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Abstract— Sensing, actuation, and decision units can control a
remote physical environment and enable physical actions regard-
less of distance. However, the effectiveness of networked control
depends on its ability to tolerate network non-determinism,
which in turn can be enhanced by the use of play-back buffers.
Although play-back has been intensively studied in multi-media
applications, play-back schemes differ significantly in networked
control, which is characterized by different performance metrics
and a different sequence of communication events. The primary
contribution of this paper is an end-to-end algorithm that
integrates play-back buffering, sensor sampling, and control.
The algorithm is extensively validated on simulations and real-
time wide-area emulations. The integrated algorithm canceled
the effect of disturbances as much as a proportional controller
under ideal network conditions.

I. I NTRODUCTION

Sensing, actuation, and decision units can control a re-
mote physical environment (Fig. 1). Distributed sense-and-
respond systems enable physical actions to take place re-
gardless of distance, with fundamental epistemological and
social consequences [8]. Applications include, for example,
industrial automation (e.g., [26]), distributed instrumentation
(e.g., [1]), unmanned vehicles (e.g., [11]), home robotics(e.g.,
[19]), distributed virtual environments [13], power distribution
[24], and building structure control [30]. Sense-and-respond
operates in real physical time and late or missing signals
can jeopardize the stability, safety, and performance of the
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controlled physical environment. A central issue is to bridge
the timeliness requirements of networked control with the non-
determinism of a communication network.

The primary contribution of this paper is an end-to-end
algorithm that integrates play-back buffers, sensor sampling,
and control. The algorithm objective is to enable end-points
to adapt to varying levels of network service. The end-point
play-back method smooths out packet losses, delays, and jitter
by applying control signals to the physical environment during
predictable time intervals. By its nature, the play-back must be
also integrated with the sampling and control processes that
ultimately govern the physical dynamics. In other words, the
algorithm takes on the intricate interaction of requirements
stemming from non-deterministic networks and the target
physics.

Sense-and-respond can partly borrow from multimedia play-
back. However, sense-and-respond differs substantially from
multimedia applications in behavior and objectives, and play-
back strategies will differ as well. First, sense-and-respond
performance is based on the real-time behavior of the con-
trolled physical system, and there is in general no clear
correspondence between the properties of the physics and
multimedia replay quality. A critical difference is thus the
integration between buffering and the underlying physics.
Second, in multimedia applications, the play-back delay can
often be determined upon the reception of a signal, whereas in
sense-and-respond play-back intervals are always determined
in advance because they affect the computation of the control
signal. Consequently, certain multimedia play-back schemes
cannot be immediately applied. For example, multimedia play-
back sometimes employs the strategy of following delay spikes
[25], but the controller can in general detect a spike only
after an RTT, so that the original algorithm cannot be applied
directly. Another difference is that most distributed multimedia
are concerned with one- way delays, whereas sense-and-
respond is primarily based on round-trip times. Play-back is
also related to the problem of estimating TCP’s RTO [23]. The
RTO tends to be conservative because of the tremendous cost
of a TCP time-out. An equally conservative play-back delay
would effectively introduce a large delay in the feedback loop,
with well-known control-theoretical complications (for exam-
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ple, the physical dynamics would be dominated by exogenous
disturbances).

In other related areas, sensor networks are also concerned
with quality of sensor data, but largely focus on the first part
of the sense-and-respond loop. Furthermore, sensor networks
tend to be more focused on energy savings than most sense-
and-respond applications, in which total energy consumption
is typically dominated by actuation. Finally, sense-and-respond
has also been the subject of extensive control-theoreticalwork
[14], which has revolved around the problems of scheduling
packet transmission in closed networks, of stochastic compen-
sation for network non-determinism, and of stability analysis
for networked control systems. In general, control-theoretical
approaches can exploit a buffer as a service provided trans-
parently by an underlying communication channel.

Sec. II reviews the background on networked control. Sec.
III introduces the play-back scheme. Sec. IV describes the
evaluation. Sec. V reports on simulations and emulations. Sec.
VI reviews related work and Sec. VII concludes the paper.

II. N ETWORKED CONTROL: BACKGROUND

The literature commonly denotes asplant the physical
system to be controlled. A controller acquires data from the
sensors that monitor the plant. The controller uses the sensor
readings to issues commands toactuators so as to change
appropriately the plant state.

Example 1: The textbook example is the regulation of
ambient temperature. A thermostat (the controller) reads the
temperature in the ambient (the plant) from a thermometer (the
sensor) and modulates the heating (the actuator) so as to bring
the room to the desired temperature.
In general, the plant state depends on the actuator operations
and also on exogenous disturbances (e.g., people unpredictably
open and close doors). Furthermore, the sensors are subjectto
measurement errorswi. A networked control system involves
a plant that is controlled remotely, and networked control is
complicated by delays, jitter, and packet losses. In the first
place, network latency can delay the reception of sensor data at
the controller site and the application of a control signal at the
plant site. Furthermore, packets can be lost either becausethey
are dropped out in the network infrastructure or because they
are discarded by the communication end-points, for example,
if they arrive late.

Networked control is essentially the problem of reducing
the uncertainty in the state of a system (Fig. 2). The plant is
in statexi at time ti but, due to measurement errorsw, xi is
known only approximately as a sensor readingyi. The sample

yi is sent to the controller butyi can be lost or be late. Ifyi

does reach the controller, it can be used to specify a control
action ui, but the signalui is either lost or is applied at an
instant that is not known exactly due to delays and jitter. The
plant state then evolves as a function ofui and of a random
disturbancev(t). The goal is, for example, to makey(t) equal
to a perfectly specified set pointr. In summary, the objective is
to overcome the uncertainty due to network non-determinism,
exogenous disturbances, and errors to bring the system to a
known and desirable state.

