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1.0 Introduction 

 
Distributed real-time process control, from a network communication view, 

involves sending and receiving data values from one controller to another controller. 
These data values are very sensitive to loss, but are also very sensitive to timing delays. 
Because of the sensitivity to loss, TCP is often chosen to implement a real-time data 
transfer. This is good from a loss point of view, but bad from a timing delay point of 
view. TCP offers no guarantees about round trip time (RTT), especially with regards to 
jitter. Jitter in TCP is mainly caused by two things: TCPs congestion control and routers 
and switches and their effect on IP and Ethernet packets. Both routers and switches can 
use a store and forward method involving the queuing of incoming packets, which can 
lead to variability in the delivery times of the packets in cases when the queues are 
growing and shrinking over time. By using TCP, with its slow start and congestion 
avoidance phases causing changes in queue sizes over time, these delays are very evident 
and contributes very heavily to the jitter in round trip times of packets.  

 
2.0 Experimental Design 

 
This project aims to use a set of experiments to show the effects of jitter and loss 

on a real-time Ethernet controller. Two controllers will be set up in various arrangements 
and with varying amounts of contentious cross traffic. This traffic will take the following 
forms: no traffic, continuous traffic, bursty traffic, and random traffic over the internet.  

 
These experiments will be run with two controllers separated by varying distances 

and traffic, each with a distributed algorithm running. The local controller has the PID 
and is connected to the remote controller via a TCP connection. This connection passes 
the process variable from the remote controller to the local controller. This process 
variable is fed into the PID and the resulting output value is sent back to the remote 
controller over the TCP connection. Both controllers are run with a cycle time of 50 ms 
and a remote value update time of 100 ms. These settings are the normal 2:1 ratio of 2 
scan cycles per remote value update period. In the remote controller, the output of the 
PID is inputted into the following equation:  

NewPV = α * OldPV + (1-α)* PIDOutput 
 The alpha value will be changed from 0.9 to 0.7 in increments of 0.5, and 

the gain setting on the PID will be changed from 1.0 to 3.0 in increments of 1.0. The 
PID’s set point was set to 50.0. Each test starts the output value and process variable at 
0.0. Then, the PID is put in Auto mode, and the controller logic will calculate the time it 
takes for the process variable to converge to within 0.001 of the target set point. This is 
repeated 20 times for each of the different gain and alpha values. 



 
The first three traffic cases will involve two controllers in the same physical 

location. These two controllers will each be connected to a switch. These switches will be 
connected together via a hub. This hub, which will only have the two switches and a 
monitoring PC connected, allows for network traffic to be monitored and utilization of 
the network to be displayed. Each end switch will have a PC connected. This PC will 
generate the bursty traffic and continuous traffic for those specific tests. Below you will 
find a diagram of the configuration for these tests. 

 
 
 The Ethernet controllers used above are ABB’s AC800M controllers, currently in 
use world wide. The hub in the center allows for the monitoring PC to access all IP 
packets traveling across the link. 
  
 The next part of the experiment involved moving the remote controller farther 
away and seeing the effect that internet traffic would have on this process convergence 
algorithm. This was done in two steps. Step one involved moving the controller farther 
away in the local intranet of ABB Wickliffe. Using tracert, a windows trace route 
program, it was determined that the remote controller was only two hops away from the 
local controller. This was the maximum local distance on our intranet, and was the most 
convenient, so it was chosen. Step two involved getting a controller in Sweden hooked 
up, and running the distributed algorithm through that controller there. By sending data 
all the way from Sweden, round trip times will be larger, and traffic will be patterned 
after the internet more than the local experiments. 



 
3.0 Experimental Results 
 
 The first test completed on the above controller configuration was the no traffic 
test case. This test was to be a baseline for comparison of the jitter effects. Since there 
was no other traffic, jitter will be at a minimum. These tests yielded the following results: 
 

Alpha   
Gain 1.0 
  St.   Gain 2.0     Gain 3.0   

Factor: Avg: Min: Max: Dev. Avg: Min: Max: 
St. 
Dev. Avg: Min: Max: 

St. 
Dev. 

