
Decentralized and Dynamic Bandwidth Allocation in
Networked Control Systems

Ahmad T. Al-Hammouri1, Michael S. Branicky1, Vincenzo Liberatore1,
and Stephen M. Phillips2

1Case Western Reserve University 2Arizona State University
Dept. of Electrical Engineering and Computer Science Dept. of Electrical Engineering

Cleveland, Ohio 44106 USA Tempe, Arizona 85287 USA
{ata5, mb, vl}@case.edu stephen.phillips@asu.edu

Abstract

In this paper, we propose a bandwidth allocation scheme
for networked control systems that have their control loops
closed over a geographically distributed network. We first
formulate the bandwidth allocation as a convex optimiza-
tion problem. We then present an allocation scheme that
solves this optimization problem in a fully distributed man-
ner. In addition to being fully distributed, the proposed
scheme is asynchronous, scalable, dynamic and flexible. We
further discuss mechanisms to enhance the performance of
the allocation scheme. We present analytical and simulation
results.

1. Introduction

We are witnessing technological advances in VLSI, in
MEMS, and in communication networks that have brought
devices with sensing, processing, actuating, and communi-
cation capabilities. These devices have contributed to the
formation of distributed control systems over communica-
tion networks, which can be used to monitor and to control
the physical world around us, e.g., [2]. Sensors generate
a stream of sensed data and communicate it over a network
to controllers. Controllers process the samples of the sensed
data and generate appropriate control signals to be delivered
over the network to actuators. Actuators transform control
signals into actions that affect the physical world.

Distributed control systems are often implemented over
local and proprietary networks [6]. Recently, open-standard
networks have emerged as a suitable and convenient com-
munication media for distributed control due to lower costs,

higher speeds, and easier installation and configuration
[10]. However, distributed control implementations over
the open-standard networks are still confined to local- and
limited-area networks. In contrast, we address distributed
control systems over wide-area and geographically dis-
tributed networks. More specifically, we lay foundations
for closing the feedback control loops over IP networks.
We envision that one day a term like CoIP (Control over
IP) will become as common as VoIP (Voice over IP). In this
regard, Liberatore has proposed in a recent paper an end-to-
end algorithm, which integrates play-back buffers, adaptive
sampling, and control strategies, to enable control systems
to adapt to varying levels of network service [14].

In this paper, we propose a scheme that efficiently al-
locates the network bandwidth among several control sys-
tems. Network bandwidth arises as a crucial issue if dis-
tributed control is to be deployed ubiquitously over IP net-
works. This is true because when several processes com-
pete for a finite resource, such as network bandwidth, and
no proper coordination exists, congestion is a common con-
sequence. In any bandwidth allocation scheme, a term that
always accompanies efficiency is fairness. Our objective is
thus to fairly allocate the bandwidth to avoid congestion and
to meet each system’s requirement as best as possible.

The idea presented in this paper is that control systems
vary their sampling periods (thus their bandwidth consump-
tion) based on the congestion level fed back from the net-
work. Our proposed scheme has the following features:

• It allocates the bandwidth in a way to ensure stability
of all control systems, if feasible.

• It allocates the bandwidth in a way to attain the maxi-
mum aggregate performance of all control systems.

• It makes use of network bandwidth efficiently; con-
trols congestion, thus minimizes delays and losses; and
achieves fairness by fulfilling performance objectives
of different control loops.

• It provides a fully distributed, an asynchronous, and a
scalable solution. Each node executes an independent
algorithm using local information with no central man-
aging entity. The approach scales up as the number of
controlled systems and/or the size of the network in-
crease.

• It is dynamic and flexible. It dynamically reallocates
the bandwidth as different control systems acquire and
release the network.

In the literature, it has become common to refer to dis-
tributed control systems implemented over communication
networks as networked control systems (NCS) [15,26], and
so we use this term throughout the paper.

