AR Ve

Rl T b Ky

Robot Control in a Message Passing Environment:
Theoretical Questions and Preliminary Experiments

Louis L. Whitcomb and Daniel E. Koditschek !

Center for Systems Science
Yale University, Department of Electrical Engineering

1 Abstract

The performance of real-time distributed coatrol systems is shown
to depend critically on both commanication and competation
oosts. A taxonomy for distriboted fystem performance mea-
surement is introduced. A roughly accurate method of perfor-
mance prediction for simple systems is presented. Exparimental

results demonstrate the effects of communication protocols on .

real-world system performance.

2 Introduction

This paper concerns the design and implementation of a new
distributed controller intended to standardize all real-time com-
putation within the Yale Robotics Lab and to support the in-
terconnection of any combination of devices from CUr growing
200 of robotic sensors, actuators, and kinematic chains. We had
set out with the intention of building “merely™ an easily re-
configurable and incrementally cheap family of computational
engines inr order to get on with the “real work” of rabotics. We
quickly discovered that the very ublquity of design that so fa-
cilitated interconnection led to a potentially bewildering varia-
tion in network behavior depending upon apparently innocent
changes in topalogy and communication protocals, Thus, the
Paper constitutes, as well, a prelude to research in the theory of
distributed message passing controllers.

We have distributed control computation over networks whose
nodes are basad upon ane of the most powerful commercially
available microprocessors — the [nmos TBOO — and whose ca-
pacity can be easily expanded (ir consequence of the THOD's
novel design} to meet almost any demand. However, mere ca-
pacity, in itsell, is useless barring effective deployment. We pro-
vide preliminary experiments demonstrating ovr seccess in tap-
ping this processing power to achieve digital sampling rates and
floating paint accuracy in the “benchmark™ computed torque
algorithm that compare favorably with any results previously
reported in the literature. At the same time, these experiments
point cut the subtleties involved in deploying a controller gver
& network of processors: very different results obtain from ap-
parently slight modifications in deployment atrategies; the yery
notion of sampling rate jtself must be revised within -
eral issues of “timeliness™. Although these gubtleties yield to

"This work was stpported in pari by INMOS Corporaticn, GMF
Robotics Corporation, Weitsk Corporation, and the Hationat Science Fogn-
Sution wnder & Presideniial Young Investigator Award held by the second
anthoe,

GDETE-LWIIDEN!.MO 1990 IEEE

T —

1193

intuition in the simple ten-node networks described here, we are
interested in real-time computation of algorithms whose corm-
plexity must grow exponentially with the degrees of freedom
[16). Thus, we conclude that a much more aystematic attack
upon distributed real-time control design will be needed.

This paper is arganized as follows. In the next section we
offer a sketch of the large body of literature addressing such
Isswes as correctaess, latency, and models of LOLCUTTenCY thaf
arise in this work. Section 3 then facuses upon certain aspects
of timeliness iz distributed controfler performance that seem o
have been relatively ignored in the literatire to date. In parti.
elar, we introduce the notion of a cross lalency meiris | ang
provide some experimental evidence of the subtlety in its caysal
mechanisms. Section 4 coacerns the network designs we have
chosen for the computed terque control of a torque actuated in-
dustrial manipulator and provides experimental data concerning
its performance. A conclusicn follows,

3 Physical and Computational Models

A burgeoning body of theory and working designs [13), attests 1o
the growing belief that distributed Pprocessing represents the only
viabk solution to the expanding computational requirements of
robotic systems. A weaningfol discussion of distributed Bystems
requires a taxonomy and model. Two widely accepted models of

concurrent computation are the shared memo {5M} model and
{CSP) model. The mod.

the communicating sequenfial process
‘els provide fundamentally diferent raechanisms for interprocess
communication [14, 7).

A simple shared memory system might have a common bus of
some fixed bandwidth populated by many processors and & com-
mon memozy store. This provides for efficient message broad-
casling, wherein one process communicates zn identical message
to all other processors. However the commuenication bapdwidth
remains constant as the number of processors vaties, often ne-
cessitating exotic bus desiga while restricting the system to rel-
atively few (tens or s0) useful processors [a7).

