
 Wide Area Network Emulator HOWTO

1. Introduction

Wide area networks are complex, and require extensive testing before
standardizations or deployment. It might not enough to test the protocol or
system with mathematical method or simulation. Also, to test the protocol in a
real wide area network is not always easy to do, especially, if the topology has to
be changed frequently.

The idea of WAN emulator, as shown in Figure 1, is to implement a system that
emulates characteristics and behaviors of wide area network such as delay, loss
rate, bandwidth limitation, queue algorithm, randomness, and so forth. Also, it is
easy enough to control the characteristics or topology.

There are several types of emulators ranging from dedicated hardware,
commercial software, or open source distribution. This document presents an
open source emulator on PC based systems. For academic research purposes,
this open source system offers many advantages such as increased accessibility
in terms of cost and hardware, avoidance of legal problem, and its entirely open
source nature facilitates the in-depth understanding of the system and leaves
opportunities to further develop it in the future.

WAN Emulator

Wide Area Network Emulator

Figure 1

Sipat Triukose
Case Western Reserve University
revision: 042505

2. Overview

This section overviews some important concepts necessary for building and using
the WAN emulator. Apart from the basic FreeBSD usage, the knowledge of
sysctl’s variables and IP firewalls is very helpful in understanding and
manipulating the WAN emulator system, introduced later in this document.

The sysctl’s variables control many FreeBSD system behaviors such as firewall,
dummynet, and bridging. The meaning and control of each variable is very
important in customizing the system.

IP firewall is also very important in term of networking and security. By matching
the rule set, the firewall manipulates packets, passed through the system, by
allowing, denying, or directing the packet, for example. In case of the emulator,
the firewall directs certain flow to certain Dummynet pipes, which behave as
wide-area links. Also, the WAN topology is emulated by manipulating the order in
which firewall directs the packets to multiple dummynet’s pipes. More elaborated
examples will be covered in the “Using WAN Emulator” section below.

2.1 Sysctl variables

The FreeBSD kernel states are described using a “Management Information
Base” or MIB style name, presented in a dotted set of components. The sysctl is
the utility that allow privilege users to set or retrieves the kernel state variable.
The following are the related Sysctl’s variables that control the behaviors of
firewall, bridging, and dummynet:

Controlling ipfw

The firewall is mostly controlled by ipfw, and the sysctl variables only serve to
give global configuration and default parameters.

net.inet.ip.fw.enable: 1
 Enables firewall in the IP stack

net.inet.ip.fw.one_pass: 1
 Forces a single pass through the firewall. If set to 0,
 packets coming out of a pipe will be reinserted into the
 firewall starting with the rule after the matching one.
 NOTE: there is always one pass for bridged packets.

net.inet.ip.fw.dyn_buckets: 256 (read-only)
 Current hash table size used for dynamic rules.

net.inet.ip.fw.curr_dyn_buckets: 256
 Desired hash table size used for dynamic rules.

net.inet.ip.fw.dyn_count: 3
 Current number of dynamic rules. (read-only)

net.inet.ip.fw.dyn_max: 1000
 Max number of dynamic rules. If you exceed this limit, you will
 have to wait for a rule to expire before being able to create
 a new one.

net.inet.ip.fw.dyn_ack_lifetime: 300
net.inet.ip.fw.dyn_syn_lifetime: 20
net.inet.ip.fw.dyn_fin_lifetime: 20
net.inet.ip.fw.dyn_rst_lifetime: 5
net.inet.ip.fw.dyn_short_lifetime: 5
 Lifetime (in seconds) for various types of dynamic rules.

Controlling dummynet

Also dummynet is mostly controlled by ipfw, with the sysctl variables serving
mostly for default parameters.

net.inet.ip.dummynet.hash_size: 64
 Size of hash table for dynamic pipes.

net.inet.ip.dummynet.expire: 1
 Delete dynamic pipes when they become empty.

net.inet.ip.dummynet.max_chain_len: 16
 Max ratio between number of dynamic queues and hash buckets.
 When you exceed (max_chain_len*buckets) queues on a pipe,
 packets not matching any of these will be all put into the
 same default queue.

