
Admission Control and Overload Handling in FTT-CAN

F. Bertozzi, M. Di Natale
Scuola Superiore S. Anna - Pisa, Italy

cisco@gandalf.sssup.it marco@sssup.it

L.Almeida
Universidade de Aveiro - Aveiro, Portugal

lda@det.ua.pt

Abstract

The paper presents new protocols for admission con-
trol and handling of overload conditions when scheduling
real-time messages on CAN networks. The proposed solu-
tion builds incrementally on the FTT-CAN protocol, which
provides guaranteed scheduling for cyclic (periodic) and
aperiodic message streams as defined at design time and
best effort scheduling for signalling (including admission
requests) and scheduling of dynamically arriving message
streams. FTT-CAN does not specify any particular admis-
sion control or overload management methods but pro-
vides mechanisms that support their implementation. This
work exploits such mechanisms and provides the descrip-
tion of protocols related to admission control, guarantee
of dynamic message streams, temporary overload man-
agement and fault containment. This work provides the
description of protocols and implementation related is-
sues that allow for guaranteed bandwidth and bounded re-
sponse time for admission requests, and graceful recovery
from temporary overload of event-based messages. The
proposed approach has been implemented and validated
by means of simulation.

1. Introduction

The CAN bus [1] is an industry standard for communi-
cation of computer- or microcontroller-based applications
in cars, manufacturing plants and medical devices. Low
cost, standardization, reliability and possibility of guaran-
teeing a worst case message transmission time by means
of a predictable MAC-level protocol are among the rea-
sons for its success. Predictable scheduling of real-time
messages on the CAN bus is made possible by a number
of scheduling algorithms. These can be classified accord-
ing to the following:

• Asynchronous scheduling: these protocols typically
use message identifiers to encode message priorities
and exploit the standard contention resolution mech-
anism of CAN to implement priority-based schedul-
ing. Both static and dynamic priority scheduling
methods have been proposed. In [6] implementa-
tion and analysis of fixed priority (Rate Monotonic)
scheduling is presented. Later works [8, 9] feature

proposals for encoding dynamic (earliest deadline)
priorities in message identifiers and analysing the
timing correctness of the system.

• Synchronous scheduling: protocols belonging to this
class divide time in cycles. Nodes can be statically
assigned transmission slots in the context of each cy-
cle by means of dispatch tables (as in TT-CAN [7]).
Alternatively, a master node dynamically assigns the
rights to transmit to each node (message) on a cy-
cle by cycle basis. The scheduling strategy is im-
plemented by the master node and communicated to
the slave nodes at the beginning of each cycle [2, 4].
Methods belonging to the last subclass leave the op-
portunity for scheduling changes at run-time.

Schemes belonging to the second class have the practi-
cal advantage of allowing a strict separation between the
allocation of IDs and the actual message scheduling per-
formed at the MAC level. This separation brings along
an extra flexibility and eases application development (ac-
cording to recommendations and application developers’
practice message IDs should be under the application de-
signer’s control).

FTT-CAN is among the best representatives of the sec-
ond class. It enables guaranteed scheduling of periodic
(time-based) and possibly aperiodic (event-based) mes-
sage streams. The sheduling policy is implemented in the
master node, which is responsible for allocating the trans-
mission of individual message instances into the elemen-
tary cycle. FTT-CAN provides predictable scheduling of
recurrent (i.e. periodic) and sporadic load when message
streams can be exactly characterized at design time. On
the other hand, guaranteeing dynamic load or handling
requests for changes in either the periodic or aperiodic
message flows requires adequate admission control and
possibly overload management capabilities that, despite
supported, are left unspecified so that they can be tailored
later for specific classes of applications.

The additional flexibility that comes from supporting
real-time periodic as well as non real-time traffic and the
possibility of changing the timing requirements of real-
time message streams or possibly even changing the set of
active streams at any time is a desirable property for indus-
trial systems. The most obvious requirement for changing
the rate of real-time messages comes from mode changes,

such as those that occur when switching from normal en-
vironmental scanning to higher speed sampling because of
the occurrence of an event (for example in target tracking
applications). Furthermore, recent developments in con-
trol theory, such as logarithmic quantization, show how
control applications may benefit from dynamic changes
in the rate of the samples (hence the messages delivering
them). Finally, in [10], the authors show how dynamic op-
timization of the quality of the controlled system response
can be obtained by flexible control task timing constraints.
Unfortunately, this flexibility often contrasts with the need
for predictability and deterministic system behaviour.

This paper contributes to the combination of flexibil-
ity and predictability by proposing a set of methods for
admission control and overload management that can be
implemented within FTT-CAN. In particular, it contains
description of:

• a new, simpler, schedulability test for synchronous
and asynchronous message streams scheduled in
FTT-CAN. The new schedulability formula can eas-
ily checked at run-time for guaranteeing admission
to dynamic real-time streams;

• an admission control scheme which provides guaran-
teed bandwidth and a bounded access time to asyn-
chronous admission requests sent to the master node
without interfering with the scheduling of other mes-
sages;

• a protocol for recovery from a possible overload sit-
uation for soft-type real-time tasks.