A simple CSP system might have Processors connected by in-
dividual point-to-point communication channels of fixed band-
width. Actual systems systerms often offer a fixed number of
point-to-poiat communication conrections for each processor,
thus total system communication bandwidth scales linearly with
the nember of processors. At the expense of SM-style broad-
casting, the CSP systems scalable communication bandwidth
appears to offer the possibility of very large scale distributed
systems.

3.1 CSP Architecture for Robot Control

Wz have used control systems based on both SM and CSP ar-
chitectures, and found CSP based architectores to offer the fol-
lowing advantages for robot control applications:

Extendable Interprocessor Communication Bandwidth:
The fixed bandwidth limitations of shared bus SM archi-
tectures restrict them either to applications requiring little
interprocessor communicaticn or to applications requiring
relatively few processors. The CSP based architectures,
whose communication bandwidth can increase with the
number of processors, admits the possibility of practical
large scale distributed controllers.

No Broadcasting: The control structures we are developing
generally do not require that global information be broad-
cast to every processor.

Device [/O - Transmission and Isolation: The critical bus
bandwidth requirements of SM architecture demand a fast
parallel bus. The CSP architecture, with a multiplicity of
communication channels, places less stringent bandwidth
demands on individual channels. Relatively narrow [often
serial] communication hardware channels suffice, vastly
simplifying the hardware design issnes of long distance
transmission and electrical jsolation.

The INMOS Transputer is a commercially available micro-
processor designed for embedded control. The processor pro-
vides DMA support for interprocessor communication, hard-
ware primitives for intra-processor communication between mul-
titasked processes, sub microsecond coatext switching, and a
hardware scheduler which obviates the necessity of a real-time
operating system or kernel. The user has exceptional freedom
and ease in mapping an absiract topology of processes and soft
chaanels onto an actual hardware architectore of processors and
hardware channels.

3.2 Distributed Computer Controllers for Contin-
uous Dynamical Plants

The gap between continuous plant and digital discrete controller
models is familiar to every practicing eogineer. The proper mod-
eling of system performance and machine arithmetic is an active
concern of both the contral [, 15] and computer science i1, 2
commudities. Investigators have also begun to directly address
the performance of discrete time nonlinear controllers jn contin:
ucus time closed loop systems [8] where, onghly speakin
desire 2 *Nyquist sampling theorem™ lor nonlinear systems.
Concurrent contrel system implementations, which are osed
to accelerate computation, offar additional obstacles to accurate
analysis and synthesis toals. The very noticn of sampling period
is compromised by a concarrent implementation. A conventional
discrele time controller has s oufpuls assome constant values
for discreie sample periods. A A concurrent controller, however,

may have no well defined sam nple period because the inputs and
culpais may be serviced asynchronously and concurrently.

4 Timeliness: A Critical Aspect of Dis-
tributed Controller Performance

There is no reason to hope for guick theoretical solutione to the
myriad design issues that arise from juxtaposition of continuous
dynamical plants with digital discrete distriboted controllers.
Indeed, as we have tried to suggest above, not even the proper
analytical framework for posing rigorous hybrid d problems
is_vet avajlable. At least, however, most of the compoaent is-
sues have already atiracted a considerable following, a growing
literature, and we can expect a great deal of progress aver the
next decade.

Motably absent from many treatments of distributed real-
time control i8 the explicit inclusion of interprocessor communi-
cation cosis concomitant with computation costs of a distributed
controller. Yet, in the course of building and running the robot
controller described in the next section, we have observed signifi-
cant variations in performance whose cause can be atiributed to
this phencmenon. The *timeliness™ of computations thro
out a nstwor n_bolh communication snd compu-
tation costs. In turn, the communication costs critically de-
pend on both network topology and the interprocessor buflening

_paradigms emplayed

4.1 Measures of “Timeliness®

A simple sequentiol model for 3 terminating computation has
it read some operands from an input, evaluate an expression,
and write the results to an cutput. We shall call the inter-
val of time hetween reading the operand and writing the result
(including the finite period consumed by ifc operations them-
selves) the latency of the computation. H the computation is
performed at regular cycles, we shall term the interval of time
between successive results the npdate period of the system.
In the terminclogy of classical contrel theory, “sample peciod™
corresponds to the above definition of update period.