Controlling bridging

Bridging is almost exclusively controlled by sysctl variables.

net.link.ether.bridge_cfg: ed2:1,rl0:1,
 set of interfaces for which bridging is enabled, and cluster
 they belong to.

net.link.ether.bridge: 0
 Enable bridging.

net.link.ether.bridge_ipfw: 0
 Enable ipfw for bridging.

2.2 IPFW and Firewall

The ipfw utility is the user interface for controlling the firewall and the dummynet
traffic shaper in FreeBSD. In this WAN emulator, incoming packet will be injected
into the firewall and then the firewall plays a role in deciding how to forward
each packet and how each packet interacts with dummynet. Therefore, it is very
helpful to understand how the packet moves in the firewall stack.

A packet is checked against the active rule set in multiple places in the protocol
stack, under the control of several sysctl variables. These places and variables
are shown below, and it is important to have this picture in mind in order to
design a correct rule set.

 ^ to upper layers V
 | |
 +--------------->----------------+
 ^ V
 [ip_input] [ip_output] net.inet.ip.fw.enable=1
 | |
 ^ V
 [ether_demux] [ether_output_frame] net.link.ether.ipfw=1
 | |
 +--->---[bdg_forward]--->--+ net.link.ether.bridge_ipfw=1
 ^ V
 | to devices |
Figure 2

As can be noted from the above picture, the number of times the same packet
goes through the firewall can vary between 0 and 4 depending on packet source
and destination, and system configuration.

Note that as packets flow through the stack, headers can be stripped or added to
it, and so they may or may not be available for inspection. E.g., incoming
packets will include the MAC header when ipfw is invoked from
ether_demux(), but the same packets will have the MAC header stripped off
when ipfw is invoked from ip_input().

Further explanations will be given as needed in the rest of this document.
Moreover, Ipfw has many features that are beyond the scope of this document.
For more information about ipfw, please consult ipfw manpage.

3. Implementing Bridge and Dummynet

Figure 3

Assuming prior knowledge of basic FreeBSD usage, the previous section provided
adequate background to start building a WAN emulator. The sample system, as
shown in Figure 3, will be used to demonstrate how to implement the WAN
emulator.

In brief, the WAN emulator is a FreeBSD box functioning as a bridge connecting
multiple networks together. Then, the dummynet module will be used to emulate
WAN characteristics such as delay, loss rate, bandwidth, and queue policy. The
topology of WAN is specified by the firewall rule set.

The hardware requirement for the emulator is an IBM compatible PC with at
least two network interfaces and FreeBSD installed. The implementation on this
document uses FreeBSD 5.3.

The implementation could be categorized to four following steps:

• Install and configure the FreeBSD system
This document assumes as a prerequisite basic installation and
configuration of FreeBSD. More information concerning how to
setup FreeBSD can be found at www.freebsd.org

• Reconfigure and recompile kernel to support Bridge and Dummynet
The necessary kernel options required for the WAN emulator will be
discussed in “Kernel Options” subsection. This document assumes
prior knowledge of how to configure and compile the FreeBSD
kernel.

• Configure the FreeBSD box to function as a bridge
This step will be discussed in the “Enable Bridge” subsection.

• Assigns firewall rule set to emulate the Wide Area Network.
The “Using the WAN Emulator” section is devoted for this step. The
discussion will be given through a series of examples.

3.1 Kernel Options

Bridging and Dummynet are both running in the kernel space. Therefore, proper
kernel options are necessary to enable both features.

To enable kernel support for bridging, add the following option:

 options BRIDGE

The following options in the kernel configuration file are related to dummynet
operation:

 IPFIREWALL enable ipfirewall (required for dummynet)
 IPFIREWALL_VERBOSE enable firewall output
 IPFIREWALL_VERBOSE_LIMIT limit firewall output
 DUMMYNET enable dummynet operation
 NMBCLUSTERS set the amount of network packet buffers
 HZ set the timer granularity

In general, the following options are required to enable dummynet:

 options IPFIREWALL
 options DUMMYNET
 options HZ=10000

In addition, the number of mbuf clusters where network packets are stored could
be increased according to the sum of the bandwidth-delay products and queue
sizes of all configured pipes.

3.2 Enabling the Bridge

As enabled in the kernel space, the bridge can be enabled or disabled at runtime
via sysctl interface.