The roadmap of this paper is as follows. In Section 2, we
contrast our work with related work. In Section 3, we for-
mulate our problem mathematically as a convex optimiza-
tion problem, and we explain its distributed implementa-
tion. In Section 4, we model the interaction between the
network and control systems as a linear dynamical system,
and we study its performance. In Section 5, we present our
experimental methodology, and experiments to evaluate the
proposed scheme. We conclude the paper in Section 6.

2. Related Work

The issue of bandwidth management in NCS has gained
considerable research attention; see for example [3, 22] and
the references contained therein. All of such research ef-
forts have focused on bandwidth scheduling in limited (lo-
cal) area networks, e.g., in a car, in an airplane, or in a fac-
tory. Several reasons hinder the extension of such band-
width scheduling schemes to Wide Area Networks (WANs)
domain. These schemes usually require time synchroniza-
tion among the different devices in the network. The allo-
cation schemes are either static or dynamic. Static schemes,
where allocation is determined pre-run, lack flexibility and
adaptability to dynamic changes. Dynamic schemes, on the
other hand, require centralized implementations. In this pa-
per, we propose a bandwidth allocation scheme for NCSs
working over WANs that is asynchronous, dynamic and
flexible, and fully distributed. To the best of our knowledge,
there has been no prior research into bandwidth allocation
for NCSs over WANs.

In our scheme, NCSs adapt their bandwidth usage by
varying their sampling periods so as to avoid congestion in
the network, and to preserve high performance level. It is
worthwhile here to evaluate the ideas presented in [8] and in
[22]. In [8], the authors proposed an algorithm to adapt the

sampling period of controlled systems implemented over a
CAN bus based on two factors, network load and stability
threshold. The algorithm per se is special to CAN in the way
it determines the network load. Moreover, the heuristic of
increasing and decreasing the sampling period has no math-
ematical justification. The algorithm proposed in [22] uses
the network’s available bandwidth and the error in each sys-
tem’s state to adapt the sampling period. However, the paper
fails to discuss an important implementation issue: mea-
suring the occupied bandwidth (to be used along with the
network’s capacity to infer about the available bandwidth).
In this paper, we introduce an approach that relies on solid
mathematical foundations, and we discuss its implementa-
tion details over IP networks. We also present results from
a network simulator that was extended to simulate control
systems [4].

3. Problem Formulation

3.1. On the Wire

Figure 1 shows a configuration of a single NCS in which the
feedback loop is closed over a network. In general, the sen-
sor samples the values of physical quantities, writes them
in a packet, and sends the packet to the controller. The con-
troller examines the received sample to generate a control
signal that is then sent to the actuators.

The time interval between two sample packets is called
the sampling period, and it is denoted by h. In other words,
the sensor sends one packet containing sample data every h
seconds. The reciprocal of the sampling period,

r =
1
h

, (1)

is the rate of transmission from the plant to the controller.
The rate can be similarly defined in the reverse path from
the controller to the plant. Although, in principle, the rates
in the two paths could differ, in most applications, the two
rates are identical. The transmission rate is the amount of
bandwidth resources that a particular plant-controller pair
consumes. If the rate exceeds the end-to-end available

Sensor

Controlled System

Actuator

Network Controller

Figure 1. A networked control system with
one controlled system (a.k.a. plant) and one
controller.

bandwidth, the network is congested, and the communica-
tion is then characterized by packet losses, delays, and jitter.
In principle, the rate should be small enough to avoid con-
gestion. However, an NCS typically benefits from higher
sampling rates. For example, the physical behavior tends
to track more closely the intended reference behavior if the
sampling rate is higher. In extreme circumstances, the sam-
pling rate is so low that the physical system becomes unsta-
ble, in which case even small perturbations can cause mas-
sive breakdowns. Hence, the sampling rate r must strike a
balance between network utilization and intended physical
behaviors. The sampling rate is thus a critical tuning factor
in NCSs.