Network latency can be partly mitigated by the use of an
observer, a standard component that numerically simulates
the plant to predict its state forward in the future [6], [21].
Observers have been extensively studied so as to recover to
some extent from exogenous disturbances. However, predic-
tion is subject to additional inaccuracies in the presence of
delay jitter and packet losses. In the first place, the observer
should extrapolate the plant state at the time when the control
ui is received by the plant, but the reception time is not de-
terministic. Second, the plant can receive outstanding control
signals during the simulation interval, but the observer does
not know the exact sequence and timing of these pending
events. Another consequence of jitter is that it can preventthe
use of large control signals because a largeui can compromise
the plant state if applied for an unpredictable interval. On
the other hand, aggressive controllers would typically lead to
closer tracking of a desired set point if delays were completely
deterministic [6], [21]. On the good side, delay jitter can be
eliminated with aplay-back buffer that applies the control
ui exactly at time ti + τi if ui arrived before that time
and drops the control if it was received too late. Theτi

value is called theplay-back delay. The play-back delayτi

must be carefully chosen. Ifτi is too large, various control-
theoretical complications arise, such as, for example, the
dynamics are dominated by disturbances and plant evolution
becomes unpredictable. Ifτi is too small, the control signals
would be lost and the plant cannot be controlled accurately.
Therefore, an appropriate value ofτi should strike a balance
between delay and jitter.

Another consideration is that certain networked control
systems involve plants that are computationally-constrained
devices. In these cases, the plant algorithms should be simple,
and the complexity should be moved to the controller as much
as possible.

III. PLAY-BACK AND SAMPLING

A. Overview

The main contribution of this paper is an end-point algo-
rithm that integrates play-back, sampling, and control. The
intuition is that the control signals should be applied during a
predictable interval. If the control is applied too early, the plant
will not have reached yet the state for which the control was
meant. Symmetrically, a control signalui can negatively affect
a plant if it is applied continuously well after the sampling
time ti because the plant state would in general have changed
significantly in the meanwhile.
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Fig. 3. The timeline of network events in the remote control of a plant. In this example,τi andLi = T are constants.

In our algorithm, the controller sends to the planttwo
control signals, which will be called theregular control
(denoted byui) and thecontingency control (denoted byu(c)

i ).
Additionally, the controller sends also aplay-back delay τi and
the duration Li of the regular control. The play-back timeτi

is used to implement a relaxed play-back buffer: the regular
control is applied at timeti + τi, or immediately if the play-
back time has already passed. Thus, the play-back delay only
fixes the earliest time at which a control can be applied. After
a durationLi since the time when the control was applied, if
a new control has not been received, the plant switches to the
contingency actionu(c)

i . The durationLi and the contingency
controlu(c)

i prevent the plant from applying the regular control
for an unpredictably long period of time, thereby damaging
the system. Therefore, the contingency control should be a
low performance but presumably safe action. Additionally,
the controller sends the plant asampling period Ti, which
denotes the time interval until the plant collects the next
sample from the sensor and sends it to the controller. A
predictable sampling scheduleTi effectively establishes time-
out protection against losses.

Example 2: Fig. 3 exemplifies a possible signal exchange.
In this example, the plant sends samples to the controller
at regular intervals of lengthT . A sample was dropped out
after t3 but the plant kept sampling everyT seconds and,
in this example, the next signal was successfully delivered.
The unbuffered control is commonly adopted in related work
[14], [20] and applies received control signals from the time
when they are received until the reception of a new signal.
The other two methods hold the signalu1, u2, and u4

that are received before their play-back time and apply the
corresponding control signal only at the planned instant. The
pure buffer discardsu3 because it is late and appliesu2 until
otherwise instructed by a new control signal, whereas the final
algorithm times out and switches tou(c)

2 when u3 is late
and to u

(c)
3 when a sample is lost and no control signal is

forthcoming.
Algorithm 1 describes the plant in pseudo-code, and Algorithm
2 describes the controller. The plant algorithm (Algorithm
1) basically implements the play-back and the contingency
mechanisms, and it also collects statistics for future use by
the controller. The plant algorithm is simpler than the con-

troller’s in that it avoids various numerical computations. The
simplicity of the plant algorithm stems in part from the short
memory of the algorithm, which keeps track of at most two
control signals(u, u(c), L) and (u′, u′(c), L′). Additionally,
the short plant memory simplifies the design of an observer
(Algorithm 4, Line 8) At the controller site, the control law
(Algorithm 2, Line 5) is parametric to the algorithms and
can be designed with control-theoretical methods depending
on plant characteristics and on control objectives. After this
general overview, the details are discussed next.