Add this line:

 net.link.ether.bridge.enable = 1 (set to be 0 to disable the bridge)

to /etc/sysctl.conf to enable the bridge at runtime,

 net.link.ether.bridge.config = if1, if2, …, ifn

to specify the interfaces on the bridge (ifx represent network interface), and

net.link.ether.bridge.ipfw = 1
net.link.ether.ipfw=1
net.inet.ip.fw.enable=1

As shown in Figure 2, to allow the packet pass through the firewall bridge,
Ethernet, and IP stack respectively. The dummynet emulator could be deployed
in multiple layers; however, in this document, it will be mainly described in the IP
stack.

At this point, the system is fully operational. Let run a simple test on bridge
function here.

The very simple Bridge without any restrictions could operate by only single rule:

 $ ipfw –f f
 $ ipfw add 65500 allow ip from any to any

This bridge will forward traffics on any networks to any networks.

To do the test, please connect one Linux machines to the network
192.168.1.0/24 and another one to 192.168.2.0/24. Then, set the interface and
routing as follow:

 Linux Box A (in network 192.168.1.0/24):

$ ipconfig eth0 192.168.1.10 netmask 255.255.255.0 broadcast 192.168.1.255 up

 $ route add –net 192.168.2.0/24 eth0

 Linux Box B:

$ ipconfig eth0 192.168.2.10 netmask 255.255.255.0 broadcast 192.168.2.255 up

 $ route add –net 192.168.1.0/24 eth0

Then, Linux Box A and B should be able to ping IP of each other.

Alternative to Bridging
 The WAN emulator in this document is implemented as a bridge.
However, the emulator could be implemented to operate as a router as well. In
brief, this could be done by enabling the FreeBSD box to forward IP packets
(enable IPFORWARD) and set the default route of a computer in each network to
be the IP address of the emulator network interface that is physically connected
to that network. The discussion of advantages and disadvantages of Bridging
versus Routing is beyond the scope of this document.

4. Using WAN Emulator

The emulator is a combination of different services. Traffic is transferred
between networks via bridging. The heart of emulator is the concept of a virtual
link, called pipe. With the help of dummynet, the pipe can introduce behaviors
like delay, loss rate, and bandwidth. Firewall rule set help redirect any particular
traffic to a certain pipe to form simple or even complex WAN topologies.

4.1 Simple WAN Emulator

In the first example, packets will be forced to go through the firewall only once.
Therefore, the one_pass option needs to be enabled.

 $ sysctl net.inet.ip.fw.one_pass = 1

Figure 4

The basic full-duplex channels, as shown above in the figure 4, could be formed
by the following rules:

 NETA=192.168.1.0/24
 NETB=192.168.2.0/24

 # Clear all the rules and pipes
 ipfw –f
 ipfw pipe -f

 # Add necessary rules and pipes
 ipfw add 100 allow layer2 not mac-type ip
 ipfw add 1000 pipe 1 ip from $NETA to $NETB
 ipfw add 1010 pipe 2 ip from $NETB to $NETA
 ipfw add 65000 deny ip from any to any

 # Configure the pipes. Replace X, Y, and Z with preferred numbers.
 ipfw pipe 1 config delay X ms plr Y bw Z kb
 ipfw pipe 2 config delay X ms plr Y bw Z kb

Note: Make sure that sysctl’s variable net.inet.ip.fw.one_pass = 1

The first two commands clear up all the rules and pipes. The third rules let all
the non-ip packets, such as ARP packets, pass though. The forth and fifth rules
tell the firewall to redirect traffic that matches the condition to the corresponding
pipe. Traffic from NETA to NETB will be forwarded to pipe 1 and traffic from
NETB to NETA to pipe 2. The 6th rule is the default rule, which is optional
because the system has the default rule number 65535 (this default can be
changed in the kernel configuration). The later example will assume this default
rule, “65535 deny all from any to any.”

In the pipes configuration, the delay specifies the delay of the pipe in
milliseconds. The plr parameter is a packet loss rate value ranging from 0 to 1.
The bw parameter is the bandwidth of the pipe. The default 0 will be assumed
for plr and bw if not specified in the configuration statement. The value 0 means
ideal channel and unlimited bandwidth for plr and bw (Of course, limited by
physical bandwidth of the network interface) respectively.