The effect of the transmission rate r on the physical sys-
tem dynamics is often captured by a utility function, U(r).
The utility value U(r) expresses the degree to which a par-
ticular system can benefit from sampling rate r. In general,
the utility function is a monotonically increasing function
of the rate r, which reflects the fact that higher sampling
rates lead to better control performance. In practice, the
utility function is also often a strictly concave function of
r, which reflects a law of diminishing returns as the rate
increases. Finally, the utility function is defined only for
r ≥ rmin, where rmin is the minimum rate below which the
system becomes unstable. To carry out mathematical anal-
ysis easily, we pose an extra condition on U(r) in which we
require U(r) to be doubly differentiable. Figure 2 shows
two generic examples of utility functions associated with
different applications. In the NCS literature, quadratic and
exponential utility (performance) functions are commonly
used [5].

3.2. Optimization Formulation

Defining a fair allocation to be the one that maximizes the
sum of the utility functions of individual NCSs (the aggre-
gate benefit of all NCSs), we formally state our objective as
follows:

U
(r

)

transmission rate,r, ([bits or packets]/sec)

U1(r)
U2(r)

Figure 2. Examples of two generic utility
functions.

Determine a transmission rate ri of each NCS i so as to max-
imize the sum of utilities ∑i Ui(ri), subject to (i) each sys-
tem i’s stability constraint ri ≥ rmin,i, and (ii) each link l’s
capacity constraint ∑i∈S(l) ri ≤Cl . Or, in compact form:

max ∑
i

Ui(ri), (2)

s. t. ∑
i∈S(l)

ri ≤Cl , l = 1, . . . ,L,

and ri ≥ rmin,i,

where S(l) is the set of NCSs whose communication loops
use link l, Cl is the capacity of link l, and L is the total
number of links in the network. In this formulation, we
assume that the communication loop for each NCS can use
link l only once. This assumption is always valid if all links
are full duplex (in which case, forward and backward traffic
do not interfere).

Due to the concavity characteristic of U(r), Equation (2)
is a convex optimization problem, which means it can be
solved quickly and efficiently to yield a global, optimal so-
lution [21]. However, our objective is to solve this program
with a distributed approach with no centralized coordina-
tion.

3.3. Distributed Implementation

Due to its convenient structure, Equation (2) can be decom-
posed into separable subproblems [17]. The solution can
then be implemented in a distributed fashion, whereby in-
dividual controlled systems and links execute independent
algorithms. This solution is achieved by considering a dual
version of (2) that incorporates the Lagrange multipliers
for link capacity constraints. We summarize next the dis-
tributed algorithm and the protocol.

To facilitate this, a special header field is introduced in
the sensor and the controller packets. This field is meant to
carry the congestion information from links back to plants.
Each link l computes a congestion level, pl , based on local
information, such as the aggregate incoming traffic and/or
the queue length. When the sensor generates a packet to
carry the sampled data, the plant initializes the value of this
field to zero. As the packet traverses network links in the di-
rected path form the sensor to the controller and back to the
actuator, each link adds it current value of pl to whatever
value has accumulated in the field. Thus, when the control
packet arrives at the plant, this special field would contain
the total sum of pl values of all individual links along the
directed path from the sensor to the controller and back to
the actuator. Upon receiving the controller packet, the ac-
tuator applies the control signal and the sensor regulates its
sampling (sending) rate r based on the fed-back congestion
information as follows:

r(pt) = min{max
{

U ′−1(pt),rmin
}
,rmax}, (3)

where

• pt is the value of p in the received controller packet,
which is the sum of pl values of all the links along the
path from the plant to the controller and back to the
plant;

• U ′−1 is the inverse of the derivative of the utility func-
tion;

• rmin is the minimum transmission rate that satisfies the
stability condition of the plant; and

• rmax is the maximum sampling rate and/or the max-
imum transmission rate a plant can use, which may
stem from inherent hardware limitations of the sensor.

Based on the newly computed r(pt), the value of h is then
calculated according to (1), which defines the sleeping time
before generating the next sample.

