
Implementation Challenges in Real-Time Middleware for Distributed
Autonomous Systems

Vincenzo Liberatore
Division of Computer Science

Case Western Reserve University
10900 Euclid Avenue

Cleveland, Ohio 44106-7071, USA
E-mail: vl@case.edu

URL: http://vincenzo.liberatore.org/NetBots/

1 Introduction

Exploration missions will achieve a sustainable human-
robotic presence in space and on the surface of the Moon
and of Mars. Sustained operations require higher perfor-
mance, which in turn implies a higher degree of asset au-
tonomy. For example, construction, maintenance, or in-
situ resource utilization will be accomplished by efficiently
executing complex tasks in the absence of long-haul tele-
operation from Earth. Moreover, assets will communicate
with each other and form a distributed system. For example,
multiple units will collaborate on, say, a construction task.
The resulting system is both autonomous (i.e., it can oper-
ate in the absence of direct Earth tele-operation) and dis-
tributed (i.e., multiple assets communicate and collaborate
with each other). Robustness and economy further demand
the re-usability of tested middleware whenever possible. Fi-
nally, the distributed autonomous systems will include as-
sets that operate in real-time: examples are surface robots,
rovers, CEV on-board actuation units, or space construction
robots.

In this paper, we describe the transversal challenges in
implementing real-time middleware components for dis-
tributed autonomous systems. The emphasis is on reusable
components that address issues that are shared among dis-
tributed autonomous real-time systems. Specific applica-
tions are not the focus of this paper.

Real-time middleware has been extensively used in ter-
restrial systems. For example, Real-Time CORBA (im-
plemented, say, in TAO-ACE [21]) aids in the develop-
ment of distributed real-time applications. Other middle-
ware paradigms are for example TMO (Time-triggered and
Message-triggered Objects [11]) and Agents (as in Jack,
used for example in UAV and surface autonomous vehi-
cles, or as in Aglets [12], which we have employed for re-

mote manipulation tasks [1]). Terrestrial real-time middle-
ware has reached high technology maturity and solves for
the most part three major issues: (1) a consistent and well-
defined API for applications (e.g., a well-defined methodol-
ogy for RPC or for resource discovery), (2) a way to specify
real-time constraints, such as soft or hard real-time dead-
lines, and (3) an implementation that maps the real-time
requirements into process or thread scheduling. However,
the current state of the art fails to address network-related
real-time issues.

In this paper, we discuss four critical network-centric
real-time middleware services and the challenges in their
implementation. First, applications specify network QoS in
terms of, say, delay, jitter, losses, or bandwidth. The appli-
cation requirements are then translated into network QoS.
However, the translation is often difficult. For example,
if the underlying network supports, say, assured forward-
ing [20], then it is not straightforward for the middleware
to map application requirements into network Classes of
Service. Furthermore, general network QoS may require
substantial coordination for traffic shaping or for resource
reservation, depending on the specific QoS model. An al-
ternative is to adopt Local QoS [13], at the cost of reduced
end-point control over the network. The second application-
independent service is the so-called rate control module,
which defines the rate at which communication end-points
inject packets into a network. Although rate control is well-
understood in the case of bulk data transfers [22] or of cer-
tain multimedia applications (audio, video) [7], it is an open
problem for distributed autonomous systems consisting of
sensing, actuation, and control units. Third, sensor sam-
ples and control signals are subject to losses and jitter in the
network infrastructure even if QoS is supported. The end-
point middleware should recover from losses and jitter via a
play-back buffer. Although play-back has been extensively

1



studied in digital audio, play-backs are an open problem
in sense-and-respond systems. Finally, middleware must
be hosted on space assets that are constrained in terms of
computation, memory, power, or communication. A major
problem is to map high-level middleware services to such
devices.

