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Abstract

Network sensing can be integrated with actuation units to control a remote physical envi-
ronment. A fundamental problem in networked control is that sensing and actuation operate
in real-time and, consequently, late signals can jeopardize the stability, safety, and performance
of the controlled physical environment. Therefore, a primary objective is to design end-system
algorithms that make control applications more tolerant and adaptive to network vagaries and
thus able to support faster dynamics for a broad class of physics. This paper proposes a set
of methods collectively named contingency control that employ a version of play-back buffers
to avoid negative jitter, an expiration time to curb the regular deadbeat control, a contingency
control to deal with loss episodes, and an appropriately designed control gain that takes into
account all of these factors. An extensive evaluation on simulations and on RTT traces show
that the combined approach was able to support much faster physical dynamics across a wide
range of network conditions.

1 Introduction

Network sensing can be integrated with actuation units to control a remote physical environment
(Figure ). Applications are far-reaching and include, for example, industrial automation (e.g.,
[g), distributed instrumentation (e.g., [fl, M), disaster recovery (e.g., [[§]), unmanned vehicles
(e.g., [[d]), and home robotics (e.g., [[9]). A fundamental problem in networked control is that
sensing and actuation operate in real-time and, consequently, late or missing signals can jeopardize
the stability, safety, and performance of the controlled physical environment. Networked control is
a real-time distributed application whose effectiveness depends on its ability to tolerate losses and
to adapt to delays and jitter.

The primary objective of this paper is to investigate the means to make a control application
tolerant and adaptive to network vagaries. Our basic tenet is that control algorithms should combine
computer communication methods (say, play-back buffers) with control-theoretical techniques (say,
the choice of a feedback gain). For example, the presence of a buffer can change the value of the
feedback gain and, conversely, the real-time physics can suggest a particular behavior for the play-
back buffer. An integrated approach should lead to stronger results than tackling each side of the
issue independently.

Networked control addresses sensing and actuation under disparate network conditions and for
environments whose physics differs radically in nature and scale. As a result, distributed control
applications can differ tremendously in methodology and requirements. At the same time, remote
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sensing and actuation present also clear similarities across a variety of environments, and so a set
of general methods should be established for entire classes of applications. This paper will address
networked sensing and actuation over wide-area IP networks and for the broad class of linear
systems, which include any environment that can be described by linear differential or difference
equations.

A physical environment is, roughly speaking, characterized by the speed of its dynamics. For
example, a Tokamak reactor [RJ] has much faster dynamics than a manufacturing robot [[§]. A
faster environment is typically harder to control than a slower one. Moreover, most environments
become more difficult to control as network service levels deteriorate. For example, controlled
systems cannot always be made stable in the presence of packet losses [2§]. As a result, network
service levels impose a bound on the faster physical dynamics that can be supported in the target
environment. At the same time, control applications can be rendered more tolerant and adaptive
by appropriate end-host sampling and control algorithms. In summary, the rules of the game are to
design end-system algorithms that make control applications more tolerant and adaptive to network
vagaries and thus able to support faster dynamics for a broad class of physics.

The paper will focus on the concepts and explanations. A formal derivation of most results is
deferred to appendices. Section J defines the networked control problem and gives the necessary
background. Section [ describes the wide range of sampling and control strategies discussed in
this paper. Section ] describes the evaluation methodology. Section [ summarizes the outcome of
our evaluation. Section [| sketches an extension of the methodology to higher-dimensional linear
systems. Section [ outlines related work in the area, and Section f| concludes the paper.

2 Networked Control

The definition of a plant captures the notion of a physical system where sensor data are collected
and control signals are delivered with the objective of affecting the physical environment. The term
“plant” originated from the industrial automation area, but it has since been applied to express
a generic unit of sensing and actuation. Section discusses an abstract plant and Section
introduces networked plants.

" Sensor
,
S L
| /
' Actuator

' .

.
Sensor+
. actuator

Controller

Controller

Figure 1: The networked control vision.



2.1 The Scalar Linear Plant

The scalar linear plant is the primary type of plant that will be considered in this paper due to its
generality and relative simplicity. However, results can be generalized to higher-dimensional linear
systems as sketched in Section fj. The focus on scalar linear plants is thus mostly for concreteness
and ease of exposition. A scalar plant is characterized by its state z(t), an input u(t) (the control
signal), and an output y(¢) (the sensor data), all of which are functions of the time ¢. In a scalar
linear plant, the state, input, and output are related by the equations:

(1)

where a, b are real numbers and a > 0. Equation (fl) is generic across applications because it models
any physical system characterized exactly or approximately by a differential equation.

Ezample. The simplest scalar linear plant is a savings account whose balance z(t) increases de-
pending on the current balance, the interest rate a, and the new deposit bu(t).

The dynamics of plant (fl) depend on the value of a. For example, if u = 0, then z(t) = z(0)e*,
which increases more rapidly for larger values of a. In general, larger values of a are thought to
denote faster plant dynamics [f], P9], and a unit increase in the value of a denotes an exponentially
faster plant evolution.

The control design problem is basically to achieve certain system properties by appropriately
setting the input u(t). For example, the design could specify a reference output r(t) and the problem
is to make y(t¢) as close as possible to r(¢). In this case, a design objective could be to achieve
tracking, which is, informally, the speed of convergence of y(t) to r(¢).

Ezample. In the example of the savings account, the reference could specify a fixed balance r needed
to finance retirement and the control will specify the deposits bu(t).

In a digital control system, the plant output y(t) is sampled at time ¢4, t2, ... to generate the time
series y(t1), y(t2), . ... Even sampling is the particular case in which the output is being sampled at
regular intervals ;41 = t; + T, where T is the constant duration of a sampling period. The inverse
of the sampling period 1/T is called the sampling rate or sampling frequency. Returning to the
general case of arbitrary sampling, a controller sets the value u(t) = u; in the interval [¢;,%;+1) as
a function of y(t1), y(t2),...,y(t;) so as to achieve, say, tracking of a reference set point r. As we
shall see later on, the control is more difficult for faster plants than for slower ones. A common
type of controller is the proportional controller, which depends only on the last sensor reading and
sets u; = —ky(t;), where k > 0 is called the feedback gain. The plant behavior becomes

#(t) = az(t) — bkz(t) (ti <t <ti1), 2)

so that the overall system behavior depends on the value of the control gain k. The gain k can
be set, for example, to achieve deadbeat control, which is defined as follows. First, assume that
r = 0 (the same argument can be developed for r # 0, but with a slight notational complication).
The value of k is chosen in such a way that it solves the differential equation () with boundary
conditions: z(t;) equal to the measured plant output at time #; and z(t;41) = r = 0. Figure [
shows a solution A(t) for z(¢) in (B) with boundaries z(0) = —1 and z(1) = 0. Since z(t;11) = 0,
u;+1 = 0, which implies that #(¢;1+1) = 0 and so z(t) = 0 for all ¢ > t;,;. Therefore, at time ;;1,
the plant achieves the desired set point. The deadbeat controller owes its name to the fact that the
system output converges to the reference with no oscillation. Deadbeat control can be illustrated
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Figure 2: Plant output under a deadbeat controller.
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with a whimsical analogy: a hunter (the deadbeat controller) lies in wait at the assigned location
and can aim its arrow by setting the value of u. The hunter fires its arrow so that it follows the
trajectory h(t) until it exactly hits the flying target r at time 1.

