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A Distributed Framework to Facilitate Human-Robot Remote Interaction 

 

Abstract 

by 

AHMAD TAWFIQ AL-HAMMOURI 

 

In this thesis, I present a distributed multi-agent software system that facilitates 

remote interaction between human beings and intelligent systems, e.g., robots. This 

system is built using off-the-shelf open-source and free-licensed software technologies. 

The two major technologies used are Aglets, which are Java-based mobile agents, and 

Jini, which is a middleware for building adaptable and dynamic distributed systems. 

The resulting system has the following features. First, it allows the user to expand 

the functionality of a robot on the fly. Second, it allows the user to control multiple robots 

from one control panel. Third, in face of partial failures, the system still functions in a 

consistent and predictable manner. 

I discuss the system’s different components and present experiences and 

directions for future research. 
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Chapter One 

Introduction and Background 

 

1.1   Introduction 

 The Internet provides a suitable infrastructure for building distributed 

applications. This is because computer networks, which make up the Internet, are 

becoming faster and relatively more reliable [14]. One of these applications is Internet 

Tele-robotic. The first experiment to interact and control a robot remotely was the 

Mercury project [11] at the University of Southern California. Following this experiment, 

many robotic research groups exposed their own robots to the Internet audience. To name 

a few are the Tele-garden project [12], Xavier [24], and the efforts done at the University 

of Western Australia [25]. The audience found the idea a very fascinating one because no 

matter how far they were from the robot’s actual location, they could still interact with 

and manipulate the robot. 

 The growing interest in this field of research is seen to be useful in areas where 

the human access to a place is hazardous, or because of physical separation. For example, 

robots can be used in nuclear plants or sent to space. 

 In this thesis, we present a distributed multi-agent software system that facilitates 

remote interaction between human beings and intelligent systems, e.g., robots. This 

system is built using off-the-shelf open-source and free-licensed software technologies. 

The objective is to build a system that is: 

• Environment independent. The system should not be restricted to run on a special 

hardware or operating system. In addition, if it needs to be moved from one 

 1
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environment to another, no changes or minor changes should only be required; 

and 

• Generic. The system should not be based on a particular robot and system 

components should be abstracted to fit a wide range of robots. 

 

The road map of this thesis is structured as follows: the remaining of this chapter 

surveys a number of pervious and related works and introduces a background of our 

approach. Chapter 2 discusses in details the anatomy and the building blocks of the 

system. Chapter 3 gives different techniques implemented to increase the system 

robustness and reliability. Chapter 4 gives an example of how the system can be tailored 

to interact with a specific robot through a number of screen shots. Chapter 5 concludes 

the thesis and presents directions for future works.  
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1.2   Related Work 

This section presents an overview of related research projects. It is not intended to 

evaluate the robot’s hardware for each, but to analyze the system used to control each 

robot. 

 

1.2.1   Previous Work 

The Mercury system [1] consists of a robot, a camera, a UNIX station, and a PC. 

The camera is used to capture and broadcast images from the robot’s workspace. The two 

machines, the UNIX station and the PC, are connected via Ethernet. The UNIX station, 

which runs a web server, is responsible for accepting and responding to the incoming 

HTTP requests, verifying users’ Ids and passwords, decoding mouse events into XY 

coordinates and then sending them to the PC, and accepting the feedback images from the 

PC and sending them to the users. The PC, which is connected to the robot via a serial 

port, is responsible for decoding the XY coordinates into robotic commands, sending 

these commands to the robot, and receiving the workspace images from the camera, 

compressing them, and then delivering them to the UNIX machine. 

When users direct their web browsers to the project’s URL, they receive a web 

page that contains a status image and three buttons. Two buttons are used to move the 

camera to give a different view of the workspace and the third is used to blow a burst of 

air into the sand underneath the robot’s arm to look for a hidden object. Users can also 

click the mouse on the image to instruct the robot to move to a specific location. 

The System presented in [17] uses CORBA as a communication protocol between 

the client and the server. CORBA is used to enable a Java code to communicate with a 
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legacy C++ code. Accessing the project’s web page with a Java-enabled web browser, 

clients download a Java applet interface that allows them to interact with the robot. The 

interface has the following components: an object recognition module, a live image of the 

robot’s workspace, and a graphical representation of the robot’s current state. This 

representation is to be used as a feedback if only low bandwidth is available. 

The user interface of the system described in [13] is based on a Java applet that 

communicates with a Java servlet running on the web server. The interface has two 

components: a JPEG image, which displays the live robot actions, and a VRML graphical 

model. The VRML model is used to move the robotic arm and to serve as a feedback 

representation of the actual robot’s state.  

Xavier, an autonomous mobile robot, is described in [24]. It deploys complex 

algorithms, such as obstacle avoidance, navigation, and path planning. The web-based 

interface allows users to select one of many predefined locations within a building. After 

determining the efficient route to the commanded location, Xavier follows this path to the 

specified location. The interface also has an image showing the robot’s status. 

A reusable framework for web-based teleportation is presented in [8]. Built to be 

as generic as possible, the system targets a wide range of devices to make them available 

to the Internet audience. This system can be used to allow more than one user to 

manipulate more than one robot at the same time. The architecture consists of the 

following building blocks: 

Device Server: The device server, which represents the wrapper to the device 

(robot), accepts robotic commands from the web server and forwards them to the robot. It 

was implemented using Expect scripts, an extension of Tcl scripting language. 
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Web Server: The web server is based on Python Medusa web server. In addition 

to its functionality of publishing the robot on the Internet, it coordinates the 

communication between users and device servers.  

Remote Viewers or Pilots: These are the clients, who interact with the robots. 

The system is made adaptable by using the idea of configuration files and the 

JavaBeans Technology, which is used to build the user interface. The device (robot) 

administrator is responsible for tailoring the adjustable components to fit a specific 

device. 

A distributed framework for Internet robotics is discussed in [4]. It uses XML as 

the communication protocol and Message-Oriented Middleware (MOM) [23] as the 

underlying architecture. The system entities or peers – the web server, the robot, the 

camera server, and the clients – are connected to a central message-router, which MOM 

provides. Changes in the system’s state are sent to peers as events. These changes include 

the cases when peers join and leave the system. The user interface has four elements: a 

robot panel, a camera panel, a user chat panel, and a console panel. The robot panel lists 

the robot commands that users have submitted and allows new commands to be typed and 

sent to the robot. The camera panel shows live images from the robot’s workspace. Users 

can select different views and can change the picture’s zoom and attributes. The chat 

panel allows the users, who have already logged in the system, to chat and collaborate to 

accomplish some robotic tasks. The console is used to display status and error messages. 

Several distributed robotic systems, such as in [1, 9, and 18], rely on Real-Time 

CORBA [22], an extension of CORBA [27], to meet the time-delay constraints. The 

overall goal of Real-Time CORBA is to ensure end-to-end predictability in real-time 
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systems [30]. Using CORBA as a communication standard, the resultant system is 

platform independent and different parts of the system can be programmed using 

different programming languages. When these systems need to be extended beyond 

firewalls, HTTP tunneling is used.   