2 Background

2.1 Middleware

The terrestrial Internet has grown explosively in the last
decade. The Internet success is due in large part to a sim-
ple network architecture combined with an open interface
that lets developers invent and deploy novel applications
and services. The Internet model is radically different from
the traditional practice in space networks, where commu-
nication software has often been developed specifically for
each application or mission. However, the TCP/IP interface
addresses fairly low level communication issues. Sockets
are similar to low-level disk I/O and force application de-
velopers to structure communication around the disk I/O
paradigm. On the other hand, a distributed application may
benefit from more complex abstractions, such as remote
procedure calls, where locally running code will invoke a
function to be executed transparently on a remote server.
Fortunately, the open-interface Internet architecture makes
it possible to implement more complex primitives on top
of TCP/IP. The resulting system is middleware, a set of li-
braries that abstract the details of the underlying commu-
nication protocols. Middleware implements common func-
tionality once, thereby significantly speeding up the time
and cost of developing distributed applications. Further-
more, middleware implements state-of-the-art distributed
algorithms while hiding their complexity from application
developers. Commercial off-the-shelf middleware includes
for example CORBA and Java RMI [23].

Although middleware has been primarily used in the ter-
restrial setting to support business applications, much re-
search has also been devoted to middleware for real-time
distributed embedded systems [21]. In this case, middle-
ware must incorporate time as a first-class citizen because
the stability, safety, and performance of applications de-
pends on real-time middleware properties.

2.2 Networked Control

The literature commonly denotes the physical system
to be controlled as plant. A controller acquires data from
the sensors that monitor the plant. The controller uses the
sensor readings to issues commands to actuators so as to
change appropriately the plant state. The textbook example
is the regulation of ambient temperature. A thermostat (the

controller) reads the temperature in the ambient (the plant)
from a thermometer (the sensor) and modulates the heating
(the actuator) so as to bring the room to the desired temper-
ature.

In general, the plant state depends on the actuator oper-
ations and also on exogenous disturbances. Furthermore,
the sensors are subject to measurement errors. A networked
control system (NCS) involves a plant that is controlled re-
motely, and networked control is complicated by delays, jit-
ter, and packet losses. In the first place, network latency can
delay the reception of sensor data at the controller site and
the application of a control signal at the plant site. Further-
more, packets can be lost either because they are dropped
out in the network infrastructure or because they are dis-
carded by the communication end-points, for example, if
they arrive late.

3 Network Quality-of-Service

Real-time middleware must satisfy Quality-of-Service
(QoS) requirements. The QoS requirements can be clas-
sified depending on whether they focus on network pa-
rameters (latency, jitter, loss rates, end-to-end bandwidth),
distributed systems concerns (predictability, scalability, de-
pendability, and security) or programming languages and
interfaces (programming abstractions for QoS). QoS re-
quirements are translated into QoS provisioning by the mid-
dleware to meet the application requirements [8].

Unfortunately, QoS provisioning is made difficult by two
fundamental architectural principles of the terrestrial Inter-
net [5]. A first principle is autonomy and decentralized con-
trol. A decentralized architecture is responsible in part for
preventing the adoption of QoS mechanisms that rely on
the concurrent administration of multiple nodes or on the
concerted efforts of multiple providers. Conversely, space
exploration networks fall within the administrative control
of a handful of government agencies, and make it relatively
easier to coordinate administrative responsibilities. A sec-
ond principle is best-effort service, which implies an unre-
liable service with no provisioning for QoS. A best-effort
architecture can employ over-provisioning to guarantees a
statistical form of QoS because an over-provisioned net-
work is characterized by bandwidth larger than the arrival
rates, so that queuing delays and loss rates are small. More-
over, over-provisioning also leads to redundancy and fault-
tolerance. On the other hand, best-effort networks do not
apply policing or isolation among flows and, as a result,
QoS can suffer. Specifically, over-provisioned best-effort
networks work well in the typical case, but do not provide
guarantees and expose flows to the risk of poor QoS. Fur-
thermore, over-provisioning is more difficult to use in space
networks due to the exorbitant cost of deploying space as-
sets.

