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Abstract— This paper describes a method for finding the
stability regions of the PI and PIP controllers for TCP AQM. The
method is applied on several representative examples, showing
that stable controllers can exhibit widely different performance.
Thus, the results highlight the importance of optimizing the
design of PI AQM. Furthermore, the paper shows that the
previously proposed PIP controller can be unstable in the
presence of delays even for the control parameters given in the
literature.

I. INTRODUCTION

Control-theoretical methods lead to stable, effective, and ro-
bust congestion control, but the limits of control performance
are still largely unknown. Congestion control regulates the rate
at which traffic sources inject packets into a network to ensure
high bandwidth utilization while avoiding network congestion.
End-point congestion control can be helped by Active Queue
Management (AQM), whereby intermediate routers mark or
drop packets prior to the inception of congestion. AQM has
been extensively addressed by control-theoretical methods (see
for example [1] and the references therein). However, it is still
unclear whether existing AQM controllers achieve “optimal”
performance. In particular, previous work lacks a complete
characterization of the stability region, a definition of network-
relevant control performance, and the design of provably
optimal AQM controllers.

A long-term goal in congestion control is to understand
the limits of control performance. In this paper, we describe
the stability region of the Proportional-Integral (PI) AQM
controllers. The stability region describes the set of feasible
design points. Stable designs can be subsequently considered
within an optimization framework. Therefore, the character-
ization of a stability region is the first essential step toward
the design of optimal AQM controllers. The derivation of a
stability region is involved due to time delays that arise from
the non-negligible network latencies between sources, sinks,
and routers. The paper exploits recent results on PI control
theory for time-delay systems to obtain the PI stability region.
We find that the controller performance varies significantly
across the stability region and, in particular, there are stable
controllers that have significantly better performance than
previously proposed ones. Since stable PI controllers differed
widely in performance, the results support the importance of
finding optimal PI controllers. Furthermore, the paper shows

that the previously proposed PIP controller [2] can be unstable
in the presence of delays, even for the control parameters given
in the literature.

AQM is one of the most mature areas in network control, but
previous work has neglected the investigation of the stability
region. The original RED controller has been analyzed in
control-theoretical terms, and shown to be outperformed by PI
[3]. The PI controller is a natural choice due to its robustness
and its ability to eliminate the steady-state error. The original
PI AQM gives a single pair of the proportional gain kp and the
integral gain ki that guarantees the stability of the closed-loop
system as a function of the network parameters [3]. However,
there are other (kp, ki) pairs that stabilize the closed-loop
system and result in better performance. The PIP controller
is a variant of PI [2]. Although PIP is stable in the absence of
time delays, we show in this paper that PIP becomes unstable
with time delays even in the exact scenarios considered by
previous work.

This paper is organized as follows. In Section II, we
introduce the linearized TCP-AQM model with PI and PIP
controllers, and we present the method we used to obtain
the complete stabilizing region. In Section III, we compute
the complete set, SR, of stabilizing PI parameters. Simulations
that stress the importance of extracting a complete stabilizing
region are presented in Section IV. Directions for future work
are given in Section V, and conclusions in Section VI.

II. BACKGROUND

A. Linearized TCP Model with the PI Controller

A fluid-based linearized model for TCP congestion control,
delays, and queues is expressed by the transfer function [4]:

P(s) =
B

(s + α)(s + β)
e−sd , (1)

where d is the round-trip delay (seconds), α = 2N/(d2C),
β = 1/d, B = C2/(2N), C is the bottleneck link capacity
(packets/second), and N is the number of TCP flows traversing
the link. The introduction of PI AQM results in the feedback
control shown in Fig. 1 [3], where q(s) is the Laplace trans-
form of the instantaneous queue length q(t), q0 is the desired
queue length around which the controller should stabilize q(t),
and

G(s;kp,ki) = kp +
ki

s
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kps + ki
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Fig. 1. The closed-loop system of TCP-AQM linearized model P(s), with
the PI controller, G(s).

is the Laplace transform of the PI controller. The controller
G(s;kp,ki) will be denoted simply as G(s) when the pro-
portional gain kp and the integral gain ki are clear from the
context.

B. The PIP Controller

To enhance the speed of response of the PI controller, a
position feedback compensation technique was proposed as an
inner loop to the system in Fig. 1 [2]. The new arrangement,
which is called a PIP controller, is shown in Fig. 2.

