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Abstract

Sensing, actuation, and decision units can be used to control a remote physical environment
and enable physical actions independently of distance. Networked control is a real-time dis-
tributed application whose effectiveness depends on its ability to tolerate losses and to adapt to
delays and jitter. The primary contribution of this paper is a play-back algorithm for networked
control. The algorithm is validated on extensive simulations and on a preliminary set of traces
collected in the field. The play-back scheme brings system variability close to its inherent values,
thereby eliminating almost completely the effect of network vagaries.

1 Introduction

Sensing, actuation, and decision units can be used to control a remote physical environment (Figure
fl). Networked control enables physical actions to take place independently of distance, with funda-
mental epistemological and social consequences [B] Applications are far-reaching and include, for
example, our own contributions to industrial automation (e.g., [2g]), distributed instrumentation
(e.g., [[}), unmanned vehicles (e.g., [[J]), and home robotics (e.g., [BT]). A potential development
is to augment distributed audio and video with haptics (tactile) interactions (e.g., [[4]). A fun-
damental problem in networked control is that sensing and actuation operate in real-time and,
consequently, late or missing signals can jeopardize the stability, safety, and performance of the
controlled physical environment. Networked control is a real-time distributed application whose
effectiveness depends on its ability to tolerate losses and to adapt to delays and jitter.

The primary contribution of this paper is a play-back algorithm for networked control. A play-
back scheme would smooth out network vagaries and would apply control signals to the physical
environment at predictable times. Control play-back can in some cases leverage on the methods
and intuitions of multimedia play-back. However, networked control differs substantially from
multimedia applications in behavior and objectives, and play-back strategies will differ as well.
Furthermore, play-back buffers are a departure from known control-theoretical sampling and control
algorithms (e.g., [27)).

Networked control addresses sensing and actuation under disparate network conditions and for
environments whose physics differs radically in nature and scale. As a result, distributed control
applications can differ tremendously in methodology and requirements. At the same time, remote
sensing and actuation present also clear similarities across a variety of environments, and so a set
of general methods should be established for entire classes of applications. This paper will address
networked control over wide-area IP networks and for the broad class of stable linear systems, which
include any environment that can be described by linear differential or difference equations.
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A physical environment is, roughly speaking, characterized by the speed of its dynamics. For
example, a Tokamak reactor [25] has much faster dynamics than a manufacturing robot [R0]. A
faster environment is typically harder to control than a slower one. Moreover, most environments
become more difficult to control as network service levels deteriorate. For example, controlled
systems cannot always be made stable in the presence of packet losses [B3]. As a result, network
service levels impose a bound on the fastest physical dynamics that can be supported in the target
environment. At the same time, control applications can be rendered more tolerant and adaptive by
play-back algorithms. In summary, the rules of the game are to design end-system geographically-
scalable play-back algorithms that make control applications more tolerant and adaptive to network
vagaries and thus able to cancel stronger disturbances for a broad class of physics.

The paper will focus on the concepts and explanations. Furthermore, the paper will strive to
be as self-contained as possible. Details are available in the appendices and software. Section J
reviews the background on networked control. Section [ introduces the play-back scheme. Section
f describes the evaluation. Section [f] reviews related work and Section [§ concludes the paper.
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Figure 1: The networked control vision.

2 Networked Control: Background

The definition of a plant captures the notion of a physical system where sensor data are collected
and control signals are delivered with the objective of affecting the physical environment. The term
“plant” originated from the industrial automation area, but it has since been applied to express
a generic unit of sensing and actuation (e.g., [BJ]). Section P.1] discusses an abstract plant and
Section P.J introduces networked plants. This section reviews previous work in the area, and its
contents are often based verbatim on previous papers (e.g., []).

2.1 The Scalar Linear Plant

The scalar linear plant is the primary type of plant that will be considered in this paper due to its
generality and relative simplicity. However, results can be generalized to higher-dimensional linear
systems The focus on scalar linear plants is thus mostly for concreteness and ease of exposition. A
scalar plant is characterized by its state x(t), an input u(t) (the control signal), an output y(t) (the
sensor data), a state disturbance v(t), and an output disturbance w(t), which are continuous-time
stochastic processes. In a stable scalar linear plant, the state, input, output, and disturbances are
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Figure 2: Network-based control.

related by the equations:

; (1)

{a’c(t) = az(t) + bu(t) + v(t)
y(t) = z(t) + w(?t)

where a < 0,b are real numbers. Equation (fl]) is generic across applications because it models any
physical system characterized exactly or approximately by a differential equation. Linear plants
have numerous applications [fl, [[3, g, R1] and any textbook on control engineering would present
hundreds of examples (e.g., [[], BJ]). Furthermore, linear systems describe the behavior of hybrid
linear systems during each mode of operation, and as such they are a fundamental building block
for control paradigms that overcome the limitations of classical control theory [BI].

The dynamics of plant () depend on the value of a. For example, if u = v = 0, then z(t) =
z(0)e®, which increases more rapidly for larger values of a. In general, larger values of a are
thought to denote faster plant dynamics [ff, R3], and a unit increase in the value of a denotes an
exponentially faster plant evolution.

The stochastic processes v(t) and w(t) model exogenous disturbances and noise. The impact of
noise can be attenuated by filters. Since v(t) appears in the same equation as the input, it sums up
the disturbances on the state and on the input. A common model for v(¢) is the formal derivative
of Brownian motion. A common model for w(t) are independent normal random variables with
mean 0 [[f]. In these cases, E[¢(t)] = az(t) + bu(t), and E[y(t)] = z(t), which partly accounts for
the common practice of disregarding the disturbances during an initial design and analysis phase
(e.g., [, BJ])- Of course, disturbances are present in a physical systems and have to be reintroduced
later on for a comprehensive evaluation of control algorithms. If v = w = 0 is assumed, then it
becomes analytically possible to exploit a perfect observer to accurately predict the system state
forward in the future.

The control design problem is basically to achieve certain system properties by appropriately
setting the input u(t). For example, the design could specify a reference output r(t) and the problem
is to make y(¢) as close as possible to r(¢). In this case, a design objective could be to achieve
tracking, which is, informally, the distance between y(t) and r(t). If 7(¢t) = r is a constant, then r
is called a set point. This paper will consider r = 0, but the same arguments hold for any other set
point with a slight notational complication.

In a digital control system, the plant output y(t) is sampled at time 1, t2, ... to generate the time
series y(t1),y(t2),.... Even sampling is the particular case in which the output is being sampled
at regular intervals ¢;,1 = t; + T, where T is the constant duration of a sampling period. This
paper will assume even sampling. The inverse of the sampling period 1/T is called the sampling
rate or sampling frequency. Returning to the general case of arbitrary sampling, a controller sets
the value u(t) = wu; in the interval [t;,¢;+1) as a function of y(¢1),y(t2),---,y(t;) so as to achieve,
say, tracking of a reference set point r.



2.2 Networked Control

A networked control system is a digital control system in which the sensor data y(¢;) and control
signals u; (i > 1) are delivered over a network [P3, [[(5]. Networked control typically involves a plant
that is controlled remotely, and Figure P| shows the corresponding information flows.

Networked control is complicated by the presence of delays, jitter, and packet losses. In the
first place, packets can be lost either because they are dropped out in the network infrastructure or
because they discarded by the communication end-points, for example, if they arrive out of order.
Furthermore, network latency can delay the application of a control signal at the plant site.