The proposed solution is correct and stable under over-
load or selected fault conditions. The performance of the
scheduling algorithm is evaluated by simulation on a num-
ber of randomly generated message sets based on the stan-
dard SAE Automotive Benchmark [6].

The next Section provides an introduction to our refer-
ence architecture, including the description of the problem
and the definitions used throughout the paper. Section 2
also features an introduction to FTT-CAN. Section 3 con-
tains a description of the standard mechanisms for guaran-
teeing real-time message streams in FTT-CAN. Sections 4
and 5 describe our admission control scheme and our new
simpler schedulability test. Section 6 presents a protocol
for recovery from overload situations. Finally, Section 7
contains the results of our experiments and the Conclu-
sions section ends the paper.

2. Reference architecture

2.1. Introduction
The system architecture assumes a CAN bus with

adapters implementing the standard arbitration protocol.
The message traffic consists of both time- and event- trig-
gered real-time messages. The time triggered traffic in-
cludes periodic message streams only, characterized by
their period attribute. Event-triggered messages are char-
acterized by a worst case interarrival time. We assume

a centralized message management and scheduling ex-
ecuted by a master node that retains knowledge of all
real-time messages and the corresponding allocated band-
width. The configuration of message traffic is predefined
at designed time, but it can be dynamically changed by
adding or removing streams (periodic or aperiodic) such
as in the case of a mode change or any other kind of dy-
namic request. Requests for dynamic modification of the
real-time load must be guaranteed to arrive in a bounded
time. We assume that message streams are divided into
hard-type streams (periodic or sporadic), which are known
at design time and should be guaranteed under any condi-
tion and firm-type streams, which can be dynamically re-
quested and conditionally admitted into the system, pro-
vided their deadlines can be guaranteed by the admission
control algorithm. Acceptance of hard-type streams is
subject to an a-priori guarantee from the master node. Re-
quests for additional periodic or sporadic streams can be
guaranteed even at risk of temporary overloads. The sys-
tem must react to an overload condition by adjusting the
load from real-time messages.

2.2. Problem Definition
The terms and definitions used in the paper are the fol-

lowing:
nmax the maximum number of nodes in the network;
ni the i-th node in the network;
Ns the number of real-time message streams;
Nsyn the number of periodic (synchronous) message

streams;
Nasy the number of sporadic (asynchronous) message

streams.
A real-time message stream is further characterized by the
following parameters:
Pi the period of consecutive messages in the i-th stream

for time-based streams or
miti the minimum inter arrival time between any two

consecutive instances of the i-th event-based stream;

Di the deadline that applies to all the message of the i-th
stream.

Attributes and parameters referring to the hard or soft
message subset bring an additional superscript such as,
for example, N H

syn (number of hard-type synchronous
streams.) Furthermore, as it is common in CAN-based
applications, we require that the scheduling algorithm has
minimal impact on the selection of the message identifiers
by the application developer. Since our proposed solution
is based on the FTT-CAN algorithm, the next section pro-
vides a short introduction to FTT-CAN.

2.3. FTT-CAN
The FTT-CAN protocol (please refer to [2] for a de-

tailed description) divides time into an infinite sequence
of Elementary Cycles (ECs) with fixed duration. Each el-
ementary cycle is further divided into two phases (win-
dows) where time- and event-triggered traffic is sched-
uled with temporal isolation. The first window is used to

transmit event-triggered or asynchronous messages. The
second window is used to transmit time-triggered or syn-
chronous message streams.

All nodes are synchronized at the start of each EC by
the reception of a trigger message (TM), which is sent by
a master node. The trigger message contains a bit mask
where the i-th bit, if set, enables transmission of a pe-
riodic message from the i-th node inside the EC (mas-
ter/multislave control mode). Collisions between (en-
abled) slave messages inside the EC are handled by the
native distributed arbitration of CAN. Hence, the schedule
issued by the master node only gives access rights to the
EC but does not enforce the in-cycle transmission order
(1). The event-triggered traffic is scheduled in its window
by using the standard CAN arbitration mechanism. Slaves
with pending aperiodic requests simply try to transmit im-
mediately within the asynchronous phase of each elemen-
tary cycle and the master has no knowledge neither control
of event-triggered requests.

1 4 5 7

trigger
message

synchronous
messages

asynchronous
messages

idle time

lsw

TM

lawtmL

Pec

L
idle

Figure 1. Elementary cycle in FTT-CAN.

Since the synchronous message window is placed at the
end of the EC, the trigger message also conveys its rela-
tive starting instant. The asynchronous window fills the
remaining cycle time. The reason why the asynchronous
window precedes the synchronous one is twofold: giv-
ing nodes enough CPU time for decoding the EC trig-
ger message and avoiding priority inversions among asyn-
chronous messages. In fact, the beginning of the asyn-
chronous window must be synchronized at the bit level in
all nodes in order to continue with any hanging arbitra-
tion process from the previous EC without extra blocking
(except one lower priority message when the message is
first activated). Thus, the asynchronous window is open
for transmission during the transmission of the TM, and
all nodes enter into arbitration right after the TM, without
any blocking. FTT-CAN reserves some identifier bits for
its internal use: only the last 6 bits (out of 11) can be used
as true message identifiers, the others are used for protocol
management purposes (see Figure 2).

Figure 2. Identifier bits in the standard FTT-
CAN proposal.