A simple concurrent model of compatation has the system
teading from = inputs, computing an expression, and writing to
m outputs all concurrently. The “Sample period™ is ill defined
in this case. However, a well defined interval of i

between data being read at input iand a valid result based upon
this data appearing at output j. We shafl term this interval

the i — /" cross Isiency of the compulabion. There will,
in general, be » - m cross latencies for such a system. [f the
computation i performed repetitively, we shall term the interval
of time between successive resulis at the y'th cutput to be the
_i™ update period of the computation.

Mote that, unlike the sequential model presented above where
update period is at least as great as latemcy, the concurrent
model has no such restriction becanse several computations may
be simultaneously executing. We leel these gquantities capture
important qualities of concurrent computation systems essential -
te control applications, and in the sequel we discuss how inter-
nal system structure determines the values of these measures,
as well as how ihey might relate to dynamical models of robot
performance. We conclude this sectton with a discussion of how
to measure update and Iatency in actoal distributed- systems.

1199

4.1.1 Updatie and Latency Measurement

. To measure the update rate of & process one can simply filter

the output of the simple process through a dedicated updaie
measurement process. As indicated in the pictore of Figure i
the update measurement process simply forwards the output of
the simple process, and reports update measurements to the hast
over & apecial channel.

h+,_...

Figure 1: Update Measurement
Latency of one or more processes is measured by tagging
incoming data with a timestamp. The timestamp is passed along
with the results of each competation, and the process which
reads the final cuiput can read the timestamp to determine how
long the data wasin transit. This technique is pictured in Figure
2.

Vpdus
Reeponts

at

|mnwr

L]

B RN

Figare 2: Latency Measurement

Note that measurement of Jatency is preblematic if the di-
rected graph correspending to data dow contains any directed
cycles. For in suck a case, when the data “circolates™, suit-
able criteria determining when the computation has finished are
required. Many of our implementations have data fowing in
nadirected cycles, but we have never had the need for directed
cycles.

Cross latency is measured in systems which have multiple
data inputs and multiple data outputs. Latency between any
individual daia input and output is the actual cross latency for
the input-output pair.

Globat Clocks

Establishing a global time refetence is a simple matter whea
the network is fully connected either via chaanels {C5F Model}
of & common bus (5M Model}. In practice

we have designed
asynchronous control networks. Controller speration 3% not

4.1.2

require aay global time reference — leedback from the physical
plant itseif provides the altimate measure of “timeliness™. Only
when we WIEN addiitonal diagnostic information from the system,
such as cross latency of run-time execution tracing, does a global
dlock become necessary. A global clock of sufficient accuracy
for mosl purposes may be established by providing stable Jocal
processor clocks which are synchronized at system startup.

4.2 Communication and Computation Performance

Issues

A computer system often has predictable time costs assorciated
with primitive computation operations such as arithmetic { +, -,
X, +, etc...), elementary functions { sin(-}, cos{-}, etc... }, con-
trol Aow, and the like. Distributed systems will also often have
predictable time costs associated with primitive interprocessor
communication operations. Tt is sometimes.possible to estimate

the execution time of simple determiniatic programe by summing
the time taken for #ach individual operation in the source code.
This naive estimate of system performance, however, fails to ac.
count for significant system Jevel effects which we shall discuss
in this section. We will illustrate system level effects in the con-
text of pipelined systeras, because they are perbaps the simplest
concurrent systems which clearly illustrate the phenomenon,

4.2.t Buffering Effects: No Buffering

When several processes pass data over unbuffered links in a
pipelined fashion the data update and latency depend in a curi-
ous fashion on the intervals at which data is made available to
the first processor {Pinge |, the individual process latencien (p;},
the individual communication latencies (¢;), and the intervals at
which the final results are read from the last process (Pouipus).