In traditional networked control (e.g., [22, BJ]), the ith sensor reading y(#;) reaches the controller
after a delay, the controller computes u; as a function of y(¢1),y(t2), ..., y(;), sends u; back to the
plant, which will apply the control u; in the interval [0;,6;.1), where 6; = t; + RTT; and RTT; is
the value of the round-trip time at the ith step. It will be convenient to divide the ith RTT into
two terms as RT'T; = 7; + &;, where 7; is a nominal RTT between the plant and the controller and
&; is the corresponding jitter. The nominal RTT 7; can be chosen in a variety of ways depending on
its role in the sampling and control scheme. The value of 7; is often a constant or a slowly varying
quantity, whereas &; accounts for short-term fluctuations. If either y(¢;) or u; is lost in the loop
from sensor to actuator, then plant behavior is equivalent to the case when y was not sampled at
all at time ;. Hence, packet losses effectively alter the sampling schedule. In particular, packet
losses can introduce uneven sampling even if the original plant’s sampling was evenly spaced. As
a result, the sampling period T' must be replaced by a time-varying quantity At; = ¢;411 — ;. Since
out-of-order signals are discarded, it can always be assumed that 6;;1 > 6;. In-order delivery can
be enforced with sequence numbers, as discussed at length, for example, in [26, B0

A proportional controller uses the last sample y(¢;) to predict y(t; + 7;) with a perfect observer
and then generates the control u; = —ky(t; + 7;) for the interval [0;,60,11). A deadbeat controller ||
is a proportional controller that sets k equal to

a eaT )
kd: EieaT—]_ 1fa750 ]
-1/T otherwise

In the absence of disturbances and network vagaries, the k; controller converges to » = 0 in a
time interval of length 7. In a less ideal setting, k4 can still have excellent performance []. The kg4
controller will be used as the baseline for the evaluation of other controllers.

The property & = 0 (no jitter) can be guaranteed with a play-back buffer that applies the
control u; exactly at time t¢; + 7; if it arrived before that time and drops the control if it was
received too late. The 7; value is called the play-back delay. A play-back buffer can increase the
loss rate. A relaxation is a reverse play-back buffer, which works exactly like a regular play-back
buffer for early signals, i.e., it holds them until the play-back time ¢; 4+ 7, but it does play back
also late non-reordered signals as soon as they arrive (cite paper). The reverse play-back method
is based on the intuition that control signals are better received late than never (this intuition does
not necessarily carry over to other real-time applications). Moreover, the reverse play-back scheme
does not introduce additional losses, but can retain a certain level of jitter.

3 The Networked Control Problem

Networked control is essentially the problem of reducing the uncertainty in the state of a system.
The plant starts in a state x(¢;), which is known only approximately as y(¢;). An action w; is
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Figure 3: The timeline of network events in the remote control of a plant. In this example, 7; and
L; =T are constants.

plant

specified and applied at an instant 6;, which is not known exactly due to network vagaries. The
system state then evolves as a function of u; and of a random disturbance v(¢). The goal is to make
y(t) = r for a perfectly specified set point 7. In summary, the objective is to overcome multiple
sources of uncertainty to bring the system to a known and desirable set point. Uncertainty stems
from two types of sources:

e The stochastic processes v(t) and w(t), which model measurement errors and exogenous
disturbances, and

o Network vagaries, which cause control signals to be applied at non-deterministic instants.

Network vagaries are similar to disturbances in that both can introduce random time-varying
deviations of the system state from its nominal value. However, network vagaries and disturbances
are also distinct phenomena: disturbances model the effect of physical behaviors on the continuous-
time dynamics, whereas network vagaries are imperfections of the digital feedback loop.

Certain networked control systems involve plants that are resource-constrained devices. In these
cases, the plant algorithms should be simple, and most of the complexity should be moved to the
controller.

4 Play-Back Algorithm

4.1 Sampling, Control, and Communication

The main contribution of this paper is an end-point play-back algorithm for sampling and control.
Our scheme is a departure from the proportional controllers (Section P) in that the controller sends
to the plant fwo control signals, which will be called the regular control (denoted by u;) and the
contingency control (denoted by ugc)). Additionally, the controller sends also a play-back delay T;
and the duration L; of the regular control. The start time basically implements a (reverse) play-
back buffer: the regular control is applied at time ¢; + 7;, or immediately if the play-back time
has already passed. The duration L; forces the plant to switch to the contingency control ugc) if
a new regular control has not been received after L; seconds since the time when the control was
applied. Although L; could change over time, it would be presumably fixed as a tunable parameter

and change only occasionally. Figure P exemplifies a representative timeline. The regular control
(o _

action wu; is generated by a deterministic deadbeat controller. The contingency action is u;
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in the case of scalar plants, but u; ’ is in general an action sequence for multi-dimensional plants
(details omitted). The intuition is that deadbeat control makes z(t; + 7 + L;) = r if controls are
played back at predictable times and in the absence of disturbances, and then ugc) would result into
z(t) = r for all t > L;. In Figure f|, this nominal behavior occurs in correspondence to u; and us.
The reverse play-back can enforce a similar behavior in correspondence of u; but not of us and, in
general, it is improved upon in the case of heavier jitter or packet losses. The nominal behavior
requires that L; < T, and for simplicity the rest of the paper fixes L; = T'.

Both plant and controller discard signals unless they are received in-order. In this context,
in-order delivery means that the sequence number is higher than any previously received one,
even if it shows a gap in the received sequence (special consideration are made, as usual, for the
case when the sequence numbers wrap around [B{, R€]). Additionally, packets are discarded if
t' + 7' is more than the current expiration value of Tp to avoid the pathological scenario in which
t; + RTT; < tiy1 +RTT;41 < t;+ 7; for all ¢’s. In this case, packet ¢ + 1 resets the play-back timer
Tp and effectively cancels the reception of the previous packet i. If this event occurs repeatedly,
packets would cancel each other in turn and no control would be applied. This pathological scenario
is avoided if a new packet must be replayed no later than the outstanding play-back delay in Tp.
If ' + 7' is more than the expiration value of the play-back timer Tp, the discarded packet will be
said to be a quashed packet. Finally, a packet is discarded if it is too old, and specifically if the
packet reception time is more than ¢ + 7/ + L.

Algorithm [I] describes the plant in pseudo-code, and Algorithm | describes the controller. The
plant algorithm (Algorithm [I) basically implements the reverse play-back and the contingency
mechanisms, and it also collects statistics for future use by the controller. The controller assumes
various black-box components that are well-known in real-time distributed systems. High-resolution
timers are available in real-time Operating Systems, can be implemented either with active waiting
states or with signals, and efficient data structures exist to support multiple outstanding timers [BZ].
RTP is implicitly used to send the value of the current timestamp as well as the packet sequence
number. The plant algorithm is short (less than 70 statements of C code) and simpler than the
controller’s in that it avoids various numerical computations. Furthermore, the timer Ts can be
eliminated if the controller polls the plant. The simplicity of the plant algorithm stems in part
from the short memory of the algorithm, which keeps track of at most two control signals. As we
shall see, the small footprint comes at the price of reduced performance at high sampling rates.

4.2 Observer

The controller predicts the value of y(#' + 7) by invoking an observer [, B3]. A perfect observer
would return an accurate prediction but, in reality, the prediction is hampered by a variety of
factors. The observer uses known factors whenever they are available, but it resorts to assumptions
otherwise.