2.2 Networked Control

A networked control system is a digital control system in which the sensor data y(¢;) and control
signals u; (i > 1) are delivered over a network. Networked control typically involves a plant that
is controlled remotely, and Figure [| shows the corresponding information flows. Networked control
is complicated by the presence of delays, jitter, and packet losses, as exemplified in Figure f}. In
the first place, network latency can delay the application of a control signal at the plant site. In
a networked control system, the ith sensor reading y(¢;) reaches the controller after a delay, the
controller computes u; as a function of y(t1),y(t2),...,y(#), sends u; back to the plant, which will
apply the control u; in the interval [0;,60;11), where 6; = t; + RTT; and RTT; is the value of the
round-trip time at the ith step. In general, it will be convenient to subdivide the ¢th RTT into two
terms as RTT; = 7+ &;, where 7 is a nominal RTT between the plant and the controller and does
not depend on i, whereas §&; is the corresponding jitter and includes all time dependent variability
in the end-to-end RT'T. The constant value of 7 is easier to deal with in that a constant 7 can be
used by an observer to predict the systems state forward to time ¢; + 7 by simulating the plant
dynamics. In other words, the analysis is clearer if the RTT is broken into a constant 7, which
is relatively easier to address with known control-theoretical methods, and &;, which introduces
novel network-related complications. The nominal RTT 7 can be chosen in a variety of ways. For
example, in the rest of the paper, the value of 7 will be sometimes taken as the minimum RTT
between controller and plant. If this is the case, then & > 0.

Networks can suffer from packet drop-outs, so that either y(¢;) or u; can be lost. Similarly, if
u; reaches the plant too late, i.e., after u; (j > ), the signal u; is also considered as lost. Although
packet losses can be reduced with techniques such as forward error correction, they cannot always
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Figure 4: The timeline of network events in remote control.

be entirely eliminated. The effect of packet losses is basically to alter the plant’s sampling schedule.
For example, if even sampling is used and one sample y(#;) is lost, then this is equivalent to the
case when no output was sampled at time ¢;. In this case, the plant effectively follows the sampling

schedule ¢}, where
t;:{tj ifj<i

tiv1 if >
The sampling schedule is analogously altered if u; is lost or reaches the plant too late. In general,
packet losses can introduce uneven sampling even if the original plant’s sampling was evenly spaced.
In the analysis of networked control systems, the sampling period T" must be replaced by a time-
varying quantity At; = t; ;1 —t;. Furthermore, the effective sampling period is defined as T = E[At;]
[B, BY], and the effective sampling rate (frequency) as 1/T.

On the whole, the plant samples y at time t; (i = 1,2,...). The ¢; sequence implicitly factors
in the occurrence of packet losses and late control signals. The controller receives y(t;), computes
a control u;, and sends it to the plant. The plant receives the control at time 6; = t; + 7 + §; and
applies it continuously in the interval [6;,0;11). In general, the values of ¢; and ; are unknown in
advance since t; depends on losses and &; depends on jitter. However, it can always be assumed
that 6;,1 > 6; because late signals are discarded.

3 Networked Controllers

3.1 Proportional Controllers

The analysis considers an initial plant state z(0) = —1, a reference trajectory r(¢) = 0, and a
proportional controller u = —ky. We will also assume that the controller is able to accurately
predict the plant state y(¢; + 7) forward to time ¢; + 7. As a result, the control

u; = —ky(t; +7) (3)

will be applied during [6;,0;11). A perfect observer (prediction) is seldom available in practice,
but it is necessary for methodological reasons. Specifically, if the prediction were inaccurate, it
would be difficult to distinguish the effects of incorrect prediction from those due to network
vagaries. Although an actual control system is also subject to state estimation errors and exogenous
disturbances, this methodology allows us to focus on network-induced effects.

Equations (fl), (B), and the definition of 6; can be combined as

.’L‘(t) = aac(t) — bk.’[)(oz — fz) (OZ <t< 9i+1) . (4.)



Equation ({]) can be integrated (Appendix [A]) to obtain the homogeneous recurrence

Tiy1 = &% + fi%i-1, (5)
where
zi =z(0; — &) , o = eadti — Kgans | O ;
Asi= Aty — & , B; = Z—k (e85 — ealti) |

Equation (f]) describes the controlled plant behavior. In particular, if z; = z;41 = 0, then z; = 0
for all j > 1. More generally, we will say that the plant state z; converges to the reference r if and
only if lim; o x; = r = 0. If x; is a random variable, we will say that z; converges to the reference
T in the expectation if and only if lim; o E[z;] =7 = 0.

The controller (f]) has a parameter k (the feedback gain) that is tunable. Different choices of k
will be introduced in this paper and their definition is discussed in the rest of this section.

3.2 Deterministic Control
3.2.1 Baseline: Deterministic Deadbeat Control

The ideal case assumes that jitter and losses are absent and equal-space sampling is used. Since
& =0, then 8; = 0. The reference r = 0 can be obtained by deadbeat control by setting a; = 0, so
that z;11 = 0. Since At; = T is constant, the equation o; = 0 can then be solved for the control
gain k as

a eaT

kg = ——+—.
d bel —1

The kg controller is the baseline for the evaluation of the subsequent, more complex controllers.

3.2.2 Play-Back Buffers

The assumption & = 0 (no jitter) can be guaranteed with a play-back buffer that applies the control
exactly at time ¢; + 7 if it arrived before that time and drops the control if it was received too late.
A play-back buffer can increase the loss rate. For example, a delay spike can be transformed into
a loss episode. A relaxed version of a play-back buffer is a reverse play-back buffer, which works
exactly like a regular play-back buffer for early signals, i.e., it holds them until the play-back time
t;+ 7, but it does play back also late non-reordered signals as soon as they arrive. The reverse play-
back method is based on the intuition that control signals are better received late than never (this
intuition does not necessarily carry over to other real-time applications). Moreover, the reverse
play-back scheme does not introduce additional losses, but the control signals are not necessarily
applied at predictable times.

3.2.3 Alternative Deterministic Controller

A different type of controller obtains o; = 1 in the deterministic case by setting k1 = a/b < ky.
The ki controller implies that z; = ;1 (for all i’s) so that no progress is ever made toward 7.
The controller k1 seems of little use but we will show that there are circumstances in which k; is
substantially the best possible controller.



3.3 Stochastic Deadbeat Control

Of course, packet losses cannot be predicted exactly. As a result, At; is typically an unknown
quantity. However, it might be possible to characterize its probability distributions and use it
to establish a desirable feedback gain k. Analogously, it might be possible to characterize the
probability distribution of &; to establish an appropriate feedback gain and use it as an alternative
to play-back buffers. The following paragraphs examine first the case of packet losses in isolation
(i.e., without any jitter), then the case of jitter in isolation (i.e., assuming no packet loss), and
finally the combined case of both jitter and losses.

3.3.1 Packet Losses

This section considers the case when a sample or control signal can be lost but there is no jitter.
The assumption holds exactly if the network guarantees no jitter, it holds approximately if the jitter
is small, and it can be enforced with a play-back buffer. If & = 0, then 8; = 0. The recurrence ([
becomes z; 11 = a;z;. A stochastic loss process implies that that At¢; is a random variable, and its
moment generating function will be denoted as M7. A probabilistic deadbeat control fires to hit
the expected position of the target by setting the feedback gain k;, so that

Ela]=E [(1 - bk—L) o0 | bk—L] ~0,
a

a

and, if Mr(a) exists, this objective is accomplished by setting

o= (=) <3 (=)

Since a > 0, Mr(a) > 1, and so kz, > 0. Furthermore, if Mr(a) is known, E[a;] = f; = 0 implies
that z; converges to the reference in the expectation.

Ezample. If At; is an exponential random variable with mean T = 1/\ and A > a, then k7, = \/b,
that is, kz, is proportional to the effective sampling frequency. However, if A < a, then Mp(a) does
not exists.

Ezample. If the sampling period is uniform and the loss probability is p < e 9T, then At; is a
geometric random variable with parameter 1 — p, and so k7, = a(1 — p)e®?’/(b(e?? — 1)). However,
if p > e~ then M7(a) does not exists.