By controlling these parameters, various kind of scenarios can be emulated.
Lossy channel could be built by setting the plr parameter. The ADSL link could
be emulated by setting different bandwidth values for the uplink and downlink
directions. A long delay link, such as one to a satellite or to the moon, could be
emulated by setting the delay parameter.

Jitter in Delay
 In the previous example, the link introduces a constant delay. However, in
reality, the delay is not always a constant. The following example shows how to
add delay jitter.

This example uses the firewall prob rule as a key to add an uncertainty in delay.
The concept of prob, quoted from ipfw manpage, is described below:

prob match_probability
 A match is only declared with the specified probability (floating
 point number between 0 and 1). This can be useful for a number
 of applications such as random packet drop or (in conjunction
 with dummynet(4)) to simulate the effect of multiple paths leading
 to out-of-order packet delivery.

The script of simple WAN emulator with delay jitter added:

Note that the one_pass is enabled
NETA=192.168.1.0/24
NETB=192.168.2.0/24

Clear all the rules and pipes
ipfw –f
ipfw pipe -f

Add necessary rules and pipes
ipfw add 100 allow layer2 not mac-type ip

ipfw add 1000 prob .1 pipe 10 ip from $NETA to $NETB
ipfw add 1001 prob .25 pipe 11 ip from $NETA to $NETB
ipfw add 1002 pipe 12 ip from $NETA to $NETB

ipfw add 1010 prob .1 pipe 20 ip from $NETB to $NETA
ipfw add 1011 prob .25 pipe 21 ip from $NETB to $NETA
ipfw add 1012 pipe 22 ip from $NETB to $NETA

ipfw add 65000 deny ip from any to any

Configure the pipes.
ipfw pipe 10 config delay 400ms
ipfw pipe 11 config delay 150ms
ipfw pipe 12 config delay 100ms

ipfw pipe 20 config delay 400ms
ipfw pipe 21 config delay 150ms
ipfw pipe 22 config delay 100ms

In the example above, since one_pass is enabled, only one out of the rule 1000
– 1002 is matched for the packets from network A to B, and similarly the packets
from network B to A will match only one rule out of 1010 - 1012. In this
example, mostly, 65%, the delay of the link is 100ms. However, 150ms and
400ms jitter is embedded with the probability of 25 and 10 percents respectively.

Multi Paths and Out-of-Order Packet delivery
 In the real wide area network, different packets can be routed through
different paths, which can have different delays. Therefore, packets can arrive
out-of-order. Out-of-order arrivals can be emulated by means of the prob rule.
The following is an example of such system:

Note that the one_pass is enabled
NETA=192.168.1.0/24
NETB=192.168.2.0/24

Clear all the rules and pipes

ipfw –f
ipfw pipe -f

Add necessary rules and pipes
ipfw add 100 allow layer2 not mac-type ip

ipfw add 1000 prob .1 pipe 1 ip from $NETA to $NETB
ipfw add 1001 prob .2 pipe 2 ip from $NETA to $NETB
ipfw add 1002 pipe 3 ip from $NETA to $NETB

ipfw add 1010 prob .1 pipe 1 ip from $NETB to $NETA
ipfw add 1011 prob .2 pipe 2 ip from $NETB to $NETA
ipfw add 1012 pipe 3 ip from $NETB to $NETA

Ipfw add 65000 deny ip from any to any

Configure the pipes.
ipfw pipe 1 config delay 800ms
ipfw pipe 2 config delay 250ms
ipfw pipe 3 config delay 100ms

This example shows a 3 route network, and probabilities of 10, 20, and 70
percents that packets will be routed to pipe 1, 2, and 3 respectively. With
different delays on each route, out-of-order delivery is possible.
HERE.

4.2 Complex Topology

As explained in the previous subsection, the WAN emulator introduces delays,
losses, and bandwidth limitations through the parameters in each logical link
(pipe). This section will introduce how to emulate a more complex network
topology formed as the interconnection multiple links.

The idea is to let each packet go through multiple firewall rules before leaving
the emulator. The particular network topology can be formed by manipulating
the sequence of rules that packets in each flow go through. Please note that
“ipfw one_pass” needs to be disabled by setting the following sysctl’s variable:

 $ sysctl net.inet.ip.fw.one_pass = 0

Otherwise, packets would not go through multiple pipes.