Algorithm 1 Plant
Require: T is the sampling interval in seconds.

1: Set timer T to expire every 1" seconds
2: RTT-sample, hiseqno < undef
3: loop {Main Loop}
4:  Enter a synchronous multiplexed read from the controller which blocks either until a control
is received or until a timer expires.
5:  if Ts expired then
6: Sample system output y
T Marshal y, the current control action, and the value of local variables into an (RTP) packet
to the controller
8 else if an in-order control (u/,u/(®), ¢, 7/, [!) is received then
9: RTT-sample < current time—t'
10: if ¢ + 7/ < Tp’s expiration time and current time < ¢’ + 7/ + L' then
11: hiseqgno < sequence number of the received control
12: if current time < ¢’ + 7' then {Arm a play-back timer}
13: Cancel Tp
14: Set Tp to expire at time ¢’ + 7/
15: else {Reverse play-back}
16: Cancel T, and Tp
17: u < u
18: ul®) /(9
19: L+ L
20: Set Ty, to expire in L seconds
21: Apply the control u
22: end if
23: end if
24:  else if Tp expired then
25: Cancel 17,
26: u '
27: ul®) ¢ /()
28: L+ L
29: Set T, to expire in L seconds
30: Apply the control u
31:  else {17, expired}
32: Apply u(©)
33:  end if

34: end loop




Algorithm 2 Controller
Require: T is the sampling interval in seconds.

1. L« T

2:ifa7é0then
a eaL

3 k+— —
berl —1

4: else

5 k< ——

6: end if

7. loop {Main Loop}

8: Read an in-order sample from the plant with y, the control action at time #/, and the local
plant variable values from the plant

9: Update 7 as a function of RTT-sample (Algorithm [f])

10:  Predict y(t' 4+ 7) with the observer (Algorithm [

11: u <+ —ky

122 uld <0

13:  Marshal (u,u(9,#,7, L) into an (RTP) packet to the plant

14:  Record the packet in the log £

15: end loop

The value of y(¢' + 7) is based on the state of the system at time ¢’ and on its evolution in
the interval (#',¢' 4+ 7). The evolution in (¢,# + 7) depends on disturbances that are inherently
unpredictable. However, E[v(t)] = E[w(t)] = 0 and an estimate of y(¢' + 7) can be obtained by
ignoring disturbances. As for the system state at time ¢', it obviously consists of the plant state
z(t') ~ y('), but also of the value of the local variables in Algorithm . Furthermore, the state of
a distributed system depends also on the messages that are in transit [f]. However, packet arrivals
in (t',t' + 7) are events that lie in the future at the time ¢ when the sample left the plant and,
in general, these events cannot be predicted accurately. The prediction of y(¢' 4+ 7) requires an
estimate of u(t) in the interval [¢',#' + 7). The value of u(t) depends on factors that are known
exactly and on factors that are not. The known factors are u(t') and the values of the local plant
variables at time #'. The unpredictable factors are the messages that will be delivered to the plant
in the interval (¢',¢ 4+ 7) and their arrival times. The observer must make an assumption and it
assumes that outstanding in-order regular and contingency actions will be applied at their nominal
time. An example is shown in Figure .

The controller maintains a log £ of outstanding control signals and uses it to predict u(t). The
log L keeps a record only of the control signals that are likely to be used by the plants. First, the
observer discards from £ the entries of all messages whose sequence number is less than hiseqno
because those messages either

e Have already been received and processed at the plant and therefore are already reflected in
the plant state z(¢'), or

e Will never be received, or
e Will be received in the future and discarded as out-of-order.

Second, the observer times out old packets, and specifically it discards those whose activation time
is less than ¢ — 7. Finally, the observer discards the logged signals whose activation time is greater



than or equal to # + 7 under the assumption that the newly generated control will overtake the
logged one, which will be then discarded by the plant. The resulting observer is denoted Algorithm

B

Algorithm 3 Observer
Require: L is a log of outstanding control messages that the controller sent the plant.
1: Prune £ of all messages whose sequence number is less than hiseqno or whose activation time
is smaller than ¢’ — 7 or greater than ¢’ + 7.
2: t" + minimum nominal application time of a control in £ that falls in (¢',#' + 7)

3. if t" exists then {Outstanding controls can affect y(t' + 7)}

4:  Generate u(t) (t" <t < t' + 7) assuming that regular and contingency controls in L are
applied at their nominal time

5: else

6: t'<+t+71

7. end if

8: Generate u(t) (' <t <t") from the plant state variable (y(¢'), u(¢'), the value of the variables

w9, ', w9, and the expiration time of Tp and T7)
9: Simulate the plant dynamics with u(t) starting from y(#') to obtain an estimate of y(t' + 7)

4.3 Play-Back Delay

The play-back delay 7; mandates the nominal time when a control is applied as the plant input.
If 7; is too large, the dynamics are dominated by disturbances and plant evolution becomes un-
predictable. If 7; is too small, the control signals would be applied at unpredictable times and
the system dynamics cannot be controlled accurately. Therefore, an appropriate value of 7; should
strike a balance between delay and jitter. The estimation of 7; is similar to play-back problems in
distributed multimedia. The main differences are that most distributed multimedia are concerned
with one-way delays and that, in most of those applications, the play-back delays are determined
by the same end-point that plays the signal out. Networked control is primarily based on round-
trip times and play-back intervals are determined by the controller. These differences prevent the
immediate application of certain multimedia play-back schemes to networked control. For exam-
ple, multimedia play-back sometimes employ the strategy of following delay spikes [7], but the
controller can in general detect a spike only after an RTT, so that the original algorithm cannot be
applied directly. Play-back values are also related to the problem of estimating TCP’s RTO [R6].
The RTO tends to be conservative because of the tremendous cost of a TCP time-out. An equally
conservative 7; would effectively mean a larger delay in the feedback loop, with well-known control-
theoretical complications (for example, the plant dynamics would be dominated by disturbances).
Additionally, if 7; is too conservative, the plant would apply a signal much later than its reception.
Therefore, it would have to buffer packets for a relatively long time, and a longer buffer interval
would progressively increase the likelihood that more packets would be quashed. As a result, an
overly conservative 7; could increase the loss rate and negatively impact the effectiveness of control.

Although different methods can be used, this paper adapts for concreteness the short-term
component of the recent peak-hopper algorithm [§]. The play-back algorithm (Algorithm ) is a
modular component within the controller (Algorithm B) and the estimation of 7; can be easily
replaced with a different implementation. Algorithm ] borrows from [ the general structure of
the algorithm, its initializations, and the values of the constant factors. As compared to the original



‘ | Open-Loop | Pure Delays | Play-Back | Inherent |

oy 14.1657 5.7105 5.1507 2.2447
99-percentile |y| 36.4254 14.7639 13.3336 5.7968
Maximum |y| 76.7715 34.7771 46.0276 13.2214

Table 1: Summary statistics of two weeks of simulated time. Pure Delays and Inherent are ideal
(non-implementable) baselines.

peak-hopper, the controller can avoid the complicate interactions with various TCP features such
as, say, timestamps. Furthermore, the initializations are less critical than in the original algorithm
since one would presumably warm it up before attempting to manipulate a remote plant (e.g., [[LT])-
Finally, the long-term component has been eliminated since it was too conservative in the face of
disturbances.