      

1.2.2 Summary 

The systems mentioned in the previous section share one aspect – they all follow 

the client-server computing paradigm. Figure 1.1 shows the general coordination of these 

systems. 

Robot 

 Web 
server 

Client
Internet

Camera 

 

Figure 1.1: A general coordination of Internet robotic systems. 

 

The sever, which is usually a commercial Web server, publishes the robot on the Internet, 

accepts requests and robotic commands from clients, forwards the robotic commands to 

the robot, receives the reply from the robot and the status image from the camera, and 

delivers the feedback to the clients. The clients, on the other side, download an interface 

that enables them to send commands to the robot and receive the robot’s current state 

images. 
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 What differentiates one system from another is the programming language or the 

technology that is being used. One system may use the Java programming language and 

its technologies, such as Applets, Servlets, and RMI; another may use CGI processes at 

the server side and carry out the whole communications using CORBA, whereas a third 

may replace the robot’s feedback image with a 3D representation that renders at the client 

side. 

 Such systems demonstrate the feasibility to teleoperate robots over the Internet 

[19]. They still, however, lack one or more of the following important requirements – 

which prevent them from being applied to a wide range of applications: 

• On-the-fly programmability. It is desirable to give the robot’s user the ability to 

construct new tasks based on the currently available ones. For example, the 

functionality of a mobile robot that supports just a single command, move to XY 

location, can be extended to another command like move in a square shape, which 

consists of four “move to XY location” commands invoked in sequence with 

proper parameters. The system should allow the user to create, inject, and invoke 

the new functionality on the fly, i.e., while the system is running. 

• Multi-robot control. If more than one robot is available, the user may need to 

control them simultaneously and to distribute the work among them. Providing 

the user with this ability, the system needs to be generic to encompass different 

kinds of robots. 

• Partial failures tolerance. Network connections may fail; machines, devices, and 

software programs may crash during robot operation times. The importance of 

how to deal and withstand these problems relates to the importance of the task the 
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robot is doing. Although this is a secondary issue, or perhaps it is not an issue at 

all, for a robot being used to play with colored marbles, it is, indeed, a critical 

issue for a robot being used to perform surgery. 

• Latency alleviation. Communications over the Internet experience long and time-

varying delays. The amount of this delay depends on network congestion, link 

bandwidth, and source-to-destination distance [3]. Designers of Internet-based 

telerobotic systems must account for latency to ensure the effectiveness of robot 

control [15]. 

The next chapter presents an implementation of a distributed framework to 

achieve these important requirements. 
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1.3 Background of a new architecture 

The work presented here is based on the architecture introduced in [21]. This 

architecture relies on flexible software entities called Virtual Robots (VRs). The VRs 

have the following characteristics: 

• They are mobile software agents; therefore, they have the ability to migrate from 

one machine to another and to communicate with one another. 

•  They are logically deployed between the supervisor (user) and the robot under 

control. 

•  The supervisor creates them on demand to wrap the functionality of a robot or of 

another VR into a higher-level coarse-grained functionality. 

• Their overall structure forms a tree, where the user controls its root and the 

physical robots form its leaves. 

The first prototype of this distributed architecture was implemented using the C# 

programming language in the .NET environment. Anyone who wants to deploy this 

system and to extend its functionality has the flexibility to use any of the languages 

supported by the .NET environment – for example C, C++, C#, and Visual Basic. 

Because the system uses SOAP [2] as the communication medium, it can work behind 

firewalls and can span LANs and WANs.    

This prototype achieved a subset of the preliminary proposed goals. Each of the 

remaining parts represents a stand-alone project. For example, providing code mobility to 

C# programs is by itself a separate project. We, therefore, have decided to re-implement 

another version of the same system using the Java programming language. We have made 
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such a decision because Java has the following advantages – none of them currently 

existing in the .NET environment: 

• Environments for developing Java programs are available on the World Wide 

Web (WWW) for anybody and at no cost. 

• The Java code written on one platform can be transferred to a different platform 

without changing anything. Thus, the resultant system can span many 

heterogeneous environments. 

• Many Java technologies and implementations for distributed systems are available 

free on WWW. These technologies, which are built by professional groups, will 

ease the burden of developing various system parts. Therefore, the effort can be 

directed to develop and enhance other sides of the system. 

The Java technologies used in the system are Aglets, Jini, and Java Spaces. An 

overview about each is presented next. 

 

1.3.1 Aglets 

Aglets are Java objects that support the concept of mobile agents. The Aglet API 

[16 and 26] is a development kit that allows a developer to create a new aglet as an 

instance of a Java class, clone a twin aglet from an existing one, dispatch an aglet to 

another machine, retract an aglet from another machine, and dispose an aglet when there 

is no longer need for it. 

We use Aglets to build the Virtual Robots (VRs); therefore, VRs can move from 

one machine in a network to another. This ability to travel offers a solution for network 
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latency; hence, helps real-time systems to fulfill time constraints during communication 

[16]. Figure 1.2 demonstrates this benefit. 

Machine B Machine A 
Execute “command”

  
VR2 VR1 

Return value

Machine B Machine A 
Exc.

   
 VR1 VR2 

Ret.

    

Figure 1.2: The benefit of VR mobility. (Up) VR1 is in machine A; VR2 is in machine B. 
(Down) Both VR1 and VR2 are in machine B. 

 
 

Instead of having commands and return values travel through the network 

medium connecting machines A and B, as shown in the upper part of figure 1.2, VR1 can 

migrate to machine B, lower part of figure 1.2. Thus, VR1 and VR2 will execute as two 

threads in the same machine and will communicate using inter-thread communication, 

which is far faster than network communication.    

Other advantages of VRs’ mobility are fault tolerance and load balancing. If a VR 

realizes that its current machine is shutting down or the available computation resources 

are stepping down, it can move to another machine with suitable resources. 

 



 12

1.3.2 Jini and Java Spaces 

Jini, a middleware built on Java and RMI, provides a network infrastructure and 

programming model to build adaptable and dynamic distributed systems [1, 6, 20, and 

28]. It eases the implementation of distributed applications by introducing the concepts of 

lookup and discovery, leasing, distributed events, and objects movements over a network. 

It also enables the deployment of Java Spaces [7] technology, which is used to render the 

system’s persistence.   

The next two chapters explore the anatomy of our system and explain how all of 

these concepts are implemented in the system. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter Two 

Architecture Exploration 

 

 In this chapter, a thorough discussion of our infrastructure is presented. 

 

2.1   System Requirements 

 To apply the system to a specific robot effectively, the following two 

requirements should be met: 

• The exact type of the robot itself is irrelevant. However, it should have the 

capability to endure the communication delays introduced by the network. This 

requirement is essential to ensure the robot arrives to a safe and predictable state 

in face of long delays, lack of communication, jitter, or partial failures during 

operation times. 