To manipulate the sequence of rules that packet will go through, the firewall rule
actions are the key. The details of the following actions are necessary to
understand how to construct a multiple links topology.

Related Rule Actions (Excerpted from ipfw manual page)

allow | accept | pass | permit
 Allow packets that match rule. The search terminates.

deny | drop
 Discard packets that match this rule. The search terminates.

pipe pipe_nr
 Pass packet to a dummynet’s pipe (for bandwidth limitation, delay,
etc). The search terminates; however, on exit from the pipe and if the
sysctl(8) variable net.inet.ip.fw.one_pass is not set, the packet is
passed again to the firewall code starting from the next rule.

skipto number
 Skip all subsequent rules numbered less than number. The search
continues with the first rule numbered number or higher.

Figure 5

Each logical link is represented by a dummynet pipe, which could be configured
independently. Therefore, the emulator could emulate interconnected links with
different characteristic on each link. How the logical links interconnect is
correlated to the order of pipe rules. With the one_pass disabled, the packet can
be forced to pass through series of pipes, where the order of pipe rules
represents the logical links’ topology. In the case of one_pass disabled, the
search is terminated by either allow of deny rules. The skipto action is used to
direct each flow to a proper termination.

The following script will emulate a three hop network as shown in the figure 5.

 NETA=192.168.1.0/24
 NETB=192.168.2.0/24

 # Clear all the rules and pipes
 Ipfw –f
 Ipfw pipe -f

 # Add necessary rules and pipes
 Ipfw add 100 allow layer2 not mac-type ip

 # Route from NETA to NETB
 ipfw add 1000 pipe 10 ip from $NETA to $NETB

ipfw add 1001 pipe 11 ip from $NETA to $NETB
ipfw add 1002 pipe 12 ip from $NETA to $NETB

 ipfw add 1009 skipto 65450 ip from $NETA to $NETB

 # Route from NETB to NETA
 ipfw add 1010 pipe 12 ip from $NETB to $NETA

ipfw add 1011 pipe 11 ip from $NETB to $NETA
ipfw add 1012 pipe 10 ip from $NETB to $NETA

 ipfw add 1019 skipto 65450 ip from $NETB to $NETA

 ipfw add 56400 skipto 65530 ip from any to any
 ipfw add 65500 allow ip from any to any
 # assume the default rule, 65535, is deny all traffic

 # Configure the pipes
 Ipfw pipe 10 config delay 0 ms

Ipfw pipe 11 config delay 0 ms
Ipfw pipe 12 config delay 0 ms

The first two ipfw commands will flush all the rules and pipe configurations. The
flow from 192.168.1.0/24 to 192.168.2.0/24 will go through rules 1000 – 1002,
afterward, the packet will be skipped to just before the rule 65500 by the skipto
action of the rule 1009. Finally, the flow will be terminated by the rule 65500,
which allows the packet to pass to network B, 192.168.2.0/24. In the reverse
direction, the backward flow from network B to A will go through rules 1010 –
1012. Then will be skipped to the 65500 rule which will terminate the search.
Other IP traffic will match the rule 56400 and then will be skipped to the default
rule, 65535, which is a deny action in this example.

Now, different kind of scenarios can be configured by assigning different values
to variables, such as delay, bandwidth, queue policy, or loss rate, for each pipe.

The following will present another example of a more complex topology in which
the forward and backward flow use different routes.

Figure 6

The network topology as shown in figure 6 can be formed by the following script.

NETA=192.168.1.0/24
 NETB=192.168.2.0/24

 # Clear all the rules and pipes
 Ipfw –f
 Ipfw pipe -f

 # Add necessary rules and pipes
 Ipfw add 100 allow layer2 not mac-type ip

 # Route from NETA to NETB
 ipfw add 1000 pipe 10 ip from $NETA to $NETB

ipfw add 1001 pipe 11 ip from $NETA to $NETB
ipfw add 1002 pipe 12 ip from $NETA to $NETB

 ipfw add 1009 skipto 65450 ip from $NETA to $NETB

 # Route from NETB to NETA
 ipfw add 1010 pipe 23 ip from $NETB to $NETA
 ipfw add 1011 pipe 22 ip from $NETB to $NETA

ipfw add 1012 pipe 21 ip from $NETB to $NETA
ipfw add 1013 pipe 20 ip from $NETB to $NETA

 ipfw add 1019 skipto 65450 ip from $NETB to $NETA

 ipfw add 56400 skipto 65530 ip from any to any
 ipfw add 65500 allow ip from any to any
 # assume the default rule, 65535, is deny all traffic