On the other hand, Algorithm [] introduces an upper bound on 7 to avoid quashed packet. A
quashed packet is typically worse than a late one because the late packet can be replayed by the
reverse play-back. Therefore, 7; should preferably be set so as to avoid losing packets when ¢’ + 7;
follows the play-back time Tp even if a few more packets arrive after their application time t' + 7;.
It is easy to see that packet ¢ will not be quashed if 7; < T'4+ RTTpin, where RT Ty, is the smallest
round-trip time between plant and controller. Packet losses can be avoided by setting an upper
bound on 7, which in turn requires an estimation of RT'T,;,. In related literature, RTT,;n was
captured from a sequence of samples. In networked control, RT Ty, should be adjusted dynamically
by a long-lived and continuously running controller. Furthermore, it is preferable to obtain a slight
underestimate of RTTni, rather than an overestimate. The RT Ty, value is estimated with a
symmetric version of the peak-hopper algorithm applied to find a lower bound on the RTT (details
omitted). In the algorithm, RT T, =~ (1 — C)rmin. In turn, ryi, is an adaptive estimate of the
minimum round-trip time and C' is an estimate of the negative variability of round-trip times. First,
the C term is an exponential moving average of the negative variability and it is calculated with the
same weights as in TCP RTT variability. Second, rmin is adjusted whenever any smaller round-trip
time is detected, and it is also aged progressively to adapt to longer-term changes. The aging factor
is proportional to the absolute variability of round-trip times as captured by the 7’ — rpyin term.
Since rmin is aged, it tends to be based only on the past few samples and, consequently, it can
overestimate RTT,,;,. Therefore, ri, is corrected by a term 1 — C that expresses the effect of the
long-term negative variability of round-trip times.

4.4 Noise and Pipes

The sampling period T and the packet size determine the amount of bandwidth used by networked
control. Since T is related to bandwidth and 7; to communication delays, T and 7; are largely
independent of each other. In particular, nothing prevents 7' < 7;, in which case a sequence of
samples and control signals are typically in flight in the network. Such a scenario will be called
a control pipe. Although the pipe is, in some sense, stored in the network, the plant (Algorithm
) does not keep state for the packets in the pipeline. Although the plant could in principle store
multiple signals, its implementation would become more involved and would not be appropriate for
resource-constrained systems.

Control pipes have advantages and disadvantages. A small T increases the amount of compu-
tation and storage required in £, it complicates the computation of u(¢), and in general it increases

10



Algorithm 4 Play-Back Delay
Require: B is initially set to 0.25, C is initially set to 0.75. If available, r; is the new RT'T sample,
o is the previous RT'T sample
Ensure: Computes a new value of the play-back delay 7 in seconds.
1: if there is no RTT sample then
2: T+ 3
else if there is only one RTT sample r; then
T ¢ 311
else if there are only two RTT samples r; and ry then
T4+ 1.25r
Tmin < min{ry,ro}
else
0

T
10 B+ miﬁ{max{?é, 0.9375B}, 1}
11: if 6 < 0 then

12: C+3C/4—-6/4

13:  end if

14: rl (1 — C) min{rl,ro}

15:  if rmin < 7' then

rn —To

!
16: Tmin < Tmin + %
17:  else
18: Tmin < 7'
19:  end if
20: 7 < min{(1 + B) max{ri,70},T + Tmin}
21: end if

11



‘ Parameter ‘ Default Value ‘ Short Description

a 1.5 | Shape of the Pareto distribution (tail)

AT A = 1000, = 2 | Parameters of the gamma distribution (body)

k 2r /X | Minimum of the Pareto distribution (tail)

P 0.95 | Probability that the Gilbert model remains in the good state
Dspike .99 | Probability of a delay spike

q 0.2 | Probability that the Gilbert model remains in the lossy state
RTTmin 50ms | Minimum RTT

T 10ms | Sampling period

Table 2: Parameters that define the synthetic traces.

the computational demands on the observer. Moreover, if jitter is comparable with the sampling
period T, the behavior of the pipe becomes unpredictable and it makes it harder for the observer
to establish if or when control signals are going to be applied at the plant. Therefore, although the
sampling period 7' is in principle independent of absolute delays, it is related to the delay variability.
The most immediate advantage of a control pipe is that it provides a level of redundancy against
packet losses. Specifically, if a control signal u; did not arrive by time ¢; + 7;, the controller would
be able to detect u;’s late arrival when it receives the first sample that was generated after time
t; + 7;. A smaller sampling period T' would make it more likely that the detection occurs earlier. A
second advantage of pipes is that it enables a controller to quickly countermand a previous control
signal. For example, a transient delay spike could increase considerably the value of 7; only to
deflate it on the next round. If t;41 + 741 < t; + 7i, then u;; is applied at time ;41 + 7;4+1, which
also means that u; will never be applied. In some sense, the controller has acted at first as if the
spike represents a long-term change of RT'T and issued the control u; accordingly, only to realize
afterwards that the delay spike was a transient phenomenon, and countermanded u; with a more
appropriate control action. Revocations are particularly helpful if the controller can issue the next
command quickly, that is, if the control pipe has a small period T'.

Another advantage of pipes is its tolerance to state disturbances and, as such, it is best exem-
plified in the ideal case in which w(¢) = 0 and all packets are applied at their nominal times. In
this case, it is easy to show that Var[z(t; + 7; + T')] is an increasing function of 7; + 7. Hence, the
plant dynamics can be made more predictable in the face of state disturbances by taking smaller
values of T'. In other words, larger bandwidth can partly compensate for long delays. The method
could be especially useful given that bandwidth tends to improve faster than delays [R4] and to
ensure geographically scalable control (cite paper).

5 Experimental Methodology

5.1 Synthetic Traces

Synthetic traces of RTTs were generated by combining a shifted gamma distribution (as in [[(§])
for the body of the delay distribution, a Pareto distribution for the tail (as in [[f]), a model for
delay spikes as described in [R7], and a Gilbert model (Figure [f) for packet losses [B4].

A sample is generated every T seconds. The sample is lost if the Gilbert process is in the
lossy state (The Gilbert model is a two-state Markov chain as shown in Figure [] and is defined
by p, the probability of remaining in the good state, and ¢, the probability of remaining in the
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Figure 5: The Gilbert model for packet losses [B4].

lossy state.) If the packet survives, its RTT belongs to the body with probability 99% and to
the tail with the remaining 1% probability, as in [[[6]. If the packet falls in the body, its RTT is
calculated from a shifted gamma distribution with parameters RTTmin, A, and r. If the packet
falls in the tail, then its RT'T is calculated from a Pareto distribution of shape o and minimum k.
The value of k is chosen so as to be sufficiently separated from the mode and from the mean of the
gamma distribution (body). Delay spikes are simulated by checking whether the RT'T would cause
an out-of-order delivery. If it would, then the RTT is changed to the previous delivery time plus
a small interval (in the simulations, 0.1ms) with probability pgyike to simulate a burst of almost
simultaneous arrivals, and it is left to its simulated value otherwise. The default trace length is
15 minutes, although several simulations were run for up to two weeks of simulated time. The
simulation parameters are summarized in Table P along with their default values.