0.9 600 600 600 0 800 800 800 0 1805 600 2400 546 
0.85 700 700 700 0 950 700 1000 100 1600 400 2400 604 

0.8 700 700 700 0 965 500 1300 251.9 6930 1300 15500 3916 
0.75 600 600 600 0 1310 800 1800 278.9 DNC DNC DNC DNC 

0.7 800 800 800 0 1490 700 2400 424.1 DNC DNC DNC DNC 

 
 The above results show that for any alpha values when gain is 1.0 there is no 
standard deviation. This process is very stable. For a gain of 2.0, the standard deviation is 
growing as the alpha value shrinks. This process is stable, but takes more variance around 
the set point before converging to it. For the gain of 3.0, all values are stable except alpha 
values of 0.75 and 0.7, which never converged and remained unstable, bouncing wildly 
above and below the set point. 
 

The next experiment run was the continuous traffic test case. For this set of runs, 
a large FTP transfer was started, and all tests were run while the file transfer was going 
on. Network utilization was listed on the hub at 80+% and both switches were reporting 
some collisions. The network was very highly utilized. Round trip times were seen 
fluctuating from as low as 10 ms to as high as 215 ms. The following data was recorded: 

 

Alpha   
Gain 1.0 
  St.   Gain 2.0 St.   Gain 3.0 St. 

Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 
0.9 730 600 1100 192.2 722.5 600 1000 150.9 1330 600 1800 465 

0.85 685 500 1000 130.9 985 500 3000 560.5 3690 1100 4000 677 
0.8 855 400 1000 179.1 1745 400 3900 953 22218 1500 110600 33116 

0.75 1247.5 600 1600 339.3 2314 600 7100 1432 DNC DNC DNC DNC 
0.7 1682.5 800 1900 319.2 15439 800 140550 38277 DNC DNC DNC DNC 

 
 The above data contains lots more variation than the base case. For gain of 1.0, 
the standard deviation was much larger than when no contentious traffic was present. It 
varied from 130 ms to 340 ms, which is relatively large compared to 0 ms without traffic. 
For a gain of 2.0, the standard deviation again changed greatly. In fact, alpha of 0.7 was 
unstable, taking 140 seconds to converge in one case. These standard deviation values are 
growing along with a reduction in the alpha value used in the process. Finally, for a gain 
of 3.0, we see that for alpha value of 0.8 the process was unstable taking up to 110 
seconds to converge, where it was stable before when no traffic was present. 
  



In addition to the standard deviation, it is interesting to note that the average of 
the data points for the larger alpha values are very close to what they were in the base line 
case.  Only when alpha gets small does the average increase significantly from the first 
data set. 
 
 The final local tests run were with bursty traffic. A burst generator was created 
that allowed a PC to generate load on the network at a rate and delay period of the users 
choosing. Two different burst patterns were used. For the first burst experiment, a 
50Kbyte burst every 150 milliseconds was generated. These bursts gave the network an 
average load of between 12% and 25% utilization, with occasional variation above 25% 
utilization. The following data was collected:  
 

Alpha   Gain 1.0 St.   Gain 2.0 St.   Gain 3.0 St. 
Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 

0.9 837.5 400 1100 223.5 1090 600 1450 262.4 2063 1200 2800 509 
0.85 1018 250 1500 284.4 1538 750 2500 496 4210 750 9500 2484 

0.8 1190 650 1600 246.3 2313 1000 4600 834 72453 10600 379800 96216 
0.75 1028 600 1750 337.7 5348 2450 8200 1614 DNC DNC DNC DNC 

0.7 1790 800 2400 357.1 11508 2700 38300 10527 DNC DNC DNC DNC 

 
 This data shows that small bursty traffic can be worse than continuous high 
utilization traffic for distributed process control. In almost all cases, the average and 
standard deviations for the bursty traffic above are worse than those recorded in the 
continuous traffic case. In addition, one process was completely unstable with small 
bursty traffic loads. The Gain 3.0 with alpha of 0.8. It took up to 379 seconds to converge 
in one case. One additional thing to note: For the processes that went out of control under 
this bursty traffic, they came back under control once the traffic was stopped. This shows 
that for any bursty traffic over time, a process can go out of control and recover on its 
own, which could be seen as an anomaly to a plant operator. 
 