 # Configure the pipes
 Ipfw pipe 10 config delay 0 ms

Ipfw pipe 11 config delay 0 ms
Ipfw pipe 12 config delay 0 ms

Ipfw pipe 20 config delay 0 ms
Ipfw pipe 21 config delay 0 ms
Ipfw pipe 22 config delay 0 ms
Ipfw pipe 23 config delay 0 ms

The first two ipfw command will flush all the rules and pipe configurations. The
difference from previous example is that the forward and backward flow will
match different set of pipes. The flow from network A to B will go through rules
1000 – 1002, which will be passed to pipe 10, 11, and 12 respectively. On the
other hand, the flow from network B to A will go through rules 1010 – 1013,
which will be passed to pipe 20, 21, 22, and 23 respectively. Both the flow from
network A to B and from network B to A will be directed by the skipto action to
the rule 65500, which will allow the traffic to pass through the emulator and
terminate the search in the firewall rule set. Other IP’s traffic will be directed to
the default rule, which is a deny action in this example.

Link Failure
Interestingly, the link could be brought down by the following script:

ipfw del 1011
 ipfw add 1011 deny ip from $NETB to $NETA

The above brings the link 22 down. If the computer in network A, called
computer A, pings the computer in network B, called computer B, the tcpdump
on the interface of computer A will show only “echo request.” On the other hand,
the tcpdump on the interface of computer B will show both “echo request” and
“echo reply.” This show that the forward and backward traffic between
computers A and B use different routes and that link 22 is in fact brought down.

5. Comments

5.1 TCP Effect

A long round trip time (large delay on some pipe) might cause bandwidth
underutilization due to the TCP window size. For example, in case of the ideal
channel with 1 MByte/s link and 10 second RTT, should the TCP window size is
30000 Byte, the bandwidth will be utilized at only around

Window size / RTT

which will be 3000 Byte/s in this example.

5.2 Error Rate Simulation
 In a real scenario, the delivered packet might contain some bit error. The
dummynet currently does not support this feature. The author would like to
encourage the development of this feature. It could be developed as a queue
policy that can modify certain a number of bits with certain probability. Then, it
could be added to any pipe to simulate the error in packet.

5.3 Queue Algorithm

Although not discussed explicitly in this document, dummynet could also
introduce different kind of queuing algorithms for each pipe such as red, gred, or
even custom implemented algorithm. For further information, please consult
IPFW(8) and DUMMYNET(4) manpages.

6. Acknowledge
 We thank Dr. Vincenzo Liberatore, Case Western Reserve University, for
guiding and supporting, Luigi Rizzo for the very useful dummynet module, Ewan
Markensohn for the document that helped me get start, Akkradech
Watcharapupong, KMITL University, Thailand, for your invaluable comments and
suggestions.

7. Feedback
 Comments and suggestions will be invaluable. Please contact Mr. Sipat
Triukose at sxt85@case.edu

Related Resources

Dummynet:

• Dummynet: a simple approach to the evaluation of network protocols, ACM Computer
Communication Review, Jan. 1997
http://portal.acm.org/citation.cfm?id=251012

• dummynet document by Luigi Rizzo, the creator of dummynet
 http://info.iet.unipi.it/~luigi/ip_dummynet

• FreeBSD dummynet manual page, DUMMYNET(4)
• Dummynet articles and tutorials

o http://www.bsdnews.org/02/dummynet.php
o http://ai3.asti.dost.gov.ph/sat/dummynet.html
o http://cs.ecs.baylor.edu/~donahoo/tools/dummy/

FreeBSD:

• FreeBSD Handbook, by The FreeBSD Document Project
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

• FreeBSD Installation Guide
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/install.html

• FreeBSD Bridge manual page, BRIDGE(4)
• FreeBSD ipfw manual page, IPFW(8)