B. Signal Discard

Both plant and controller discard signals unless they are
received in-order. The intuition is that out-of-order controls
are older than a previously received in-order control and thus
less likely to be as effective. In this context, in-order delivery
means that the sequence number is higher than any previously
received one, even if it shows a gap in the received sequence
(special consideration are made, as usual, for the case when
the sequence numbers wrap around [23], [29]). Moreover,
the plant (Algorithm 1, Line 11) discards old signals and,
specifically, a signal is discarded if its reception time is more
than its expiration timet′ + τ ′ + L′. The assumption is that
such a late signal does not contain any longer an appropriate
control. Additionally, the play-back buffer has limited capacity
and, if the buffer is full and a new control arrives, Algorithm
2 discards either the new signal or the previously buffered
control. The algorithm discards the new signal if its application
time t′ + τ ′ is more than the current expiration value ofTP

(Line 11 under the label of “quashed” signal). Intuitively,the
newly received signal is discarded because the buffered signal
is fresher (its application time is earlier). Moreover, quashed
signals avoid the pathological scenario in whichti + RTTi <
ti+1+RTTi+1 < ti+τi for all i’s, where RTTi is theith round-
trip time. In this case, signali+1 resets the play-back timerTP

and effectively cancels the reception of the previous signal i. If
this event occurs repeatedly, signals would cancel each other
in turn and no control would be applied. This pathological
scenario is avoided if a new signal must be replayed no later
than the outstanding play-back delay inTP .
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Algorithm 1 Plant
Require: T is initially set to the plant clock resolution

1: Set timerTS to expire now
2: RTT-sample, hiseqno ← undef
3: loop {Main Loop}
4: Enter a synchronous multiplexed read from the con-

troller which blocks either until a control is received or
until a timer expires.

5: if TS expiredthen
6: Sample system outputy
7: Marshaly, the current control action, and the value

of local variables into a signal to the controller
8: SetTS to expire inT seconds
9: else if an in-order control(u′, u′(c), t′, τ ′, L′, T ′) is

receivedthen
10: RTT-sample ← current time−t′

11: if t′ + τ ′ > TP ’s expiration time (quashed signal)
and current time≥ t′ + τ ′ + L′ (old signal) then

12: Discard the received signal
13: else
14: hiseqno ← sequence number of the received

control
15: T ← T ′

16: if current time< t′ + τ ′ then {Arm a play-back
timer}

17: CancelTP , and resetTP to expire at timet′+τ ′

18: else{Play-back}
19: (u, u(c), L)← (u′, u′(c), L′)
20: CancelTL andTP and resetTL to expire inL

seconds
21: Apply the controlu
22: end if
23: end if
24: else if TP expiredthen
25: (u, u(c), L)← (u′, u′(c), L′)
26: CancelTL and resetTL to expire inL seconds
27: Apply the controlu
28: else{TL expired}
29: Apply u(c)

30: end if
31: end loop

Algorithm 2 Controller

1: loop {Main Loop}
2: Read an in-order sample from the plant withy, the

control action at timet′, and the local plant variable
values (such as the current sampling intervalT ′) from
the plant

3: Updateτ andT as a function ofRTT-sample andT ′

(Algorithm 3)
4: Predicty(t′ + τ) with the observer (Algorithm 4)
5: Calculateu, u(c), andL as a function ofτ andT
6: Marshal(u, u(c), t′, τ, L, T ) into a signal to the plant
7: Record the signal in the logL
8: end loop

C. Play-Back Delays

The play-back delayτ mandates the nominal time when a
control is applied as the plant input. The delayτ is computed
at the controller because the controller needs it to generate u,
u(c), andL. In principle, the value ofτ could also be computed
at the plant and sent to the controller, but with an additional
computational load on the plant. In both cases, the play-back
delay is computed before the controlu reaches the plant.

Algorithm 3 is a modular component in the controller
(Algorithm 2). It borrows from the recent peak-hopper method
[7] its general structure, its initializations, and the values
of the constant factors. The long-term component has been
eliminated since the resultingτ was too conservative: although
large RTO’s are appropriate in the context of TCP to avoid
unnecessary time-outs, the same large values would let dis-
turbances dominate the plant’s physical dynamics. The most
noticeable addition is an upper bound onτ to avoid quashed
signals. It is easy to see that signali + 1 will not be quashed
if

τi ≤ T ′ + RTTmin , (1)

where RTTmin is the smallest round-trip time between plant
and controller. If Eq. (1) is violated, the algorithm resetsτ
correspondingly (Line 18) and also adjusts the value ofT so
as to avoid the problem in the future (Line 17). Otherwise,
the algorithm attempts to use a more aggressive sampling
rate (Line 20) because faster sampling rates typically improve
the performance of digital control [6]. The dynamic setting
of τ and T requires an adaptive estimation of RTTmin.
Furthermore, a slight underestimate of RTTmin is preferable
to an overestimate because Eq. (1) is an upper bound. The
RTTmin value is estimated with a symmetric version of the
peak-hopper applied to find a lower bound on the RTT. In
Algorithm 3, rmin is an adaptive estimate of the minimum
round-trip, it is adjusted whenever a smaller round-trip time
is detected, and it is aged progressively to adapt to longer-
term changes. The aging factor is proportional to the absolute
variability of round-trip times as captured by ther′ − rmin

term. Sincermin is aged, it tends to be based only on the past
few samples and, consequently, it can overestimate RTTmin.
Therefore,rmin is corrected by a term1 + C that expresses
the effect of the long-term negative variability of round-trip
times. In turn, theC term is an exponential moving average
of the negative variability and it is calculated with the same
weights as in TCP’s RTTVAR. It can be easily shown that, in
Algorithm 3, τ − rmin, T > 0.

A final remark is that the dynamic setting ofT is optional
and can be replaced with a fixed sampling period, as in Fig.
3. However, a fixedT would introduce the burden of manual
administration and does not necessarily avoid quashed signals.