• The machine to which the robot is directly attached should co-exist with other 

machines connected by a network. By a machine, we mean any device that is able 

to store and run Java programs and to communicate with others over TCP/IP. This 

may be a PC, a laptop, a UNIX machine, or as simple as a PDA. These machines 

should be accessible by the organization operating the robot since they must run 

daemons and accept mobile code.  

 

Communications among various system entities use TCP/IP. TCP/IP has proven 

its strength in Internet. We rely on TCP/IP reliable data delivery service – i.e., the 

transmitted data is guaranteed to arrive at the destination intact and in order – to ease the 
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implementation of system entities. It is acceptable that TCP/IP does not make any 

guarantees and bounds on minimum transfer rates and maximum network delays, but this 

problem is eliminated by the robot controller. The next section elaborates on this 

problem. The system is implemented within the application layer of the Internet protocol 

stack and it is relying on TCP/IP protocol but if it happens that a new, state-of-art and 

more powerful transfer protocol is invented, we can adapt to it without any difficulty 

provided that this protocol conforms to the transport layer in the Internet protocol stack. 
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2.2   The time delay issue      

 We believe that we have to deal with the communication time-delay problem 

because, sometimes, there is no means to avoid it no matter what the software in the 

application layer, the transport protocol, or the physical communication medium we use. 

Take an example the robot that is on Mars and is controlled from Earth. In the best case, 

the data will travel at the speed of light and in a single direct link. Knowing that the 

shortest distance between Earth and Mars is 33 million miles (53.1 million Km) and the 

longest distance is 249 million miles (401 million Km) [29], one can calculate the 

minimum time-delay (tmin) and the maximum time-delay (tmax) as∗:  

tmin = 53.1*106 / 3*105 = 177 seconds or 2.95 minutes, and 

tmax = 401*106 / 3*105 = 1336.67 seconds or 22.3 minutes. 

The average of both values is 12.63 minutes. Therefore, we need 25.26 (12.63*2) 

minutes, on average, to send a data packet to Mars and receive a confirmation that it has, 

indeed, arrived. So what have we done to deal with the communication time-delay 

problem? 

First, as mentioned previously, we rely on the robot controller to encapsulate the 

real-time constraints. Natural Admittance Control (NAC) realizes this requirement and it 

guarantees robot stability in absence of QoS provisioning. More details about NAC are in 

[5, 10, and 21]. Eventually, the communication time delay will affect just the time needed 

to complete a specific task. Second, we assume that the robot has some degree of 

autonomy to be driven in supervisory control mode. In our architecture, the robot 

controller does not have to support this autonomy by itself, but by means of the enslaving 

                                                 
∗ The speed of light is 3*108 m/s or 3*105 Km/s 
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(encapsulation) technique, which is discussed later, we will let some VRs wrap the robot 

functionality into a higher granularity. The VRs will accept a high-level coarse-grained 

command, break it into smaller ones, and then deliver them to the robot in a granularity it 

understands. These VRs should live near the robot, though. By near, we mean that VRs 

are on the same machine or on machines close to one another so the communication 

delay among them is very small, e.g., they are on machines in the same LAN. Finally, we 

equipped VRs with the ability of migration from one machine to another. A VR can move 

to a machine that is near another VR or the robot .This was explained in figure 1.2 in 

chapter 1. 

 

2.3   Software Entities:  

The system is based on the following software entities: 

 

2.3.1   Robot Proxy (RP)  

To embed any physical robot in our system, an interface is required to hide the 

robot’s proprietary hardware and its controller’s software. The RP represents a surrogate 

or a shield between diverse implementations of different robots and our system, which is 

based on Java. From one side, the RP is compatible with other system's entities and it 

delivers all the services as if it is the robot software itself. From the other side, it 

communicates with the robot's proprietary software to handle to it the desired commands. 

The RP communicates with other system entities by Aglet messaging (see below) and 

with the robot’s software by sockets. The RP resides on a machine close to the robot and 

keeps an active socket connection with the robot’s software.  



 17

The program at the robot, which is written by the robot's manufacturer specific 

language and communicates with outside world, is referred to by "RPCS" (Remote 

Procedure Call Stub), which usually accepts ASCII-based messages and maps them to the 

robot's hardware. The following diagram depicts these elements: 

Aglet’s Messaging Communication Socket Communication 
RP

 Robot The rest of our system 

RPCS
       

Figure 2.1: The Robot Proxy’s (RP) role in the system. 

 

Aglet Messaging:  

 Aglet messaging is a message-based communication technique among aglets. For 

an aglet, A, to send a message to another aglet, B, aglet A has to have aglet B’s proxy. 

The proxy, which serves as a message gateway for the aglet, is an object that has the 

complete information about the aglet location, identity, and state. Sending a message to 

an aglet is simply calling the “sendMessage” method on the aglet’s proxy object.• 

 There are two flavors of aglet messaging: synchronous and asynchronous 

messaging. When the sender uses synchronous messaging, its thread of execution blocs 

                                                 
• The aglet proxy can also be used to clone, dispatch, and dispose the corresponding aglet. 
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until it receives a reply. Sometimes, the sender specifies not to receive a reply. In this 

case, the sender sends the message and continues execution – this is called one-way-type 

messaging. 

 In asynchronous messaging, the sender expects to receive a reply, but it does not 

block its execution. Another name for this type of messaging is future-type messaging 

where the sender sends a message and continues execution and when the reply arrives, 

the sender starts working on it. There are methods to check whether the reply has arrived, 

to wait a certain period for a reply to arrive, and to retrieve the reply from the queue once 

it arrives. 

  Each aglet that expects to receive messages must extend the “handleMessage” 

method. This method can be customized to accept and take action based on particular 

kinds of messages. Different kinds of messages can be given different priority levels, 

which will ensure that messages with higher priority levels are handled before those with 

lower levels. 

   

2.3.2   Virtual Robots (VRs): 

The Virtual Robots are mobile software agents that have the ability to move from 

one place to another. They communicate among themselves and other entities via Aglet 

messaging. Any VR has the behavior to enslave or encapsulate the functionality of 

another VR or RP. By this mechanism, the functionality of the robot can be extended to a 

new one. This resembles the inheritance in software technology. The following example 

clarifies the relationship between the enslaving and the enslaved VRs. Suppose that VR3 

enslaves VR2 while VR2 enslaves VR1 as shown in the diagram below: 
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VR1   

  
VR2  

 
VR3 

Figure 2.2: Virtual Robot’s Encapsulation. 

 

 A user, who is dealing with VR3, sees just the functionality supported by VR3 

and the functionalities inherited from VR2 and VR1, which VR3 explicitly declares. The 

user is unaware of that VR3 enslaves VR2 and VR2 enslaves VR1, and he thinks that he 

manipulates the physical robot through VR3. Hence, the name Virtual Robot comes. 