In detail, the first four bits encode the message type
(for example, 0001 for the trigger message) and the fifth
bit defines the message liveness. Figures 2 and 3 describe
the bit content of the identifier field of all messages and
the trigger message. The first row of the table is the name
of the subfields; the second row defines the possible values
for each field and the last row the order of the bits such as,
for example, b0 is the rightmost bit and b10 is the eleventh
bit of the identifier.

The meaning of the bits composing the trigger message
(TM) is shown in Figure 3.

Figure 3. Trigger message in the standard
FTT-CAN proposal.

The protocol allows for the definition of a maximum
length for the synchronous windows (LSW) and corre-
spondingly a maximum bandwidth for that type of traffic.
Consequently, a minimum bandwidth can be guaranteed
for the asynchronous traffic. The synchronous traffic is
protected from the interference of asynchronous requests
by preventing the start of transmissions that could not
complete within the respective window. This is achieved
by removing from the network controller transmission
buffer any pending request that cannot be served up to
completion within that interval. Consequently, a short
amount of idle time may appear at the end of the asyn-
chronous window. The policy adopted by the master to
schedule periodic requests can be Rate Monotonic (RM),
Earliest Deadline (EDF) [3] or possibly any other algo-
rithm that allows for predictable scheduling of periodic
requests. Sporadic messages are scheduled by the native
MAC protocol of CAN. Therefore, fixed priority schedul-
ing must be considered for the purposes of analysis. Fur-
ther definitions are required for explaining schedulability
analysis of messages in FTT-CAN. We assume (Figure 1):
• the transmission of the trigger message takes Ltm

(constant) time units;
• the width of the synchronous window inside the n-th

elementary cycle is lsw(n) time units and
• the width of the asynchronous window is law(n);
• Lidle is the worst case length of the idle time separat-

ing the transmission of asynchronous messages from
synchronous messages (provably equal to the worst
case message transmission time).

• Pec the period of the elementary cycle;

3 Schedulability of real-time traffic in FTT-
CAN

In [2] Almeida and Pedreira show how RM and EDF
can be adapted in order to schedule periodic message traf-

fic in FTT-CAN. Periodic message streams can be guaran-
teed if:

(RM) U = ΣNs

i=1(
Ci

Pi
) < Ns(2

1
Ns − 1)(L−Lidle

Pec
)

(EDF) U = ΣNs

i=1(
Ci

Pi
) < (L−Lidle

Pec
)

(1)
Furthermore, a timeline analysis approach allows an

even more accurate schedulability assessment for fixed
priorities scheduling. Given the timing attributes of asyn-
chronous messages, it is possible to upper bound the worst
case response time to event-based requests.

The schedulability analysis presented in [2] requires a
priori knowledge of synchronous and asynchronous mes-
sage parameters. The latest transmission time for an
asynchronous message stream of index i is computed by
evaluating the earliest time instant (from the critical in-
stant t=0) when the cumulative bus demand of the asyn-
chronous traffic Hi(t) from higher priority streams equals
the bus availability function (cumulative bus time avail-
able) for the asynchronous messages A(t). The equation
Hi(t) = A(t) is solved iteratively by letting t0 = Hi(0)
and tm+1 = A−1(Hi(tm)) until a value tm+1 = tm is
found or tm+1 becomes greater than the limit value that
allows the message to be transmitted before its deadline
(please refer to [2] for the details). Scheduling of dynam-
ically arriving asynchronous requests is only best-effort,
since there is no mechanism to perform online admission
control of this type of traffic.

The proposed formula requires evaluating an upper
bound of the periodic message traffic inside each EC. Any
change in the set of periodic messages implies recomput-
ing the worst case response times of sporadic messages.
Furthermore, the iterative schedulability formula requires
non negligible computing times, preventing its use at run-
time on inexpensive controllers. As a matter of fact, ex-
perimental figures show computation times of a few hun-
dreds of ms for small 8-bit microcontrollers and hundreds
of microseconds for an FPGA implementation. In low-end
systems, the formula is clearly meant to be computed off-
line. If a dynamic admission scheme guaranteeing newly
arriving requests for real-time streams is needed, then a
new (simpler) analysis formula is required.

4. From admission control to overload recov-
ery

The implementation of an admission control scheme on
FTT-CAN requires a non-trivial set of subprotocols. First,
we need to define a protocol that allows slave nodes to
send control messages to the master node in a predictable
way, that is, we provide a bounded worst case transmis-
sion time for slave requests without compromising the
schedulability of the other messages.

Requests for dynamic changes in the real-time message
streams cannot be guaranteed (in many systems) by using
the timeline analysis in [2]. Hence, a new simpler (un-

fortunately also pessimistic) analysis is needed. Such an
analysis is provided in subsection 5.2.

Finally, our admission control schemes allows trans-
mission of new real-time streams or modification of the
parameters of the existing streams as long as they do not
affect schedulability of hard type streams. This may result
in temporary overloads for non hard type streams. There-
fore, an overload recovery mechanism is provided to let
slave nodes drop lower priority messages that cannot be
guaranteed or negotiate lower bandwidth requirements for
some of the existing streams.