2



0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90f
a
s
t
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(a) YAQS

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90f
a
s
t
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(b) YAQS and FIFO

FIFO
YAQS

0

100

200

300

400

500

600

700

60 61 62 63 64 65f
a
s
t
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(c) YAQS and FIFO (zoom)

FIFO
YAQS

Figure 1. (Fast) queue length (trace 6). Chart (a) gives YAQS fast queue length, chart (b) compares
YAQS and FIFO, and chart (c) zooms on the interval [60, 70], where the FIFO queue starts its highest
ascent. The vertical axis scale differs among charts [13].

On the whole, terrestrial networks have followed the
two fundamental Internet design principles of decentralized
control and best-effort, and mostly guarantee QoS through
over-provisioning. However, space networks are not subject
to the same types of constraints. First, space exploration
networks have a more centralized administrative structure.
Second, over-provisioning is not a sustainable solution. As
a result, space networks are a better fit for QoS provision-
ing, including selected mechanisms to achieve scheduling,
isolation, and policing. For example, a surface network
could establish a priority scheme to differentiate among
data, video, audio, and control flows.

Although planetary networks can support QoS mecha-
nisms, a planetary network is also an autonomous system
that must be ready to operate without direct Earth supervi-
sion. In particular, a distributed autonomous system should
be able to arbitrate among competing QoS demands even
without human supervision. For example, suppose that a
certain flow has low priority until an unexpected event ren-
ders it critical to the mission. The distributed autonomous
system should adapt to the change and adapt QoS levels
accordingly. By contrast, the flow cannot suffer poor QoS
until a remote Earth administrator realizes the danger and
rearranges priorities. In other words, QoS administration
must also be autonomous and distributed.

An approach to autonomous and distributed QoS is Local
QoS, a set of fully distributed mechanisms to protect flows
and ensure QoS. Local QoS is typically an addition (or even
a replacement) to explicit and coordinated QoS provision-
ing.

In previous work, we have addressed local QoS with a
scheduling algorithm that maintains short queues in best-
effort networks that are generally over-provisioned but oc-
casionally congested [13]. The algorithm requires no sup-
port for distributed coordination. The YAQS (Yet An-
other Queuing Strategy) mechanism attempts to obtain short
queuing delays in a best-effort router that is crossed by ag-

gressive flows. The algorithm involves the following two el-
ements. First, per-flow queue occupancy is maintained with
high accuracy and limited state. Second, when the queue
occupancy of a certain flow exceeds a threshold value, sub-
sequent packets belonging to that flow are segregated in a
different queue. The forwarding decision is then made by
an approximately fair schedule between the regular and the
segregated queue. The intuition is that flows with small
buffer occupancy should benefit from a shorter queue once
the more aggressive flows have been separated.

Figure 1 gives the (fast) queue length of YAQS and FIFO
on a Internet trace. YAQS is a clear improvement over FIFO
in terms of fast queue length. In fact, the YAQS line is but
noise close to the horizontal axis when compared to FIFO.
The comparison is better seen by zooming in, as in Figure
1(c).

Simulations afford us the opportunity to compare YAQS
with an Active Queue Management mechanism such as
RED [6]. Figure 2 gives the (fast) queue length of YAQS,
FIFO, and RED during the activity of an aggressive flow.
YAQS is a clear improvement over FIFO and RED in terms
of fast queue length. In fact, the YAQS line looks like noise
when compared to FIFO or RED. RED improves over Drop-
Tail, and it prevents long queues after an initial transient
where it behaves like FIFO (i.e., until time 1.9s). How-
ever, RED did lead to long queues initially due to its slower
dynamics. The aggressive flow goodput is 24Mbps under
YAQS, 29Mbps under FIFO, and 17Mbps under RED. In
summary, YAQS was the most effective method to main-
tain short queues, and simultaneously the aggressive flow
achieved higher goodput than under RED.