A user can create, enslave, and dispose (destroy) a VR using the Virtual 

Supervisor. 
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2.3.3  

isor) 

ices use 

event n

e new VRs, enslave them, contact 

them to execute robotic commands, and delete them.  

2.3.4  

able in 

ated VRs and RPs contact the lookup service to advertise 

themse

 then started, they will get the 

whole information from the LUs that are already running.   

 Virtual Supervisor (VS): 

The Virtual Supervisor is an agent that works on behalf of the person (superv

who wants to manipulate a robot. The job of the VS, once it is started, is to find all 

lookup services existing in the system and to ask them for any registered entities of type 

Robot. By an entity of type robot, we do not mean the physical robot but rather we mean 

any software component that has the ability to accept robotic commands, which includes 

all VRs and RPs. After getting the answer of the currently available entities, the VS asks 

the lookup services to inform it back of new VR or RP arrivals. The lookup serv

otifications to keep the VS updated with changes happen in the system. 

The VS is simply a GUI that facilitates the interaction with system’s other 

components. It gives the supervisor the ability to creat

 

 Lookup Services (LUs): 

The LU is a directory that contains information about VRs and RPs avail

the system. Newly cre

lves to others. 

Multiple LUs can be used and distributed around the system to provide 

redundancy and to ensure the robustness, such that, if one LU fails, others can backup its 

functionality. Not all LUs have to be running before other system entities; it is sufficient 

that one, at least, to be running beforehand. When others are
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2.3.5  

e 

robot a ideo. 

terms of a streamed video, discrete moving pictures, or 3D graphic simulations 

to users

it 

roperty to give a visual scene 

of a robot place. Figure 2.3 shows the job of VS at startup. 

 

 Visual Feedback 

There are two forms of feedback when interacting with a robot. First, the low-

level feedback, which represents the return values from executing robotic commands, 

such as, position coordinates, force values, status messages. These values take form of 

numbers, strings, and other data types. Second, the high-level feedback, which shows th

nd its surroundings. This feedback takes form of moving pictures or live v

The deployment of the visual feedback in our system mimics exactly the 

deployment of the RP. As the robot administrator starts up the RP to publish the 

availability and the functionality of the physical Robot, he or she also starts another 

program, which has a convenient way to showing the workspace of the robot and its 

actions in 

.  

When the VS contacts the LUs to get a list of available objects of type robot, 

will get also a list of available objects of type “Workspace View”. The “Workspace 

View” refers to any entity registered with LUs that has the p



 22

 
LUs VS 

1- Give me all entities of type “Robot” 
2- Give me all entities of type 

3- In the future, when ne

VS at Startup: 

“WorkSpaceView” 
w entity of type of 

one of these arrives just notify me back. 

Figure 2.3: VS at startup. 

 

The user can select a view, press a button in the VS GUI, and then a live scene 

will pop up on the screen. The internal implementations of how this works are hidden 

from the user and are specific to the device (the camera) that is being used. The robot’s 

dministrator is the one who takes care of this. 

Unlike the RP, the workspace view does not have the property to be enslaved and 

sers cannot extend its functionality.   

 

 

 

a

 

u
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2.4   Putting It All together (The complete system) 

 After presenting the building blocks of the system let us put them all together 

see how the final coordination looks like. In g

and 

eneral, we will have multiple physical 

robots 

The RPCS and the RP are two layers used as an interface between the physical 

robot and the remaining system entities. Each physical robot has its own RPCS and each 

RPCS has its own RP, so if it happens that a new Java-enabled robot needs to be 

introduced in the system, neither RP nor RPCS is needed. Figure 2.4 can be redrawn 

using the substitution shown in figure 2.5.    

The tree shown in figure 2.4 builds up over time and it does not reach this point in 

a single shot. It may also grow up into a more complex shape with additional time. Let us 

have a possible scenario during the course of building up this tree.  

being controlled by single VS. We will have also many VRs forming a tree to 

support this control. The diagram on the next page (Figure 2.4) shows a broad and 

general example of such layout. 
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At the very beginning, when a new robot is brought into the system, its 

corresponding RP registers with LUs. 

 

Supervisor 

VS 
 

LUs 

RP 1 VR
3 VR

1 

RPCS 1 
VR
6 VR

2 VR
4 

Robot 1 

VR
7 

VR
10 VR 

k 
VR
8 

RP 2 RP 3 RP 4 RP 5 

RPCS 2 RPCS 3 RPCS 4 RPCS 5 

Robot 2 Robot 3 Robot 4 Robot 5 

Figure 2.4: A very broad and general class of scenarios. 

 



 25

RP 

 Can be 
substituted with Java & Jini-savvy 

Robot 
RPCS 

Robot 

 

 

Figure 2.5: Considering RP, RPCS and the physical robot as one entity. 

 

The VS gets aware of this and adds it to the available robot list. Then the 

supervisor can interact with this robot through its proxy (the RP), as the case with “Robot 

1” in figure 2.4. After the supervisor becomes familiar with the robot’s functionality, he 

decides to expand those low-level commands into a useful high-level one comprises one 

or more of the already defined ones. As the time runs, new ideas and new tasks can be 

added until we have a chain-like set of VRs, as the case with “Robot 2” and VR1. 

Sometimes, it is desirable to consolidate the functionality of two or more separate robots 

and control them by a single super node, as shown in figure 2.4, VR3 has a mix of 

functionalities inherited from VR4, VR6, and RP4. 

In the layout seen in figure 2.4, the VS can interact with RP1, VR1, and VR3. It 

can issue tasks to VR1 and while a task is being carried out the supervisor can issue tasks 

to VR3 or RP1 and there is no need to set back waiting VR1 to be done with its 

commanded task.  
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As was stressed out, the VS (or the supervisor) has no access to the inter-tree VRs 

or RPs, e.g., the VS has no knowledge of what functionality VR2 supports, and cannot 

delete, say, VR6 before deleting VR3 first. However, it can view the tree structure of 

such layout and see how entities are connected. 

 

2.5   Software Classes 

 Here, we present the Java classes that contribute to building up the system. The 

definition and the purpose of each are given.  

 

2.5.1   Common Classes 

 These classes are found in VS, VR, RP, and WorkSpaceView. They define the 

communication protocol between parties. They are written as Java Interfaces, so they tell 

what needs to be done but do not dictate how it should be done (the internal 

implementation). These classes are: 

 

2.5.1.1    Robot Interface 

This interface defines how the VS interacts with RPs and VRs. RPs and VRs 

implement (extend) this interface and override its methods. One RP may implement this 

interface in a different way from how another RP or VR may do and still the VS does not 

have to know about the internal implementation of each VR or RP. The VS just invokes 

the defined methods and gets the defined return values. This makes the system generic 

and adaptable to many RPs and VRs developed by different people at different times. The 

Robot interface declares methods to get a handle to communicate with a specific VR or 
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RP, to know the type of a VR or RP, and to ask a VR or RP for the TaskGUI object 

(explained in section 2.5.2.4). 