The default value of b = 1, which fundamentally means that the input units have been normal-
ized. The default plant has a = —1. The output disturbance is a Gaussian random variable with
mean 0 and variance W2, for a simulation parameter W. The default is W = 1, which fundamen-
tally means that the output units are normalized around the variability of the output disturbance.
As for state disturbances, z(t) can be expressed as z(t) = zo(t) + n(t), where z((t) obeys

z0(t) = azo(t) + bu(t)
zo(t) = z(t)

and captures the nominal disturbance-free evolution of the system, and zy () obeys
iN(t) = axN(t) + ’U(t)
N (t’) =0

The function z((t) can be integrated analytically for any given u(t). The stochastic process zx(t)
can be approximated by finite differences with the formula [f:

an(t + (i +1h) = (1 + ah)zn (¥ +ih) + Vho(3) ,

where h is the integration step and v(4) is a Gaussian random variable with mean 0 and variance
V2, for a simulation parameter V. The simulator uses a step equal to h = (t—1')/4 for a sufficiently
accurate integration of zy. The default is V = 20. The simulator uses the Mersenne twister
to generate uniformly distributed random numbers [[7] and simulates Gaussian random variables
with the Box-Muller method [Rg].

5.2 Metrics

The simulation outcome is most immediately expressed by the plant output y(¢). However, metrics
must be more succinct if they are to capture long simulations and to compare different schemes.
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Figure 6: Plant output y(t).

Summary metrics will be based on the time series Y = {y(i/100) : ¢ > 0}, which captures the
plant output at regular intervals of an arbitrary short length equal to 10ms. Our first metric is oy,
the standard deviation of Y. For comparison, the expected value of Y is E[y(t)] = 0. Second, we
consider the 99-percentile of the deviation, that is, the value ¢ for which Pr[|ly| > §:y € Y] < 0.01.
Finally, we consider the maximum deviation max{|y| : y € Y'}.

The play-back controller is compared with three baseline simulations. The first one is the
output generated by the open-loop plant () and expresses the system behavior in the absence
of any controller. The first comparison aims at establishing the benefit of using a control and
communication algorithm against the laissez-faire strategy. The second simulation assumes that
the plant is connected to a proportional controller by a channel with constant delay equal to RTT yip-
The second comparison aims at providing a lower bound on the algorithm performance by assuming
that the network is perfect (no losses, no jitter) and even if other proportional controllers could
be used beside the deadbeat. However, the comparison assumes no observer, and will be denoted
as the pure delay scenario. In the default scenario, oy was minimized by k = 11, as this value
strikes a balance between the transfer functions of the two disturbances on state and on output.
Incidentally, £ = 11 leads to a gain margin of 9dB and a phase margin of 60° in the corresponding
continuous time system with pure time delays. The third comparison is with an open-loop plant in
which the state is reset to r after each sample is collected. The simulation allows the determination
of the inherent wvariability of the plant output due to the combination of discrete control and
continuous disturbances. The additional variability of a sampling and control method is defined
as the difference between the method’s oy and the inherent variability. Of course, the additional
variability can be negative in any one simulation due to fortuitous random occurrences.

Trace-Based Simulations. Preliminary simulations were also conducted on a small set of rela-
tively short RTT traces. The trace-based simulations should be extended but preliminary results
are included here for general reference.

6 Evaluation

The simulations was continuously run for 2 weeks of simulated time. Table [l| reports summary
statistics for the whole simulation and Figure [f| shows a five second snapshot of the plant output
in the middle of the simulation.  Figure fj(c) shows that the open-loop output |y(t)| can be
relatively large for a long period of time. The open-loop output y(t) is mostly affected by the well-
known behavior of Brownian motion (state disturbance), which can take the state away from the
reference for long transients. By contrast, both the play-back and the ideal controller react when
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Figure 7: Estimate of the minimum round-trip time (7" = 50ms). In the first minute, the delay
distribution is the default. In the second minute, RT T ,;;, = 20ms. In the third minute, » = 8.

the state starts to drift, and rapidly bring the plant back to the reference. In the long run (Table
fl), the play-back oy is close to that of the ideal controller. The play-back removed 75% of the
additional variability of the open-loop output, which is comparable to the performance under pure
delays. The play-back has smaller o, than the pure delay scenario primarily due to the use of an
observer. Similarly, the 99-percentile and max |y| are close to that of the ideal pure delay scenario.
If the network conditions deteriorate (packet losses, jitter), the play-back controller performance
gracefully degraded and, as the levels of services approximated a network partition, the play-back
performance progressively approached that of the open-loop plant (details omitted).

Although the plant output y(¢) is the primary concern of a play-back strategy and ultimately
determines its success, a play-back algorithm can be better understood by isolating the impact of
each algorithmic component, as discussed next.

Minimum RTT. The value of i, should be a close approximation of the RTT but 7y, should
always underestimate the RTT (Section [£.3). Figure ] shows the RTT and the 7y, when the delay
distribution is stable for one minute and it then changes abruptly and significantly. The value of
Tmin Was typically fairly close to the RTT and underestimates it in all but 0.2% of the samples. In
general, rmin showed fast adaptiveness to changes in the RT'T distribution.

Play-Back Delay. The value of the play-back delay 7; should be a close approximation of the
RTT, but should not overestimate it. Figure f gives the difference 7; — RTT;. In Figure f(a), the
play-back delay overestimates the round-trip time in all but 2.3% of the packets. However, the
underestimation was severe in a few cases, mostly in correspondence to delay spikes. The 7; value
was slightly larger than the RT'T when jitter is heavier (last minute of the simulation). It was often
the case that T' < 7;, which means that a control pipe was established. At the nominal sampling
frequency (Figure §(b)), the value of 7 becomes progressively dominated by the cap T' + rmin, and
so 7 — RTT does not grow much. However, 7 underestimated the RTT in slightly more cases
(2.8%) and almost as significantly as for the larger value of T. When the sampling frequency is
very high (Figure §(c)), 7 has shorter peaks both in the positive and in the negative direction, but
the most significant phenomenon is that the RTT is underestimated in more than 88% of the cases.
Consequently, the plant applies almost all signals as soon as they are received, effectively disabling
the play-back buffer. This simulation also highlights the importance of playing back late signals ]
or else almost all packets would be discarded.
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Figure 9: Standard deviation o, of the output y as a function of the sampling period 7.

Sampling Period. Figure [ shows oy as a function of T' for the default case V =20 and W = 1.
For future discussion, the figure also gives the two cases V =0, W =1 and V =20, W = 0.

If V = 0, the state evolves free of state disturbances. Since z(0) = v(¢t) = 0, if u = 0, then
z = 0 always and oy = W. In other words, if V' = 0, the best strategy would be to remove the
controller or, which is equivalent, to set 7' — co. The second case W = 0 is antithetic: the state
grows progressively more unpredictable during a longer inter-sampling period. The optimal value
of T should be chosen in the middle ground and depends on two factors. First, T" depends on the
relative strength V/W of the disturbances. If W > V, then long sampling periods are better (e.g.,
Figure [, V = 0) and, conversely, if W < V, then short sampling periods are better (e.g., Figure
g, w=o0).