5. Admission control

The need for an admission control policy arises from
the need of handling requests for addition and/or removal
of message streams and from the need of changes in the
time parameters of one or more streams. The admission
control messages issued by slave nodes in the network is
an event triggered traffic. In the original FTT-CAN pro-
posal it is quite difficult (or impossible) to bound the trans-
mission delay of control messages or their impact on the
other asynchronous streams since an adequate transmis-
sion policy for control messages is simply missing. To
this purpose, we propose a new scheme, which allows
the transmission of only one control message per cycle
in a round robin fashion, therefore introducing a possibly
higher but bounded delay. The control message (Ctrl) is
sent at the beginning of the elementary cycle, right after
the trigger message (Figure 4). Its transmission time is
bound by Lctrl

idle time

lswlaw

Ctrl

L

TM

tmL ctrl

Pec

L
idle

synchronous
messages

asynchronous
messages

trigger
message

Figure 4. Elementary cycle in FTT-CAN with
control message.

5.1. Transmission priority
For each elementary cycle, only one node is allowed to

send a control message. The master node defines the pri-
ority rank for the transmission of the control messages in
the current EC. Each node has a position in the rank and
the highest ranked node with an outgoing control message
gets the rights to transmit. The priority rank is encoded
into the node field of the trigger message (Figure 6) by
using the following rule: Each slave node n i is assigned a
unique identifier n idi (nmax ≤ 64 is the maximum num-
ber of nodes in the system). The master node selects each
of the slave nodes at each round as the first node in the

rank in a round robin fashion and sends its identifier n sel

in the trigger message. The i-th slave node (n i) computes
the node subfield, hence the priority (identifier) of its out-
going control message according to the following rule:

node subfi = |n idi − nsel|nmax

If we suppose for sake of clarity that n idi = i, then
the situation at the beginning of each round is represented
in Figure 5. The ranking algorithm clearly works for any
set of slave identifiers n idi.

control msg cycle 0 cycle 1 cycle 2
identifiers nsel = 0 nsel = 1 nsel = 2

n id0 0 4 3
n id1 1 0 4
n id2 2 1 0
n id3 3 2 1
n id4 4 3 2

Figure 5. Control message identifiers.

In a network with n slave nodes, each node can send
a control message (at worst) every n elementary cycles.
Control messages are sent in single shot transmission
mode, this means that in case arbitration is lost, all nodes
retrieve (i.e., do no retransmit) their control message.

Admission requests parameters are encoded in the
fields of the control message as follows. The type of the
stream (periodic/sporadic) is encoded in the p/s field. The
request type (admit new stream, remove stream, modify
stream attributes) is encoded in the 2 bits of the op field.
The identifier of the (new, removed or modified) message
stream is mapped in the corresponding msg ident field.
Finally, message attributes, such as length and period or
worst case interarrival time, are encoded in the remaining
bits. Please note that the message categories of Figure 6
include both hard and firm type messages in the same class
(hard message must have higher priority identifiers).

m_id lawnode p/os/n s/o

Controlb7 b5..b1 b0 2 6

normal−reservation

011 0 op msg ident othermsg id

011 1 opnode msg ident other (timing attrib.)p/s

p/s overload handling

b7b6 b5..b0 64

identifier

b10..b8

type

message body

b7..b0

001 bitmap

b7b6 b5..b0 8 2 1 1 52 Trigger

Data

real−time periodic101 00 msg id data

best effort sporadic

101 01 real−time sporadicmsg id data

11− data

101 10 msg id data

best effort non−RTmsg id

Figure 6. Message formats.

5.2 Schedulability analysis
In [2] the authors perform schedulability analysis of

both periodic and aperiodic messages by exploiting time-
line analysis on a cycle by cycle basis. This results in an
iterative schedulability test, which can hardly be used at

runtime. A new and faster admission test can easily be ob-
tained by simplifying the schedulability analysis with the
assumption that the worst case length of the periodic mes-
sage schedule does not depend on the cycle instance. To
this purpose, we assume the synchronous window to be of
constant size LSW and the asynchronous window of a cor-
responding worst case size LAW. Such an assumption has
been previously exploited for scheduling real-time mes-
sages in FIP buses by Pedro and Burns [5]. Our exper-
iments will give an estimate of the additional pessimism
introduced by this assumption in the FTT-CAN case.

We assume that Earliest Deadline (EDF) is used for
scheduling periodic streams by the master node and spo-
radic streams (if admitted) are scheduled in the asyn-
chronous window based on their identifiers, which im-
plies a fixed priority scheduling mode. Both schedulabil-
ity analysis and the overload management protocol have
been defined based on these assumptions.

It is possible to compute the minimum width of the
synchronous window LSW H required for scheduling the
NH

syn hard type periodic messages by solving the EDF
equation in (1) for the window size L as

LSWH = Pec ∗ Σ
NH

syn

i=1

Ci

Pi
+ Lidle

The minimum lenght of the synchronous window that
is required for scheduling all periodic messages is:

LSW = Pec ∗ ΣNsyn

i=1

Ci

Pi
+ Lidle

When considering the worst case interference from
higher priority messages, it is possible to compute the
minimum required length for the asynchronous window
allowing the transmission of hard type traffic (LAW H)
and the minimum length for sending all asynchronous
traffic before the deadlines.