#in}

Figure 3: A Simple Pipelined Computation

Figure 3 shows a simple pipeline in which a process repeat-
edly performs & blocking read on its input link, evaluates a fune-
tion, and performs a blocking write to its output link.

The average update rate of results from the pipeline is deter-
mined by the slowest process cycle in the pipe, maz{Piouis Poutpat
(P + i+ cig1)izi,z)- This is a consequence of the syncheonization
imposed by the unbuoffered, blocking communication. At steady
state the processes all eventually depend syachromounsly either
directly or indirectly on the slowest procesa jn the pipeline,

The average latency of the pipeline is more difficult to pre-
dict. The slowest process contributes the latency of its period.
The “upetream” processes are divectly or indirectly synchronized
with the slowest process - waiting to write thefr results to their
neighbor. Once a steady state is reached, sach process upsiream
of the slowest contributes one maoltiple of the alowest’s period to
the overall latency. The downstream processes form their own
pipeline which hax its awn slowest process, thos these processes
mast be recursively analyzed to determine their overall latency
contribution 1o the pipeline. The latency analysis must be ap-
plied recursively to the downstream processes until the only re-
naining downstceam item is the period with which results are
read from the octput of the pipeline, Fouipu:-

4.2.2 Buffering Effecis: Fifo Buffering

The case of communication via first-in first-out buffered links

_ with blocking [fQ is the same as unbuffered links when one

1200

represents buffered channels as an appropriately sized chain of
computationless processes which simply input and outpot re-
peatedly.

4.2.3 Buffering Effects: Latest Buffering

In anather kind of buffering, which we shall call latest buifer-
ing, two processes perform one way communication via a shared
variable to which one process may perform atomic writes, and
from which the other process may parform atomic reads. The
reads and writes are discrete in time, and non blocking. The
second process clearly may only read the “latest™ value written

BRI g A ST R ot A

P G R A e

'L

i

TR AR

by the first process. This buffering techoigue can be useful for
avoiding synchronization problems in concurrent systems, since
the two processes are completely asynchronous.

The update perod of such a process ia simply that of the
computation itself along with the internal and external commu-
aication times. Mote that the update rate is independent of the
data inpot rate. The lateacy period for data within a process
is given by the sem of the update pericd, the time the data
waited in the inprt buffer, and the time consumed by the actual
input and cotput operations. Figure 4, which shows the sxperi-
mentally measured latency of such a computational process as a
fonction of the frequency at which the input buffer receives new
data, shows that update rate is indeed independent of input rate
and that average latency ia equal 1o the update period plus half
the input period.

- atency
—=Update
[+ Input Cata Rate

Figure 4: Update and Latency vs Data [nput Rate.

5 A Distributed Robot Controller

We have implemented distributed real time control systems.
This section offers a brief discussion of some design and im-
plementation aspects of the actual control systems.

5.1 Device Independence: Contrel and Actuation

‘Where does the controller end and the plant begin? While the
conceptual distinction Detween the Two eniities may be clear,
the physical division is ambiguous. I8 the division at the cutput
shaft from the electric motor to the link? [s it at the command
input to the motor power amplifiers? Or is it at the dicdes of
an optical shaft encoder?

We have found it convenient to place this concepinal division
within the processor network itself, partitioning the network into

an actuator subsystem considered to be part of the plant and
a contro! subsystem which constitutes the conlroller. Each

“Tobot Jount has a dedicated actuator processor which provides

a device independent joint interface to the control subsystem.
It handles the multitude of housekeeping task necessary to run
an actual motor — possibly including commautation, position
and welocity estimation, safety monitoring, and the like. The
actuator process is a smart device driver which provides the
controt subsystem with a uniform jnterface to the many {often
inferiatingly different) motor hardware interfaces of the robot.

