
1

Delay Compensation in
Physically Realistic Networked

Video Games

Masters Project: Robert F. Buchheit
Adviser: Vincenzo Liberatore

Motivation

• The computer gaming industry is
experiencing rapid growth, particularly in
the area of networked games

• Many of these games are physically realistic
or evolve according to similar sets of
equations

• Such games usually require an excellent
level of network service - low latency and
moderate bandwidth in order to be playable

Motivation

• As a result, many players choose to play
only over LANs to avoid problems
associated with network latency

• To improve quality of gaming over WANs
and allow games to reach a wider market it
is necessary to compensate for less than
optimal network service

Project Goals

• The goal of this project is to develop a
demonstrative physically realistic network
game

• Develop and studying delay compensation
techniques

• Provide a framework for further study

Delay Compensation -
Background

• Human interaction with the physical world
is based on a sense and response cycle

• People behave very similarly when
interacting with virtual environments

• The sense and response cycle is very
dependent on accurate perception and
immediate feedback in guiding decision
making

Delay Compensation -
Background

• When a user is separated from the virtual
game environment over an IP network,
delay is introduced to the interaction

• Small delays are generally not a problem as
users will rarely notice them.

• As delay climbs interaction becomes more
difficult and introduces several problems

2

Delay Compensation -
Background

• 1. User’s view of the environment is dated
by 1/2 RTT

• 2. User’s interactive inputs require
additional 1/2 RTT to reach remote server
and be applied

• 3. User sees no control feedback for 1 RTT

Delay Compensation -
Background

• Goal of delay compensation is to minimize
these problems and make higher delay
interaction as similar as possible to low-
delay interaction

• The basic strategy to overcome these
problems involves extrapolation of the
game state

Delay Compensation -
Background

• By extrapolating the
game state forward,
the game client can
help limit the effects
of delay and make the
user’s interaction more
natural.

Delay Compensation -
Background

• Using the information
provided by the server,
the game client
projects the state of
the environment at a
point 1 RTT ahead of
the current state

• This causes the state
displayed to the user
to be 1/2 RTT ahead
of the remote state

Delay Compensation -
Background

• The extrapolated state
is then shown to the
user who interacts
normally

• When the user’s inputs
reach the server 1/2
RTT later the actual
state should closely
match the extrapolated
state

Delay Compensation -
Background

• This solves the first 2 problems
• To solve the 3rd, the user’s input is buffered

locally and applied to incoming data.
• This allows the user to see the results of

their control input and modify their
subsequent inputs appropriately

3

Delay Compensation -
Limitations

• The strategy outlined above works well in
many situations but is limited in its
effectiveness by the nature of physically
realistic games

• Similar to the real world, there are many
events which can’t be predicted

• Thus, attempts to extrapolate game state
ahead will always be somewhat flawed

Delay Compensation -
Limitations

• When an unpredicted event occurs the user
will not receive notification of it until 1/2
RTT later

• Furthermore, they cannot react to the event
until 1 RTT has passed (at the earliest)

• If the event has critical timing (such as a
collision) this may be too long

Delay Compensation -
Limitations

• Only way to combat this would be a form of
server-applied “contingency control”

• Events with less critical timing as well as
smaller extrapolation errors must also be
dealt with

• Despite limitations, delay compensation is
still a useful tool

Experience

• For the purpose of this project two games
were developed

• The first game was a prototype for the
second and provided experience as well as a
chance to test DC with a fast-paced game

• The second game is a realistic sailing game
with somewhat slower dynamics.

Experience - Prototype

• Control a “JetCar”
• Avoid obstructions to

gain points
• Loose points for

collisions
• Critical timing of

collisions poses
difficulties for DC

Experience - Final

• Control a Sailboat
• Sail and rudder

controls
• Race to a buoy given

varying wind and
current conditions

• Also, can compete
against AI

4

Experience - Final

• Delay compensation is very effective for
this game

• This is aided by the GUI design of the game
as well as the nature of the physically
realistic system (fewer critically-timed
events)

• More critically timed events can be added to
the game with the addition of islands to the
open ocean

Final Game Systems

• The final game incorporates a number of
subsystems in addition to the DC system

• Physics and Game play
• Animation/Rendering
• Network Connectivity and Protocol
• Clocking/Timing

Delay Compensation System

• The DC system for the sailing game has
three main features

• First, it attaches timestamps to each
clocking/input packet sent to the server

• Second, it uses a ring buffer to store client
inputs using the same timestamps

• Finally, a local copy of the server-side
system is used to evolve the system forward
using the buffered client controls

Physics System

• The physics of the system are based on
several simple equations

• The force generated by the sail is given by
the equation: F = C (sin α) 0.5 ρ V^2 A
where V is the velocity of the apparent wind
and α is the sail’s angle to it.

• The forward component of the force is then
calculated as: Force = F sin(θ) where θ is
the angle between the sail and the boat

Physics System

• Leeway forces are ignored at the present
time

• The drag experienced by the boat is given
by: Drag = 0.5V^2 where V is the boat’s
velocity

• The turn caused by the rudder is given by:
Turn = C V sin(θ) where θ is the angle of
the rudder

• The turn directly redirects the boat’s Vel.

Physics System

• For purposes of game play the system is
tuned to evolve relatively quickly (low boat
mass for instance)

• Additionally, the boat’s speed is not limited
by more complex physical factors such as
hull length

• Overall, the boat’s behavior is more similar
to a light sail board than a heavier yacht

5

Game Play System

• The player uses they keyboard to control the
boat

• ‘A’ pulls the sail in, ‘D’ lets it out
• Left and Right arrow keys move the rudder

accordingly while Up or Down center the
rudder

• If the player chooses ‘God-mode’ they can
also control the wind direction and speed

Animation/Rendering System

• This system is responsible for displaying
the game state to the user

• Each component of the display is rendered
by its own function to enhance code clarity
and make changes convenient

• Double buffering is used to eliminate
animation flicker

• To help accommodate all systems the user
can run the game in two display modes

Networking System

• The network “layer” of the game system is
designed primarily to minimize end-to-end
latency between the client and server

• Packets are sent using UDP
• All data is transmitted in string format for

simplicity and ease of transport
• Both client and server maintain network

listener threads which place incoming
packet data into a buffer to be read

Networking System

• The buffer is given only one slot as, at the
time of update, only the newest data is
relevant

• Additionally, packets delivered out of order
are discarded

• The network class also implements a
priority tag system to make sure game
control messages (Start/End) are not over
written accidentally

Clocking System

• The update clocking of the game system is
designed around the fact that the JVM runs
different on different platforms

• To help minimize issues the client’s inputs
are used to clock the server

• The client is designed to clock in a reliable
manner while the server is designed to
update the game as continuously as possible
and send data on client inputs.

Conclusions

• Despite certain limitations delay
compensation is a useful tool for improving
network game playability

• Contingency controls mechanisms coupled
with delay compensation stand to make
remote operation of real systems over IP
networks feasible

• This sailing game will provide a solid
framework for further study of the topic