It can be shown with some mathematical manipulation that
the characteristic equation of the closed-loop transfer function
with PIP control is equal to that with PI control, except that
the proportional gain, kp, of the PI controller is increased by
the value of kh. Therefore, the stability region in the (kp,ki)
plane for the system with the PIP scheme is simply the same
stability region as with a PI controller shifted to the left by
kh. Therefore, the stability analysis can be restricted, without
loss of generality, to the PI system in Fig. 1.

The original PIP stability argument disregards the delay
term e−sd . This simplification is a significant weakness be-
cause delays in feedback loops are known to reduce stability
margins drastically. The experiments in Section IV will con-
firm this.

C. Analysis of Time-Delay Systems

Given a network topology with specific C and N, our
goal is to determine all values of the (kp,ki) gains so that
the feedback closed-loop system in Fig. 1 is stable for all
values of delay less than d. Delays in the feedback loop
are captured in (1) in the exponential term e−sd , which in
turn greatly complicates the stability analysis beyond the
traditional textbook techniques of Control Theory [5]. Previous
work sidestepped the problem through assumptions and by
constraining the PI gains [3]. An alternative approach is to
exploit recent results on time-delay systems [6]. This section
reviews one such recent method for time-delay PI control, and
the rest of the paper will apply this method for the stability
analysis of TCP AQM.
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Fig. 2. The PIP controller: an inner loop with constant gain is introduced
to provide position feedback compensation.

The stability region SR is the complete set of points (kp,ki)
for which the closed-loop system in Fig. 1 is stable for all
delays L between 0 and d. The stability region SR can be
expressed as SR = S1 \SL [6, p. 249], where

• S1 = S0 \SN .
• S0 is the set of kp and ki values that stabilize the delay-

free system P0(s).
• SN is the set of kp and ki values such that G(s;kp,ki)P0(s)

is an improper transfer function. Formally, SN is

SN =
{

(kp,ki) : lim
s→∞
|G(s;kp,ki)P0(s)| ≥ 1

}
. (2)

• SL is the set of (kp,ki) values such that G(s;kp,ki)P(s)
has a minimal destabilizing delay that is less than or equal
to d. Formally, SL is

SL = {(kp,ki) /∈ SN : ∃L ∈ [0,d],ω ∈ R s.t.

G( jω;kp,ki)P0( jω)e− jLω =−1}. (3)

To compute SR, first define the projection of the stability
region SR on the line kp = k̂p as:

SR,k̂p
= {(kp,ki) ∈ SR : kp = k̂p} ,

so that the stability region can be calculated for each value of
the proportional gain k̂p:

SR =
[

k̂p

SR,k̂p
. (4)

To compute SR,k̂p
, define the projections

S1,k̂p
= {(kp,ki) ∈ S1 : kp = k̂p} ,

SN,k̂p
= {(kp,ki) ∈ SN : kp = k̂p} ,

SL,k̂p
= {(kp,ki) ∈ SL : kp = k̂p} .

Then, SR,k̂p
= S1,k̂p

\ SL,k̂p
. It remains to compute SL,k̂p

by

evaluating the condition in (3) that G( jω;kp,ki)P0( jω)e− jLω =
−1. The set SL,k̂p

can be further decomposed and computed
as:

SL,k̂p
= S+

L,k̂p
∪S−

L,k̂p
,



where

S+
L,k̂p

=
{

(k̂p,ki) /∈ SN,k̂p
: ∃ω ∈Ω+.ki =

√
M(ω)

}
, (5)

S−
L,k̂p

=
{

(k̂p,ki) /∈ SN,k̂p
: ∃ω ∈Ω−.ki =−

√
M(ω)

}
, (6)

Ω+ =

{
ω : ω> 0,M(ω)≥ 0,

L(ω) =
π +∠[(

√
M(ω)+ jk̂pω)R0( jω)]

ω
≤ d

}
, (7)

Ω− =

{
ω : ω> 0,M(ω)≥ 0,

π +∠[(−
√

M(ω)+ jk̂pω)R0( jω)]

ω
≤ d

}
, (8)

M(ω) =
1

|R0( jω)|2
− k̂2

pω2 , (9)

R0(s) =
P0(s)

s
. (10)

III. COMPUTING SR FOR TCP-AQM PI CONTROLLERS

In this section, we compute SR for the PI controller of Fig. 1.
Henceforth, the analysis assumes that kp,ki≥ 0: negative gains
are counterintuitive in operational terms because they lead to
a decrease in the sending rate when the queue length is less
than the target value. Although negative gains are disregarded
as operationally meaningless, they can formally stabilize the
closed-loop system because the open-loop is stable and can
tolerate a slightly destabilizing controller.