 

2.5.1.2    WorkSpaceView Interface 

 This interface is similar to the previous one but it has to do with the visual 

feedback, which is built using the same idea the RP is built. The VS just calls a method 

like “getView()”, then a frame will show up having the robot’s scene. It is totally up 

to the implementer how to extend the interface and how to implement the method. As a 

result, different views may be implemented in different ways. 

 

2.5.2   Robot Proxy classes  

 These include: 

2.5.2.1    RobotProxyProxy class 

 The RobotProxyProxy class implements (extends) the Robot interface. Before 

interacting with a specific RP, the VS downloads the corresponding RobotProxyProxy 

object from the LUs. This object is knowledgeable about and communicative with the 

backend entity – the RobotProxy. 
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2.5.2.2    RobotProxy class      

 This is the backend entity, which is responsible for the following:   

• At startup, it establishes a socket connection with the RPCS for future 

communication. 

• It registers with available LUs by uploading an instance of 

RobotProxyProxy class. 

• It waits for incoming commands. These commands could be system 

control commands, such as, registration and deregistration with LUs, and 

requesting the TaskGUI object (see section 2.5.2.4); or they could be 

robotic commands, such as, go to a place, catch an object, rotate, and 

others supported by the robot. Robotic commands are then sent through 

the socket to the RPCS. 

The RP has the ability to recover if its parent VR crashes unexpectedly. We will 

come to this issue later in chapter 3. 

 

2.5.2.3   Messenger 

 The Messenger is an Aglet that carries the TaskGUI from the RP and 

migrates with it to the VS. At arrival, it displays the GUI at the supervisor’s 

computer screen, so by then he or she can issue robotic commands.    
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2.5.2.4   TaskGUI 

 The Messenger Aglet when arriving at the VS machine creates an instance 

of this class. The TaskGUI class is written by the robot’s administrator to reflect 

the robot functionality in terms of convenient GUI components. As the user 

interacts with the GUI, messages having robotic commands are sent to the RP 

accordingly. 

 

2.5.3   Virtual Robot classes 

Most of these classes are similar to those of Robot Proxy’s classes. Only 

differences are described here. 

 

2.5.3.1   VirtualRobotProxy, Messenger, and TaskGUI classes 

These three classes have the same properties of RobotProxyProxy, messenger and 

TaskGUI found in Robot Proxy classes. The VirtualRobotProxy communicates backend 

with an object of a class that extends the VirtualRobot class instead of a RobotProxy 

object. The TaskGUI reflects the new functionality of the VR, so the user, who builds the 

VR, writes the appropriate TaskGUI class.  
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2.5.3.2    VirtualRobot class and its subclasses 

 The VirtualRobot’s class is the base class of all VRs entities. All VRs extend 

(inherit from) this class. This class has all the functionalities to enable each VR to be 

created, to enslave other VRs or RPs, to be enslaved by another VR, to migrate to another 

machine in the network, and to be disposed. Later in the thesis, we cover how a subclass 

can extend this class to form a useful VR. 

 The VR is equipped to perform the following duties: 

• At creation by the VS, VR registers itself with all available LUs by uploading 

to them an object of VirtualRobotProxy class. 

• Upon request from the VS, VR delivers its GUI to the VS by creating an 

instance of class Messenger, loading it with an instance of TaskGUI class, and 

dispatching it to the machine where VS resides. 

• VR can enslave other VRs or RPs and enrich their functionalities. 

• When being enslaved by another VR, VR deregisters itself from the LUs. If its 

parent is deleted, it reregisters again. 

• When moving, VR updates other VRs about its new location. 

• When disposed, VR notifies other system’s entities, such as, other VRs, RPs, 

or LUs about its willingness to disappear. 
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2.5.4   Virtual Supervisor classes   

 Besides the common classes mentioned earlier, the Virtual Supervisor has many 

inner classes to support its functionality. 

 The VirtualSupervisor’s main duty is to display the system components in a 

graphical and interactive way to the supervisor. The GUI has five tabbed panels. The first 

panel (figure 2.6) shows a list of available VRs and RPs in the system and gives the user 

the ability to request each VR or RP TaskGUI and to enslave VRs or RPs. The second 

tabbed panel (figure 2.7) enables the user to navigate the machine’s file system to select a 

class file to create a new VR. The third panel (figure 2.8) enables the user to delete a 

specific VR. The fourth one (figure 2.9) is similar to the first, except that the list is a list 

of Workspace views, so the user can press a button to see a live scene for a robot. The 

fifth panel (figure 2.10) enables the user to see the tree structure of VRs and RPs. 

 Chapter 4 shows how to use these GUI panels to interact with RPs VRs, and 

Workspace Views. 

 

 

Figure 2.6: VS GUI screenshot: panel 1. 
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Figure 2.7: VS GUI screenshot: panel 2. 

 

 

 

Figure 2.8: VS GUI screenshot: panel 3. 
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Figure 2.9: VS GUI screenshot: panel 4. 

 

 

 

Figure 2.10: VS GUI screenshot: panel 5. 

 

 

 

 



Chapter Three 

A Fault Tolerant System 

 

 Distributed systems are vulnerable to partial failures. By definition, a partial 

failure is a failure that defects a part or some parts of the system [7]. There are two ways 

to address this issue. The first one, which is easier, is to consider the partial failure a 

complete failure and the system has to restart from beginning. The second way is to 

design the system to tolerate the failure and to continue correctly function. Fault-

tolerance needs substantial design and implementation efforts. A lot of techniques, 

concepts, and solutions have been developed to tackle this issue and other distributed-

specific issues, such as, heterogeneity, synchronization, security and process migration. 

In chapter 1, we mentioned that we chose Jini, a distributed middleware system, 

as a steering wheel to ease the implementation and enhance the robustness of our system 

and this chapter discusses the details. 

 

 

 

 

 

 

 

 

 

 34



 35

3.1  Running multiple Lookup Services (LUs) 

 The LUs represent the keystone for the system since they keep track of VRs and 

RPs available in the system. To be more specific, the LUs advertise those VRs and RPs at 

the highest level in the tree (those are not enslaved by other VRs). Then, every VR has 

the knowledge about its direct children. Since the supervisor can only interact with those 

VRs and RPs at the highest level in the tree, he relies on the LUs to know what entities 

are available for interaction.  

To increase the system robustness, multiple LUs should be run; each one is on a 

separate machine and has exactly the same knowledge as others. If one fails, others will 

backup its functionality. 

 

3.2 Tolerating Virtual Robot’s failures 

As each VR knows about its direct children and has the handle (see chapter 1) to 

communicate with them, then what will happen when a VR crashes or its network 

connection goes down? Will the whole sub-tree it is rooting be lost? Fortunately, the 

answer is no. This is made possible by adopting the idea of “leases” from Jini, and here is 

how it works. 