Ezample. The Gilbert model [R9 assumes that packet losses are induced by a two-state Markov
chain. Let p (¢ < e7%") be the probability of remaining in the good (lossy) state. Then (Appendix

D),

g @(L=p)(1 = q)e*” —q(1 +p)e’” + (1+p)
T (1 =p)(1 - q)e?T — pgeT +p

However, if ¢ > e, then Mt (a) does not exists.

In general, k7, can be used only if M7 (a) exists. The condition that Mr(a) exists imposes a
constraint on the minimal performance that the network must support. For example, k7 can be
used in the Gilbert model only if ¢ < e=%T which in turn bounds to 1/(1 — e~%T) the expected
length of a run of consecutive packet losses. If the network performance violates the bound, a
controller can still set kK = k; = a/b, in which case z; = z; (for all #’s), so that = does not advance
toward the reference but it does not move away from it either. The condition that Mr(a) exist can
be equivalently viewed as establishing the fastest plant that can be supported by kr in the given



network conditions. For example, the Gilbert model entails a network that can support a plant not
faster than —(Ing)/T". The notation a(LG) = —(lng)/T will denote the critical plant speed assuming
a Gilbert model for the loss process. Similarly, the value ar, = —(Inp) /T is the critical plant speed
that is supported under the given loss rate p assuming an i.i.d. loss process.

A common thread in stochastic deadbeat control is that network vagaries should not be too
large or else Mr(a) does not exist and the plant would fail to converge, but they should not be
too small either or else the stochastic control practically behaves like a deterministic control. In
the case of packet losses, ky, differs more significantly from k4 depending on whether My (a) differs
from el

Ezample. If At; is a geometric random variable with parameter 1 —p (as above), then Mr(a) differs
from 2T more significantly for larger values of p (Appendix [0). On the other hand, p < e~*T, so
that the most informative values of p are close to e~%T but slightly smaller than it.

Another strategy is to simply use the deterministic deadbeat controller k;. The k4 controller
can be intuitively justified if occasional packet losses are followed by a long period of good connec-
tivity. The controller k; can have the plant output diverge during poor connectivity periods, but
immediately snaps back to the reference as soon as good connectivity resumes.

3.3.2 Jitter

The second controller is designed for the case when the communication is subject to jitter, but
there are no packet losses. In this scenario, the interval At; = T is a constant.

Remark. The assumption holds during a loss-free run, i.e., a sequence of exchanges with no packet
losses. Various measurements have indicated that loss-free runs are long and frequent and that,
conversely, loss events are short and infrequent [[4, [, P9].

If the jitter &; is a random variable with moment generating function M, then we can make
E[a;] = 0 by taking

eaT

eaTMJ(—(],) -1

a
k_]:g

The original condition k; > 0 holds only if e M;(—a) > 1. For example, it can be shown
that £y > 0 if §; < T'. The following propositions express a necessary and sufficient condition for
convergence in the presence of jitter. Their proofs are postponed to Appendix [].

Proposition 1. In the case when At; =T for all is, the &;’s are i.i.d. random variables, and the
kj controller is used, x; converges to the reference r in the expectation if and only if

M;(—a) > o2aT | gaT
Sketch. The value of k; makes E[a;] = 0, but it can also increase E[f;], so that convergence is
ensured only when |E[3;]] < 1. O

Corollary 2. If M;(—a) > (e2*T +1)/(e*T + eT), then k; > 0.

The controller k; makes E[q;] = 0, but the gain is k; > kg, so that the value of §; increases
when compared to the baseline controller k;. Therefore, it is unclear whether the k; controller
would actually provide better performance than k;. The relative performance of ky over k4 will be
addressed by experiments (Section [§).



Ezample. Suppose that the distribution of ¢ follows a gamma distribution I'(r, A) [I6] (this example
is only approximate because a gamma distribution would lead to a positive probability of packet
re-ordering). The significance of the parameters r and ) is as follows: A = E[¢]/0? = 1/(E[¢]—m),
where o2 is the variance of ¢ and m is the mode of the distribution, and r = AE[¢] = \/E[€]/o
is proportional to the square-root of the inverse of the coefficient of variation. Then, M;(—a) =
(A/(A + a))". Therefore, the controller k; is more significantly different from k4 when M;(—a)
is small, which occurs when r is large or A is small. On the other hand, Proposition [| gives a
bound on the fastest plant that can be tolerated under a certain amount of jitter (this can be
easily seen because if a is large, then M;(—a) ~ 0 but M;(—a) should be approximately equal
to 1 or more). If aT/r ~ 0, then e®T)/" ~ ¢T/r, and this bounds becomes approximately
E[¢] < T, ie., the expected jitter must be less than the sampling period (or, equivalently, the
sampling period must be set at design time to be longer than the expected jitter). A different case
is related to the measurements that will be presented in Section fll, where X is large. If A >> a, then
Mj(—a) ~1—ar/X=1- E[¢]a.

The notation ajmax denotes the value of a that gives rise to equality in Proposition E| and it
is an upper bound to the value of a for which there is convergence under k; for the given jitter
distribution. The notation ajmin denotes the value of a that makes Mj(—ajmin) = 0.95. The
relevance of ajmin is that smaller values of a < ajmin lead to M;(—a) ~ 1, so that ky ~ k4 and
little benefit can be derived from jitter compensation.

3.3.3 Loss and Jitter

The general case is in the presence of both loss and jitter. Let Mg be the moment generating
function of As;. Then,

_a_ Mry(a)

T bM s(a) —1 '

In general, Mg(a) can be expressed as a product of M7 and M only if At; and &; are independent,
a fact for which there is no empirical evidence []. At any rate, the combined case is subject to
similar considerations as in the previous controllers, for example as pertaining to the fastest plant
that can be supported by a certain network level of service.

k*

3.3.4 Online Estimation of Moments

The stochastic controllers require the prior knowledge of at least one moment generating function.
In general, the moment generating function is not known beforehand and it must be estimated
online. Although the moment generating function can be in principle be estimated in many different
ways, this paper adopts a TCP-like exponential moving average with weights 1/8 and 7/8. For
example, Mt is estimated as

7

1 A
Mr(a) = ge“m"l t3 Ti-1(a) . (6)

3.4 Contingency Control

The contingency control is a departure from the proportional controllers above in that the controller
sends to the plant two control signals, which will be called the regular control (denoted by u;) and
the contingency control (denoted by uic)). The plant applies the regular control when it receives it
and it also applies the contingency control when it sends a new sample. More precisely, the plant
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Figure 5: The timeline of network events in the remote control of a plant with contingency control.

'

samples the output y regularly at time (1 —1)7 (1 = 1,2,...), sends it to the controller, and applies
the last received contingency control. If the controller receives y((i — 1)T"), it computes a regular
and a contingency control and sends them to the plant. If the plant receives these controls at time
0; =t; + 1+ & < iT, it applies the regular control continuously until time T, at which point it
switches to the contingency control. A representative timeline is shown in Figure ] The value t;
is defined as before, namely ¢; is the sth time when the plant sent a sample that caused a control
Ug, uz(c) to be received. Let (; =t; + T be the time instant when the plant switches from u; to ugc).
Thus, 0; 1 < (1 <t; < 6; .

