
Design Document: Using IP-Over-USB to

Implement a Bridge in Linux

Ben Greenberg

February 5, 2005

Abstract

Using the usbnet and g ether kernel modules available in the

Linux 2.6 kernel, it is possible to make USB connections appear as

network interfaces. Leveraging these interfaces, we can implement a

fault-tolerant bridge that connects a USB network to a traditional

Ethernet-based network.

Introduction

As small electronic devices become commonplace, the desire for these devices
to have network connectivity is increasing. Traditionally, devices networked
via IP require the use of cat5 Ethernet cable. However, the ability to fit a
cat5 connector onto increasingly smaller form factors is getting difficult. Dr.
Vincenzo Liberatore has suggested the use of USB to network these devices,
because USB offers a “mini-B” form factor connector that is less than half
the size of an Ethernet connection. However, USB was designed to connect
peripherals to PCs, not carry network traffic. The Linux kernel provides a
usbnet module that allows USB Host connections to appear as network in-
terfaces, which has been used to interface with USB gadgets running Linux
(see [2]). The kernel also provides a g ether module that provides the same
functionality for USB Device interfaces. As a proof of concept that Linux’s
IP-over-USB functionality is complete enough to be used for complex net-
work configurations, we will construct a fault-tolerant bridge using two PCs
connected via USB, connecting the systems to an existing Ethernet based
network.

1

Figure 1: Physical topology

USB Background

Hardware

Our ultimate goal is to be able to network any equipment with USB support,
whether it be a host or a device. For our initial project of setting up a bridge,
however, we will simply network two desktop PCs. Modern desktops have
USB support built into their chipsets, letting the PC act as a USB host (A-
type connector). Although A to A USB cables exist, they are not within
the official USB specification, and in fact the electrical connections created
by such cables are not proper. To connect two desktop PCs, there are two
options: a host-to-host cable with specialized electronics, or the addition
of an adapter card that lets the PC act as a USB device and provides a
B-type connector. The first option is well suited to ad-hoc connection of
desktop PCs, as host-to-host cables are readily available from retailers and
there is driver support for many operating systems. However, these cables
are expensive and inflexible in that they can only be used to connect two USB
hosts. These are also not included in the strict USB specification; they work
by having a small USB device bridging the two hosts. Adding a USB device
interface to a PC will allow us to use inexpensive, commonly available A-to-B
USB cables and, since one of our long term goals is to scale down our system

2

into a plug-and-play embedded device, we do not want to require costly
specialized hardware to connect. A USB device interface lets us program the
desktop as if it was a both stand-alone USB “gadget,”, and a UBS host; the
two USB buses are isolated and operate independently. This allows us to
develop more easily within the USB specification, which is designed for host-
to-device connections. For these reasons, we installed a USB device interface
card in each PC. We installed the NetChip 2280 PCI to Hi-Speed USB 2.0
Peripheral Controller [1] because of good Linux support (net2280 driver,
distributed with Linux kernel 2.4 and up) and the fact this same chipset is
used in many embedded devices (combined with the availability of a Linux
driver, this gives us a clear path to an embedded device).

Our setup includes two desktop machines which we will call borat and
alig, both running Debian GNU/Linux 3.1[6] (aka “sarge”)–this is the “test-
ing” distribution of Debian. Linux kernel 2.6.8, not installed by default, was
installed on both machines as well. The 2.6 series kernel was chosen over the
more common 2.4 series for its more mature USB interfaces and drivers. We
used a precompiled kernel image–Debian package kernel-image-2.6.8-2-686.
This has all the modules we will require precompiled and ready to load as
needed.

Installing the PCI USB Device interfaces was straightforward. The cards
plug into an available PCI slot and provide a single USB B-type connector.
The new card should be detected at boot time, which will automatically
cause the net2280 module to be loaded. If it is not detected, the module
can be loaded manually by running the command modprobe net2280 as the
root user. Of course, you could also recompile your kernel with this driver
built in. With this driver loaded, we can consider the hardware configured
for use.

Both machines are also connected via an Ethernet network using built in
NICs. The physical topology we will create is show in Figure 1.