LAWH can be computed as follows. Suppose a mes-
sage belonging to the i-th asynchonous stream becomes
ready at t = 0. First, we compute the maximum number
of elementary cycles αi that can be safely awaited on the
bus before the i-th asynchronous message is transmitted
without violating its deadline.

αi =
⌊

Di − Ci

Pec

⌋

The number of higher priority requests that can possi-
bly prevent the transmission of the i-th message stream is
given by all higher priority messages arriving in the in-
terval [−Ltm − Lctrl − 2Lidle − LSWH , αiPec], where
the term Lidle needs to be doubled because asynchronous
messages can be blocked (at most) once, for the time it
takes to send a lower priority message (Lidle in the worst
case). Therefore, the number of higher priority requests is

⌈
αi ∗ Pec + Ltm + Lctrl + 2Lidle + LSWH

mitj

⌉
(2)

If these requests must be served in at most αi cycles,
then the minimum width of the asynchronous window is

LAWH
i =

Σjεhpi

⌈
αi∗Pec+Ltm+Lctrl+2Lidle+LSW H

mitj

⌉
Cj

αi
(3)

The limit value LAW H
i is obtained by considering the

timing requirements of the i-th stream only. The worst
case constant value of LAW that can possibly satisfy the
requirements of all hard type streams is

LAWH = max
i=1..NH

asyn

(LAWH
i)

If the idle interval is included in the expression of LAW,
then it is

LAWH = max
i=1..NH

asyn

(LAWH
i) + Lidle

The width of the asynchronous window for all aperi-
odic (hard and soft type) tasks can be approximated by
an expression, which does not depend from LSW . In or-
der to obtain a simple formula that can be quickly com-
puted we need to eliminate the term LSW from formula
(3). Since our objective is to find the guarantee condition
assuming a constant size for the asynchronous and syn-
chronous windows LAW and LSW, the LSW term can be
easily eliminated:

LSW = Pec − Ltm − Lctrl − LAW

Furthermore, in order to allow solving the equation in
closed form, we need to drop the ceiling expression from
it. This can be easily obtained by maximizing equation 2
with

αi ∗ Pec + Ltm + Lctrl + 2Lidle + LSW

mitj
+ 1

and, substituting LSW

(αi + 1) ∗ Pec + 2Lidle − LAW + mitj
mitj

Solving equation 3 for LAW, after the substitutions that
account for our pessimistic and simplifying assumptions,
we obtain the admission test for each firm-type aperiodic
messages stream i at run-time.

∀i LAWi =
Σjεhpi

Pec(αi+1)+2Lidle+mitj

mitj
Cj

αi + Σjεhpi

Cj

mitj

(4)

Hence, LAW can be obtained as

LAW = max
i=1..Nasyn

(LAWi)

and again, if the idle interval is included in the expression
of LAW then it is

LAW = max
i=1..Nasyn

(LAWi) + Lidle

In order to guarantee all hard type messages it must always
be (guaranteed offline):

LAWH + LSWH + Ltm + Lctrl ≤ Pec

A similar test can be performed on-line in order to check if
an overload condition is in progress for firm type message
streams. If the requested synchronous and asynchronous
windows for hard type messages can be guaranteed by the
system, the corresponding values define the guaranteed
synchronous and asynchronous windows as LSW gua and
LAW gua respectively.

5.2.1 Admission rules

Considering the schedulability tests in the previous sec-
tion, the proposed admission protocol can be outlined
as follows. LAW gua and LSW gua are the guaranteed
minimum width for the asynchronous and synchronous
window respectively. Additional requests may arrive at
runtime for both synchronous and asynchronous streams.
If accepted, those requests increase the minimum width
of both synchronous and asynchronous windows respec-
tively at LSW req and LAW req (Figure 7). The new re-
quirements may or may not be safely guaranteed.

1. when a periodic message request arrives, the cor-
responding new minimum synchronous window
LSW req and the available time for synchronous re-
quests LSW avail(1) are computed. If LSW req >
LSW avail there is an overload situation on periodic
messages;

2. if a new sporadic message arrives, LAW avail(2) is
similarly computed. If LAW req > LAW avail there
is an overload situation in progress on sporadic mes-
sages;

6. Overload management

Dynamically admitting new firm type streams in the
system and/or dynamically changing the time parameters
of guaranteed streams, implies the possibility of an over-
load situation. Hence, an overload management proto-
col must necessarily complement our dynamic admission
control strategy.

Our choice is to let slave nodes manage (and possi-
bly recover from) the possible overload rather than having

1

LSW avail = Pec − Ltm − Lctrl − LAW req

2

LAW avail = Pec − Ltm − Lctrl − LSW req

EC Pec

trigger
message

asynchronous
messages

Ltm L LAW = LAW
guaH

synchronous
messages

gua
LSW = LSW

HLAW req LSW
req

ctrl

Figure 7. Extending the asynchronous and
the synchronous windows beyond the guar-
anteed amount.

a centralized and possibly complex strategy for overload
handling in the master. The master node is only responsi-
ble for signalling slaves of an existing overload situation
by using the trigger message (p/o field for overload on pe-
riodic streams, s/o for overloads on sporadics).