This paper will consider the case when the controls are of the form u; = —k.y(t; + 7) and

(©)

u; ~ = 0. The main idea is to implement a form of deadbeat control by selecting a value of k. that

' (c)

7

makes E[z((;)] = r, at which point u
value of k. is (Appendix [G]):

would result into z(t) = r for all t > ¢;. The corresponding

a ea(TfT)

- bedT-T) M (—a) =1

and a generalization to higher dimensional plants is briefly sketched in Section fj. The value of k,
is formally close to kj, and the difference is due to the fact that the regular control operates on an
interval of length T" — 7 rather than 7. Furthermore, the contingency control implicitly considers
as lost any packet that arrives after the next sampling point, so that it is always the case that
& < T — 7. Since & < T — 1, Mj(—a) always exists (unlike the ks controller) and k; > 0. The
main difference between the two controllers, however, is that, at time (;, the contingency control

(©)

U,

ke

will take over. As a consequence, the plant equations becomes (Appendix [J):

o(6) = ot + ) (77 = 2 (e 1))

a

which depends only on the last sample, whereas (f]) depends on the last two samples. As a con-
sequence, k; was unable in general to guarantee convergence in the expectation even if Efa;] = 0
because f; # 0 (Proposition [). By contrast, contingency control always converges in the expecta-
tion for all distributions of §; if an exact value of M;(—a) is known.

A fundamental property of k. is that if £&; = 0, then z(¢) = r for all ¢ > (;. Therefore, k. achieves
the reference in the absence of jitter at the first packet exchange that is not lost. On the other
hand, jitter can be eliminated with a play-back buffer, especially since k. tolerates a corresponding
increase of packet drop-outs. If jitter is eliminated by a play-back buffer, then M;(—a) = 1, which
also eliminates the need for an online estimation of the moment generating function. Contingency
and play-back can be regarded as the two sides of the same coin: contingency prevents a control
from being applied for too long and (reverse) play-back prevents a control from being applied too
early. The rest of the paper assumes that contingency control always adopts a form of play-back
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| Id | Name | Start | End | Loss rate | min RTT ms | Cut-off ms (%) |

0 wopr.cwru.edu Mon Sep 30 13:30:02 | 13:45:48 0% 0.235 0.5 (1.06%)
1 | weatherhead.cwru.edu | Mon Sep 30 13:45:48 | 14:01:35 0% 0.270 0.5 (1.48%)
2 SCp.grc.nasa.gov Wed Oct 2 06:27:47 | 06:43:41 0.44% 60.762 70 (0.58%)
3 SCp.grc.nasa.gov Mon Sep 30 14:01:35 | 14:17:21 25.13% 61.026 110 (0.93%)
4 www.ri.cmu.edu Wed Oct 2 06:43:41 | 06:59:32 4.38% 15.083 30 (0.91%)
5 WWW.comau.com Wed Oct 2 07:39:07 | 07:54:54 1.22% 38.471 60 (1.22%)
6 WWWw.icra-iros.com Wed Oct 2 06:59:35 | 07:15:28 7.9% 66.503 80 (1.13%)
7 | control-lab.et.tudelft.nl | Mon Sep 30 11:00:01 | 11:15:48 7.04% 123.439 200 (0.11%)

Table 1: Internet measurements (Year 2002).

scheme. Since k. is resilient to both losses (as long as one control packet makes it to the other side)
and jitter, uncertainties can arise only from estimation errors and exogenous disturbances.

4 Experimental Methodology

The experiments fall into two broad categories, and for each category the sensitivity to all parame-
ters was explored. For compactness, the rest of the paper will only report on the most informative
cases.

Traces Networked control will be simulated on RTT traces. In the case of scalar plants, all
samples and control signals are typically contained within a packet over an unreliable transport.
We also assume no loss resilient coding, and so packet losses and delays are equivalent to the
corresponding loss and delay in the delivery of a signal. The traces were collected with the fping
program [[f], which we modified to exclude retries and to output the RTT figures in microseconds.
Each trace includes samples spaced by 200ms for a total duration of 15 minutes. The traces were
collected by a Solaris workstation that was placed on a cwru.edu network and that pinged the
geographically dispersed hosts shown in Tables ] and f. The workstation has a clock resolution of
3us, as measured by repeated invocations to clock gettime (CLOCK HIGHRES) [2ff]. A limitation of
RTT traces is that ICMP packets were used [R7] whereas networked control would more typically run
over UDP /IP. Traces were collected originally in the year 2002 (Table [[) and the same measurements
were repeated in 2004 (Table B)). It will be assumed in the simulations that the value of the
minimum RTT is known to the controllers. The assumption is motivated by the stability of routes
over long time-scales [R{], which makes it possible to estimate intrinsic path characteristics from
a few measurements at start time (e.g., [[l0]). At any rate, the minimum RTT was subtracted
from the trace RTTs to obtain a sequence of jitter measurements &;. The jitter measurements were
divided into a body and a tail because a tail measurement is more likely to be treated as a packet
loss and also to ensure that delay spikes would not skew the computation of various statistics, such
as averages. Tables [l and B show the cut-off delay between the body and tail and the percentage
of jitter samples that fell in the tail. The cut-off delay was chosen so that the tail would contain
approximately 1% of the measured data points [[4], but was always less than the sampling interval
(200ms). The body of the jitter distribution visually matched a gamma distribution, confirming
the observations of [[If].
(@)

Tables @ and E also report the values of ar, a; ™, ajmax, and ajmin-
The two sets of measurements (Tables [I] and P)) show some significant changes in the network
levels of service over time. In part, the new traces reflect the upgrades of our access network, which
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| Id | Name | Start | End | Loss rate | min RTT ms | Cut-off ms (%) |

8 wopr.cwru.edu Thu May 20 11:21:15 | 11:36:59 0% 0.233 0.6 (0.84%)
9 | weatherhead.cwru.edu | Thu May 20 11:36:59 | 11:52:42 0% 0.282 10 (1.04%)
10 SCp.grc.nasa.gov Thu May 20 11:52:42 | 12:08:25 0.31% 56.783 200 (1.78%)
11 www.ri.cmu.edu Thu May 20 12:08:25 | 12:24:09 0.02% 47.872 51 (0.82%)
12 WWW.COmau.com Thu May 20 12:24:09 | 12:39:52 1.71% 34.941 110 (1.16%)
13 WWwWw.icra-iros.com Thu May 20 12:39:52 | 12:55:37 1.53% 58.216 110 (1.00%)
14 | control-lab.et.tudelft.nl | Thu May 20 12:55:37 | 13:11:29 0.04% 122.908 160 (1.00%)

Table 2: Internet measurements (Year 2004).

has been significantly enhanced in terms of bandwidth and of firewall reliability. For example, the
lossy scp(9/30/02) trace was due to a misconfiguration of our campus firewall that caused it to drop
roughly 1/4 of the packets. This trace will still be employed in the simulations, however, because
misconfigurations, as well as failures or attacks, are possible even when links are appropriately
dimensioned or Quality-of-Service is supported. The loss rate decreased almost always in 20 months,
it is close to 0 on all newer traces, and it is reflected by larger values of ar, and a(LG) . Although the
minimum RTT is basically unchanged or smaller, the cut-off delays have increased, which signifies
larger delays and an increased intensity of delay spikes. The body of the jitter distribution also
shows more variability, as expressed by the smaller value of ajmax. In general, a network can trade
queuing delays for losses, and these measurements suggest that, in the last 20 months and within
the scope of these networks, more emphasis has been placed on reducing packet drop-outs at the
expenses of higher delays and jitter.