Future work should develop the ideas of local QoS. For
example, YAQS should be compared with Stochastic Fair-
ness Queuing (SFQ) [17].

A complementary approach is to hide latency through
overlay QoS. In an overlay network, end-points are orga-
nized at the application layer into a virtual connectivity net-

3



0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3f
a
s
t
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(a) YAQS

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3(
f
a
s
t
)
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(b) YAQS and FIFO

FIFO
YAQS

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3(
f
a
s
t
)
 
q
u
e
u
e
 
l
e
n
g
t
h
 
(
K
B
)

time (s)

(c) YAQS and RED

RED
YAQS

Figure 2. (Fast) queue length in simulations. Chart (a) gives YAQS fast queue length, chart (b) com-
pares YAQS and FIFO, and chart (c) compares YAQS with RED. The vertical axis scale differs between
charts [13].

work on top of the underlying IP connectivity. Overlay
QoS dynamically manages an overlay network to guaran-
tee higher levels of service to applications. For example, a
reliable overlay can reduce the periods of network partition
[4] that we found to be a significant problem for networked
control performance. We expect that overlays and buffers
will act on different time scales, and thus both should be
investigated and used.

A related issue is the the use of multihoming, as in the
real-time version of SCTP. Multihoming allows hosts to be
reached from different end-to-end paths, thus improving the
reliability of the distributed applications. In a real-time dis-
tributed application, signals would be replicated via forward
error correction over multiple paths, and would increase the
application’s performance and continued operations [18].
Future research should also involve a comparison of SCTP
multihoming with resilient overlays.

4 Rate Control

A second issue is the rate at which embedded devices
exchange data. The issue of bandwidth management has
gained considerable research attention in NC, see for ex-
ample [25, 3] and the references contained therein. Most
research has focused on bandwidth scheduling in limited
(local) area networks, e.g., in a car, in an airplane, or in a
factory. Several reasons hinder the extension of such band-
width scheduling schemes to Wide Area Networks (WANs),
such as a full planetary network. Previous work usually
requires time synchronization among the different devices
in the network. The allocation schemes are either static or
dynamic. Static schemes determine allocation before run-
ning and consequently lack flexibility and adaptability to
dynamic changes. On the other hand, dynamic schemes of-
ten required centralized implementations.

In our earlier work, we have developed a dynamic,
decentralized bandwidth allocation scheme for networked

control systems that have their control loops closed over
WANs [2]. The algorithm is depends on a formulation of
the bandwidth allocation problem as a convex optimization
program that can be solved in a fully distributed manner.

The idea behind our approach is to have the control
systems vary their sampling periods (thus their bandwidth
consumption) based on the congestion level fed back from
the network, and to preserve high performance level. Our
scheme has the following features:

• It allocates the bandwidth to ensure stability of all con-
trol systems, if feasible.

• It allocates the bandwidth in a way to attain the maxi-
mum aggregate performance of all control systems.

• It makes use of network bandwidth efficiently; con-
trols congestion, thus minimizes delays and losses, and
achieves fairness by fulfilling performance objectives
of different control loops.

• It provides a fully distributed, asynchronous, and scal-
able solution. Each node executes an independent al-
gorithm using local information with no central man-
aging entity. The approach scales up with the number
of controlled systems and the size of the network.

• It is dynamic and flexible. It dynamically reallocates
bandwidth as different control systems acquire and re-
lease the network.

A NCS typically benefits from higher sampling rates.
For example, the physical behavior tends to track more
closely the intended reference behavior if the sampling rate
is higher. In extreme circumstances, the sampling rate is so
low that the physical system becomes unstable, in which
case even small perturbations can cause massive break-
downs. Hence, the sampling rate must strike a balance be-
tween network utilization and intended physical behaviors.