When a VR tries to enslave another VR or RP, the two parties agree on lease 

duration. The enslaving VR says, "I want to enslave you for T time units"; the enslaved 

VR grants this lease just for this duration. Ironically, when VR1 wishes to enslave VR2, 

VR1 petitions to VR2 to accept a lease contract. Nevertheless, we will keep using the 

"enslave" terminology.  

While running, the enslaving VR (the lessee) maintains extending the lease for T 
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periods before the lease expires. The enslaved VR or RP (the lessor), on the other hand, 

continues granting lease renewals. If it happens that the enslaving VR does not ask for 

lease extension and the lease duration expires, the enslaved VR or RP will assume that its 

direct parent (the enslaving VR) has unexpectedly died and has been unable to extend the 

lease•. Then, the enslaved VR reregisters with LUs to re-announce its existence. The 

following diagrams explain this process.   

I- VR1 asks to enslave VR2 for a period, T. VR2 accepts this and starts a timer 

that expires after T (Figure 3.1). 

 

VR1 VR2 VR3 Request to 
enslave for T. 

Figure 3.1: At enslaving time. 

 To ensure no racing condition may occur, VR1 sends lease renewal messages 

before T elapses by amount of time ε. ε should be sufficient to count for any 

communication delay the renewing message needs to travel from VR1 to VR2. VR2 does 

the same thing with VR3 (assuming we have a topology as in figure 3.2) 

VR1 VR2 VR3 

 

Figure 3.2: Some topology for three VRs. 

 

                                                 
•  This discusses when the parent VR dies unexpectedly. In the case when VS deletes a VR, the deleted VR 
informs its direct children before it gets disposed.  
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II- At some time, VR2 suddenly crashes or becomes "networklogically" 

unreachable (figure 3.3). 

X VR1 VR2 VR3 

 

Figure 3.3: VR2 crashes. 

 VR2 is no longer alive to renew its lease with VR3, the T period passes and VR3 

does not hear from VR2. At this point, VR3 registers with LUs. Once VR1 tries to 

contact VR2 to renew the lease or to execute robotic commands, a communication 

exception occurs. Then, VR1 releases the pointer (the proxy object) held to VR2. This 

results in the outcome shown in figure 3.4. 

VR1 VR3 NULL 

 
LUs 

 

Figure 3.4: The final outcome. 

 

 When the supervisor becomes aware of this, he may to re-create a new VR, 

instruct it to enslave VR3 and bind it to the free (NULL) pointer. 
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The Lease period (T) 

 The lease period (T) is an adjustable value. It should reflect the system 

requirements. There are two contradictory requirements. On one hand, the lease period 

should be as large as possible. Every two parties engaged in the enslaving relation will 

exchange renewal messages very frequently it T is small. This will influence the 

computation time of the VRs and their ability to execute robotic commands. The reason 

for this is that theses messages have higher priority than robotic command messages 

since they maintain the VR-tree structure. On other hand, this value should be set to a 

small value to let the system heal and recover as soon as possible. When a VR 

unexpectedly crashes, its child waits until the remaining time of the last T to expire 

before it reregisters with LUs. 

 So choosing this value should trade off these two requirements. Right now, it is 

set to two minutes but this is not an optimum value, it is selected to be somehow small 

for testing purposes. 
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VR Mobility   

 When a VR moves, its current state is captured, frozen, serialized, and then 

written to a stream of bytes to be shipped to the destination. During this, the moving VR 

is a passive element, i.e., it is not running. 

To ensure consistency among system parties, when a VR is moving: 

- It is children should pause the lease period (T) timers. 

- Its parent is not allowed to send to it messages. 

-  Neither its parent nor its children are allowed to move. 

The moving VR is given a time-out period to reach the destination. If it cannot arrive 

within time, it will be considered lost and other parties will act accordingly. It may 

happen that the moving VR just takes time more than the time-out to reach the 

destination. To ensure no contention will happen in such case, when the time-out expires, 

the parent releases the pointer held for the moving VR, and the children, which are 

already registered with LUs, do not accept messages from any VR. The supervisor then 

decides what to do once the moving VR appears in LUs, e.g., instruct it to re-enslave the 

children, rebind it to the pointer at the parent, or just dispose it.  

The last technique we deployed in our system is the JavaSpaces Technology. 
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3.3 Deploying the JavaSpaces Technology 

 JavaSpaces is basically a service registered with Jini LUs. It provides a persistent 

storage where objects can be written to and later taken or read from. 

 So far, we have used shared variables written to the space (JavaSpace). Each 

variable is related to a single robotic command in every VR or RP, for which it keeps 

track of the number of calls made to that command. If a VR or RP crashes and another 

copy is started later, this copy will know how many times a call has been made to each of 

its methods (commands). Until now, there is no great benefit from this but this idea can 

be matured and made useful for the case when a VR or RP goes down in the middle of a 

command execution. Then, another copy of same type of the crashed entity can continue 

from the point a failure has happened. This will lead to a reliable, robust and fault tolerant 

system. 

 

 

 

 

 

 

 

 

 



Chapter Four 

The System at Work 

 

This chapter applies our system to ParaDex, one of the robots at Case Western 

Reserve University•. First, we discuss how to write new Virtual Robots to extend the 

functionality of already existing ones. Next, we demonstrate how to use the Virtual 

Supervisor to interact with other system entities through a number of screen shots.   

 

4.1  Writing new VRs 

As mentioned in chapter 3, the VirtualRobot class is the general class that has the 

required functionalities to enable a VR to be created, to enslave other VRs or RPs, to be 

enslaved by another VR, to migrate to another machine in the network, and to be 

disposed of. Every VR extends the VirtualRobot class to inherit these functionalities and 

adds new ones. The following example assumes that we have a mobile robot that has one 

basic command, move. The move command accepts two-real-number arguments and 

causes the robot to move a distance, in inches, in the X and Y directions equal to the first 

and the second arguments, respectively. The current location of the robot, once it receives 

the move command, is defined as (0, 0); positive values mean move forward; negative 

values mean backward. Given these specifications, one can instruct the robot to move in 

some geometrical shapes – triangles, squares, pentagons and others. Suppose in some 

applications moving the robot in square-shape paths is a useful task and needs to be 

repeated several times. Therefore, we need to automate this task in a single function 
                                                 
• For more information about ParaDex, visit http://vorlon.cwru.edu/~vxl11/NetBots// 
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called “moveSquare”. To be flexible, the moveSquare function accepts a real number 

argument that specifies the side length of the resultant square. Let us walk through the 

following code, which accomplishes this function, line by line•. 