In [13,16], a similar approach was applied to flow control
in ATM and in IP networks, respectively. However, neither
did the authors analyze the effect of communication delays
between sources and links on the convergence of the algo-
rithm, nor did they address the issue of steady-state back-
log in queue lengths. Actually, [16] only suggests (with no
mathematical analysis) that the algorithm’s step size must
be chosen sufficiently small. The authors of [12, 19, 24]
addressed the issue of delay only for special families of
utility functions. In [18], the author analyzed the robust-
ness of the solution in the presence of delays. Although the
authors in [9] analyzed the steady-state backlog in queues,
they did the analysis only for the case of the TCP conges-
tion algorithm. None of these previous studies addressed
the issue of steady-state backlog in queues in the context
of optimization-based congestion control. Here, we use a
similar approach as in [9] to design the link function for
computing pl , taking into account both delays and steady-
state backlogs. Unlike [9], where the authors gave a single
set of parameters, we obtain a complete region of appropri-
ate parameters for the link function. This provides network
designers flexibility in choosing more robust and resilient
algorithm behaviors.

Introducing the header field in the sensor and controller
packets to carry the value of pl , we assumed that routers are
aware of and can manipulate this header. Also, we assumed
that the overhead for this field is negligible (at most 64 bits
for a double-precision floating-point number) compared to
the size of each packet. Such assumptions are always im-
plied for new congestion control protocols; see for exam-
ple [11]. However, if practical implementations dictate oth-
erwise, the pl value in our protocol can be quantized and
encoded by the two ECN bits that already exist in transport
protocols, such as what has recently been proposed in [23].

4. Link Queue Controllers

In this section, we first model the interaction between con-
trolled systems and links in the proposed allocation scheme
as a time-delay dynamical system. Then, we design con-
trollers for link queues to enhance the performance of the
scheme. This gives rise to two types of feedback loops
closed via the network. The first loop is for NCSs with dis-
tributed sensors, actuators, and controllers. The second is
the loop of the developed model for the interaction between
NCSs and links. Our focus in this paper is on the second
loop, where we design controllers to enhance the perfor-
mance of the bandwidth allocation algorithm among several
NCS loops.

4.1. Modeling NCS-Queue Interaction

In practical implementations, routers connect two or more
network links. So, the link algorithm is actually executed
at the router that is deployed at the link’s input. Routers
use buffers to hold incoming packets while servicing others.
Congestion at a link causes the buffer to build up and possi-
bly to overflow. This results in long delays, jitter, and packet
losses. The aim is to stabilize the buffer’s queue around a
controllable small size greater than zero. This has a two-
fold advantage. First, a stable, small queue size eliminates
excessive delays, jitter, and losses. Second, a queue size
greater than zero avoids the scenario when network links
are empty and underutilized because the queue will always
have packets to transmit. Because of all of this, we study
the performance of the allocation algorithm in terms of the
queue length.

We model the interaction between N NCSs and a sin-
gle bottleneck link. We assume that the incoming aggregate
rate, ∑N

i=1 ri(t), at the bottleneck link is always larger than
the capacity C. Based on this assumption, the rate of change
in the queue length, q̇(t), at the link is related to the incom-
ing aggregate traffic and the capacity of the link as follows:

q̇(t) =
N

∑
i=1

ri(t)−C. (4)

For simplicity, we assume that delays are constant and
homogeneous among all NCSs. However, when we present
our simulations, we allow for varying and different delays.
We denote the delay from any plant to the queue by dpq,
and the delay from the queue to any plant by dqp. At time
instance t, plant j receives a new value of p(t), and ac-
cordingly transmits packets at rate r j(p(t)). This affects the
queue length after a delay dpq, whereby the queue computes
a new value of p(t). This new value of p(t) reaches plant
j after a delay dqp. As a result, we obtain the following
set of coupled equations (Equation (6) is same of (3) when

neglecting the boundary conditions of rmin and rmax):

q̇(t) =
N

∑
i=1

ri(t−dpq)−C, (5)

r j(t) = U ′−1
j [p(t−dqp)] , j = 1, . . . ,N. (6)

In general, U(r), and thus U ′−1(pt) could be nonlin-
ear functions. To study the performance of the system de-
scribed by (5) and (6), we linearize both equations around
the operating point (q0,r j0, p0), where q0 is the desired
steady-state queue length, r j0 is the steady-state transmis-
sion rate of plant j, and p0 is the value of p corresponding
to the situation when every plant j transmits at rate r j0. The
corresponding linearized equations are as follows (details
omitted):