The selection of the stream to be removed requires
a simple agreement protocol among slave nodes. Once
again, the standard CAN arbitration mechanism is ex-
ploited to this purpose. Slave nodes perform recovery
from overload by removing some of their streams from
the master tables. Control messages are used to signal the
master the decision of dropping one of the streams sent
by the slave. Among all the slaves that have firm-type
streams, our algorithm selects the lowest priority stream
that, once removed, can possibly restore schedulability.

Selection of the stream to be removed depends upon
the type of overload, since periodic streams are scheduled
according to an earliest deadline policy by the master and
sporadic messages are scheduled according to their (static)
priorities by the native CAN protocol.

If the system is experiencing an overload on periodic
streams, then recovery from overload can be obtained by
simply lowering the periodic load, starting from highest
identifier messages (which is the simplest way for lower-
ing the system load in caes of EDF scheduling). If, how-
ever, the overload occurs on sporadic messages, then it
is necessary to compute the highest priority message that
can possibly miss its deadline. Formula (4) is iteratively
applied for increasing values of the priority index i, un-
til the priority threshold iov is obtained. Since removing
sporadic streams with priority lower than the computed
threshold would not affect schedulability of the stream
with priority iov (sporadic messages are scheduled with
fixed priorities), the slave nodes must be informed of the
lowest priority of the sporadic streams that must be con-
sidered for rejection. In this case, the trigger message that
signals the occurrence of overload, also contains indica-
tion of the lower bound on the priority of the messages
considered for rejection (node field).

The selection of the lowest priority stream is made by
using control messages. As soon as the master node de-
tects an overload and signals its occurrence with the trig-
ger message, all the slaves with firm-type streams encode
the lowest priority (higher than iov in case of an overload

on sporadic messages) among their firm-type messages
low firm idi in the message identifier of the next control
message: The lowest message priority (highest identifier)
is encoded in the msg id subfield and results in the lowest
control message identifier (highest CAN priority), which
wins the contention.

msg id subfi = nmax − low firm idi

If an overload is detected and signalled (by the master
node) in the trigger message, then it makes no sense to
allow control messages from slave nodes in the same ele-
mentary cycle. To prevent such messages, the master node
sends a dummy control message, with priority higher than
any other possible control message from the slaves, right
after the trigger message (in the same elementary cycle -
see also the example Figure 8). Please remember that con-
trol messages are always sent in single shot transmission
mode (i.e. no retransmission on error or arbitration loss).

Removal of a single message might not be sufficient
for recovery. After the recovery cycle, all slaves assume
that the overload situation is still in progress and prepare
for contention and removal of the next message by repeat-
ing the procedure in the following elementary cycle. If
this assumption is correct, then the master node keeps the
overload bit set in the following cycle and a new recovery
iteration is performed.

However, it may also be that normal schedulability
conditions are recovered after just one cycle or the pri-
ority threshold that slaves must consider for rejection is
changed. In the first case, the overload bit is reset in the
following trigger message and the master node sends the
dummy preventing transmission of control messages from
slaves. In case the overload is still active, but the priority
threshold is changed, then the master keeps the overload
bit set and signals the new priority threshold in the trigger.
At this point, slave nodes need to recompute their con-
trol messages, based on the new priority threshold. Once
again, an extra cycle is granted for this activity by send-
ing a dummy control message. A simpler protocol is also
possible. In this case, slave nodes assume normal schedu-
lability is recovered after each cycle. It is the master re-
sponsibility to inform slaves in case the overload situation
is still active, by keeping the overload bit set in the fol-
lowing cycle and sending the dummy control right after.
In this case, one message is dropped every two elemen-
tary cycles, until a guaranteed scheduling for all firm-type
messages is obtained. The first protocol has been selected
for implementation in our experiments.

The following example explains the sequence of ac-
tions that take place in a sample recovery procedure. The
CAN network consists of four nodes, S1, S2, S4, S6.
Node S1 outputs (periodic) message streams with iden-
tifiers 2,5,19,23; messages with identifiers 4,15 are sent
by node S2; 11,30 by node S4 and 20,21,25 by node S6.

The corresponding lowest priorities are: message with
id=23 for S1, id=15 for S2, id=30 for S4, and id=25 for S6.
If messages are labeled with the corresponding identifiers,

1

2

Node S drops message w. id=304

S1 S2 S4 S6

1

S1 S2 S4 S6

M

id=4,15id=2,5,19,23 id=11,30 id=20,21,25

2

Node S wins the contention4

Node S wins the contention6

TM TM TM TMCtr

The overload situation is detected

3 4

M

id=4,15id=2,5,19,23

ctrl_id=1 ctrl_id=6

id=11 id=20,21,25

All nodes encode the highest IDs in ctrl messages

Master node sends the control dummy

EC

Ctr IdleIdle

4

3

more overload signalling

Node S drops message w. id=256

Master node sends the control dummy
(recovery from overload)

Figure 8. System overload management.

then Pm15 > Pm23 > Pm25 > Pm30 (lower id means
higher priority). If an overload situation is detected, all
nodes try to transmit a control message that corresponds
to an attempt at removing the corresponding stream:
msg id subf1(m23) = 9, msg id subf2(m15) = 17,
msg id subf4(m30) = 2, msg id subf6(m25) = 7. The
situation is represented in Figure 8 where node S4 wins
the contention with the control message (characterized by
a msg id subf = 2) corresponding to the stream with
identifier 30 (lowest priority among all firm-type streams).
Removal of message with id = 30 is not sufficient for re-
covery from overload, hence in the following elementary
cycle the master keeps the overload bit set in the trigger
message and the slave nodes send another set of control
messages in order to determine the next message to be
removed, with node s6 winning the contention for mes-
sage with id = 25, which is removed in the following
cycle. After this contention round, the overload is cleared
and the master signals recovery from overload by clearing
the corresponding bit in the following trigger message and
sending the dummy control message right after it.