4



The sampling rate is thus a critical tuning factor in NCSs.
The effect of the transmission rate, r, on the physical system
dynamics is often captured by a utility function, Ui(r). The
utility value Ui(r) expresses the degree to which a partic-
ular system i can benefit from sampling rate r. In general,
the utility function is a monotonically increasing function of
the rate r, which reflects the fact that higher sampling rates
lead to better control performance. In practice, the utility
function is also often a strictly concave function of r, which
reflects a law of diminishing returns as the rate increases.

The rate control objective can be formulated as follows:
determine a transmission rate of each NCS so as to maxi-
mize the sum of utilities subject to (i) each system stability
constraint, and (ii) each link’s capacity constraint:

max
∑

i

Ui(ri), (1)

s. t.
∑

i∈S(l)

ri ≤ Cl, l = 1, . . . , L,

and ri ≥ rmin,i,

where S(l) is the set of NCSs whose communication loops
use link l, Cl is the capacity of link l, and L is the total
number of links in the network. In this formulation, we as-
sume that the communication loop for each NCS can use
link l only once. This assumption is always valid if all links
are full duplex (in which case, forward and backward traf-
fic do not interfere). The optimization problem (1) can be
decomposed into separable sub-problems [2]. The solution
was then be implemented in a distributed fashion, whereby
individual controlled systems and links execute indepen-
dent algorithms. This solution is achieved by considering a
dual version of the basic optimization problem that incorpo-
rates the Lagrange multipliers for link capacity constraints.
The innovation involves the combination of an optimization
congestion control approach with a PI AQM method in the
case of networked control, and the exact analysis of the PI’s
stability region.

A basic issue is the derivation of utility functions that are
relevant to networked control. A possible approach is to de-
rive a per-plant utility function depending on how close the
plant is approaching the instability region at the chosen rate,
and using these utility functions in our framework. Future
work should explore an innovative way to measure plant in-
stability that is based on the time-scales approach for solv-
ing differential equations [9]. The advantage of time-scales
is that the utility functions can change over time depending
on the “degree of instability” currently exhibited by a plant.

In the development of congestion control algorithms, it
is important to consider the effects of slow convergence of
a congestion control algorithm, which can have substantial
impact on the performance of connected plants. In counter-
ing the slow convergence rates, it is also important to not to

Figure 4. Queue oscillations.

vary the sampling rates of the NCSs as this may have detri-
mental effects on system performance. A promising ap-
proach would be based on equation-based congestion con-
trol [7] or on TCP-friendly SIMD congestion control [10].

Sense-and-respond congestion control differs from TCP
congestion control in that rate regulation must be based on
relatively fewer packets. On the other hand, the number
of packets corresponds to the speed at which an individ-
ual plant receives information about the queue. As a result,
the queue cannot be controlled at frequencies that are com-
parable or higher than the packet frequency. In turn, the
paucity of packets causes visible queue oscillation and flow
synchronization, as in the simulations in Figure 4. The os-
cillations are a problem in congestion control but are unre-
markable in TCP congestion control even though the two
methods are based on the same original techniques because
TCP’s packet rate is much higher and tends to mask the os-
cillations with noise. Future work should investigate meth-
ods to suppress this oscillations, and our on-going work
suggests that a particularly effective technique would be to
introduce a non-linear element prior to the PI AQM.

5 Play-Back

A play-back method smooths out delays, jitter, and
packet losses by applying control signals to the environment
during predictable time intervals [20]. Figure 3 exemplifies
a possible signal exchange. In this example, the plant sends
samples to the controller at regular intervals of length T .
A sample was dropped out after t3 but the plant kept sam-
pling every T seconds and, in this example, the next signal
was successfully delivered. The unbuffered control is com-
monly adopted in related work [15, 19] and applies received
control signals from the time when they are received until
the reception of a new signal. The unbuffered mechanism
suffers the problem that no signal is applied during a pre-
dictable time interval. A traditional play-back buffer holds
the signal u1, u2, and u4 that are received before their play-
back time and applies the corresponding control signal only