Software

Configuring the USB device end of things (the Linux USB developers use the
term “gadget” to mean a USB device) requires loading the g ether module.
This module allows the gadget to operate with a USB host either using the
Communications Device Class (CDC) Ethernet Networking Control Model
or Microsoft’s RNDIS protocol. The CDC Ethernet Networking Control

3

Model[3] is a standardized protocol that allows USB hosts and devices to
exchange Ethernet framed data. RNDIS[4] is a partially documented ana-
logue to CDC Ethernet created by Microsoft. Since g ether supports both,
a gadget running this module should interface easily with Linux or Microsoft
operating systems. The g ether module also causes the device to properly
identify itself as a CDC Ethernet device to a connected host. This allows the
device to be “hotplugged” into a host, which will recognize the device and
load the appropriate driver. This was confirmed in our test environment,
where a host would automatically load the usbnet module on connection,
which will enable the host-end network interface. Since both PCs have a
“gadget” interface, we need to make sure that the g ether module loads on
both machines.

Configuring Bridging

Under Linux kernel 2.4 and up, bridging is handled by the brctl program
with the bridge module[5]. To access this program under Debian, we must
have the bridge-utils package installed. When the brctl program is in-
voked, it should automatically load the bridgemodule. The configuration
shown here is done on both machines.

Setting up the bridge requires a series of commands, which could easily
be put into a simple shell script. We choose to put the commands in the
/etc/network/interfaces file instead. This allows us to bring up the bridge
by running a ifup command (from the ifupdown package) and similarly bring
it down using ifdown.

We decide to call our bridge interface br0 on both machines and add an
entry to the /etc/network/interfaces file describing it. The entries are
identical, except for the address line. We are creating a 10.1.0/24 network
for our machines to communicate on, we will call borat 10.1.0.1 and alig

10.1.0.2. Our configuration sets up the Ethernet connection as the root
of both bridge. The pre-up lines specify commands to be called before
the interface is brought up; the post-down commands are called after the
interface is brought down. Note that the bridge does not need to have an IP
address–it can operate invisibly. However, since we only have two machines
on network, we need to be able address the machines so we can do tests.

iface br0 inet static

4

address 10.1.0.[1,2] # 1

pre-up ifconfig eth0 down # 2

pre-up brctl addbr br0 # 3

pre-up brctl addif br0 eth0 # 4

pre-up ifconfig eth0 0.0.0.0 # 5

pre-up brctl stp br0 on # 6

pre-up brctl sethello br0 1 # 7

pre-up brctl setmaxage br0 4 # 8

pre-up brctl setfd br0 4 # 9

pre-up modprobe g_ether # 10

post-down ifconfig eth0 down # 11

should have a line to bring down all interfaces in the bridge

post-down brctl delbr br0 # 12

1. Configures the static IP address of each machine. We ignore the settings
for gateway, broadcast, etc. because the defaults should be acceptable.
borat will be 10.1.0.1 and alig will be 10.1.0.2.

2. Make sure that the Ethernet interface is not enabled; it may have been
at boot.

3. Create the bridge interface.

4. Add the Ethernet interface as the root interface of the bridge.

5. Bring up the Ethernet interface without and configuration. This must
be done for all interfaces on a bridge.

6. Enable the Spanning Tree Protocol on the bridge; this protocol is what
provides fault tolerance to the bridge. The next 3 commands change
parameters on the bridge to make fault detection and response happen
more quickly. See bridge documentation[5] for more information.

7. Set HELLO time to 1 second.

8. Shorten the waiting period.

9. Force forwarding to happen earlier than default time.

10. Load the module to create a network interface for the USB device card.
We will ensure that the interface is added to the bridge by modifying
the network hotplug file, explained below.

5

11. Bring down the Ethernet interface, so that we can remove the bridge
cleanly.

12. Remove the bridge from existence. We should have some extra lines to
determine what interfaces are currently on the bridge and bring them
all down before this called, because it will fail if any of the interfaces
are still enabled.

