Delay Compensation in
Physically Realistic Networked
Video Games

Masters Project: Robert F. Buchheit
Adviser: Vincenzo Liberatore

Motivation

* As aresult, many players choose to play
only over LANSs to avoid problems
associated with network latency

To improve quality of gaming over WAN’s
and allow games to reach a wider market it
is necessary to compensate for less than
optimal network service

Delay Compensation -
Background

Human interaction with the physical world
is based on a sense and response cycle

People behave very similarly when
interacting with virtual environments

The sense and response cycle is very
dependent on accurate perception and
immediate feedback in guiding decision
making

Motivation

* The computer gaming industry is

experiencing rapid growth, particularly in
the area of networked games

Many of these games are physically realistic
or evolve according to similar sets of
equations

Such games usually require an excellent
level of network service - low latency and
moderate bandwidth in order to be playable

Project Goals

The goal of this project is to develop a
demonstrative physically realistic network
game

Develop and studying delay compensation
techniques

Provide a framework for further study

Delay Compensation -
Background

When a user is separated from the virtual
game environment over an [P network,
delay is introduced to the interaction

Small delays are generally not a problem as
users will rarely notice them.

As delay climbs interaction becomes more
difficult and introduces several problems

Delay Compensation - Delay Compensation -
Background Background

» 1. User’s view of the environment is dated * Goal of delay compensation is to minimize
by 1/2 RTT these problems and make higher delay

« 2. User’s interactive inputs require interaction as similar as possible to low-
additional 1/2 RTT to reach remote server delay interaction
and be applied » The basic strategy to overcome these

« 3. User sees no control feedback for 1 RTT problems involves extrapolation of the
game state

Delay Compensation - Delay Compensation -

— Background Background

* By extrapolating the » Using the information

game state forward,
the game client can
help limit the effects
of delay and make the
user’s interaction more
natural.

provided by the server,
the game client
projects the state of
the environment at a
point 1 RTT ahead of
the current state

This causes the state
displayed to the user
to be 1/2 RTT ahead
of the remote state

Delay Compensation - Delay Compensation -
Background Background

* The extrapolated state * This solves the first 2 problems
is then shown to the
user who interacts
normally
When the user’s inputs * This allows the user to see the results of
reach the server 1/2 their control input and modify their
RTT later the actual subsequent inputs appropriately
state should closely
match the extrapolated
state

* To solve the 3rd, the user’s input is buffered
locally and applied to incoming data.

Delay Compensation -
Limitations

* The strategy outlined above works well in
many situations but is limited in its
effectiveness by the nature of physically
realistic games

Similar to the real world, there are many
events which can’t be predicted

Thus, attempts to extrapolate game state
ahead will always be somewhat flawed

Delay Compensation -
Limitations

Only way to combat this would be a form of
server-applied “contingency control”

Events with less critical timing as well as
smaller extrapolation errors must also be
dealt with

Despite limitations, delay compensation is
still a useful tool

Experience - Prototype

Control a “JetCar”
Avoid obstructions to
gain points

Loose points for
collisions

Critical timing of
collisions poses
difficulties for DC

Delay Compensation -
Limitations

* When an unpredicted event occurs the user

will not receive notification of it until 1/2
RTT later

Furthermore, they cannot react to the event
until 1 RTT has passed (at the earliest)

If the event has critical timing (such as a
collision) this may be too long

Experience

For the purpose of this project two games
were developed

The first game was a prototype for the
second and provided experience as well as a
chance to test DC with a fast-paced game
The second game is a realistic sailing game
with somewhat slower dynamics.

Experience - Final

Control a Sailboat
Sail and rudder
controls

Race to a buoy given
varying wind and
current conditions
Also, can compete
against Al

Experience - Final

» Delay compensation is very effective for
this game

This is aided by the GUI design of the game
as well as the nature of the physically
realistic system (fewer critically-timed
events)

More critically timed events can be added to
the game with the addition of islands to the
open ocean

Delay Compensation System

The DC system for the sailing game has
three main features

First, it attaches timestamps to each
clocking/input packet sent to the server
Second, it uses a ring buffer to store client
inputs using the same timestamps

Finally, a local copy of the server-side
system is used to evolve the system forward
using the buffered client controls

Physics System

Leeway forces are ignored at the present
time

The drag experienced by the boat is given
by: Drag = 0.5V”2 where V is the boat’s
velocity

The turn caused by the rudder is given by:
Turn = C V sin(8) where 0 is the angle of
the rudder

The turn directly redirects the boat’s Vel.

Final Game Systems

» The final game incorporates a number of
subsystems in addition to the DC system

* Physics and Game play

» Animation/Rendering

* Network Connectivity and Protocol
* Clocking/Timing

Physics System

The physics of the system are based on
several simple equations

The force generated by the sail is given by
the equation: F=C (sin) 0.5 p V"2 A
where V is the velocity of the apparent wind
and a is the sail’s angle to it.

The forward component of the force is then
calculated as: Force = F sin(0) where 6 is
the angle between the sail and the boat

Physics System

For purposes of game play the system is
tuned to evolve relatively quickly (low boat
mass for instance)

Additionally, the boat’s speed is not limited
by more complex physical factors such as
hull length

Overall, the boat’s behavior is more similar
to a light sail board than a heavier yacht

Game Play System

The player uses they keyboard to control the
boat

‘A’ pulls the sail in, ‘D’ lets it out

Left and Right arrow keys move the rudder
accordingly while Up or Down center the
rudder

If the player chooses ‘God-mode’ they can
also control the wind direction and speed

Networking System

The network “layer” of the game system is
designed primarily to minimize end-to-end
latency between the client and server
Packets are sent using UDP

All data is transmitted in string format for
simplicity and ease of transport

Both client and server maintain network
listener threads which place incoming
packet data into a buffer to be read

Clocking System

The update clocking of the game system is
designed around the fact that the JVM runs
different on different platforms

To help minimize issues the client’s inputs
are used to clock the server

The client is designed to clock in a reliable
manner while the server is designed to
update the game as continuously as possible
and send data on client inputs.

Animation/Rendering System

This system is responsible for displaying
the game state to the user

Each component of the display is rendered
by its own function to enhance code clarity
and make changes convenient

Double buffering is used to eliminate
animation flicker

To help accommodate all systems the user
can run the game in two display modes

Networking System

The buffer is given only one slot as, at the
time of update, only the newest data is
relevant

Additionally, packets delivered out of order
are discarded

The network class also implements a
priority tag system to make sure game
control messages (Start/End) are not over
written accidentally

Conclusions

Despite certain limitations delay
compensation is a useful tool for improving
network game playability

Contingency controls mechanisms coupled
with delay compensation stand to make
remote operation of real systems over IP
networks feasible

This sailing game will provide a solid
framework for further study of the topic