Controllers Several types of controllers were introduced in Section [J, but some controllers are
merely a step in the construction of more complex algorithms. For example, the k; controller serves
solely to make a point if the moment generating function does not exist. The evaluation will focus
on the meaningful controllers: k4 (which also serves as the comparison baseline), kz,, ks, ks, and k..
The k. controller will be considered in the presence of a reverse play-back buffer, which is considered
as an integral component of the contingency mechanism. The k4 and kr, controllers will be examined
both in the presence and in the absence of a reverse play-back buffer. The k; and kg controllers
will only be considered in the absence of a play-back buffer because these controllers provide an
alternative approach to jitter. When the play-back buffer is used, the play-back delay 7 can be set
with a variety of sophisticated methods [24] but, for simplicity, this paper uses a play-back delay
equal to the cut-off value (Tables [l and fl) or 190ms, whichever is less, so that the regular control
can operate for at least a small interval. When buffers are not used, the value of 7 is set to the
minimum RTT recorded in a trace. In trace-based simulations, controllers use moment estimates
initialized to an average collected from the same trace on which the simulations are subsequently
run. Some controllers use moment estimates from Equation (). The initial seed M7 can be
chosen in various ways depending on whether the controller underwent an initial training period.
The choice M7 = 1 basically assumes no initial training, disables stochastic compensation on the
first step, and then gradually reintroduces it as the moving average is updated. A second method
assumes a long training period, such as for example from a continuously running plant or from
a probe-based admission control mechanism [[[(f], and specifically it derives a maximum likelihood
estimate of Mr(a) from the execution trace and uses it as the initial M7 in Equation (). Another
complication is that several controllers have the property that if the state x reaches the reference
r exactly they will not move from it for the rest of the simulation. As a result, these controllers
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practically use only an initial part of a trace. The effect can be avoided by introducing a disturbance
on the output. Such a disturbance would not affect the plant state if it were not that the control
signals depend on it. Several disturbance models are possible and our trace-based simulations add
a disturbance to the output after each integration step, and the disturbance value is proportional
to a Gaussian random variable with mean 0 and standard deviation D. The standard deviation D
is a measure of the strength of the disturbance and our simulations use D « e~ because faster
plants can in general tolerate less noise. Disturbances are introduced solely so that the simulation
would use the entire trace and, as mentioned above, a thorough analysis of disturbances is beyond
the scope of this paper.

Performance Metrics The simulation results can be expressed by plotting the plant output
as a function of time. The simulation would be captured more succinctly by control-performance
summary metrics, such as overshoot or settling times [, P9}, but these metrics are not always
appropriate in the networked case. For example, the settling time is defined under the assumption
that the plant output does “settle” permanently at or around the reference. In the networked
setting, a plant sometimes appears to settle at the reference value, but it subsequently diverges
from it due to a loss episode or a delay spike [25]. Therefore, overshoot is well-defined only for some
cases, but not for others. A first metric is overshoot, which we define as 1+ max; z;. (Our definition
is consistent with that usually given for unit step response x(0) = 0,7 = 1 [, 4].) Another metric
is the e-rise time, which is the smallest value of ¢; for which |z;| < e. A commonly used value of
€ is € = 0.05 [, ). Another commonly used metric is the settling time, which however cannot
be used in networked control because some network patterns can force a plant to move away from
its reference even after the plant has “settled”. A different type of metric is, for example, the
complementary cumulative distribution function Pr[|y(¢)| > ¢| that the system output differs from
the reference by more than ¢. In some cases, plants will fail to converge during the course of a
simulation, and we will say that a plant crashes if there is an i such that |z;| > 105. In general,
performance metrics above could drastically depend on the characteristics of the trace, so that it
is difficult to compare, say, Pr[|y(t)| > ¢] across all traces for one fixed value of the plant speed
a. A more meaningful comparison is to estimate the maximum value amax of the plant speed a
at which |y(¢) — r| is greater than 0.1 for less than 1% of the simulation time. The value of amax
intuitively expresses the order of magnitude of the maximum plant speed that can be supported
by a controller under the given network conditions.

Simulations Additionally, packet losses and delays were generated from the various probabilistic
models described in Section B.3. The simulations were especially useful in confirming the importance
of precisely setting the value of k and in validating the accuracy of online moment estimators.
Further details are postponed to Appendix ..

5 Evaluation

Jitter Compensation Jitter can be compensated for either with a play-back buffer or by chang-
ing the feedback gain to kj. A play-back buffer eliminates jitter at the potential cost of increased
losses, whereas k; is only effective for certain values of a (Tables | and [f). The two methods can
be especially compared on the weatherhead(2004) trace because this trace has no losses, which
makes it possible to study jitter in isolation, and ajmin < @jmax, Which is appropriate for k;.
Experiments on the other traces confirmed that k; is only meaningful for a range of values of a.
However, the exact range boundary often differed from those in Tables f| and [ due to phenomena
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Figure 6: Plant output on the weatherhead (2004) trace for a = 20. The k; controller operates in
the absence of noise and uses a maximum likelihood estimate of Mj(—a) collected from the trace
prior to the simulation. The play-back controller is subject to disturbances (D = e~%). Axis scales
differ between charts.
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Figure 7: Plant output with the k7 and k4 controllers for a ~ a;, with no play-back buffer and no
disturbances. Axis scales differs among charts.

that are not accounted for in the stochastic model, such as packet losses or the dynamic estima-
tion of M;(—a). As for the weatherhead(2004) trace, the system output is shown in Figure [ in
the case of a = 20 ~ ajmax = 24.93: the baseline controller k; outperforms k; both in terms of
output variations and of settling times. The reason was that ky > kg4, so that k; had a larger
value of E[B;], which in turn outweighed any advantage stemming from E[e;] = 0. Pronounced
oscillations were also caused by the dynamic moment estimates and were less severe when a static
maximum likelihood estimate was used instead. The regular play-back scheme directly snapped to
the reference in most cases, but it can also introduce additional packet losses and cause z to differ
from r, as demonstrated by the spike in Figure fl(b). Additionally, if the play-back delay is smaller,
more packets are dropped and the plant output grew unboundedly. The reverse play-back does not
introduce losses and therefore prevented significant deviations from the reference (Figure [fj(b)), and
substantially improved over stochastic control by making the control start time 6; more predictable.
In summary, k; was not effective because it addresses only one term of the plant behavior equation
(B). The reverse play-back mechanism was very effective in tolerating jitter without introducing
losses. In the rest of the paper, all buffers will use a reverse play-back.

Loss Compensation The k4 controller is effective with a reverse play-back to tolerate jitter in
the absence of packet losses, but its output varied widely in the case of heavier loss rates (e.g.,
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spikes between —11-10% and 5-10% in the scp(9/30/02) trace). Such large output variations would
typically denote a catastrophe in the evolution of a real system. A different approach is to employ
k1, to compensate for packet losses under the assumption that jitter is negligible. The traces with
low loss rates have kr ~ kg4, and no significant difference was found on those traces between kj,
and the baseline. In general, k; differed more significantly from k; on the traces with the higher
loss rates. The highest loss rates were found in the scp(9/30/02) and icra(2002) traces (Figure [7).
The k4 controller showed significantly better settling time and better overshoot. The reason is that
kq gets close to the reference quickly if there are no losses and little jitter and, in the absence of
disturbances, it does not move from the reference for the rest of the simulation. Meanwhile, kj,
is more conservative in an attempt to compensate for losses, which makes its convergence slower
during periods of good connectivity. In the presence of disturbances (D = e~2%), k1, was closer to
the reference than kg, but it still deviated significantly from it (+2 - 10°), and so its behavior was
dramatically unsatisfactory. Figure [{(c) compares k7, and kq on the comau(2004) trace, which had
the highest loss rate (1.71%) among all 2004 traces, and shows that &z, is comparable to k.

Loss and Jitter The controllers considered in the previous two paragraphs attempt to compen-
sate either for jitter or for losses but not for both, and so they failed in the other case. Various
approaches can address both losses and jitter. In the first place, the k7, and kj controller can be
combined into a kg controller. However, kg = kjy if there are no losses (as in weatherhead(2004))
and kg ~ ky, if jitter is negligible compared to losses (as in scp(9/30/2002)). Therefore, kg inher-
ited the same behaviors and problems as k; and kj, in these traces. Another approach is to use
k1 to compensate for losses and a reverse play-back to compensate for jitter. However, if jitter
is negligible compared to losses, the controller basically reduces to pure kp, inherited the same
problems as kj,, and its settling time was actually slightly worse than the one of pure kj,.

