied, by moving to vertex d j , assuring herself of catching the 
adversary in her next move.

This shows that the player wins if and only if there is an unsatisfied clause. �
8. Conclusions

We have studied three versions of the MBP. We have shown that the localized MBP is hard to play optimally, while the 
geometric MBP is easy to play near-optimally (up to constant factors in the backlog). The hardness of the discrete MBP 
remains an open question.
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For the geometric MBP, we have shown that the player has a strategy where the backlog does not depend on the number 
of cups, but only on the diameter of the cups set. This implies that the backlog scales linearly with the diameter of the area, 
and this is tight. An interesting open question is the scalability in the number of players. If we have four players instead of 
one, we can divide the area into four parts and assign each player to one of the parts; this effectively halves the diameter 
and thus halves the backlog. It remains to be investigated whether we can exploit multiple players in a more efficient 
manner.
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