5



u
1

u
2

u
3

u
4

1
t t

2
t

3
t

4

u
2

u
2
(c) u

3
(c) u

4
u

1

u
1

u
3

+ τt
2

+ L + τt
4

u
2

1
t + τ

t
3
+ τ

t
2
+ τ + L

u
1
(c)

1
u , u

2
u

2
(c), u

3
u

3
(c), u

4
(c)
4

u,

u
4

integrated
play−back buffer

t

t

plant

controller

unbuffered control

pure play−back buffer

Figure 3. The timeline of network events in the remote control of a plant. In this example, τi and
Li = T are constants [14].

at the planned instant. The buffer discards u3 because it
is late and applies u2 until otherwise instructed by a new
control signal. Traditional buffers suffer from the long ap-
plication interval of signals such as u2.

In our earlier work, we have developed a play-back algo-
rithm for tolerant and adaptive networked control [14]. Fig-
ure 3 shows one of the main improvements over traditional
buffers. The improved algorithm times out and switches to
u

(c)
2 when u3 is late and to u

(c)
3 when a sample is lost and

no control signal is forthcoming.

Our playback algorithm employs a reverse play-back
buffer and the estimation of play-back times, an expiration
time to curb an aggressive controller, a contingency control
to deal with loss episodes, and an observer that explicitly
accounts for network vagaries. The intuition is that the con-
trol signals should be applied during a predictable interval.
If the control is applied too early, the plant will not have
reached yet the state for which the control was meant. Sym-
metrically, a control signal ui can negatively affect a plant
if it is applied continuously well after the sampling time ti
because the plant state would in general have changed sig-
nificantly in the meanwhile.

In our algorithm, the controller sends to the plant two
control signals, which will be called the regular control (de-
noted by ui) and the contingency control (denoted by u

(c)
i ).

Additionally, the controller sends also a play-back delay τi

and the duration Li of the regular control. The play-back
time τi is used to implement a relaxed play-back buffer: the
regular control is applied at time ti + τi, or immediately if
the play-back time has already passed. Thus, the play-back
delay only fixes the earliest time at which a control can be
applied. After a duration Li since the time when the control
was applied, if a new control has not been received, the plant
switches to the contingency action u

(c)
i . The duration Li

and the contingency control u
(c)
i prevent the plant from ap-

plying the regular control for an unpredictably long period
of time, thereby damaging the system. Therefore, the con-

tingency control should be a low performance but presum-
ably safe action. Additionally, the controller sends the plant
a sampling period Ti, which denotes the time interval until
the plant collects the next sample from the sensor and sends
it to the controller. A predictable sampling schedule Ti ef-
fectively establishes time-out protection against losses. The
play-back algorithm is integrated with sampling (through
the dynamic setting of sampling time) and control (through
expiration times and performance metrics).

The sampling rate 1/T normalized by the packet size
is the instantaneous bandwidth used by networked control.
Since T is related to bandwidth and τ to communication de-
lays, T and τ are largely independent of each other. In par-
ticular, nothing prevents T � τ , in which case a sequence
of samples and control signals are typically in flight in the
network. Such a scenario is called a control pipe. Notions
similar to pipes were also discussed in [16, 24]. Although
the pipe is, in some sense, stored in the network, the plant
does not keep explicit state for the signals in the pipe. The
main advantage of using control pipes comes from the fact
that shorter sampling periods tend to improve control per-
formance. A second advantage of pipes is that it enables a
controller to quickly countermand a previous control signal,
in case of transient delay spikes.