A. Computing S0

By dropping the delay term, e−sd , from P(s), we obtain that

P0(s) =
B

(s + α)(s + β)
.

The characteristic equation of the closed loop-system in Fig.
1 becomes:

1 + G(s) ·P0(s) = 1 +
kps + ki

s
· B
(s + α)(s + β)

= 0,

which is equivalent to

s3 + (α + β)s2 + (αβ + Bkp)s + Bki = 0. (11)

To compute S0, we construct the Routh array [5] as follows:
s3 : 1 αβ + Bkp

s2 : α + β Bki

s1 : [(α + β)(αβ + Bkp)−Bki]/(α + β) 0
s0 : Bki

A necessary and sufficient condition for stability is that all
entries in the first column (after the colon) are positive [5, p.
215]. This condition reduces to the following inequalities:

1) α+β> 0, which is always true (the network parameters,
N, C, and d, cannot be negative).

2) Bki > 0, which yields ki > 0 since B is always positive
(the network parameters, N and C, cannot be negative).

3) [(α + β)(αβ + Bkp)−Bki]/(α+β)> 0, which reduces to
ki < (α + β)(αβ + Bkp)/B

Combining the last two conditions defines the following
range of stabilizing ki values with the upper boundary being
a function of kp: 0< ki < ki,max, where

ki,max =
(α + β)(αβ + Bkp)

B
. (12)

Moreover, for a feasible solution (α+β)(αβ+Bkp)/B must
be positive. This gives the range of stabilizing kp values, i.e.,
kp >−αβ/B, which is always satisfied since only non-negative
gains are considered in this analysis.

The shaded area in Fig. 3 is the permissible region that
satisfies the stability conditions of the delay-free closed-loop
system, i.e., S0. The area is under the line with a slope of
(α + β) and a y-intercept of αβ(α + β)/B.

B. Computing SN

Since

lim
s→∞

∣∣∣∣
(kps + ki)P0(s)

s

∣∣∣∣= lim
s→∞

∣∣∣∣
(kps + ki)B

s(s + α)(s + β)

∣∣∣∣= 0< 1,

we have that SN = /0 by definition (2) of SN . Thus, S1 = S0.

C. Computing SL and SR

The stability region SR will be plotted by following the
analysis in Section II-C. Sweep through the values of kp and
for each kp = k̂p:
• Compute the set Ω+ as in (7).
• Compute the set S +

L,k̂p
as in (5).

• Compute SR,k̂p
= S1,k̂p

\S+
L,k̂p

.

Then, the stability region SR is obtained as in (4). Because we
consider only positive gain values, we ignore the two cases of
(8) and (6).

IV. SIMULATIONS

In this section, we use the analysis of Section III to compute
the stability regions for examples with PI and PIP controllers.
Furthermore, we use Simulink

R©
[7] to simulate the step-input

response of the continuous-time fluid-based control systems
in Fig. 1 and in Fig. 2. In the simulations, a non-linear
saturation element is added to prevent the queue from growing
negative. Although such a saturation element is easily added in

k i

kp
∞

ki = (α+β)(αβ+Bkp)/B

Fig. 3. Stabilizing region of kp and ki gains for the non-delay closed loop
system.



simulation, it has been disregarded in the analysis above and
in previous work because its non-linearity makes the system
analysis intractable.

A. PI Simulations

Example 4.1: Consider a network with the following pa-
rameters: N = 60, C = 3750 pkt/sec, d = 0.246 sec, and
q0 = 50 (the same scenario as in [3, Example 2]). The region
of stabilizing kp and ki is shown in Fig. 4. The black dot
represents the point (k?p,k

?
i ) = (1.8497 · 10−5,9.7811 · 10−6)

prescribed in [3]. The system response (the queue length)
with these values is shown in Fig. 5. Other points inside
the stability region did not give better performance than the
one chosen by [3]. For example, Fig. 6 shows the response
when the PI parameters are in the middle of the region, i.e.,
(kp,ki) = (10−4,6 ·10−5).