In the second experiment, the bursts were 100Kbytes for 150 milliseconds. These 
settings gave the network between a 25% and 50% utilization rate, with occasional 
variation above 50% utilization. The following data was recorded: 
 

Alpha   
Gain 
1.0   St.   Gain 2.0 St.   Gain 3.0 St. 

Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 
0.9 970 350 1550 348.1 1535 1050 2300 376.7 2613 650 3375 840 

0.85 1000 200 1800 449 2205 1150 3800 685 9083 3300 22550 5579 
0.8 1315 750 1850 256 4165 1300 8850 1863 53388 650 111250 37685 

0.75 1443 750 2600 518 7685 600 17050 5136 DNC DNC DNC DNC 
0.7 2063 1000 3650 603 30088 2800 73500 20818 DNC DNC DNC DNC 

 
 This data shows that for bursty traffic, the standard deviation is even worse than 
for the lower burst data. In fact, for almost all cases, the standard deviation is 
significantly worst than for the smaller burst traffic. Also, the averages for the 
convergence are higher. For the gain of 1.0 case, the average is about 100 to 300 ms 
longer. For the gain of 2.0 and 3.0 the average time to convergence is mostly double that 



of the lower burst data with only very few being less than double. In addition, two 
processes could be considered unstable. The process with gain 2.0 and alpha of .7 and the 
gain of 3.0 and alpha of 0.8 both took really long times to converge in the worst case, 
while they also converged quickly in the best case. These two burst data sets show some 
form of relationship between bursty traffic (and its size) and the delays in convergence of 
the distributed algorithm.  
 
 Part two of this project dealt with moving the remote controller farther away from 
the local controller and having real internet traffic cause delays. Step one was moving the 
controller on our intranet here at ABB Wickliffe. The remote controller was moved two 
hops away to our test center. This area is traffic intensive, but it turned out to not be 
traffic intensive over a contentious link. The results are shown below: 
 

Alpha   
Gain 
1.0   St.   Gain 2.0 St.   Gain 3.0 St. 

Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 
0.9 600 600 600 0 600 600 600 0 600 600 600 0 

0.85 500 500 500 0 1000 1000 1000 0 1100 1100 1100 0 
0.8 1575 1200 1900 144.6 2700 2700 2700 0 2160 1300 3000 441.8 

0.75 1576.9 1000 2000 200.6 1205 700 2000 413.6 DNC DNC DNC DNC 
0.7 875 700 1100 125.1 5200 1400 9800 2370 DNC DNC DNC DNC 

 
 This data shows some variation in the standard deviations from the base tests in 
the higher alpha values. But, other than this slight variance, there was no difference in 
standard deviation from this and the base class. This is due to a lack of contention across 
the two hops of the switch from our remote controller to our local controller. There is not 
much traffic out of the test center.  
 
 Step two of the remote data gathering dealt with using a remote controller in 
Rochester, NY. This remote controller was 5 hops away. The traffic is more random in 
this experiment, due to crossing 2 hops of an ISP connection. The results are shown 
below: 

Alpha   Gain 1.0 St.   Gain 2.0 St.   Gain 3.0 St. 
Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 

0.9 1123 800 2100 293.1 2278 1450 3100 698 4910 2600 7200 1509 
0.85 1878 1450 4050 569 3290 900 4900 1319 17983 4500 42350 11303 

0.8 2085 800 4750 900 3365 1700 4900 924 86640 8850 272350 76764 
0.75 2503 950 4300 862 5875 1300 10500 2792 DNC DNC DNC DNC 

0.7 3178 1400 7100 1341 85158 600 290000 76945 DNC DNC DNC DNC 

 
 This data shows that as the alpha value decreases, the average convergence times 
and standard deviations increase. There are two processes in the above data sets that lose 
stability. The first is gain 2.0 and alpha value of 0.7. The maximum time to convergence 
is 290 seconds. The second is gain 3.0 and alpha of 0.8. Its maximum time to converge is 
272 seconds. These two are the only that lose stability. All other data points are worse 
then the two hop data. This data set is similar in both average and standard deviation to 
the bursty data sets.  
 