The algorithm was extensively simulated and emulated.
The evaluations demonstrated that the algorithm produced
low variability around the set point and it was robust to vary-
ing levels of connectivity. Extensive simulations showed
that the combined approach was able to remove 75% of the
additional (non-inherent) plant variability. Furthermore, the
play-back control performed roughly as well as any pro-
portional controller on an ideal network with pure delays.
The algorithm was robust to parameter choice and its per-
formance gracefully degraded when network connectivity
worsened (Figure 5). The algorithm addressed several prob-
lematic issues in networked control systems. A control sig-
nal ui is applied during a time interval whose bounds are de-
fined by the play-back delay and by the expiration time. The

6



1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00

m
2

log (1-q)

open loop

play-back
unbuffered

Figure 5. Root-mean-square m2 as a function
of the probability q of remaining in the lossy
state [14].

expiration time was especially effective in the case of losses
in that it prevented the continued application of an old con-
trol that was appropriate at the time it was originally applied
but that later on would take the plant output away from its
reference value. Symmetrically, the play-back buffer pre-
vented the application of a signal when it was not appro-
priate yet for the current plant state. The introduction of a
playback delay was very effective in mitigating the effects
of jitter, at the price of a minimal additional average delay.

A major open question is the integration of play-back
buffers with congestion control. In the first place, the play-
back algorithm also fixes the sampling period of T as a bal-
ance of two competing objective: a smaller T leads to better
plant performance, but a smaller T also increases the num-
ber of control pipe imperfections that are caused by jitter.
The algorithm dynamically attempts to decrease T until T
reaches a value so small that it would start causing control
pipe imperfections. An integrated algorithm can take one
of following two approaches. First, T could be generated
by the rate control algorithm, but a final check is made to
ensure that T is higher than a jitter-aware lower bound. The
second approach is to remove the lower bound altogether by
using more aggressive buffers at the plant site. In principle,
if the plant had an infinite buffer, the effect of jitter would
vanish. However, larger buffers also pose significant ques-
tions: its memory consumption is heavier, and more sig-
nificantly, the prediction of the future plant state becomes
extremely complicated. As a consequence, the observer’s
prediction could be far less accurate. In summary, it is not
clear whether the better solution is to keep the pipe simple
while restricting the smallest value of the sampling period
T .

The play-back algorithm often generates control pipes in
which multiple samples and control signals are outstand-
ing. Meanwhile, the plant uses timers to clock the sample

generation process. Control pipes present an opportunity
for congestion control to be based on a congestion win-
dow, thus becoming self-clocked and dispensing of timers.
Future work should include an investigation of congestion
control based on a congestion window. Finally, the commu-
nication flow is driven by the plant timers, and alternative
sampling schemes should be investigated.

6 Middleware Implementation

Terrestrial middleware is modular and flexible, but of-
ten demanding in terms of computational resources or band-
width. A major open question is to map the clean designs
of distributed real-time embedded systems on constrained
resources, such as those that are going to be deployed on
space assets.

A number of pragmatic issues must also be addressed be-
fore the algorithms can be integrated into a working system.
In the first place, samples and controls should be sent over
RTP. Although we are confident that the RTP protocol is ap-
propriate for real-time flows, we had problems with several
of its implementations. Future work should undertake an in-
vestigation of existing RTP libraries and implement modifi-
cations as needed. We expect that the modifications will be
confined to the implementations and that no changes would
be needed in the RTP/RTCP protocols. Similarly, our pre-
liminary investigation suggests that SCTP implementations
may suffer from problems similar to RTP implementations.

Acknowledgments

Work supported in part under NSF CCR-0329910, De-
partment of Commerce TOP 39-60-04003, and NASA
NNC04AA12A. We would like to thank Ahmad Al-
Hammouri for Figure 4.

References

[1] A. Al-Hammouri, A. Covitch, D. Rosas, M. Kose,
W. S. Newman, and V. Liberatore. Compliant control
and software agents for Internet robotics. In WORDS,
2003.

[2] Ahmad Al-Hammouri and Vincenzo Liberatore. De-
centralized and dynamic bandwidth allocation in net-
worked control systems. In 14th International Work-
shop on Parallel and Distributed Real-Time Systems
(WPDRTS), 2006.