D. Observer

The controller predicts the value ofy(t′+τ) by invoking an
observer (Algorithm 2, Line 4) [20]. In principle, the observer
should predict the plant state by simulating its dynamics but,
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Algorithm 3 Play-Back Delay
Require: If available, r1 is the new RTT sample,r0 is the

previous RTT sample,Tmin is the plant timer resolution.
Constant factors are adapted from previous algorithms
and, in particular,B is initially set to 0.25 and C is
initially set to−0.25.

Ensure: Computes a new value of the play-back delayτ and
the sampling intervalT in seconds.

1: if there is no RTT samplethen
2: τ ← 3; T ← plant nominal sampling time
3: else if there is only one RTT sampler1 then
4: τ ← 3r1; T ← 2r1

5: else if there are only two RTT samplesr1 andr0 then
6: τ ← 1.25r1; rmin ← min{r1, r0}; T ← τ − rmin

7: else
8: δ ← r1−r0

r0

{Calculate current RTT variability}
9: B ← min{max{2δ, 0.9375B}, 1} {Update positive

variability coefficientB}
10: if δ < 0 then {Update negative variability coefficient

C}
11: C ← max{3C/4 + δ/4,−1/2}
12: end if
13: r′ ← (1 + C)min{r1, r0} {Update estimatermin of

RTTmin}
14: rmin ← rmin < r′ ? rmin + r′

−rmin

16 : rmin ← r′

15: τ ← (1 + B)max{r1, r0} {Updateτ andT }
16: if τ > T ′ + rmin then
17: T ← τ − rmin

18: τ ← T ′ + rmin

19: else
20: T ← T − T ′

−τ+rmin

16
21: end if
22: end if
23: T ← max{T, Tmin}

in reality, the prediction is hampered by a variety of factors.
The observer (Algorithm 4) uses known factors whenever they
are available, and it resorts to assumptions otherwise.

The value ofy(t′ + τ) is determined by the state of the
system at timet′ and by its evolution in the interval(t′, t′+τ).
The system state at timet′ obviously consists of the plant state
x, but also of the value of the local variables in Algorithm
1. The evolution in(t′, t′ + τ) depends on disturbances that
are inherently unpredictable but are often assumed to have 0
mean [6], so thaty(t′ + τ) will be estimated from a plant
simulation with no disturbances. Furthermore, state evolution

depends also on the messages that are in transit [5] and that
will be received between timet′ and t′ + τ . However, signal
arrivals in (t′, t′ + τ) are events that lie in the future at the
time t′ when the sample left the plant and, in general, their
occurrence and timing cannot be predicted accurately. The
observer must make an assumption and, for the most part,
it assumes that outstanding in-order regular and contingency
actions will be applied at their nominal time. Specifically,the
controller maintains a logL of outstanding control signals
(Algorithm 2, Line 7) and uses it to predictu(t). The logL
keeps a record only of the control signals that are likely to
be used by the plant. First, the observer discards fromL the
entries of all messages whose sequence number is less than
hiseqno (Line 1) because those messages either (a) have
already been received and processed at the plant and therefore
are already reflected in the plant state, or (b) will never be
received, or (c) will be received in the future and discarded
as out-of-order. Second, the observer times out old signals,
and specifically it discards those whose activation time is less
than t′ − τ . Finally, the observer discards the logged signals
whose activation time is greater than or equal tot′ + τ under
the assumption that the newly generated control will overtake
the logged one, which will be then discarded by the plant. An
example is shown in Fig. 4.

Algorithm 4 Observer
Require: L is a log of outstanding control messages that the

controller sent the plant.
1: PruneL of all messages whose sequence number is less

thanhiseqno or whose activation time is smaller than
t′ − τ or greater thant′ + τ .

2: t′′ ← minimum nominal application time of a control in
L that falls in (t′, t′ + τ)

3: if t′′ exists then {Outstanding controls can affecty(t′ +
τ)}

4: Generateu(t) (t′′ ≤ t ≤ t′ + τ ) assuming that regular
and contingency controls inL are applied at their
nominal time

5: else
6: t′′ ← t′ + τ
7: end if
8: Generateu(t) (t′ ≤ t ≤ t′′) from the plant state variable

(y(t′), u(t′), the value of the variablesu(c), u′, u′(c), and
the expiration time ofTP andTL)

9: Estimatey(t′ + τ) with u(t) starting fromy(t′)

The next two paragraphs elaborate on the algorithm’s prop-
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Parameter Default Value Short Description
α 1.5 Shape of the Pareto distribution (tail)
λ, r λ = 1000, r = 2 Parameters of the gamma distribution (body)
K 2r/λ Minimum of the Pareto distribution (tail)
p 0.95 Probability that the Gilbert model remains in the good stateG
pspike .99 Probability of a delay spike

q 0.2 Probability that the Gilbert model remains in the lossy state L
RTTmin 50ms Minimum RTT
Tmin 1ms Shortest sampling period

TABLE I

PARAMETERS THAT DEFINE THE SYNTHETIC TRACES.

erties.

E. Pipes

The sampling rate1/T normalized by the packet size is the
instantaneous bandwidth used by networked control. SinceT
is related to bandwidth andτ to communication delays,T and
τ are largely independent of each other. In particular, nothing
preventsT ≪ τ , in which case a sequence of samples and
control signals are typically in flight in the network. Such a
scenario will be called acontrol pipe. Notions similar to pipes
were discussed in [15], [31]. Although the pipe is, in some
sense, stored in the network, the plant (Algorithm 1) does not
keep explicit state for the signals in the pipe.