δ q̇(t) =
N

∑
i=1

δri(t−dpq), (7)

δr j(t) =
1

U ′′j (r j0)
δp(t−dqp), j = 1, . . . ,N. (8)

For simplicity we define d = dpq +dqp, B j = 1/U ′′j (r j0),

and B = ∑N
i=1 Bi. Combining (7) and (8) then yields

δ q̇(t) =

[
N

∑
i=1

Bi

]
·δp(t−d) = B ·δp(t−d). (9)

The only missing part here is the function that relates
p(t) and q(t), which is the subject of the next subsection.

4.2. P and PI Controllers

We analyze the linearized model (9) in the frequency do-
main [7]. Without loss of generality, we analyze the lin-
earized model’s response when starting from the origin (i.e.,
q(0) = 0, p(0) = 0, and r j(0) = 0) and converging to-
ward the steady-state point defined by (q0,r j0, p0). Since
δq(0) = q(0)− q0 = −q0, the Laplace transform of (9) is
s · δq(s) + q0 = B · δp(s) · e−sd , which after arrangement
gives

δq(s) =
−q0

s
+

B
s
·δp(s) · e−sd . (10)

Figure 3 shows the block diagram of (10), where C(s) is
the Laplace transform of the function that relates p(t) and
q(t) and is called the queue controller.

The closed-loop transfer function is 1/(1 −
BC(s)e−sd/s). For the closed loop to be stable, the roots of
the characteristic equation, i.e., 1−BC(s)e−sd/s = 0, must
lie in the left half of the complex plane.

We next design the controller C(s) to stabilize and
to improve the closed-loop response. Among different
controllers, the simplest are the Proportional (P) and the

q0 dq(s)

dp(s)

−

+
1/s

C(s)B exp(sd)

Figure 3. Linearized Model of NCS-Queue in-
teraction.

Proportional-Integral (PI) controllers. Choosing such a sim-
ple controller algorithm enables the router to process huge
amount of traffic efficiently and in real time.

The transfer function of a P controller is CP(s) = kp, and
that of a PI is CI(s) = kp +ki/s, where kp and ki are the pro-
portional gain and the integral gain constants, respectively.
Setting ki to zero in the PI controller, CI(s), results in a pure
P controller, CP(s). Therefore, we carry out the mathemat-
ical analysis for the general form of the controller, CI(s);
when CP(s) is needed, we just let ki = 0. The benefit of
having a non-zero integral gain, ki 6= 0, is to eliminate the
stead-state error in the queue length (this will become clear
when we present our results later on in the paper)

The characteristic equation with the PI controller be-
comes

s2−B(kps + ki)e−sd = 0. (11)

The goal is then to determine the kp and ki values that result
in a stable-closed loop response. Because of the exponen-
tial term, which originates from the delay in the feedback
loop, Equation (11) has an infinite number of roots. There-
fore, to ascertain the stabilizing values of kp and ki, Equa-
tion (11) needs special treatment beyond the classical tech-
niques found in control theory textbooks [7]. In particular,
we adapt the recent techniques found in [20] to obtain the
complete set of kp-ki values that stabilize the closed loop.
However, our system has the form of an IPD (integral plus
time delay) not of a FOLPD (first-order lag plus time delay),
which the authors analyzed in [20]. Following the material
in [20, Ch. 7], we rework the elaborate analysis for the case
of our system, and we arrive to the following conditions on
kp and ki for a stable closed loop system (details omitted):

• The proportional gain, kp, can take on any value in the
interval (0,π/(2Bd)).

• For each given value of kp = k̂p, the integral gain, ki,
can take on any value in the interval (0,λ), where

λ =
α2

0 cos(α0)

Bd2 ,

and α0 is the solution of

Bk̂p−
α
d

sin(α) = 0

in the interval (0,π/2).

For given values of B and d, sweeping over all values of
kp values inside the range defined above and solving for ki
yields a region of stabilizing kp and ki gains, such as the one
shown in Figure 4.