        

1 import com.ibm.aglet.*; 
2 import net.jini.discovery.*; 
3 import net.jini.core.lookup.*; 
4  import net.jini.core.event.*; 
5  import net.jini.core.lease.*; 
6 import net.jini.lookup.*; 
7  import net.jini.core.entry.*; 
8 import net.jini.lookup.entry.*;  
9 import java.rmi.*; 
10 import java.rmi.server.*; 
 
11 public class moveSquareVR extends VirtualRobot { 
  
12  public void onCreation(Object o) { 
13   super.onCreation(o); 
14   ROBOTs = new ROBOT[1]; 
15   ROBOTs[0] = new ROBOT("RobotProxy"); 
16  } 
17  public boolean handleMessage (Message msg) { 
   
18   if(msg.sameKind("moveSquare")) { 
 
19            double L = ((Double) msg.getArg(“length”)).doubleValue(); 
 
20    Message toRopotProxy = new Message (“move”); 
 
21    toRopotProxy.setArg(“X”, L); 
22    toRopotProxy.setArg(“Y”, 0.0); 
23    ROBOTs[0].sendMessage(toRobotProxy); 
    
24    toRopotProxy.setArg(“X”, 0.0); 
25    toRopotProxy.setArg(“Y”, L); 
26    ROBOTs[0].sendMessage(toRobotProxy); 
 
27    toRopotProxy.setArg(“X”, -1*L); 
28    toRopotProxy.setArg(“Y”, 0.0); 
29    ROBOTs[0].sendMessage(toRobotProxy); 
 
30    toRopotProxy.setArg(“X”, 0.0); 
31    toRopotProxy.setArg(“Y”, -1*L); 
32    ROBOTs[0].sendMessage(toRobotProxy); 
 
33    return true;     

                                                 
• The examples shown here are simplified in that they do not have the exception handling statements 
required when sending messages through the network. 
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34   } 
 
 
35   else if(msg.sameKind("move")) { 
 
36                      ROBOTs[0].sendMessage(msg); 
 
37    return true;   
38   } 
 
39   else return super.handleMessage(msg); 
40    } 
41 } 
 

 
Example 4.1: Example of how to write a VR. 

 
 
 
 
 

Lines 1-10 import the class libraries (RMI, Jini, and Aglet libraries) required to 

compile this Java program. Line 11 declares that the new VR to be of type 

moveSquareVR and it extends the VirtualRobot class. The moveSquareVR overrides the 

two methods onCreation (lines 12-16) and handleMessage (lines 17-32) inherited from 

the VirtualRobot class as explained next. When the VirtualSupervisor creates any VR, it 

gives the VR a name, as shown in the next section. This name is passed to the base class 

(line 13), which is the VirtualRobot, to initialize the NAME member data. The name is 

useful to differentiate multiple VRs if they are of same type. Lines 14 and 15 show how 

to define children to a VR. The number of children (line 14) and each child’s type (line 

15) are defined – in this case, there is just one child of type “RobotProxy”.  

In the handleMessage method, the VR expects to accept three categories of 

messages. First, a message of kind “moveSquare” (lines 18-34), which is the new 

functionality introduced by this VR. Second, a message of kind “move” (lines 35-38), 

which exposes the functionality of the RobotProxy enslaved by this VR. If the VR does 
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not explicitly expose this functionality from the downstream RP, entities interacting with 

this VR will be unable to use and call the “move” task. Therefore, this VR has a blend of 

basic low-level commands and compound commands. Third, control messages (line 39), 

which are used to maintain leases with parent and children, to instruct the VR to migrate 

to another machine, to enslave other VRs, and the others mentioned in chapter 2. The 

implementations of control messages are in the VirtualRobot class.  

Line 19 extracts the side length argument of the square from the incoming 

message (refer to the aglets API [16] for a complete discussion about creating aglet 

messages, setting arguments, and retrieving the arguments from a message). Line 20 

creates an aglet Message of type “move” to be shipped to the child. Lines 21, 22, and 23 

set the X and Y arguments of the message, and send the message to the child. It is 

assumed that the child (the RP) has the following piece of code. 

 

public boolean handleMessage (Message msg) { 
   

if(msg.sameKind("move")) { 
 

double Xdirection =((Double)msg.getArg(“X”)).doubleValue(); 
double Ydirection =((Double)msg.getArg(“Y”)).doubleValue(); 

 
// send these values (Xdirection and Ydirection) through 
//the socket connection to the RPCS. 

 
return true; 

} 
 
// other else if statements …………………… 

} 
 

 Example 4.2: Part of the RP’s handleMessage method. 
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The four-set of statements (lines 21-23, 24-26, 27-29, and 30-32) set the appropriate 

arguments and send the messages to the child. These statements cause the robot to move 

in a square-shape path like the following diagram starting at (0, 0). 

 

(0, L) (L, L) 

(0, 0) (L, 0) 
 

 
Figure 4.1: Moving in square-shape path. 

 

If the message is of kind “move”, the VR sends the message as is to the child (line 

36). Otherwise, the message is passed to the base class, the VirtualRobot class, to be 

processed (line 39).   

After writing a VR, the TaskGUI is written to allow the VirtualSupervisor to 

interact with the VR in a convenient way. Inside the TaskGUI class, the moveSquare may 

be called as follows: 

 

1 msg = new Message("moveSquare"); 
2 msg.setArg("length", new Double(y.getText())); 
3 proxy.sendMessage(msg); 

 

Example 4.3: Calling the moveSquare method. 
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Line 1 creates a message of kind moveSquare. Line 2, which assumes that the 

GUI has a text field to input the length of the square side, sets the value of the length 

argument. Line 3 sends the message to the VR by calling the sendMessage method on the 

corresponding proxy object. 

The next section shows how to create VRs, enslave them, and interact with them 

through the VS GUI panels. 
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4.2  A Running Scenario 

 We have tailored the RobotProxy to fit the functionality of the ParaDex RPCS. 

The following are the major low-level commands of the ParaDex: 

• goTo: this method causes the robot arm to move to a point in the three-dimensional 

space and to rotate the gripper in a particular angle. 

• getInfo: this method reports the current location, the twist angle of the robot arm, and 

the forces exerted by the robot arm in all direction. 

• gripper: provided with a single parameter, this method closes or opens the gripper 

attached to the arm.    

 

The following screen shots demonstrate how to use these basic commands to 

build high-level and more useful commands. 

The first screen shot (figure 4.2) shows when the VS is started using the aglet 

viewer [16 and 26]. At this point, both the ParaDex RP and WorkSpaceView are running 

in the system. 

 

 

Figure 4.2: Starting VS. 
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 Selecting the VirtualSupervisor in the previous window and pressing the create 

button launches the VS GUI. Once started, the VS contacts the LUs and gets the RP and 

the WorkSpaceView (figure 4.3). 

 

 

Figure 4.3: The VS GUI. 

 

After the user writes a VR, as shown in the previous section, he needs to compile 

the Java source file, which gives a class file. Figures 4.4 and 4.5 show how to instantiate 

and create the VR. After choosing the VR class file, a window pops up that prompts the 

user to enter the agent’s (VR) name. When instantiated, the VR registers with LUs and 

the LUs notify the VS.  
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Figure 4.4: Creating the TeleOpVR VirtualRobot, selecting the class file. 