An advantage of pipes was mentioned earlier (Sec. III-C):
shorter sampling periods tend to improve control performance.
A second advantage of pipes is that it enables a controller to
quickly countermand a previous control signal. For example, a
transient delay spike could increase considerably the value of
τi only to deflate it in the next round. Ifti+1 + τi+1 < ti + τi,
then ui is discarded by the plant (Algorithm 1, Line 19 and
25). In some sense, the controller has acted at first as if the
spike represents a long-term change of RTT and issued the
controlui accordingly, only to realize afterwards that the delay
spike was a transient phenomenon, and countermandedui with
a more appropriate control action. Revocations are particularly
helpful if the controller can issue the next command quickly,
that is, if the control pipe has a small periodT . However,
Eq. (1) and Algorithm 3 still limit the sampling rate and,
consequently, the pipe depth.

F. Implementation

Software is available on-line with source code, design doc-
uments, and reference and user’s manuals. The code has been
extensively tested in simulations and emulations. The software
does not need real-time scheduling, but it can exploit it if it
is available. Clock synchronization is unnecessary because the
algorithm is based solely on RTT’s.

IV. EXPERIMENTAL METHODOLOGY

A. Network

The algorithms are evaluated both on simulation and on
real-time network emulations.

First, synthetic traces of RTTs were generated by combining
a shifted gamma distribution (as in [18]) for the body of the

q

p

LG

1 −p

1 −q

Fig. 5. The Gilbert model for packet losses [33].

delay distribution, a Pareto distribution for the tail (as in [16]),
a model for delay spikes as described in [25], and a Gilbert
model (Fig. 5) for losses [33]. The sensitivity to all parameters
was investigated, but only an outline of the results is reported
here.

A sample is lost if the Gilbert process is in the lossy state
L (Fig. 5). If the packet survives, its RTT belongs to the
body with probability 99% and to the tail with the remaining
1% probability, as in [16]. If the packet falls in the body,
its RTT is calculated from a shifted gamma distribution [18]
with parameters RTTmin, λ, and r. If the packet falls in the
tail, then its RTT is calculated from a Pareto distribution
of shapeα and minimumK. The default value ofK is
chosen so as to be sufficiently separated from the mode
(r − 1)/λ and from the meanr/λ of the gamma distribution
(body of the delay distribution). Delay spikes are simulated
by checking whether the RTT would cause an out-of-order
delivery. If it would, then the RTT is changed to the previous
delivery time plus a small interval (in the simulations, an
arbitrary 0.1ms) with probabilitypspike to simulate a burst
of almost simultaneous in-order arrivals [25], and it is left to
its previously calculated value otherwise to simulate out-of-
order delivery. The simulation parameters are summarized in
Table I along with their default values.

Second, plants were remotely controlled in real-time over
the Internet. In the choice of the end-hosts for the plant and
the controller, we adopt the following principles. First, the
algorithms were run only on machines where they were able
to obtain either real-time status or a reasonable slice of system
resources so that process timing was not skewed by resource
starvation. Consequently, we ruled out PlanetLab [22] and
resorted to independently obtained accounts. Second, we made
an effort to capture a wide variety of heterogeneous conditions
and we were successful in including disjoint end-to-end paths
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Fig. 6. The ParaDex robot is an Internet-controllable industrial manipulator
whose reflex control interface is a scalar linear system (2) in each degree of
freedom [1].

ranging from the same campus to overseas. We also repeated
experiments at different times of the week and of the day.

B. Plants and Controllers

The primary evaluation environment is the class of scalar
linear plants due to their generality and relative simplicity.
However, results can be easily extended to higher-dimensional
linear systems, as briefly sketched below. The focus on scalar
linear plants is thus mostly for concreteness and ease of
exposition. A scalar plant is characterized by itsstate x(t),
an input u(t) (the control signal), anoutput y(t) (the sensor
data), astate disturbance v(t), and anoutput disturbance
w(t), which are continuous-time scalar stochastic processes.
The stochastic processesv(t) and w(t) model exogenous
disturbances and noise. In a scalar linear plant, the state,input,
output, and disturbances are related by the equations:

{

ẋ(t) = ax(t) + bu(t) + v(t)
y(t) = x(t) + w(t)

, (2)

where a, b are real numbers. In any one realization of Eq.
(2), a and b are constants that represent the relationship
between physical quantities in that particular plant. Eq. (2) is
generic across applications because it models parametrically
any physical system characterized exactly or approximately
by a differential equation. Linear plants have numerous ap-
plications [1], [11], [26], [19] and any textbook on control
engineering would present hundreds of examples (e.g., [6],
[21]). Furthermore, linear systems describe the behavior of
hybrid linear systems during each mode of operation, and
as such they are a fundamental building block for control
paradigms that overcome the limitations of classical control
theory [32].

Example 3: The ParaDex robot (Fig. 6) is a manipulator
with 6 degrees of freedom. In each degree of freedom, the
interface of the NAC reflex controller is a scalar linear system

(2), wherex is the velocity in that direction,bu is the force
applied by the manipulator’s motors, anda < 0 can be
initialized in software. Disturbancesv andw are mostly due
to unexpected contact forces. The ParaDex RPC interface was
used to remotely control compliant manipulation tasks [1].

We will consider the objective of achievingy(t) = 0 in spite
of disturbances and network non-determinism. Adeadbeat
controller attempts to obtainy = 0 by settingL = T and
u = −ky, where the feedback gaink is equal to

k =

{

a
b

eaL

eaL−1 if a 6= 0

−1/L otherwise
.