The second consideration is that the standard deviation of the output is significantly larger at
the smallest values of T (leftmost side of Figure [J(b)) and, consequently, such values should be
avoided. In general, the output variability o, was significantly larger when 7' is comparable to
the RTT jitter. Figure shows the standard deviation of y as a function of 7. The first chart
increases jitter with higher values of r and constant A. The second chart increases jitter with lower
values of A and constant r. In both charts, T' is normalized to the standard deviation of the gamma
distribution (delay body). If T is small, 7 was fundamentally defined by T + rmyin, and if T is less
than the jitter, the nominal activation time ' + 7 is likely to precede the reception of the signal
by the plant, so that the buffer is effectively disabled. Consequently, the actual application times
and the plant evolution are relatively unpredictable. The simulations suggest a value of T' which
is roughly 5 times the standard deviation of the delay distribution body. A possible justification is
that, numerically, the probability that a Gamma random variable exceeds the mean plus 5 times
the standard deviation is less than 1% for all 7 > 0.  Figure [l summarizes the imperfections of
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Figure 11: Imperfections of the control pipe as a function of the sampling period T

the control pipe as a function of the sampling period T'. Late signals are almost 65% of all packets
when T' = 2ms, but they drop rapidly and the curve shows a knee in correspondence to 7' = 10ms.
The number of quashed signals is always less than 1% and decreases with larger sampling rates.
The low incidence of quashed signals depended on the introduction of the upper bound 7" + 7yin
on 7 (details omitted). In summary, if 7" is too small, the control pipe is unpredictable, mostly
due to the fact that the buffer is effectively disabled and signals are applied late. However, if T
is large enough, the pipe is fairly stable and little incremental predictability derived from further
increasing T'. The value of T should be larger than the round-trip jitter, and it should otherwise
be chosen so as to balance the opposite effects of output and state disturbances.

This paper has assumed that T is a hardwired constant, as in most discrete-time plants. How-
ever, the sampling period T was found to be tied to the jitter, and we feel that future work should
address the dynamic and adaptive setting of the sampling rate. In preliminary results, we have
extrapolated the following consequences of the rule of thumb that 7' should be about 5 times the
standard deviation of the delays. First, it is sometimes as easy to control a unit overseas as to
control one that is nearby. The reason is that while long-haul delays tend to be larger, their jitter
can be smaller, thus affording a smaller value of T and a finer grained control. Of course, this
assumption is predicated on a model of the plant that is accurate enough for longer predictions,
i.e., the observer needs an accurate value of the plant constant a. On the basis of route information,
the intuitive reason is that our overseas paths have a similar number of hops as more local paths,
and hence, while the delay increases, the jitter does not necessarily increase.
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Trace-Based Simulations. Figure [|2 gives preliminary results on a set of 15 RT'T traces. The
figure also gives the o, value for the open-loop plant and the expected value of the inherent vari-
ability. The figure reports for comparison the o, value obtained from simulations (Figure ) even
though the RTTyin, jitter, and drop rate differ sometimes significantly in the simulation and in the
traces. In spite of these differences, o, hovers around the simulation value. The o, value is also
close to the expected value of the inherent variability. The traces are collected at 7' = 200ms,
and so these results suggest that comparably better performance would arise with faster sampling
periods.

7 Related Work

Networked control is a relatively new field but already has a wealth of results [[L5] and is related
to the area of real-time embedded distributed systems (e.g., [I9]). The networked control model in
Section [ follows the original assumptions in which sensors are time-driven whereas controllers and
actuators are event-driven [RZ]. The paper has focused on proportional controllers but, naturally,
many other types of controllers exist [[il, R3]. Networked control has been intensively investigated in
the local area context, for example for the purpose of factory or building automation (e.g., B3] and
references therein). This paper focuses on network vagaries that are more likely to occur on wide-
area networks. Co-simulation for co-design is a novel approach in which the design of the control
system and the design of the network are tackled together, and therefore should be analyzed (and
simulated) together [ff]. A taxonomy of real-time applications introduces the concepts of tolerance
and adaptiveness. Moreover, other real-time applications, such as VoIP or video streaming, also
use end-point play-back to achieve higher levels of tolerance or adaptiveness or both [2§]. Since
the controller sets an expiration date to the regular control, it is also suitable for adoption in
event-driven sampling, where a sensor sends a sample only when the output has changed by at
least a certain threshold value [}, [[J]. Event-driven sampling is particularly suitable for energy
savings in wireless networks. However, event-driven sampling creates an ambiguity for the more
traditional controllers, which cannot ascertain whether a sample was dropped or simply not sent.
The ambiguity is alleviated in the case of contingency control due to the presence of a fail-safe
action uz(c). Previous work on optimal loss compensation mostly addresses i.i.d. losses [{], which
are not relevant in a Gilbert model.
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8 Conclusions

In this paper, we have formalized the problem of making networked control tolerant and adaptive to
network vagaries. In addition to the specific results, a main contribution of this paper is to formulate
networked control in a way that is cleaner and more suitable for further Networks research. The
paper also introduced novel performance metrics that are natural and appropriate for networked
control. Although the focus has been on scalar plant, the same methods are generalizable to
multi-dimensional plants.

The main contribution is a novel play-back algorithm for tolerant and adaptive networked
control. The play-back algorithm is integrated with sampling and control. In the end, the algorithm
involves a reverse play-back buffer and the estimation of play-back times, an expiration time to
curb the regular aggressive deadbeat control, a contingency control to deal with loss episodes,
and an observer that explicitly accounts for network vagaries. Extensive simulations showed that
the combined approach was able to remove 75% of the additional (non-inherent) plant variability.
Furthermore, the play-back control performed roughly as well as any proportional controller on an
ideal network with pure delays. The algorithm was robust to parameter choice and its performance
gracefully degraded when network connectivity worsened. The simulations show that the sampling
period should be set as a function of jitter, and future work should address uneven sampling in
networked control.
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A Plant Dynamics

We integrate the differential equation (??) with a boundary condition on z(6;) to obtain

oft) = (w(69) - BEOZE) ) oo o PREO 2 @)

a a
In particular,

(041 — &ig1) = (w(Hi) w) Oig1—0i—Eit1) 4 bkz(0; — &)

a

z(0iy1) = (15(91') w) Oiv1-0:) 4 bha(9; — &)

a

Define &; = z(6;). Observe that

. bkx; .
Fiy1 = eaf¢+1$i+1 + Z; (1 _ etJL'Eq,+1) .
a
Hence, if z; = z;41 = 0, then also Z;11 = 0, and, by Equation (f), z(¢t) = 0 for all ¢ > 6;11. Observe
that At; =tj41 —t; = 0;41 — 0; — &1 + & and As; = 0,41 — 6; — &1 We now have

Tip1 = (ea&xi + (1 _ ea&') bk‘fzi_l _ bIZEi> e@(Bi+1—0i—&i+1) 4 bIZL‘i

k(i — 1) palsi (m B bk:vi1> palti bkz;
- 2

a a a
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= a;7; + Biwi—1

which is the homogeneous recurrence (?7).

B Deterministic Deadbeat Control

An approach similar to the baseline can be used also when 3; # 0 is a constant. In this case, the
jitter &; is also constant, and we let & = £ for all +’s. The intuitive interpretation is that either the
constant RTT 7 was estimated with an error or, as in [22, BJ], the controller was designed for local
operation but is being used even when delays are present in the feedback loop. In this case, the

condition «; = 0 leads to

a eaT

bedT—6 —1°

Proposition 1. In the case of no losses, & > 0 and k = Kk, the plant state converges to the
reference r = 0 if and only if

Kkl =

1+ 2t

14 et~

Proof. By design, k!, implies a; = 0, so that z;41 = Bz;—;. The characteristic equation of this
recurrence is p?> = /3, and so the amplitude of z; decreases with time if and only if |3| < 1. If ¢ > 0,
then

1
E<T —~1In
a

aT’ 2aT

] = 2 (e ~e0) = g (1) = g (1)
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Figure 13: The bound &yax on the jitter ¢ as a function of the sampling period T' (Proposition [I]).