Each actuator process has one channel to and one channel
from the control subsystem. To the control subsystem it pro-
vides current state information — position and velocity of the
Jjoint — in fAoating point format in conventicnal units. From the
control subsystem it receives torque (or force) commands, also

1201

in Aoating point format and conventional units. This modular
design limits device dependent design to the actuator processors
and frees the control subsystem to perform the purely “algorith-
mic” task of executing a control law.

ZN |

Arimabar

Havwerk] u | Madwark
—

Figure 5: Control System Structure
We feel that the distinction between actuator and controller
subsystems offers implementation advantages, by modularizsing
device dependence, a8 well as the conceptual clarity of isolating
the more abatract algorithmic and computational control func-
tions within the controller subsystem.

£.1.1 Computational Hardware

The computational hardware for these implementations was the
Yale XP/DCS, a powerful real-time control node based on the
INMOS Transputer flcating point microprocessor. Students at

the Yalk robotics Lab currently use the XPfDCS in sciual work-
ing systems which include: A robot juggler {4), a GMF A-
500 SCARA arm [5] a field-rate real-time vision systam, an ad-
vanced sensor-based obstacle avoidance system 8], a variable-
reluctance motor commutation test bed, and a one degree of
freedom pneumatic-muscle robot. Several new projects are un-
derway.

5.1.2 The Plant

The GMF Robotica Model A-500, a Four degree of freedom
SCARA iype arm showa in Figure 6, was chosen as the tar-
get mechanical wpit. Each joint which has a motor capable
of delivering torque and & position sensor. Like virtuvally all
commercially available robot systems, the original A-500 system
controller provides an integrated high level user interface which
serves admirably in industrial applications, bot precludes the
low level servo ictervention which iz needed in the research lab-
oratory. It was therefore nacessary to replace the manufacturer’s
control system with our own low level interface. At present in-
terfaces are fully operational for the two primary revolute axes,

5.2 Actual Controller Computational Performance

As a preliminary test for this CSP controller architecture
we have implemenied the well knowa “computed torque™ non-
linear feedback conirol algorithm. While the performance of
this algorithm has been extensively analyzed and simulated, its
computational reqoirements have precluded its widespread use
in actual systems. Several excellent experimental implemenia-
tions have been reported in the literature. A purely feedforward

S
Figure &§: The GMF Model A-500

inverse dynamics implementation by Kanade at. al. [9] achieved
a 1.2 m5 updaie period for a six axis arm by exploiting struc-
tural features of the Newton Euler derivation for equations of
motior. An implementation by Leahy et. al. [12] obtained a 14
m5 sample period for a six axis arm. Khosla and Kanade [10]
achieved a 2 m5 sample pericd for a six axis arm uslng approx-
imations of nonlinear terms. An et. al. [1] obtained & 7 m5
sample pericd for & three axis arm in an exact implementation
osing scaled integer representation.

Raiher than optimizing this algorithm to fit an avaitable ar-
thitecture, we constructed an architecture to suit the algorithm.
Wa bazed aur implementation on the exact Euler-Lagrange equa-
tiona for the three dynamically conpled joints of a GMF A-
500 SCARA arm, including all nonlinsar terms of the deriva-
tion. Full 32 bit flcating point representation was employed,
and mathematical axpressions were not optimized to omit spe-
cial case operations on parameter values of 0.0, 1.0, and the like.

Caairalier AcLumis
Teberiiam JSawpaam
boou
Hods Limhk s Awrt
- (X N
e r
Linh Condredl [g, i
Jor
J-nk & 3
p— ad P i p——
o -
Liak & Comurnt[g ¢ []
[
Liak o 3
E Central LA .
: 2] L
Liak & CTomrel] V8 & 3
[2T}
I Link @ 4

Figure T: A Controller Hardware Topology.

The system was entirely programmed in the high level language
OCCAM, and no assembly fanguage code was used anywhere in
the system. As pictured in the topology of Figure T the feed-
back expression for an individual joint, comprising the entire
feedback gain calculation (induding off.diagonal terms} and the
appropriate rows of the generalized interia and coriolis matrices,
were partitioned to processors directly connected to the corre-

eponding joint actuwator processor.