Obtaining a complete set of kp and ki gives the flexi-
bility to choose values that would result in desired perfor-
mance. Our model contains several sources of inaccuracies
that might cause the performance of the real system to di-
verge form that of the linearized model. These inaccuracies
are due to approximating the flow of discrete packets by a
fluid-based model; linearization of the utility function; as-
suming delays are constant and homogeneous among dif-
ferent NCSs; and assuming the queue length is always > 0.
Thus, it is advisable to choose kp and ki values inside the
stabilizing region rather than at its boundaries because val-
ues inside the region result in a more resilient (in terms of
model parameters) and a more robust (in terms of delay)
controller.

5. Simulations

In this section, we explain the experimental setup, and
we present simulation results. We have conducted exten-
sive experiments to evaluate the previous theoretical analy-
sis. However, given the space limitations of this paper, we
present only a single (yet a demonstrative) experiment.

Simulation Software. We have extended ns-2 [1] by
adding two new agents: NSCSPlant and NSCSController,
which stand for networked-sensing-and-control-systems
plants and controllers, respectively [4]. NSCSPlant is an
abstract agent class, which can be used to instantiate sev-
eral controlled systems, each of which simulates a physical
system. NSCSController can be used to instantiate a con-
troller to control a plant.

k i

kp

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0 0.0001 0.0002 0.0003 0.0004 0.0005

Figure 4. The stabilizing region of (kp,ki) for
B = 1523.8559 and d = 2.0 sec.

With these two ns-2 agents, we can combine the simu-
lation of the dynamics of physical systems and of a commu-
nication network.

Network Topology. Our experiments are based on the
dumbell topology shown in Figure 5. There, all NCSs share
the single bottleneck link that connects the two routers, R1
and R2. Several plants are connected to R1; and their cor-
responding controllers to R2. The links’ bandwidths and
propagation delays are shown in the figure. In Figure 5, d
is chosen to be a uniformly distributed random variable in
the interval [0,50]msec, except for the first plant where d is
fixed to zero, and for the last plant where d is fixed to 50.
Fixing the delays for the first and for the last plants makes
it sufficient to show the results only for these two plants,
and it ensures that the results for the remaining plants to fall
somewhere in between.

Plants and Controllers. In this paper, we confine our fo-
cus to scalar LTI plants and proportional controllers. Each
plant’s state, x(t), evolves according to the following differ-
ential equation:

ẋ(t) = ax(t) + bu(t),

where a and b are constants, and u(t) is the input from
the controller. The sensor samples x(t) at discrete time in-
stances and generates x(t0), x(t1), . . . , x(t j). For each re-
ceived plant sample x(t j), the controller calculates u(t j) as
follows:

u(t j) =−K(R− x(t j)),

where K is the constant controller gain, and R is the refer-
ence point the plant is required to follow.

The authors in [5] proposed a performance measure for
scalar LTI NCSs that is a function of the sampling period,
h. Substituting 1/r in place of h, we obtain the following
utility function for plant i:

Ui(ri) =
ai−biKi

ai
eai/ri .

plant(1)

plant(2)

...
...

plant(n−1)

plant(n)

controller(1)

controller(2)

...
...

controller(n−1)

controller(n)

u(t_j)

−K(R − u(t_j))

R(2)R(1)
180 Kbps/50 msec

1.544 Mbps/ msecd

Figure 5. A single bottleneck topology for ex-
perimental simulation.

Such a utility function satisfies all required conditions men-
tioned at the end of Subsection 3.1. Moreover, rmin is de-
rived in [25] for the same family of scalar LTI NCSs, and is
given by

rmin,i =
ai

ln
(

biKi+ai
biKi−ai

) .