Figure 14: A case with jitter £ # 0 that leads to a damped oscillation of the plant output.
Therefore, |8] < 1 occurs if and only if €27 (1 — %) < e¥T=8 — 1, or e79% > (1 + €297 /(e*! +
2T, The claim follows by taking the logarithm of both sides. O

Figure [[3 shows the upper bound on ¢ as a function of T for various values of a. In general, as
the product a7 increases, In (1 + e2aT) / (1 + e“T) ~ a7, and so little jitter can be tolerated with
faster plants or slow sampling rates.

Corollary 2. If ¢ > 0 (undercompensation of delays), an oscillation is present in the plant output.

Proof. If £ > 0, then 8 < 0. The corollary follows from the characteristics equation derived in the
proof of the previous result. O

Figure [[4 shows the case T = 0.2, £ = 0.05, k!, ~ 6.88, which leads to a damped oscillation in
the plant output.

C 1.i.d. Losses

If the sampling period is uniform and of unit length and the loss probability is p < e~%, then At;
is a geometric random variable with parameter 1 — p. Then,

1—pe®
Mr(a) = 7(1 p)a
and the difference
e —1

Mr(a) — e* = pe® >0

1 — pes

is maximized by taking the derivative with respect to p. However, the derivative is e®(e®* — 1) /(1 —
pe®)?, which is always positive, and thus p should be taken as large as possible.

D Gilbert Model

The Gilbert model [B4] (Figure [f]) is a two-state Markov chain. The two states are labeled G (the
“good” state) and L (the “lossy” state). Let p be the probability of remaining in the G state and
q the probability of remaining in the L state. The chain generates a G or an L upon each state
transition, where the jth symbol determines whether the control packet at step ;7 was received at
the plant (G) or not (L). For example, the string GGLLG ... denotes losses at step 3 and 4, but
good reception during the other steps. Assume even sampling and assume that time is normalized
so that the sampling period is 1. Then, At; is the length of the sth maximal subsequence of the
form L*G. For example, the string GGLLG ... gives At; = Aty = 1 and Atz = 3. At the end of
each subsequence L*G, the Markov chain is in the G state. Therefore, at the beginning of the next
subsequence, the state is G with probability p and L with probability 1 — p. If the initial state is G,
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then At; = 1. If the initial state is L, then At; = 1 + G, where G is a geometric random variable
with mean 1/(1 — q). Therefore,

= 1 2-p—q
T = E[At;] = 1-p)(1 —
[Ati] =p+ ( p)(+1_q) g

and, if ¢ < e”

e2a

Mz(a) = Ble™) =p+ (1= p) Bl ) =p+ (1= p)e" Bl =p+ (1 = p)(1 = 0)—_=

Therefore,

kr =

—_
+

1)

—_
+

/N N

1 — ge? )
p —pge® + (1 —p)(1 — g)e**
—p)(1 —g)e*® —q(1 +p)e® + (1 +p)
(1 -p)(1 —g)e** — pge® +p

—~
—_

e oe oe

E Effective Sampling Rate

The gain kg, is a function of Mp(a), which in turn can be expressed as a McLaurin series of its
derivatives M (™ (0) = E[(At;)"] calculated at the origin. Thus, k7, accounts for all of the moments
of the distribution of At;. However, if Mr(a) ~ Mr(0) + aM}.(0) = 1 + aT, then

1 1

The error in the approximation of Mr(a) is a? M"(a)/2 = a® E[(At;)?e?2%]/2 > 0 for some 0 < & <
a, and so k} > kr. The control k) has the advantage of depending only on the effective sampling
rate 1/T rather than on the entire distribution of At;. However, k) can only be applied if the error
is small. Furthermore, &} can take a value k) > ki even when k;, does not exist. For example, in
the case of an exponential distribution, k7 = (a + A)/b even when A < a. The effective sampling
period T was the only factor considered in previous work [[[0], B3], with conclusions that were often
difficult to explain analytically.

F Jitter

Proof of Proposition ??7. We first claim that «; is independent of ;. The quantity ¢; is a function
of constant terms and of the random variable &;, which represents the jitter or the time difference
between t; + 7 and 6;. Meanwhile, z; is the state at time ¢; + 7 and thus it is not affected by a
future jitter &. By the same token, §3; is independent of z;_1. Therefore, E[z;11] = E[a;]E[z;] +
E[Bi|E[zi—1] = E[B;]E[zi—1]. Moreover, since the ;’s are i.i.d random variables, so are the §;’s,
and so

i i
hm T23+1 = hm :L‘lE | I ,32]' = hm I | I E[,BQJ]
1—00 1—00 1 1—00 =1
]: =
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converges to r = 0 if and only if |E[fy;]| < 1. Since the f;’s are identically distributed, the same
condition also guarantees that lim; ., zo; = 0. We now have that

E[5) = E [b’f_J (-9 - eaT)]

eaT T ¢
- oT Ble=ati — 1
e"Mj(—a) — 1° le ]
62aT
- Mj(—a) - 1) .
eaTMJ(—a) — 1( J( G,) )

Therefore, E[3;] > —1 if and only if M;(—a) > (e2*T +1)/(e?*T +¢T), which proves the claim. [

Proof of Corollary ?7?. It can be easily verified that e®” M;(—a) — 1 > 0 when M;(—a) > (e2*T +
1)/(e*T + eT). O

This section gives a sufficient condition for convergence in the presence of jitter.
Lemma 3. If |5;| < 8 < 1, then lim;_, o E[z;] = 0.

Proof. We have that |z;11| = |Bi||zi—1] < Blzi—1|, so that E[|ziy1]|] < BE|[|zi—1]]. Therefore,
lim; o0 Elzi] = 0 if § < 1. 0

In turn, such value of kr and the condition that |3] < 1 will effectively put a bound on ¢; and
T.

Proposition 4. If there is a 8 < 1 with

1 eTMj(—a) -1
OSQS—Eln(l—ﬂ e2aT >

(t>1),

then x; converges to the reference r in the expectation.

Proof. The condition on §; ensures that —1 < 8 < ; < 0, and the proposition follows from the
previous result. O

The proposition states that larger jitter & can be tolerated with shorter values of T'.

G Contingency Control

It remains to establish the value of k, for which we first need to determine the plant dynamics.
Consider an interval [(;—1, ;). Since uz(-c) = 0 is applied continuously in this interval, the plant
is described by the equation #(t) = az(t), which is integrated to give z(t) = z(t; + 7)e**=%=7) for
all t € [(;,0;). In particular, z(6;) = z(t; + 7)e%:i. In the interval [6;,(;), the plant is described by

the equation #(t) = az(t) — bkz(t; + 7), which integrates to

$(t) _ (.’L‘(ez) _ bk‘:l?(t;—f— T)) ea(t—ai) n bk‘fl?(tz + 7') _ :L‘(ti + 7_) (ea(t—l—&'—ﬂi) . % (ea(t—ﬁi) _ 1)) )

a a

Therefore,

a

o(6) = ot + ) (70 = 2 (e 1))

24



| Model | Parameter | Values

Plant a 3
b 1
T 20ms
Network T 10ms
i.i.d. loss P 0.01,0.02,0.05
0.1,0.15,0.2,0.5,0.6
Exponential loss | A 5
Gilbert loss P 0.99,0.98,0.95,
0.9,0.8,0.5,0.4
q 0,01,0.2,05
Gamma jitter A 200, 500, 1000
T 1,2,3

Table 3: Parameters of systems and networks in simulation based on probabilistic network models.

and

Bla(G)] = atti-+7) (4777 = 2 (1, -0) -1) )

a

which can be set to 0 by choosing k equal to

a e(T—7)

he = bedT-T)My(—a) —1°

Suppose that & = 0 and that z(¢; + 7) is estimated with an error, due either to disturbances
or to an imprecise system model. Then, the control u; becomes u; = —k.(1 + €)z(t; + 7) for some
error term e. The controller k. makes |z((;)| < z(t; + 7) if and only if —e®7—7) < e < e¥T=7)
which puts a bound on the combination of error, plant speed, and sampling period.