7. Experiments

This section contains the results of two sets of exper-
iments (performed by simulation on a purposely written
software tool). The first set aims at showing the behav-
ior of the algorithm in overload conditions, proving that
it successfully restores a schedulable condition when re-
quests for new timing attributes of messages or new mes-
sage streams arrive. The second set of experiments pro-
vides an evaluation of the additional pessimism intro-
duced in the schedulability analysis formula by the ap-
proximations that simplify its evaluation at run-time.

7.1 Handling overload conditions
The following experiments have been performed to

show the behavior of our admission protocol in overload
conditions. The first case features an application example
where the minimum interarrival and deadline attributes for

id size mit/dline alt. dline 1 alt. dline 2
1 135 32/5
2 135 32/12 16/9
3,4 135 32/12
5 135 11/11
6 135 20/11
7,8,9 135 24/11
10,12,13,14
31,32,33,36 (*) 135 48/9 32/16 24/24

Table 1. Message set in the first example.

the newly arrived streams are subject to negotiation with
the schedulability manager in the master node. The ab-
stract message set (represented in Table 1) is loosely in-
spired by the set in the SAE benchmark. Message stream
2 and streams with identifiers from 10 to 33 feature alter-
nate possible values for the minimum interarrival time and
deadline attributes. Our admission control protocol takes
advantage of this opportunity by admitting new streams
with relaxed timing constraints and missing no deadline.
In the experiment (Figure 9) the starting message set in-
cludes messages with identifiers from 1 to 9. The load of
the system is progressively increased by letting message
stream change their attributes (such as stream 2 at time
64) or new streams enter the system (message streams 12,
31, 32, 33 at time 96 and message streams 11, 13, 14, 36
at time 192).

As shown by the graph in Figure 9 where time is on
the X-axis and the sum of the reciprocal of the deadlines,
computed over all the messages in the set (an indication
of the system load/criticality) is on the Y-axis, our algo-
rithm negotiates relaxed interarrival/deadline constraints
or rejects new streams altogether and keeps the system
schedulable at all times. Please note how new streams
are admitted one at a time, with a delay of (at least) one
elementary cycle, because of the need for asking admis-
sion with a control message sent to the master node. The
load of the system increases until the maximum guaran-
teed value (dotted line) is obtained. On the contrary, if the
streams had been just sent in a FTT-CAN implementation
without admission control, 27 deadline miss would have

id size mit/dline arrival time
1 135 32/5
2 135 16/9
3,4 135 32/12
5 135 11/11
6,7,11,14 135 24/9 96
20(*) 135 20/11
21,25,26(*) 135 24/11
22,30(*) 135 24/11 192
27(*) 135 24/9 192

Table 2. Message set in the second exam-
ple.

occurred.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

FTT with admission control

without admission control

change msg 2

add msgs 12,31,32,33

add 12

overload
change 12’s param

add 31
overload

change 31’s param

time

load(*)

missed deadlines

Figure 9. Handling overloads caused by
changes in the timing attributes of mes-
sages.

In the second experiment (Table 2 and Figure 10),
we tested the behavior of the admission control scheme
against the arrival of new streams with fixed timing at-
tributes. Message streams 1 to 5 and 20, 21, 25, 26 were
assumed as the base load and new message streams were
added at time 96 and 192. In this case there was no
possibility of adjusting the timing oparameters, therefore,
rejected streams were simply dropped from the system.
Once again, the graph shows how the algorithm keeps the
system load under the guarantee condition (at the price of
some pessimism). Had the messages been sent without
an admission test, 15 deadline miss would have occurred
after time t=96 units.

7.2. Evaluation of the pessimistic assumptions
We performed four sets of experiments comparing our

algorithm with FTT-CAN without admission control in or-
der to evaluate the additional pessimism introduced in the
guarantee analysis by the approximations in our method.
All message sets have been constructed by varying the av-
erage bus utilization U defined as U = Ci/Ti. The first
two sets have been constructed as follows:

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

with admission controlload(*)

time

deadline miss

without admission control

add msg 7

add msgs 6,7,22,27 add msgs 11,14,30

overload
remove msg 32

Figure 10. Handling overloads caused by
new message streams.

0

50

100

150

200

250

300

350

400

450

500

26 28 30 32 34 36 38 40 42

re
je

ct
ed

 m
sg

s

aperiodic load

500K adm ctrl
500K standard

1M adm ctrl
1M standard

4% 1%

Figure 11. Overload management: syn-
chronous load=30%.