Contingency Control Contingency control also attempts to address both jitter and losses. In
particular, contingency control can improve over a play-back buffer by making the regular control
end at a more predictable time. The k., kr, and k7, (buffer) controllers had the best performance on
the scp(9/30/02) trace according to a variety of metrics for a = 7 and D = e~2%, and Figure [ gives
a snapshot of the corresponding output during an interval that contains the largest spike incurred
by k. In this snapshot, the contingency control gave rise to only one spike of smaller amplitude,
and it recovered more quickly from that spike.  Figure ] gives the complementary cumulative

2 k; (buffer) /\
0 . i < } -

plant output

o — 1
k, buffef ———
A—

10 . . . . . . !
350 355 360 365 370 375 380 385 390
time(s)

Figure 8: Snapshot of plant output with the k. and kr controllers with play-back buffer, a = 7,
and D = e~%¢.
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Figure 9: Complementary cumulative probability distribution of |y(t) —r| in the scp(9/30/02) trace
with @ = 7 for the k. and kr, controllers during the largest k. spike after the first minute of the
simulation.

probability distribution of |y(¢) — r| for the two controllers that had the best performance on this
trace. In particular, the figure shows that contingency can improve performance significantly over
a play-back buffer scheme on a lossy trace. The moment estimate was close to 1 throughout the
simulation, and so there was no significant difference if the M;(a) term is ignored (i.e., set to
Mj(a) =1).

Trace Summary The simulations are summarized across all traces in Figure [[(, which reports
the computed value of amax with a precision of £0.1. The contingency control almost always
achieved the largest amax, and it was predictable with am,x ~ 150 across all traces. Reverse
play-back especially helped on the traces that are dominated by jitter but have no losses. The
contingency control improved over reverse play-back on the traces with higher loss rates. The
contingency is effective if the M;(a) term is set to 1 throughout the simulation. Conversely, it did
suffer if M;(a) is estimated dynamically because a moving average estimate was sensitive to the
recent past, which was not always a good predictor of the immediate future.

Conclusions The experiments highlighted two factors. First, a reverse play-back typically has
better performance than a pure play-back scheme because, intuitively, a late control signal is better
than none. Second, k. works better if the M ;(a) term is ignored (i.e., M;(a) = 1) in that M;(a) ~ 1
for most of the simulations and it is otherwise difficult to obtain a good predictive estimate of M (a).

The main conclusion is that contingency control outperformed stochastic network compensation.
An intuitive explanation can be expressed in the hunter analogy. Contingency control is analogous
to a hunter that sees two flying targets (a timely signal and a packet loss) and shoots at each one
of them. The stochastic control tries to catch two birds with one stone by aiming to the middle,
and by doing so in fact misses both.

6 Multi-Dimensional Plants

The methodology of contingency control can be extended to multi-dimensional linear plants. The
state vector evolves according to x;11 = Ax; + Bu;, where x is an n-dimensional state vector and
A is an n x n matrix. Under certain controllability and observability assumptions, the state x can
be set to 0 by a sequence of at most n control actions. The regular control contains the first of

16



180

0o kp, (baseline) ——
kp (buffer) X
L X
160 g o o ©® o2 e ® 900 &, (buffer] O
[] ° ® 6 X kK,
1408 E ) s O
X % contingency @
X contingency (M}S A
120 - X o 1
X X || y
100 X
x A A b
& ox 2 a 7
80 [ A
A 4 =
60 [ A A 0o A
A A A o
40 | oU m
20 K
RS - )
0 2 4 6 8 10 12 14

trace id

Figure 10: The amax value expresses the order of magnitude of the plant speed that can be supported
under various traces (D = e~2%). The line joins the points corresponding to the baseline for better
visibility.

these actions, and the contingency the remaining ones. When the contingency control is triggered,
it would apply the remaining steps in this sequence of controls followed by u = 0 until connectivity
resumes. The intuition is that, in the absence of further control, the plant would continue the
application of the last received plan, which would bring the plant output to the desired reference.

7 Related Work

Networked control is a relatively new field but already has a wealth of results [[[3] and is related
to the area of real-time embedded distributed systems (e.g., [[7]). The networked control model in
Section [ follows the original assumptions in which sensors are time-driven whereas controllers and
actuators are event-driven [RI]. The paper has focused on proportional controllers but, naturally,
many other types of controllers exist [ff, P9]. Co-simulation for co-design is a novel approach in
which the design of the control system and the design of the network are tackled together, and
therefore should be analyzed (and simulated) together [f]. A taxonomy of real-time applications
introduces the concepts of tolerance and adaptiveness. Moreover, other real-time applications,
such as VoIP or video streaming, also use end-point algorithms to achieve higher levels of tolerance
or adaptiveness or both [24]. Since contingency control sets an expiration date to the regular
control, it is also suitable for adoption in event-driven sampling, where a sensor sends a sample
only when the output has changed by at least a certain threshold value [B, [1]. Event-driven
sampling is particularly suitable for energy savings in wireless networks. However, event-driven
sampling creates an ambiguity for the more traditional controllers, which cannot ascertain whether
a sample was dropped or simply not sent. The ambiguity is alleviated in the case of contingency
control due to the presence of a fail-safe action uz(-c). Previous work on optimal loss compensation
mostly addresses i.i.d. losses [Jf], which are not relevant in a Gilbert model.
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8 Conclusions

In this paper, we have formalized the problem of making networked control tolerant and adaptive to
network vagaries. In addition to the specific results, a main contribution of this paper is to formulate
networked control in a way that is cleaner and more suitable for further Networks research. The
paper also introduced novel performance metrics that are natural and appropriate for networked
control. The paper described several types of controllers. Stochastic controllers attempted to
overcome network vagaries purely with control-theoretical arguments. At the other extreme, play-
back buffers did not alter the controller as such, but rather introduced a mechanism to eliminate
jitter. An integrated approach is to employ a set of methods collectively called contingency control:
a reverse play-back buffer avoids negative jitter, an expiration time curbs the regular aggressive
control, a contingency control deals with loss episodes, and an appropriately designed controller
k. takes into account all of these factors. An extensive evaluation on simulations and RTT traces
showed that the combined approach was able to support much faster physical dynamics (amax =~
150) across a wide range of network conditions.
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A Plant Dynamics

We integrate the differential equation (f) with a boundary condition on z(6;) to obtain
_ bk 0; — bk: 0; — &

a a
In particular,

z(0ir1 — &iv1) = (w(Hi) w) Biy1—0i—Eit1) 4 bk (0; — &)

a

z(0iy1) = (55(91') w) Oiv1-0:) 4 bha(9; — &)

a

Define #; = z(6;). Observe that

bkx; .
Fiy1 = ea§¢+1$i+1 + Z; (1 _ etJL§7,+1) .
a
Hence, if z; = z;41 = 0, then also Z;+1 = 0, and, by Equation ([f), z(t) = 0 for all ¢ > 6;11. Observe
that At; =tj41 —t; = 0;41 —0; — &1 + & and As; = 0,41 — 0; — &1 We now have

Tig1 = (ea&xi + (1 _ ea&') bk‘fzi_l _ bIZEi> e@(Bir1—0i—&i+1) 4 bIZL‘i

k(i — 1) galsi (x B bk:vi1> palti bkz;
- 2
a

a a

= (e“Ati — %eaAs bj) T + % (e2%i — 8%) g4
a

= a;z; + Biwi—1

which is the homogeneous recurrence (f).