The deadbeat controller owes its name to the fact that, in
the absence of disturbances, the system output converges toa
reference set point in one sampling interval with no oscillation.
If the actuator then stops (u(c) = 0), in the absence of distur-
bances, the plant remains at the desired set pointy = 0 [9].
The deadbeat controller and the corresponding contingency
actions can be generalized to multi-dimensional linear plants
via pole placement (details omitted). The deadbeat control
was chosen to highlight two features of play-back. First, the
deadbeat’s nominal operations require that a second control
be applied at a predictable time, and such a predictable timing
is available with Algorithm 1 but not under an unbuffered
controller. Second, the deadbeat controller is extremely ag-
gressive, and so it highlights how timing predictability can
support high-performance controllers.

The evaluation will use numerical simulations of plants.
Although physical experiments are possible, numerical sim-
ulations are vastly more flexible and have been validated
extensively over the course of the decades. Even though the
plant is simulated, the real-time wide-area experiments (Sec.
IV-A) are run over a real network. Simulations were executed
for various values ofa. The evaluation used only non-positive
values ofa ≤ 0, which make the corresponding plant (2)
stable because open-loop stability is required to achieve safe
and fault-tolerant operations under network non-determinism.
Several values ofa were tried, and the default value isa = −1.
We set the default value ofb = 1, which basically normalizes
the input units. A common model forw(t) are independent
normal random variables with mean 0 and varianceW 2 [6].
In our evaluation, the default isW = 1, which basically
normalizes the output units around the variability of the output
disturbance. A common model forv(t) is the formal derivative
of Brownian motion and it is simulated as follows. The state
x(t) can be expressed asx(t) = x0(t) + xN (t), wherex0(t)
obeys

{

ẋ0(t) = ax0(t) + bu(t)
x0(t

′) = x(t′)
(3)

and captures the nominal disturbance-free evolution of the
system, andxN (t) obeys

{

ẋN (t) = axN (t) + v(t)
xN (t′) = 0

(4)

The functionx0(t) was integrated analytically for a generic
piecewise linearu(t) and calculated numerically by the plant
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Open-Loop Unbuffered Pure Delays Play-Back
m2 14.1657 5.8171 5.7105 5.2881
ỹ 36.4254 14.9209 14.7639 13.7987

max |y| 76.7715 74.6532 34.7771 32.3791

TABLE II

SUMMARY STATISTICS OF TWO WEEKS OF SIMULATED TIME. THE 99-PERCENTILE OF|y| IS DENOTED ASỹ (S = 900S). PURE DELAYS IS AN IDEAL

(NON-IMPLEMENTABLE) BASELINE.

simulator. The stochastic processxN (t) was approximated by
finite differences with the formula [4]:

xN (t′ + (i + 1)h) = (1 + ah)xN (t′ + ih) +
√

hv(i) ,

whereh is the integration step andv(i) is a Gaussian random
variable with mean 0 and varianceV 2, for a simulation
parameterV . The default isV = 20 but several other
values were tried as well. It is easy to see that the accu-
racy of the simulation requires that the steph be a small
fraction of min{1/|a|, 1/V 2} and we found good accuracy
with h = min{1/|a|, 1/V 2}/20. The simulator uses the
Mersenne twister to generate uniformly distributed pseudo-
random numbers [17] and simulates Gaussian pseudo-random
variables with the Box-Muller method [27].

C. Metrics

The simulation outcome is most immediately expressed by
the plant outputy(t). However, metrics must be more succinct
if they are to capture long simulations and to compare different
schemes. Summary metrics will be based on the time series
Y = {y(iS) : i > 0}, which gives the plant output at
regular intervals of lengthS seconds. The evaluation metrics
will express the variability around the set pointy(t) = 0
and, consequently, the methods’ tolerance to disturbancesand
network non-determinism. The first metric is the root-mean-
square sample outputm2 =

√

∑

y∈Y y2, which is a classical
measure of the size of a signal [3]. Second, the 99-percentile
of |y| is the valueỹ for which Pr[|y| > ỹ : y ∈ Y ] ≤ 0.01
and gives an indication of the tail of the variability around
the set point. Finally, we consider the maximum deviation
max{|y| : y ∈ Y }. In general, an important property is
robustness because it directly impacts the safety and stability
of a physical environment. Hence, performance metrics willbe
related to variations of experimental conditions, and especially
to deteriorating connectivity, so as to assert whether a method’s
performance degrades gracefully.

Comparisons and benchmarks are complicated by the nov-
elty of networked control [12]. For example, previous control-
theoretical algorithms address disturbances, losses, delay, jit-
ter, and pipes but not the combination of all of these factors
[14]. In this paper, the evaluation benchmarks are adapted from
more classical control theory, and the play-back controller is
compared with three baselines. Two baselines can be physi-
cally implemented and the other one cannot, but is a useful
term of comparison. The first baseline is the output generated
by the open-loop plant (2) with u(t) = 0 and expresses the

system behavior in the absence of any controller. The open-
loop plant can obviously implemented in that it requires no
communication and no controller. The open-loop scenario is
as good as any controller in the case of network partitions and,
conversely, a controller should aim to be no worse than open-
loop under high loss rates. The second baseline is a closed-
loop controller motivated by the observation that, in spite
of network non-determinism, a play-back algorithm should
regularize signal delivery. The algorithm is thus comparedwith
a simpler proportional controller (fixedk, no observer, small
fixed T = 10ms) but with the simulation of a perfect network
with no losses, no jitter, and constant delays equal to RTTmin.
This second scenario is eminently ideal and will be denoted
aspure delays. In the pure delay scenario,m2 was minimized
by k = 11, as this value struck a balance between the transfer
functions of the two disturbances on the state and on the
output. The gaink = 11 will be used in all our experiments.
Incidentally,k = 11 leads to a gain margin of 9dB and a phase
margin of 60◦ in the corresponding continuous-time system
with constant delays. Pure delays can in principle be improved
upon by the more aggressive deadbeat controller, but only if
paired with buffers that ensure predictable timing, as discussed
in Section IV-B. Theproportional unbuffered baseline is an
implementation ofk = 11 with the unbuffered controller (Fig.
3, [20]).