Experimental Setup. We compare the performance of
both a P and a PI controller. The experimental parame-
ters are as follows. The number of plants is N = 50. All
plants have same physical dynamics, ai = 0.01 and bi =
1.0, and all have same corresponding controllers, Ki = 1.5.
All start and end at the same time, tstart = 0.1sec, and
tend = 320.0sec. All packets have a size of 100 bytes.
Based on this, the capacity of the bottleneck link in Fig-
ure 5 is 180Kbps/(100 ·8) = 225 packets/sec. Each plant’s
transmission rate will converge to the steady-state value of
r0 = 225/50 = 4.5 packet/sec. We choose a conservative
estimate of the round-trip delays, e.g., 2.0 sec. The kp–ki

stabilizing region for B = 1523.8559 (obtained by calculat-
ing ∑50

i=1 1/U ′′i (ri0) where ri0 = 4.5 for i = 1, . . . ,50) and
for d = 2.0 is defined by Figure 4. For the PI controller,
we choose kp = 3.0 · 10−4 and ki = 4.0 · 10−5; and for the
P controller, we choose kp = 3.0 ·10−4. Finally, we assume
that we want to control the queue around 50 packets.

Results. Figures 6 and 7 show the results of this exper-
iment. When using both the PI and the P controllers, the
transmission rates of all plants converge nicely and in short
time to the value where all plants share the bottleneck band-
width equally (Figures 6-A and B, respectively). However,
with the P controller, the queue exhibits a steady-state er-
ror, and thus the plants, in this case, suffer from long round-
trip delays. On the other hand, with the PI controller, this
problem is totally absent and the queue stabilizes around the
desired set point of 50 packets; see Figures 6-C and D.

Figure 7 depicts the response of NCSs Nos. 1 and 50
when following a square wave input (Figure 7-A). With the
PI controller, the NCSs stay stable and track the input signal
accurately (Figure 7-B). On the other hand, with the P con-
troller, long delays degrade the performance of the NCSs
severely (Figure 7-C). From Figures 6 and 7, it becomes
clear that it is not only important to allocate the bandwidth
among NCSs, but it is of equal importance to also ensure
that the queue length is controlled around a small value.

6. Conclusions

In this paper, we have presented a scheme for bandwidth al-
location in networked control systems (NCSs). This scheme
targets NCSs working over large distributed networks, i.e.,
WANs. While ensuring the stability of each NCS, the
scheme allocates the bandwidth such that to maximize the

aggregate performance of all NCSs. After presenting the
optimization formulation, we discussed techniques to im-
prove the performance of the allocation scheme.

7. Acknowledgment

This work was supported in part under NSF CCR-
0329910, Department of Commerce TOP 39-60-04003,
NASA NNC04AA12A, and an OhioICE Training grant.

References
[1] The network simulator - ns-2. [Online]. Available:

http://www.isi.edu/nsnam/ns/.
[2] A. Al-Hammouri, A. Covitch, D. Rosas, M. Kose, W. New-

man, and V. Liberatore. Compliant control and software
agents for Internet robotics. In Eighth IEEE International
Workshop on Object-oriented Real-time Dependable Sys-
tems (WORDS), 2003.

[3] L. Almeida, P. Pedreiras, and J. Fonseca. The FTT-CAN
protocol: Why and how. IEEE Transactions on Industrial
Electronics, 49(6):1189–1201, 2002.

[4] M. Branicky, V. Liberatore, and S. Phillips. Networked con-
trol system co-simulation for co-design. In Proc. American
Control Conf., 2003.

[5] M. Branicky, S. Phillips, and W. Zhang. Scheduling and
feedback co-design for networked control systems. In Proc.
IEEE Conf. on Decision and Control, 2002.

[6] R. Carter, S. Parthasarathy, A. Pavan, and K. Nelson. Dis-
tributed real-time control over large scale networks. In Large
Scale Networking Workshop, Vienna, VA, March 2001.

[7] G. Franklin, J. Powell, and A. Emami-Naeini. Feedback
Control of Dynamic Systems. Prentice Hall, third edition,
1999.

[8] I. Gravagne, J. Davis, J. DaCunha, and R. Marks. Band-
width reduction for controller area networks using adaptive
sampling. In International Conference on Robotics and Au-
tomation, 2004.

[9] C. Hollot, V. Misra, D. Towsley, and W. Gong. On design-
ing improved controllers for AQM routers supporting TCP
flows. In IEEE Infocom, 2001.