B Deterministic Deadbeat Control

An approach similar to the baseline can be used also when §; # 0 is a constant. In this case, the
jitter &; is also constant, and we let & = & for all 4’s. The intuitive interpretation is that either the
constant RTT 7 was estimated with an error or, as in [21], g], the controller was designed for local
operation but is being used even when delays are present in the feedback loop. In this case, the

condition «; = 0 leads to

a eaT

bedT—6 —1°

Proposition 3. In the case of no losses, & > 0 and k = Kk, the plant state converges to the
reference = 0 if and only if

Ky =

1+ e2?

1+eol

Proof. By design, k!, implies o; = 0, so that z;41 = Bzi—1. The characteristic equation of this
recurrence is p? = 3, and so the amplitude of z; decreases with time if and only if |3| < 1. If £ > 0,
then

1
E<T —~1In
a

aT’ 2aT

] = 2 (e ~e0) = g (1) = g (1)
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Figure 12: A case with jitter £ # 0 that leads to a damped oscillation of the plant output.
Therefore, |3 < 1 occurs if and only if €27 (1 — e %) < dT=8) — 1, or e7% > (1 + €24T) /(e?T +
e2¢T). The claim follows by taking the logarithm of both sides. O

Figure [[1] shows the upper bound on ¢ as a function of T for various values of a. In general, as
the product a7 increases, In (1 + ezaT) / (1 + e”T) ~ aT', and so little jitter can be tolerated with
faster plants or slow sampling rates.

Corollary 4. If £ > 0 (undercompensation of delays), an oscillation is present in the plant output.

Proof. If £ > 0, then 8 < 0. The corollary follows from the characteristics equation derived in the
proof of the previous result. O

Figure [ shows the case T' = 0.2, ¢ = 0.05, k!, ~ 6.88, which leads to a damped oscillation in
the plant output.
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1-p (L)

Figure 13: The Gilbert model for packet losses.

C [I.i.d. Losses

If the sampling period is uniform and of unit length and the loss probability is p < e~ %, then At;
is a geometric random variable with parameter 1 — p. Then,

1— a
Mr(a) = (A —p)e ’
1 — ped
and the difference
a et —1
Mr(a) — e* = pe e >0

is maximized by taking the derivative with respect to p. However, the derivative is e®(e®* — 1) /(1 —
pe®)?, which is always positive, and thus p should be taken as large as possible.

D Gilbert Model

The Gilbert model [R9] (Figure [[3) is a two-state Markov chain. The two states are labeled G (the
“good” state) and L (the “lossy” state). Let p be the probability of remaining in the G state and
q the probability of remaining in the L state. The chain generates a G or an L upon each state
transition, where the jth symbol determines whether the control packet at step 7 was received at
the plant (G) or not (L). For example, the string GGLLG ... denotes losses at step 3 and 4, but
good reception during the other steps. Assume even sampling and assume that time is normalized
so that the sampling period is 1. Then, At; is the length of the ith maximal subsequence of the
form L*G. For example, the string GGLLG ... gives At; = Aty =1 and Atz = 3. At the end of
each subsequence L*G, the Markov chain is in the G state. Therefore, at the beginning of the next
subsequence, the state is G with probability p and L with probability 1 —p. If the initial state is G,
then At; = 1. If the initial state is L, then At; = 1 + G, where G is a geometric random variable
with mean 1/(1 — q). Therefore,

= 1 2-p—gq

bl

a

and, if ¢ < e”

e2a

Mr(a) = Be") = p+ (1= p)E“CH)) = p+ (1= p)eE*S) =p-+ (L= p)(1 ~ a) 7
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Therefore,

kr, =

—_
+

1)

—_
+

/N 7N

1 — ge®
p—pge* + (1 —p)(1 - Q)62a>
—p)(1 —g)e** —g(1 +p)e* + (1 +p)
(1 -p)(1—q)e* —pge* +p

—
—_

e oe o

E Effective Sampling Rate

The gain k7, is a function of Mr(a), which in turn can be expressed as a McLaurin series of its
derivatives M (™ (0) = E[(At;)"] calculated at the origin. Thus, k, accounts for all of the moments
of the distribution of At;. However, if Mr(a) ~ Mr(0) + aM}.(0) = 1 + aT, then

1 1

The error in the approximation of Mr(a) is a?M"(a)/2 = a*E[(At;)?e*%]/2 > 0 for some 0 < & <
a, and so k7 > k. The control k} has the advantage of depending only on the effective sampling
rate 1/T rather than on the entire distribution of At;. However, k/ can only be applied if the error
is small. Furthermore, &} can take a value k) > ki even when k;, does not exist. For example, in
the case of an exponential distribution, k7 = (a + A)/b even when A < a. The effective sampling
period T' was the only factor considered in previous work [B, Rg], with conclusions that were often
difficult to explain analytically.

F Jitter

Proof of Proposition []. We first claim that «; is independent of z;. The quantity «; is a function
of constant terms and of the random variable &;, which represents the jitter or the time difference
between ¢; + 7 and ;. Meanwhile, z; is the state at time ¢; + 7 and thus it is not affected by a
future jitter &;. By the same token, §; is independent of z;_1. Therefore, E[z; 1] = E|o;]|Elz;] +
E[Bi|E[zi—1] = E[B;|E[zi—1]. Moreover, since the ;’s are i.i.d random variables, so are the §;’s,
and so

i i
hm T2i+1 — hm J)lE H ﬁgj = hm I H E[IBZJ]
1—00 1—00 i1 1—00 =1
J: =

converges to r = 0 if and only if |E[$2;]| < 1. Since the §;’s are identically distributed, the same
condition also guarantees that lim; . zo; = 0. We now have that

EB]=E [b’%’ (o) - eaT)]

eaT T ¢
= oT Ble=o%i — |
eaTMJ(—a) — 16 [e ]
eQaT
= My(—a) — 1) .
e“TMJ(—a) — 1( J( (1) )

Therefore, E[3;] > —1 if and only if M;(—a) > (e2¢T +1)/(e?*T 4 ¢T"), which proves the claim. [
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Proof of Corollary . Tt can be easily verified that e M;(—a) — 1 > 0 when M;(—a) > (e?T +
1)/(62aT + 6aT). O

This section gives a sufficient condition for convergence in the presence of jitter.
Lemma 5. If |5;| < 8 < 1, then lim;_, o E[z;] = 0.

Proof. We have that |z;11| = |Bi||zi—1| < Blzi—1|, so that E[|z;+1]] < BE[|z;—1]]. Therefore,
lim; o0 Elz] = 0 if § < 1. 0

In turn, such value of kr and the condition that |3| < 1 will effectively put a bound on ¢; and
T.

Proposition 6. If there is a < 1 with

1 eTMj(—a) —1
Oﬁfzﬁ—aln(l—ﬁ e2aT )

(1>1),

then x; converges to the reference r in the expectation.

Proof. The condition on §; ensures that —1 < 8 < f; < 0, and the proposition follows from the
previous result. O

The proposition states that larger jitter & can be tolerated with shorter values of T'.

G Contingency Control

It remains to establish the value of k, for which we first need to determine the plant dynamics.
Consider an interval [(;—1,6;). Since uz(-c) = 0 is applied continuously in this interval, the plant
is described by the equation &(t) = az(t), which is integrated to give z(t) = z(t; + 7)e®*~t~7) for
all t € [(;,0;). In particular, 2(6;) = z(t; + 7)e%:. In the interval [6;,(;), the plant is described by

) =
the equation #(t) = ax(t) — bkz(t; + 7), which integrates to

bk(t; oy Dkaz(t; ooy bk 7 aug
#(t) = (m(ei)—ix(a”»ea(t 0 BT ) ( i) _ B (i 9»_1)) .