0

50

100

150

200

250

300

350

400

450

500

24 26 28 30 32 34 36 38 40

re
je

ct
ed

 m
sg

s

aperiodic load

aperiodic load

500K adm ctrl
500K standard

1M adm ctrl
1M standard

5%
4%

Figure 12. System overload management.

• The periodic load consists of a set of periodic streams
with deadlines equal to the period. This load amounts
for a bus utilization Usyn. The synchronous utiliza-
tion is Usyn = 0.3 and the asynchronous utilization
Uasy (plotted on the X axis) goes from 0.2 to 0.5 with
steps of 0.05. Message periods are randomly cho-
sen between 2 and 10 elementary cycles for the first
graph (Figure 11) and between 11 and 20 EC for the
second graph (Figure 12). The transmission times
have been randomly assigned by selecting a message
size between 55 and 135 bits (except for the last mes-
sage, which was truncated at the value resulting in the
desired U). For each step 500 experiments have been
performed;

• the message set is ideally scheduled by EDF (dead-
line ordering);

• the limit value for LAW is computed by using our
approximate (on-line) algorithm and the exact algo-
rithm defined in [2];

• a sporadic set is generated with deadline equal to the
minimum interarrival time and utilization Uasy;

• the asynchronous set is tested with the standard ad-
mission control algorithm (labelled as standard) and
our algorithm (labelled as dynamic) checking if the
set is schedulable.

The third graph (Figure 13) has been obtained by only
changing the synchronous utilization and setting it to
Usyn = 0.4 (periods between 2 and 10 elementary cycles,
similar results have been obtained for the case of longer
periods). As shown by the graphs, the impact of using
a simpler and more pessimistic admission control is rela-
tively small, ranging from 1% in the best case to about 7%
of less asynchronous utilization in the worst case. On the
other hand, the benefits in terms of execution time (of the
admission algorithm) are substantial, to the point of allow-
ing their execution on-line, in low-end micro-controllers.
The pessimism is lower for higher bit rates, which can
be explained by the fact that, for the same value of P ec,
the relative proportion of message durations, and conse-
quently of Ltm, Lidle and Lctrl, are lower, leading to re-
duced pessimism.

8 Conclusions

The paper presents a new protocol for admission con-
trol of firm type messages and handling of overload con-
ditions, based on the FTT-CAN proposal. The admission
control protocol is based on a worst-case message guar-
antee condition that allows for a fast implementation on
inexpensive microcontrollers. Together with an overload
recovery scheme, it allows for guaranteed bandwidth and
bounded response time for admission requests, and grace-
ful recovery from temporary overload of event-based mes-
sages. The proposed approach has been implemented and
validated by means of experiments showing the correct
behavior of the approach in spite of some pessimism (be-
tween 1% and 7% in the utilization of asynchronous mes-
sages.)

0

50

100

150

200

250

300

350

400

450

500

20 22 24 26 28 30 32 34 36 38

aperiodic load

40

re
je

ct
ed

 m
sg

s

aperiodic load

500K adm ctrl
500K standard

1M adm ctrl
1M standard

7%
4%

Figure 13. System overload management.

References
[1] Robert Bosch GmbH. CAN Specification Ver-

sion 2.0, September 1991.
[2] L. Almeida, P. Pedreiras, J.A. Fonseca. “The

FTT-Can Protocol: Why and How”. IEEE Trans-
action on Industrial Electronics, Vol. 49, No. 6,
December 2001, pages 1189-1201.

[3] C.L. Liu and J. Layland, Scheduling Algorithms
for Multiprogramming in a Hard Real-Time En-
vironment, J. Assoc. Comput. Machinery 10(1),
174-189 (1973)

[4] T. Nolte, M. Nolin, H. Hansson. “Server-based
Scheduling of the CAN bus”, in 9th IEEE In-
ternational Conference on Emerging Technolo-
gies and Factory Automation, Lisbon, Portugal ,
September 2003.

[5] P. Pedro, A. Burns ”Worst Case Response Time
Analysis of Hard Real-Time Sporadic Traffic in
FIP Networks”, in Proceedings of 9th Euromicro
Workshop on Real-time Systems, Toledo, Spain,
pp. 5-12, 1997

[6] K. Tindell and A. Burns, “Guaranteeing Message
Latencies in Controller Area Networks”, in Pro-
ceedings of the 1st International CAN Confer-
ence, Maiz, Germany, Sept. 1994

[7] ISO/WD11898-4. Road Vehicles - Controller
Area Network (CAN) - Part 4: Time-Triggered
Communication, December 2000.

[8] M. Di Natale, “Scheduling the CAN Bus with
Earliest Deadline Techniques”. Proceedings of
the IEEE Real-Time Systems Symposium. 2000.

[9] Zuberi, Khawar, Kang Shin. “Scheduling Mes-
sages on Controller Area Network for Real-
Time CIM Applications”. IEEE Transactions on
Robotics and Automation, vol.13. 1997

[10] P. Mart, J. M. Fuertes, G. Fohler, K. Ra-
mamritham: ”Improving Quality-of-Control Us-
ing Flexible Timing Constraints: Metric and
Scheduling Issues.” IEEE Real-Time Systems
Symposium 2002:

	chapterStart:
	chapterStartFooter: 0-7803-8734-1/04/$20.00 ©2004 IEEE.