[10] G. Kaplan. Ethernet’s winning ways. IEEE Spectrum,
38:113–115, 2001.

[11] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. In Proceedings
ACM SIGCOMM, 2002.

[12] R. La, P. Ranjan, and E. Abed. Global stability conditions
for rate control of discretized model with communication de-
lays. In Global Telecommunications Conference, 2004.

[13] D. Lapsley and S. Low. An optimization approach to ABR
control. In In Proceedings of the ICC, 1998.

[14] V. Liberatore. Integrated play-back, sensing, and networked
control. In IEEE Infocom, 2006.

[15] V. Liberatore, M. Branicky, S. Phillips, and P. Arora. Net-
worked control systems repository. [Online]. Available:
http://home.cwru.edu/ncs/.

[16] S. Low and D. Lapsley. Optimization flow control—I: Ba-
sic algorithm and convergence. IEEE/ACM Transactions on
Networking, 7(6):861–874, 1999.

[17] D. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley Publishing Company, second edition, 1989.

0.1

1

4.5

10

0 50 100 150 200 250 300 350

1

4.5

10

100

r 1
 (

pa
ck

et
s/

se
c)

r 5
0

(p
ac

ke
ts

/s
ec

)

time (sec)

A

plant(1)

plant(50)

0.1

1

4.5

10

0 50 100 150 200 250 300 350

1

4.5

10

100

r 1
 (

pa
ck

et
s/

se
c)

r 5
0

(p
ac

ke
ts

/s
ec

)

time (sec)

B

plant(1)

plant(50)

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

qu
eu

e
si

ze
 (

pa
ck

et
s)

time (sec)

C

P

PI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350

R
T

T
 (

se
c)

time (sec)

D

plant1(PI)

plant50(PI)

plant1(P)

plant50(P)

Figure 6. Transmission rates, queue lengths, and round-trip delays when using PI and P controllers.

-0.5

0.0

0.5

0 50 100 150 200 250 300

In
pu

t R
(t

)

time (sec)

A

-0.5

0.0

0.5

0 50 100 150 200 250 300 350

-0.5

0.0

0.5

pl
an

t(
1)

 s
ta

te
 x

1(
t)

pl
an

t(
50

)
st

at
e

x 5
0(

t)

time (sec)

B

plant(1)

plant(50)

-0.5
0.0
0.5

0 50 100 150 200 250 300 350

-0.5
0.0
0.5

pl
an

t(
1)

 s
ta

te
 x

1(
t)

pl
an

t(
50

)
st

at
e

x 5
0(

t)

time (sec)

C

plant(1)

plant(50)

Figure 7. Input signal and output responses when using PI and P controllers.

[18] F. Paganini. Flow control via pricing: a feedback perspective.
In Proceedings of the 2000 Allerton Conference, 2000.

[19] F. Paganini, J. Doyle, and S. Low. Scalable laws for stable
network congestion control. In IEEE CDC, 2001.

[20] G. Silva, A. Datta, and S. Bhattacharyya. PID Controllers
for Time-Delay Systems. Birkhäuser, 2005.

[21] F. Systems. Convex optimization. [Online]. Available:
http://www.solver.com/probconvex.htm.

[22] M. Velasco, J. Fuertes, C. Lin, P. Marti, and S. Brandt. A
control approach to bandwidth management in networked
control systems. In 30th Annual Conference of the IEEE
Industrial Electronics Society (IECON04), 2004.

[23] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanarama. One
more bit is enough. In Proceedings ACM SIGCOMM, 2005.

[24] L. Ying, G. Dullerud, and R. Srikant. Global stability of
Internet congestion controllers with heterogeneous delays.
In Proceedings of the 2004 American Control Conference,
2004.

[25] W. Zhang and M. Branicky. Stability of networked control
systems with time-varying transmission period. In Allerton

Conf. Communication, Control, and Computing, 2001.
[26] W. Zhang, M. Branicky, and S. Phillips. Stability of net-

worked control systems. IEEE Control Systems Magazine,
21(1):84–99, February 2001.