Now that the bridge is configured, we can connect our USB cables and
add the created USB interfaces. Adding interfaces to the bridge is very sim-
ple: we simply run brctl addif br0 iface where iface is an existing but
not configured network interface. However, we can automate this process by
using the hotplug package. Hotplugging detects when a piece of hardware
is connected, and depending on what was connected, runs a script. Hot-
plugging works for all kinds of devices–network, USB, PCI. We don’t need
to alter the USB hotplugging scripts; as discussed above, the default con-
figuration will automatically load the usbnet module when the machine’s
host ports are connected to a CDC-enabled device. However, the usbnet

module creates a network interface called usbi , and the creation of this in-
terface will trigger the hotplug script for network devices, which is stored
in /etc/hotplug/net.agent. The relevant portion of the file is what gets
called when a new network is registered. This section begins with

case $ACTION in

add|register)

In this block, we can add code like the following:

case $INTERFACE in

usb*)

ifconfig $INTERFACE 0.0.0.0 && brctl addif br0 $INTERFACE

;;

which will match any interface name beginning with usb and run the
command listed, which enables the interface without supplying any settings
and, assuming it was successful, adds the interface to bridge br0. That’s
it–now, whenever a USB network interface is created, it will automatically
be added to the bridge. Note that the brctl will fail gracefully if br0 does
not actually exist, but the interface will still be enabled in the unconfigured

6

state. This should probably be addressed with some more logic. Note that
we loaded the g ether above in our ifupdown script; since this creates a
USB interface, it will automatically be added to the bridge to this hotplug

configuration.

Putting it All Together

After making all these configuration changes, we can finally get the bridge
up and running. The process is very simple from this point, because the
configuration work we’ve done. Each machine should have a bridge called
br0 containing interfaces eth0 and usb0. This can be confirmed with the
command brctl show. The machines should also be able to ping each other
and do any other network activity. We were able to log in to both machines
via SSH through the bridges.

Now, all we have to do is connect both machines via the two USB cables.
This will create a second USB network interface, usb1, which will be auto-
matically added to the bridge as well. At this point, there are three possible
paths for each machine the contact the other–Ethernet and two USB paths.
The STP protocol figures out which paths are viable. We can also assign
costs to each path; by default, all paths have the same cost, so one is not
preferred over another.

Since the Ethernet interface is the root interface for the bridge (the first
one added), the bridge will be using this path until is no longer viable. We
can test this by simply pulling the Ethernet plug out of the computer. In
our tests, the bridge noticed the failure immediately, and was able to revert
to the usb0 interface in 30-60 seconds, at which point we can contact the
other machine again. We can then remove the usb0 interface and, similarly,
the bridge will begin using the other USB connection. We can also add the
connections we took out; since all paths have the same cost, the bridge will
only switch back to Ethernet or the other USB connection if the current
connection fails.

Conclusion

The IP-over-USB functionality in the Linux kernel is mature enough to han-
dle a fault-tolerant bridge design. With this knowledge, we hope to expand

7

the use of these features to provide more sophisticated bridging designs. We
still need to test this type of bridge with a true USB gadget such as a PDA.
There are also issues with using this type of a bridging on a DHCP enabled
network that checks MAC addresses, such as CWRUnet. Since the MAC
address of the sender will change when the bridge begins forwarding on a
new port, some networks will get very confused and not allow the messages
out. This needs to be further explored.

8

Bibliography

[1] http://www.plxtech.com/products/NET2000/NET2280/default.asp.

[2] David Brownell. The GNU/Linux “usbnet” Driver. http://www.

linux-usb.org/usbnet/, March 2004.

[3] Microsoft Corporation. “universal serial bus class definitions for commu-
nications devices”. http://www.usb.org/developers/devclass_docs/
usbcdc11.pdf, January 1999.

[4] Microsoft Corporation. “usb remote ndis devices and win-
dows”. http://www.microsoft.com/whdc/device/network/NDIS/

usbrndis.mspx, April 2004.

[5] Stephen Hemminger. Linux Ethernet bridging. http://bridge.

sourceforge.net/index.html.

[6] Debian Project. “debian ‘sarge’ release information”. http://www.

debian.org/releases/testing/.

9