Figures 3, 9, and 10 tabulate actual measured cross Latency
matrices for this implementation. The control network has three
inpots ard threa ontputs cosresponding to the respective robot
artuator processors. The row jndex index of & matrix indicates
the state input from each actuator and the column index indi-
cates the command output to eachk actuator. For example the
(1,1} element of the mairix represents the sell latency of the
aetwork for actuator 1, while the {1,2) element represeata the
croea latency from actuator 1 through the network to actuator
2. Uaits are microseconds.

The network topology and computation distributioa scheme
was identical in each caze, however different buffering strate-
gies were employed for interprocess communication. Latencies
uniformly under im%, Figure 8 are olserved for the unbufferad
netwark. Introducing latest buffering, shown in Figure 9, is seen
to significantly increase the off-diagonal terms — representing
increased Iatency between concurrent partitions of the control al-
gorithm. Figure 10 shows cross latencies obtained by employing
unbuffered communication within the ajgorithm partitions and
employing latest buffering between them. The strong diagonal
dominance of the matrix shows *self latencies™ vaiformly under
800p5 (for the computationally identical exact computed torque
algorithm) at the expense of increased off-diagonal latencles.

These experimentally measured latencies reveal computa-
ticnal performance which compares favorably with other reported
implementations, thus establishing the usefulness of CSP archi-
tectures for robot control. This data underscores the contri-
bution of communication time te overall latency in comcurrent
controllers. The examples particularly demonstrate the signif-
icance of buffering strategy in determining the commuxication
costa of a given network topology.

link 1 2 1
1 | 817 | TO€ | B22
2 | 982 | 832 | %20
3 | 860 | T3l | 829

Figure 8: Actual Cross Latency: Unbuffered (uSec)

| node 1 2 3|
1 985 | 1320 | 1278
z 1166 | 1021 | 1270
3 1422 | 1236 | 967

Figure 9: Actual Cross Latency: Latest Buffering (uSec)

node 1 2 3
i 5G% | 1456 | 1718
2 1486 | 572 | 1457
3 1707 | 1457 | 574

Figure 10: Actual Cross Latency: Combination of Un- and
Latest-Buffaring [uSec)

Conclusion

%, substantial and ever increasing literature on distributed ar-
ures within the robolics communily suggests a consensus
concurreacy offers the only practical solution ta increasing
Pnta.ﬁona] needs.
We have argued that sample pericd, the classical measure
sgimeliness”® in discrete time controllers, is problematic for
ent contrel systems, and have proposed the well defined
ities of update pericd {which reduces tc sample period
he case of sequential implementations) and cross latency as
eralized measures of controller computational performance.
We have constructed a working robot controller, weing com-
reially available components and development tools, whose
ofmance compares satisfactorily with both sequential and
ibuted applicaticas in the literature, Moreover, our exper-
ats demonstrate that update and latency in concurrent sys-
depend critically on both compuiation and communication
even thoogh the latter have been relatively ignored in the
bterature. We have shown that, ia turn, communication costs
send critically on both the network topology and boffering

EEY.

For simple (pipeline) topologies we have developed a roughly
sccurate tool for predicting the latency and update pericds that
Foesult from the buffering paradigms of Section 4.2, as depicted
N 4. The surprising varlation in cross latencies {Figures
&% 9, and 10} that cbtains from schemes in the less trivial topolo-
it gies (Figure 7) suggests the need lor a richer set of theoretical
techriques. For even though we do not know exactly what ef-
fect the vatious cross latencies will have on the performance of
par physical closed loop systems {experimeats of this kind are
presently in progress) it seems virtually certain that these effects
" wiB become more dramatic in larger distributed controllers.