 Step three of the remote data gathering dealt with setting up a remote controller in 
Sweden and controlling it via the internet. This remote controller was 9 hops away. The 
data is shown below: 
 

Alpha   Gain 1.0 St.   Gain 2.0 St.   Gain 3.0 St. 
Factor: Avg: Min: Max: Dev: Avg: Min: Max: Dev: Avg: Min: Max: Dev: 

0.9 2895 2400 4400 776 5990 2000 9000 3073 DNC DNC DNC DNC 
0.85 3653 1600 6600 1409 37120 5800 128800 34847 DNC DNC DNC DNC 

0.8 4680 1600 7600 1852 DNC DNC DNC DNC DNC DNC DNC DNC 
0.75 5998 4400 9400 1430 DNC DNC DNC DNC DNC DNC DNC DNC 

0.7 6680 6200 7000 402.1 DNC DNC DNC DNC DNC DNC DNC DNC 

 
 This traffic shows large variation from the 5 hop data. There were 5 processes that 
never converged at all. Three different runs for each non converging process were run 
and stopped after 300 seconds. In addition to the 5 non converging processes, there was 
one process that went unstable. This unstable process has a gain of 2.0 and alpha value of 
0.85. It takes, at maximum, 128 seconds to converge. This data is the worst of all the data 
sets, in terms of both stability and convergence times. 
 



 
 The final factor looked at in this experiment was some characterization of the 
round trip times in the various experiments above. These values were captured right 
before running the data sets above. 
 

RTT Data:     
20 samples     

        

Traffic Type Avg: Min: Max: 
St 
Dev: 

None 10 10 10 0
FTP 16.45 10 110 22.17
50k, 150ms 24.6 10 63 18.23
100k, 150ms 40.7 10 93 27.42
2 hop 10.3 10 16 1.342
5 hop 39.95 31 47 8
9 hop 145.3 140 157 7.43

 
 The round trip time data is interesting. It correlates well with the data dealing with 
convergence times. Starting at the no traffic case, we see that the RTT has a standard 
deviation of 0, and the convergence time has a deviation of 0 (for gain 1.0) and small 
standard deviations in convergence time for the higher gain values. Then for FTP traffic, 
we see that it has some standard deviation, but that deviation is less than that of the two 
burst traffic cases (if you take out the one 110ms outlier in the FTP). By looking at the 
FTP RTTs over time, you can see that occasionally, a big time comes through, but on the 
whole, things are very stable. Then, for the two burst traffic cases, the standard deviation 
for the smaller burst traffic is less than the deviation for the larger burst traffic. This fits 
well with the standard deviation for the convergence time of the smaller bursts being less 
than the deviation for the times of the larger bursts. Then, for the 2 hop data, we see that 
almost no variation is seen, which explains the lack of deviation in the convergence times 
for the 2 hop tests. The two remote tests vary from this pattern slightly. The 5 hop tests 
show some variation in RTT, but not as much as any of the local tests. But, the deviation 
in the convergence times for the 5 hop data is almost as bad as the large bursty traffic 
case. Finally, the 9 hop data shows that even with a small standard deviation, there is still 
a large variance in the convergence times for all processes. This 9 hop data had the most 
variation of any of the data sets.  
  
4.0 Summary 
 
This experiment shows that different types and forms of traffic cause different results in 
distributed real time process control. Most people would assume that constant, high 
utilization traffic would be the worst. But, in reality, it was shown that 12%-15% 
utilization traffic with high burstiness is as bad or worse then constant high utilization 
traffic. In addition, certain processes can seem stable when run with no network traffic, 
and can go out of control when bursty or heavy traffic appear. Finally, this experiment 
seems to show that processes can become unstable with either large round trip times or 
with large standard deviation, or both. 



 
 
5.0 Future Work 

 
There are definitely areas for further exploration from where this paper left off. 

First, only one controller cycle time was used. It would be interesting to see how longer 
cycle times are affected by the delays in the above experiments. Second, many different 
burst cycles could be developed to see if any correlations can be found between burst 
periods and burst size versus convergence time. Third, how would multiple imported 
values from one or more controllers react to the delays in this experiment. Finally, a real 
process could be run, showing visually that a process can go out of control from the 
network delays shown above. 