V. EVALUATION

A. Observations

Default Simulation: Table II reports summary statistics
for 2 weeks of continuous simulated time, and Fig. 7 shows a
five second snapshot of the plant output in the middle of the
simulation. The open-loop outputy(t) is mostly affected by the
well-known behavior of Brownian motion (state disturbance
v(t)), which can take the state away from the reference for
long transients (Fig. 7(a)). By contrast, the controllers react
when the state starts to drift, and rapidly bring the plant back
to the reference (Fig. 7(b)(c)(d)). In the long run (Table II),
all the measured play-back metrics are close to those under
the ideal pure delay scenario and to the unbuffered controller.

Sensitivity: The simulations explored the sensitivity to all
parameters. In general, if the network conditions deteriorate
(packet losses, jitter), the play-back controller performance
gracefully degraded and, as the levels of service approximated
a network partition, the play-back performance progressively
approached that of the open-loop plant. The unbuffered pro-
portional controller also degraded but its performance was
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Fig. 7. Plant outputy(t) under the default simulation parameters (five second snapshot of Table II). Pure delays denote a proportional controller under ideal
network behavior.
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Fig. 8. Root-mean-squarem2 as a function of the probabilityq of remaining
in the lossy state.

often significantly worse than that of an open-loop plant. For
example, Fig. 8 showsm2 as a function of the probabilityq of
remaining in the lossy state. Asq increases, the play-back con-
troller smoothly degrades into an open-loop plant. However,
the unbufferedm2 becomes 10 orders of magnitude larger than
the open-loop. Eventually, the loss probability is so severe that
the proportional controller is effectively disconnected for the
entire simulation and cannot cause any harm any longer. The
unbuffered controller was also sensitive to longer RTT’s and
m2 was practically infinite when RTTmin ≥ 150ms.

Wide-Area: As for the real-time wide-area experiments,
results were close to those captured in simulations once
the simulation parameters are set to the values measured
in the corresponding wide-area experiment. Thus, wide-area
evaluation validates simulations. Fig. 9 plotsm2 as a function
of the average RTT (the charts obtained for metrics other
than m2 are qualitatively similar and omitted). The play-
back m2 gracefully degraded as the RTT increased. As for
the unbuffered controller, in several wide-area experiments, it
had practically infinite values ofm2 and ỹ. The failure of
the proportional controller was associated either with delays
longer than 60ms or with high and bursty loss rates in spite
of fairly contained RTTs (average RTT of 40ms). In the same
scenarios, the play-back avoided any particular problem (i.e.,
m2 ≃ 6).

Summary: The play-back algorithms resulted into higher
reliability. It achieves ideal performance in the benign default
scenario and, unlike the unbuffered controller, its performance
gracefully degrades as communication conditions deteriorate.
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Fig. 9. Real-time wide-area experiments. The open-loop performance is
ideal, cannot be implemented, but can be simulated (Table II). The pure delay
scenario cannot be implemented in wide-area experiments. The unbuffered
controller had comparable results only when RTT≤ 60ms and small loss
rates.

B. Factors

The play-back behaviors can be better understood by iso-
lating the impact of its components, as discussed next.

Play-Back and Expiration: A control signalui is applied
during a time interval whose bounds are defined by the play-
back delay and by the expiration time. The expiration time was
especially effective in the case of losses in that it prevented the
continued application of an old control that was appropriate at
the time it was originally applied but that later on would take
the plant output away from its reference value. Symmetrically,
the play-back buffer prevented the application of a signal when
it was not appropriate yet for the current plant state (numerical
details omitted).

The buffer immediately plays back a packet received after
the play-back timet′ + τ ′ (Algorithm 1, Lines 18–22). An
advantage of the relaxed play-back is that it does not intro-
duce additional losses. The late replay improved performance,
especially because it avoided occasionally large values ofy.
For example, Fig. 10 shows one such a spike at the very
beginning of a wide-area experiment. The intuitive reason can
be explained with Fig. 3:u3 is not old (Algorithm 1, Line
11), and in fact it is only slightly late, and it is typically
more helpful than the continued application of the contingency
control u(c)

2 .
Minimum RTT: The value ofrmin should be a close

approximation of the RTT butrmin should also underestimate
the RTT (Sec. III-C). For example, Fig. 11 shows the RTT
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Fig. 10. Plant outputy(t) in a wide-area experiment. In this experiment
V = W = 0 to highlight the effect of the buffers.

and the rmin in a simulation where the delay distribution
is stable for one minute and it then changes abruptly and
significantly. The averagermin was 0.7ms less than the RTT
and underestimates it in all but 0.3% of the samples. Thermin

estimate adapted quickly to changes in the RTT distribution.
Play-Back Delay: It was often the case thatT < τ , which

means that a control pipe was established. Fig. 12 plots an
estimate of the average number of packets in flight in the
round-trip path between plant and controller as a function
of RTTmin. Since RTTmin is the only variable simulation
parameter,T remains almost constant, and the control pipe
becomes linearly deeper.