References -

(] Chae H. Ar, Christopher G. Alkeson, and John M. Hollerbach.
Model-Baaed Control of a Robe! Manipulotor. MIT Presa, Cam-
bridge, MA, EISA, 1988,

[2] Geoif Barrett. Yerifying the transputer. In NATUGS: Proceedings
of the Firsl Conference of The Norih Americar Tronapuier Uacers
Group, pages 21-29, Salt Lake City, UT, USA, 1089,

[3] A. W. Brockett. On the computer control of moverent. [n JEEE
Inlermeiional Conference on Robofics and Axiomalion, pages
534-540, Philadelphia, PA, USA, L1988,

[4} M. Bikler , D. E. Koditschek, and P.J. Kindlmane. A Simple
Juggling Robot: Theory and Experimentation. la ¥. Hayward
and O. Khatib, edilors, feiernational Symposinm on Ezperimen-
tal Robotics, page (to appear]. Springer-VYerlag, 1588,

15} M. Pdhler, L. Whitcomb, F. Levie, and D. E. Koditschek. A
distributed nwesage passing computational and ifo engine for
real-time motion control. [n Proc. American Conirof Conference,
pages 478488, Pittshburgh, PA, Jun 1989. American Conlrol So-
clety.

[6] Edward Cheung and Viadimir Lumelsky. Development of sensi-
tive skin for & 3d robot arm operating in an uncertain environ-
ment. In IEEE [nternational Confersnce on Robatics and As.
{omaiion, pages 1065- 1081, Scotiedale, AZ, USA, 1985,

[71 ©. A. R. Hoars. Communicating Sequentie! Processes. Prentice.
Hall, Englewood Cliffs, NJ, USA, 1085.

E]

4

[8} Ping Esn and Shanksr Sastry. The effect of discretized feedback
in & closed loop syetemn. In Procesdings of the $6th Conference on
Decision end Conlrof, pages 15181523, Loa Angeles, California,
[SA, 188T.

[5] Takes Kansde, Pradeep K. Khesln, snd Nobuhiko Tanaks. Real-
time conteol of cmu direct-drive arm ii using costormized inverse
dynamics. In FEEE Conference om Decision and Conlrol pages
1345-1352, Las Vegas, Nevada, 154, 1984,

[10] Pradeep K. XKhosls and Takeo Kannde. Real-time implemanta-
tion and evalustion of model-based conirols on emu dd sem i In
Procecding TEEE Intermational Cosference on Rebotice and As-
tomation, pages 1548-1555, San Francisco, CA, Apr 1986,

[11] V. W. Kxlisch snd W. L. Miranker. The ari ic of the digital
computer: A mew spproach. STAM Review, 28(1):1-40, March
1984,

{12 M. B. Leshy, Jr,, K. P. Valaeanis, sed G. N. Saridis. The effects

1233

of dynamic models on robot control, [n [EEE faternaiional Con.
Jerence sn Robolice and Awlometion, page 4954, San Francisco,
CA, USA, 1986,

[L13) C.5.G.Lee. IEEE Transactions on Robolics and Autamation Spe-
cial [zsue on Robot Manipulators: Algorithme snd Architectures.,
October 1989,

[14] A. Pnueli. Applications of temporal logic Lo the specifieation and
verification of reaclive systems: A suevey of current trends. In
1.W. Bakkez, W.P. de Roever, and G. Rozenberg, editors, Cur-
rend Trends in Concurrency, chapter 9, pages 510-584. Springer-
Verlag, 1986

[15) P.J. Ramadge and W. M. Wonbam, Supecvisory conirol of s class
of discrete evenl processes. SIAM J. Conirel snd Oplimizoiion,
25{1):208-230, Tan 1987,

[18] E. Rimon and D. E. Kodilschek. Exact robol aavigstion in
geometrically complicated bub topologically simple spaces. In
Proc. IEEE Iniernationa! Conference on Robotics and Auioma-
tion, Cincinoati, OH, USA, May 1890

j7] P. Woodbury, A. Wilson, B. Sheiv, B. Gertner, P. Y. Chen,
1. Paritlet, and E. Aral. Shared memory meltiprocessors: The
right spproach to paralle]l processing. In Proc. ik TEEE Com-
pxter Sociely International Conferzace — COMPCON, pages T2~
80, San Franciseo, CA, USA, February 1389. IJEEE Computer
Society FPrese.