Therefore,

2(6) = ot + ) (o7 = 2 (=6 1) )

a

and

a

Bla(6)] = atts-+7) (477 = 2 (o Aty -a) - 1))

which can be set to 0 by choosing k equal to

a e(T—T)

ke = — .
" bedT-T)My(—a) — 1

Suppose that & = 0 and that z(¢; + 7) is estimated with an error, due either to disturbances
or to an imprecise system model. Then, the control u; becomes u; = —k.(1 + €)z(t; + 7) for some
error term e. The controller k. makes |z((;)| < z(t; + 7) if and only if —eT—7) < € < edT=7)
which puts a bound on the combination of error, plant speed, and sampling period.
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| Model | Parameter | Values

Plant a 3
b 1
T 200ms
Network T 10ms
ii.d. loss P 0.01,0.02,0.05
0.1,0.15,0.2,0.5,0.6
Exponential loss | A 5
Gilbert loss P 0.99,0.98,0.95,
0.9,0.8,0.5,0.4
q 0,01,0.2,05
Gamma jitter A 200, 500, 1000
T 1,2,3

Table 3: Parameters of systems and networks in simulation based on probabilistic network models.

H Methodology

H.1 Simulations

In the first set of simulations, packet losses and delays were generated from various probabilistic
models. For example, one such model would assume that there is no jitter and packet losses are
generated with a Gilbert model, as in an example in Section B.3.1. In general, all probabilitstic
models in Section f] were simulated (Table ). Model-based simulations can be used to assess
the accuracy of the dynamic estimators defined in Section B.3.4. The estimators should induce a
plant output that is close to the output obtained with a controller that uses the exact value of the
moment generating function for the same probabilistic model. The evaluation of the estimators
starts with an initial unit value for the moments, so that the stochastic compensation is initially
disabled. Thus, the simulation tested implicitly the simultaneous convergence of the plant and of
the moment estimator.

H.2 Bounds on a

The distribution parameters A and r are given in Table f| and [| and were estimated as A\ = u/o?2,
and 7 = Ay, where y is the average observed jitter and o2 is the sample variance of the jitter.

The bounds on a are predicted from the probabilistic models after they were fit to the traces
and, as such, the bounds could differ from those obtained in a complete simulation. In particular,
M} is the moment generating function of the gamma distribution that was fit to the body of the
jitter distribution.

I Probabilistic Evaluation

Figure [[4 is an example of certain effects that are especially visible with high loss rates. The figure
shows the plant output for p = ¢ = 0.5 (i.e., an overall drop rate of 50%). The value of ¢ is
close to the critical threshold g < e~ ~ (.55, which is in the range where k;, and ky differ more
significantly. In the first place, the estimator is substantially worse than the exact My (a), which
follows the general trend for these large drop rate, as discussed above. The figure also compares
the kr and k4 controllers. The k;, controller has lower overshoot but larger rise time than k4. The
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Name ‘ ar, ‘ a(LG) ‘ A ‘ r ‘ @.J,min ‘ 0.7 max
wopr.cwru.edu o0 o0 70557.3 | 2.5 | 1460 | 33.6514
weatherhead.cwru.edu 00 0 52324.9 | 1.83 | 1485 | 33.7086
scp.grc.nasa.gov (Oct 2) | 27.15 | 14.98 | 1575.3 | 3.00 | 27.14 | 16.9387
scp.gre.nasa.gov (Sep 30) | 6.9 | 6.49 | 198.62 | 1.03 | 10.11 | 13.0512

www.ri.cmu.edu 15.65 | 12.55 | 1114.7 | 1.74 | 33.25 | 17.7509
WWW.COmau.com 22.05 | 14.54 | 329.15 | 1.44 | 11.94 | 13.6788
wwWw.icra-iros.com 12.7 6.44 945 1.28 | 38.5 | 18.3321

control-lab.et.tudelft.nl | 13.25 | 12.7 | 309.71 | 1.28 | 12.71 | 13.9109

Table 4: Statistical and control-theoretical characteristics of the collected traces (Year 2002).

Name ‘ ar, a(LG) ‘ A ‘ r ‘ @.J,min ‘ @.J,max
wopr.cwru.edu %9 o0 27952.4 | 1.05 | 15560 | 33.3984
weatherhead.cwru.edu o0 o0 356.7 | 0.10 | 1.81 | 24.9346

SCp.grc.nasa.gov 28.88 | 13.20 46.5 1.39 | 3.44 | 6.1942
www.ri.cmu.edu 42.59 o0 2652.0 | 0.73 | 101.3 | 24.8884
WWW.COmat.com 20.34 | 21.72 75.9 1.10 | 4.41 9.0900
wWww.icra-iros.com 20.90 59.4 0.25 | 0.78 | 14.1837
control-lab.et.tudelft.nl | 39.12 91.9 0.06 | 0.30 | 21.7209

o0
o0

Table 5: Statistical and control-theoretical characteristics of the collected traces (Year 2004).
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Figure 14: Plant output for a network model with no jitter and losses generated by a Gilbert model
with p = ¢ = 0.5.

reason is that the k4 controller is designed for the ideal case of no losses and it severly suffers during
periods of poor connectivity, so that it swings widely above and below the reference. However, the
controller immediately snaps back to the reference as soon as connectivity resumes. By contrast,
the kr, controller attempts to keep a behavior that balances between the periods of poor and good
connectivity. The relative behavior of k4 and &z, basically held for all values of p and ¢, even though
the stochastic nature of the network model occasionally resulted in anomalous outcomes with low
probability. At any rate, the behavior of k4 and &y, justifies intuitively contingency control, in that
contingency attempts to combine the good features of the former during good connectivity periods
and of the latter during bad connectivity. Finally, the estimator Mr; had lower overshoot than kg
even though estimators were not particularly accurate at these high drop rates.

J Evaluation

J.1 Probabilistic Network Models

The first set of simulations involves the generation of jitter and packet losses according to the
various probabilistic models. The simulation confirmed the importance of setting the correct value
for the gain k: for example, Figure [[§ shows that a 10% loss rate with k = k;, has comparable
performance to the case when no packet is lost but k& is not exactly equal to kz. The dynamic
estimation of Mr(a) produced results comparable to those obtained with a prior knowledge of
My (a). For example, dynamic estimation increased the overshoot by less than 1% in a simulation
with a 20% i.i.d. loss probability. The plant output deteriorated more significantly only for higher
loss rates. Similarly, the dynamic estimation of Mj(—a) led to overshoot within 1% of the exact
value, and the estimate of Mg(a) gave rise to behaviors analogous to those caused by a dynamic
My (a). Further detailed are given in Appendix [|

J.2 Contingency Control
In summary, the scp(9/30/02) trace with @ = 7 and D = e~2¢ led to:

e The baseline k4 swang between +9 - 10°.
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Figure 15: Convergence with no jitter for the case of no losses (k = 7 # k4 = 6.47) and of a constant
loss probabilty of 10% (k = k).

e The contingency controller had 4 short spikes through a 15 minute simulation and the spike
intensity ranged as —1.6 < y < 0.7. Its estimate of Mj(—a) was close to 1 and no significant
differences were introduced if the term was set to 1 throughout the simulation.

e The kg controller had more spikes of large intensity (from —11-10* to 5 - 103) even with the
addition of a reverse play-back.

e The kg, controller (no play-back buffer) had significant spikes (£2 - 10%), its rise time was 30
times longer than k. (6 seconds versus 0.2 seconds), and it typically took longer to recover
from a spike, as shown for example in Figure §.

e The ki, controller improves with the addition of a play-back buffer: it had a few spikes of
intensity between —8 and 5. However, its behavior during these spikes resembled that of &,
with no buffer (Figure B), and its rise time was longer than k7, (7 seconds).
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