[3] L. Almeida, L. Pedreiras, and P. Fonseca. The FTT-
CAN protocol: why and how. IEEE Transactions
on Industrial Electronics, 49(6):1189–1201, Decem-
ber 2002.

7



[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. Morris. Resilient overlay networks. Operat-
ing Systems Review, 35(5):131–145, 2001.

[5] V. Cerf and R. Kahn. A protocol for packet network
interconnection. IEEE Transactions on Communica-
tions Technology, COM-22(5):627–641.

[6] Mikkel Christiansen, Kevin Jeffay, David Ott, and
F. Donelson Smith. Tuning RED for Web traffic. In
Proc. Sigcomm, pages 139–150, 2000.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast appli-
cations. Computer Communication Review, 30(4):43–
56, 2000.

[8] Christopher D. Gill, Jeanna M. Gossett, Joseph P. Loy-
all, Douglas C. Schmidt, David Corman, Richard E.
Schantz, and Michael Atighetchi. Integrated adaptive
QoS management in middleware: An empirical case
study. Real-Time Systems, 29(2–3):101–130, March
2005.

[9] I.A. Gravagne, J.M. Davis, J.J. DaCunha, and R.J.
Marks. Bandwidth reduction for controller area net-
works using adaptive sampling. In International Con-
ference on Robotics and Automation, 2004.

[10] Shudong Jin, Liang Guo, Ibrahim Matta, and Azer
Bestavros. A spectrum of TCP-friendly window-based
congestion control algorithms. IEEE/ACM Transac-
tions on Networking, 11(3), June 2003.

[11] K.H. (Kane) Kim. APIs for real-time distributed
object programming. Computer, 33(6):72–80, June
2000.

[12] Danny B. Lange and Mitsuru Oshima. Program-
ming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[13] Vincenzo Liberatore. Local flow separation. In The
Twelfth IEEE International Workshop on Quality of
Service (IWQoS), pages 87–95, 2004.

[14] Vincenzo Liberatore. A play-back algorithm for net-
worked control. In Proceedings of the Twentififth
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2006), 2006.

[15] Vincenzo Liberatore et al. Net-
worked Control Systems Repository.
http://home.cwru.edu/ncs/.

[16] B. Lincoln and B. Bernhardsson. Optimal control over
networks with long random delays. In Proc. Inter-
national Symposium on Mathematical Theory of Net-
works and Systems, 2000.

[17] P. E. McKenney. Stochastic fairness queueing. In IN-
FOCOM 1990, 1990.

[18] T. Nguyen and A. Zakhor. Path diversity with forward
error correction (PDF) system for packet switched net-
works. In Twenty-Second Annual Joint Conference
of the IEEE Computer and Communications Societies
(IEEE INFOCOM), pages 663–672, 2003.

[19] J. Nilsson. Real-Time Control Systems with Delays.
PhD thesis, Lund Institute of Technology, 1998.

[20] Larry L. Peterson and Bruce S. Davie. Computer Net-
works. Morgan Kaufmann, 2000.

[21] D. Schmidt, A. Gokhale, T. Harrison, D. Levine, and
C. Cleeland. TAO: A high-performance endsystem ar-
chitecture for real-time CORBA. IEEE Communica-
tions Magazine, February 1997.

[22] W. Richard Stevens. TCP/IP Illustrated, volume 1.
Addison-Wesley.

[23] Andrew S. Tanenbaum and Maarten Van Steen. Dis-
tributed Systems. Principles and Paradigms. Prentice-
Hall, Upper Saddle River, NJ, 2002.

[24] A. Tzes, G. Nikolakopoulos, and I. Koutroulis. De-
velopment and experimental verification of a mobile
client-centric networked controlled system. To appear.

[25] Manel Velasco, Josep M. Fuertes, Caixue Lin, Pau
Marti, and Scott Brandt. A control approach to band-
width management in networked control systems. In
30th Annual Conference of the IEEE Industrial Elec-
tronics Society (IECON04), 2004.

8