As for the value of the play-back delayτ , it should be a
close approximation of the RTT, but should also overestimate
it. Fig. 13 gives the differenceτ − RTT under the default
simulation parameters. The play-back delay overestimatedthe
round-trip time in all but 3.3% of the packets. The mean
overestimationτ −RTT was 4.8ms and its standard deviation
3.7ms. In other words, buffers led to the trade-off between a
96.7% confidence on the exact application time at the price of
an additional average delay of 4.8ms. The underestimation was
however severe in correspondence to occasional delay spikes
because the algorithm does not attempt to predict spikes. The
sensitivity to the jitter was investigated by keepingr constant
and decreasingλ. As jitter increases, the algorithm generally
increased the averageτ − RTT but kept the underestimation
rate constant.

Sampling Period: The impact ofT will be clarified by
settingT to a fixed value throughout simulations and showing
the sensitivity of the results to the constant value ofT . Fig.
14 showsm2 as a function ofT . In the first place, the root-
mean-square errorm2 increases withT , as predicted in Sec.
III-C. However,m2 was significantly larger also at the smallest
values ofT (leftmost side of Fig. 14). Consequently, the fastest
sampling rates should be avoided. Fig. 15 shows thatm2 is
large whenT is small relative to jitter. In the figure,T is
normalized to the standard deviation of the gamma distribution
(delay body). The first chart increases jitter with higher values
of r and constantλ. The second chart increases jitter with
lower values ofλ and constantr. WhenT is small (relative
to jitter), m2 is large. The reason is that, ifT is small, τ is
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Fig. 11. Estimate of the minimum round-trip time. In the firstminute, the
delay distribution is the default. In the second minute, RTTmin = 20ms. In
the third minute,r = 8.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10  20  30  40  50  60  70  80  90  100

T
 /

 τ

RTTmin (ms)

Fig. 12. The average ratioT/τ is an estimate of the number of packets in
flight and is reported as a function of RTTmin.

fundamentally defined byT + rmin (Algorithm 3, Line 18),
and ifT is less than the jitter, the nominal activation timet′+τ
is likely to precede the reception of the signal by the plant,
so that the buffer is effectively disabled. Consequently, the
actual application times and the plant evolution are relatively
unpredictable. The point is further illustrated in Fig. 16,which
summarizes the imperfections of the control pipe as a function
of the sampling periodT . Late signals are almost 40% of all
packets whenT = 2ms, but they drop rapidly. The number
of quashed signals is always less than 1% and decreases with
larger sampling rates. In summary, ifT is too small, the control
pipe is unpredictable, mostly due to the fact that the bufferis
effectively disabled and signals are applied late. However, if T
is large enough, the pipe is fairly stable and little incremental
predictability is derived from further increasingT . As for the
dynamic setting ofT (Algorithm 3), it slowly attempts to
choose progressively faster sampling rates, but it backs off
if it detects a potential for imperfections in the control pipe.
The resulting late and quashed rates were close to the best that
can be achieved with a constant value ofT (Fig. 16).

Observer: The observer’s prediction are subject to in-
accuracies due to network non-determinism and to assump-
tions in the algorithm. Moreover, when the observer makes
a prediction on the future plant state, it cannot anticipateτ
seconds in advance the inherently unpredictable evolutionof
the stochastic processesv and w. The prediction inaccuracy
was expressed as the mean-square difference between the
predicted and true plant state, and it was basically equal to
the variance ofv andw over an interval of lengthτ . Hence,
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measured discrepancies can be attributed almost exclusively
to inherently unpredictable plant disturbances.

Summary: The algorithm behavior cannot be attributed to
any single component. Rather, the algorithm’s modules worked
appropriately individually as well as in combination with each
other.

VI. RELATED WORK

Remote control is a multi-disciplinary endeavor [8] and has
been studied in control theory [14], robotics (the theme of the
IROS 2005 conference is “Networked Sensors and Robots for
the Improvement of the Quality of Life”), real-time systems,
and middleware (e.g., [28]). Several control-theoreticalalgo-
rithms can benefit from a more deterministic communication
channel. For example, LQG controllers ([20], [14]) become
more aggressive if the channel quality improves due, for
example, to an underlying play-back buffer or to explicit
QoS provisioning. In general, control-theoretical approaches
are complementary to Networks methods. Network research
has investigated the real-time capabilities afforded by shared
Ethernet for manufacturing automation [10]. Networked In-
fomechanical Systems (NIMS) extend the capabilities of fixed
networked sensors with mobile robots that explore an envi-
ronment. In networked control, congestion control has been
approached within an optimization framework [2]. Additional
references (e.g., on play-back buffers) have been introduced
in the previous sections of the paper.
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VII. C ONCLUSIONS

The main contribution of this paper is a play-back algorithm
for tolerant and adaptive networked control. The play-back
algorithm is integrated with sampling (through the dynamic
setting ofT ) and control (through expiration times and per-
formance metrics). Packet losses are dealt with by reverting
to the inefficient but safer open-loop plant by means of the
contingency control. Otherwise, the play-back delayτ adapted
to network conditions and the dynamic sampling periodT
avoided most imperfections of the control pipe. The plant
play-back is simple and its buffer is short. The algorithm
was extensively simulated and emulated. It had low variability
around the set point and it was robust to varying levels of
connectivity.
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