 

 

Figure 4.5: Creating the TeleOpVR VirtualRobot, naming the agent. 
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The next step is to have the VR enslave the RP (figure 4.6). As shown in the 

pervious section, the VR specifies the type of its children but does not specify their 

names. The VS allows the user to choose among VRs those match the specific type but 

have different names. Once enslaved, The RobotProxy is hidden (figure 4.7). Figure 4.7 

also shows the user requesting the TeleOpVR TaskGUI whereby a GUI window pops up 

on the screen (figure 4.8). 

 

 

Figure 4.6: Using TeleOpVR to enslave the RobotProxy. 
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Figure 4.7: Requesting the TeleOpVR TaskGUI. 

 

 

Figure 4.8: TeleOpVR TaskGUI. 
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 The upper GUI components in figure 4.8 enable the user to instruct the robot arm 

to move in the X, Z, and Y directions and to rotate the gripper certain degrees in both 

directions. Clicking with the right mouse button inside the white circle alternatively 

closes and opens the gripper. The other GUI components show the feedback forces 

exerted by the robot arm in all directions in graphical and textual forms. 

 Figure 4.9 shows when the user requests to view the robot’s workspace, a window 

then pops up showing the workspace view (figure 4.10). 

 

 

Figure 4.9: Viewing the workspace. 
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Figure 4.10: ParaDex Workspace View.  

 

 

 

 

Figures 4.11 to 4.14 show how the user manipulates an object in the robot’s 

workspace, closing a lever, in tele-operation mode.  
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Figure 4.11: Moving in the X-Z (horizontal) plane. 

 

 

Figure 4.12: Twisting the gripper. 
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Figure 4.13: Descending to catch the gripper. 

 

 

Figure 4.14: Closing the lever. 
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Now, the user wishes to automate the close lever task. He writes two VRs: one to 

support a move command and another to support the close lever command •. The VR that 

supports the move command exposes other low-level commands to its parent, which are 

getInfo, gripper, and goTo. 

When the user deletes the TeleOpVR (figure 4.15), the RobotProxy re-registers 

with LUs and the VS becomes aware of this (figure 4.16). 

 

 

Figure 4.15: Deleting the TeleOpVR. 

 

                                                 
• The move command is different from the goTo command. The goTo command causes the robot arm to 
travel to the destination in one direct and jerky movement, whereas the move command causes the arm to 
travel to the destination in small steps and in a smooth movement. The move command consists of several 
goTo and getInfo commands executed in sequence.    
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Figure 4.16: The RobotProxy re-registers with LUs. 

 

Then, the user creates the two new VRs, MoveToVR and OpenCloseLeverVR, 

instructs MoveToVR to enslave the RobotProxy, and instructs OpenCloseLeverVR to 

enslave MoveToVR (figures 4.17 – 4.22). 

 

 

Figure 4.17: Creating MoveToVR. 
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Figure 4.18: Entering the agent’s name. 

 

 

Figure 4.19: Creating OpenCloseLeverVR. 
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Figure 4.20: Entering the agent’s name. 

 

 

Figure 4.21: Enslaving the RobotProxy. 
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Figure 4.22: Enslaving the MoveToVR. 

 

 

 

After requesting OpenCloseLeverVR’s TaskGUI (figure 4.23), the user needs 

only to press a button in the GUI to close the lever (figures 4.24 and 4.25). The user can 

also use the same VR to open the lever. 
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Figure 4.23: Requesting the OpenCloseLeverVR TaskGUI. 

 

 

Figure 4.24: Pressing the CloseLever button. 
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Figure 4.25: The robot’s arm accomplished the close lever task. 

 

 

The example above demonstrates how to use the system to extend the 

functionality of a robot based on a basic predefined set of tasks the robot supports in a 

very similar way a software developer uses the language’s library functions to implement 

useful functions specific to his needs. As the robot specific language and the real-time 

constraints are encapsulated within the RPCS and the controller, the person who wants to 

use this system needs not to be a “robotist” (robot scientist). Indeed, section 1 of this 

chapter showed that writing a code to a robot is just writing an ordinary Java program. 

 

 

 

 

 



Chapter Five 

Summary and Future Work 

 

This chapter concludes the thesis by presenting the summary and directions for 

future work. 

 

5.1 Summary 

We have implemented a distributed system to facilitate human-robot interaction. 

The main advantage of the resulting system is the expandability and on-the-fly 

programmability provided to the user, who is even not mandated to be a robotist. 

Therefore, we have gone beyond static human-robot interaction where the user needs to 

adhere to a fixed number of functionalities a robot supports. This flexibility is made 

possible by using compliant control robots where the real-time constraints are 

encapsulated within the robot controller.  

Throughout system design and implementation stages, the intent was to build a 

generic system that can fit a large number of robots. In addition, the verification tests 

used were based on general scenarios and not based on any particular robot. The system 

has nothing specific to robots and can be used to interact with any intelligent system 

remotely. When the system parts were completed, we applied the system as a whole to an 

arbitrary robot as shown in the previous chapter. In this example, a robot arm is used to 

open and close a lever, which demonstrates the ability of the system to work in physical, 

real world environments.  
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To implement individual parts of the system, we relied on existing, well-

established techniques whenever possible. Thus, we used the Aglet mobile agents to 

provide the code with the ability of migration from one machine to another in a network, 

and Jini to provide the lookup directories, lease and discovery utilities. 

Our system also allows the user to control multiple robots using one control panel, 

although this capability has not been yet tested using physical robots.    

The next section discusses potential ideas that can be augmented to the current 

system to produce more enhanced releases. 

 

5.2 Future Work 

As mentioned in chapter 3, we have used JavaSpaces, as a basic idea, to keep 

track of the number of calls made to each method in a VR. If this VR crashes and another 

copy is started afterward, the second copy can know how many times a call has been 

previously made to any of its methods. More work should be conducted to have the 

second copy of the VR continue from the point where the crashed VR has stopped. Issues 

to be considered are whether to instantiate many copies of each entity at once, or to 

instantiate only one copy and when something later happens, another copy is instantiated; 

and how to address the problem when a VR crashes in the middle of method execution. 

A second idea for future work is to automate the Virtual Robots mobility. Right 

now, the user instructs VRs to move from one machine to another. As each VR’s 

demands of resources, such as memory, processing power or network quality; and time 

constraints may change dynamically, there is a need for the VR to measure such metrics 

and to decide by its own when and where to migrate. VR mobility can also help to 
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compromise between distance and autonomy. VRs that need to exchange low-level 

commands and need to fulfill time constraints will move close to each other, whereas 

VRs that are far away from each other should exchange high-level commands that do 

not need time constraints. 

Finally, as a matter of perfection and providing easiness, there is a need to 

automate code writing for VRs and corresponding TaskGUIs. For example, providing the 

user with interface where he can specify the functionality of a VR using a graphic 

notation while keeping code writing at minimum. Then, this interface automatically 

generates the Java source code. 
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