H Methodology

H.1 Simulations

In the first set of simulations, packet losses and delays were generated from various probabilistic
models. For example, one such model would assume that there is no jitter and packet losses are
generated with a Gilbert model, as in an example in Section ??. In general, all probabilistic models
in Section ?? were simulated (Table f]). Model-based simulations can be used to assess the accuracy
of the dynamic estimators defined in Section ??. The estimators should induce a plant output that
is close to the output obtained with a controller that uses the exact value of the moment generating
function for the same probabilistic model. The evaluation of the estimators starts with an initial
unit value for the moments, so that the stochastic compensation is initially disabled. Thus, the
simulation tested implicitly the simultaneous convergence of the plant and of the moment estimator.

H.2 Bounds on a

The distribution parameters A and r are given in Table f| and | and were estimated as A\ = u/o?2,
and r = Ay, where y is the average observed jitter and o2 is the sample variance of the jitter.

25



Name ‘ ar, ‘ aS:G) ‘ A ‘ T ‘ @.J,min ‘ @ J,max
wopr.cwru.edu %) o0 70557.3 | 2.5 | 1460 | 33.6514
weatherhead.cwru.edu o0 o0 52324.9 | 1.83 | 1485 | 33.7086
scp.gre.nasa.gov (Oct 2) | 27.15 | 14.98 | 1575.3 | 3.00 | 27.14 | 16.9387
scp.grc.nasa.gov (Sep 30) | 6.9 | 6.49 | 198.62 | 1.03 | 10.11 | 13.0512

www.ri.cmu.edu 15.65 | 12.55 | 1114.7 | 1.74 | 33.25 | 17.7509
WWW.Comau.com 22.05 | 14.54 | 329.15 | 1.44 | 11.94 | 13.6788
www.icra-iros.com 12.7 6.44 945 1.28 | 38.5 | 18.3321

control-lab.et.tudelft.nl 13.25 | 12.7 309.71 | 1.28 | 12.71 | 13.9109

Table 4: Statistical and control-theoretical characteristics of the collected traces (Year 2002).

Name ‘ ay, ‘ a(LG) ‘ A ‘ T ‘ @ J,min ‘ @7 max ‘
wopr.cwru.edu 27952.4 | 1.05 | 1550 | 33.3984
weatherhead.cwru.edu 356.7 | 0.10 | 1.81 | 24.9346
SCp.grc.nasa.gov 28.88 | 13.20 46.5 1.39 | 3.44 | 6.1942
www.ri.cmu.edu 42.59 00 2652.0 | 0.73 | 101.3 | 24.8884
WWW.comau.com 20.34 | 21.72 75.9 1.10 | 4.41 | 9.0900
59.4 0.25 | 0.78 | 14.1837

91.9 0.06 | 0.30 | 21.7209

814
814

www.icra-iros.com 20.90
control-lab.et.tudelft.nl | 39.12

Table 5: Statistical and control-theoretical characteristics of the collected traces (Year 2004).

The bounds on a are predicted from the probabilistic models after they were fit to the traces
and, as such, the bounds could differ from those obtained in a complete simulation. In particular,
M is the moment generating function of the gamma distribution that was fit to the body of the
jitter distribution.

I Probabilistic Evaluation

Figure [[§ is an example of certain effects that are especially visible with high loss rates. The figure
shows the plant output for p = ¢ = 0.5 (i.e., an overall drop rate of 50%). The value of g is
close to the critical threshold ¢ < e~ ~ (.55, which is in the range where k7, and kg differ more
significantly. In the first place, the estimator is substantially worse than the exact My (a), which
follows the general trend for these large drop rate, as discussed above. The figure also compares
the kr and kg4 controllers. The kr controller has lower overshoot but larger rise time than k;. The
reason is that the k; controller is designed for the ideal case of no losses and it severly suffers during
periods of poor connectivity, so that it swings widely above and below the reference. However, the
controller immediately snaps back to the reference as soon as connectivity resumes. By contrast,
the kr controller attempts to keep a behavior that balances between the periods of poor and good
connectivity. The relative behavior of k4 and k7, basically held for all values of p and ¢, even though
the stochastic nature of the network model occasionally resulted in anomalous outcomes with low
probability. At any rate, the behavior of k; and kp, justifies intuitively contingency control, in that
contingency attempts to combine the good features of the former during good connectivity periods
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Figure 15: Plant output for a network model with no jitter and losses generated by a Gilbert model
with p = ¢ = 0.5.

Figure 16: Convergence with no jitter for the case of no losses (k = 7 # k4 = 6.47) and of a constant
loss probabilty of 10% (k = kr)-

and of the latter during bad connectivity. Finally, the estimator Mr; had lower overshoot than kg4
even though estimators were not particularly accurate at these high drop rates.

J Evaluation

J.1 Probabilistic Network Models

The first set of simulations involves the generation of jitter and packet losses according to the
various probabilistic models. The simulation confirmed the importance of setting the correct value
for the gain k: for example, Figure [lff shows that a 10% loss rate with k = k, has comparable
performance to the case when no packet is lost but k& is not exactly equal to kz. The dynamic
estimation of Mr(a) produced results comparable to those obtained with a prior knowledge of
Mr(a). For example, dynamic estimation increased the overshoot by less than 1% in a simulation
with a 20% i.i.d. loss probability. The plant output deteriorated more significantly only for higher
loss rates. Similarly, the dynamic estimation of M;(—a) led to overshoot within 1% of the exact
value, and the estimate of Mg(a) gave rise to behaviors analogous to those caused by a dynamic
My (a). Further detailed are given in Appendix [

J.2 Contingency Control
In summary, the scp(9/30/02) trace with @ = 7 and D = e 2 led to:

e The baseline kg swang between +9 - 10°.

e The contingency controller had 4 short spikes through a 15 minute simulation and the spike
intensity ranged as —1.6 <y < 0.7. Its estimate of M ;(—a) was close to 1 and no significant
differences were introduced if the term was set to 1 throughout the simulation.

e The kg controller had more spikes of large intensity (from —11-10* to 5- 103) even with the
addition of a reverse play-back.

e The kg, controller (no play-back buffer) had significant spikes (£2 - 10%), its rise time was 30
times longer than k. (6 seconds versus 0.2 seconds), and it typically took longer to recover
from a spike, as shown for example in Figure 77.

e The k;, controller improves with the addition of a play-back buffer: it had a few spikes of
intensity between —8 and 5. However, its behavior during these spikes resembled that of &,
with no buffer (Figure ??), and its rise time was longer than k;, (7 seconds).
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