Example 4.2: Let N = 60, C = 1250 pkt/sec, d = 0.22 sec,
and q0 = 50 (as in [2]). Now, k?p and k?i according to [3] are
7.5546 · 10−4 and 1.4984 · 10−3, respectively. The complete
region of stabilizing kp and ki is shown in Fig. 7 along with
the point (k?p,k

?
i ). The system response (the queue length) with

these values is shown in Fig. 8. Fig. 9 is the output response
when using another set of parameters, (kp,ki) = (3 ·10−4,5.9 ·
10−4), which shows improved performance over the set of
(k?p,k

?
i ).

Example 4.3: As a third example, assume the network
parameters are N = 75, C = 1250 pkt/sec, d = 0.15 sec, and
q0 = 50. Fig. 10 shows the stabilizing region along with the
point (k?p,k

?
i ) = (0.0044,0.0233) that results from applying the

method in [3]. Fig. 11 shows the system response using k?p,
and k?i . The response exhibits oscillations, an overshoot of
about 100%, and a relatively long settling time. On the other
hand, when using another set of parameters inside the stability
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Fig. 4. Stabilizing (kp, ki) region for Example 4.1.
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Fig. 5. The output response for
Example 4.1 using (k?p,k

?
i ) =

(1.8497 ·10−5,9.7811 ·10−6).
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Fig. 6. The output response for
Example 4.1 using (kp,ki) =
(1.0 ·10−4,6.0 ·10−5).
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Fig. 7. Stabilizing (kp, ki) region for Example 4.2.

0 5 10 15 20
0

10

20

30

40

50

60

70

time(sec)

qu
eu

e 
si

ze
 (

pa
ck

et
s)

Fig. 8. The output response for
Example 4.2 using (k?p,k

?
i ) =

(7.5546 ·10−4,1.4984 ·10−3).
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Fig. 9. The output response for
Example 4.2 using (kp,ki) =
(3.0 ·10−4,5.9 ·10−4).

region such as (kp,ki) = (0.002,0.005), the response settles at
50 in a much shorter time, without oscillations and without
overshoot; see Fig. 12.

B. PIP Simulations

Example 4.4: For the PIP controller, we show the original
PIP experiment [2]. The network parameters are C = 1250
pkt/sec, d = 0.22 sec, and q0 = 50. As in [2], we let kh =
0.0014, kp = 2.0 ·10−3, and ki = 5.0 ·10−3.
The stability region is same shape as that of Example 4.2
shifted to the left by kh = 0.0014 (see Sec. II-B), and it
is shown in Fig. 13. The chosen gains correspond to the
point in the figure on the upper right, and are outside the
stability region. Correspondingly, the step input response of
the linearized systems grows unbounded (details omitted). The
system is then simulated with the addition of a non-linear
element to bound q(t)≥ 0 and the output response is shown in
Fig. 14. The saturation element is keeping the output bounded,
but it cannot prevent severe queue oscillations.
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Fig. 10. Stabilizing (kp, ki) region for Example 4.3.
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Fig. 11. The output response for
Example 4.3 using (k?p,k

?
i ) =

(0.0044,0.0233).
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Fig. 12. The output response for
Example 4.3 using (kp,ki) =
(0.002,0.005).

V. FUTURE WORK

This paper makes an indispensable contribution to the
understanding of PI controllers by providing a complete char-
acterization of their stability regions. This characterization
paves the way to several avenues of future work.

In the first place, the Simulink
R©

simulations describe the
continuous-time dynamics of the flows and queues. However,
continuous-time systems are but an abstraction and a simpli-
fication of the actual packet dynamics. Thus, the Simulink

R©

evaluation should be complemented with packet-level simula-
tions and emulations, e.g., via ns-2 [8]. More fundamentally,
continuous-time controllers must be translated into discrete-
time to be implemented in AQM routers. The discretization
process, which includes the choice of a discretization method
and the choice of a sampling frequency, may then affect the
performance of the packet-level system.

The design of an optimal PI controller is the problem of
finding the kp and ki parameters that maximize or minimize a
certain objective function and that lead to a stable controller.
Hence, the stability region is the set of feasible solution
to an optimization problem that is yet to be addressed. In
the first place, the optimization problem requires that an
objective function be defined so as to express convincingly the
congestion control goals that are relevant to networks. Further,
the optimization problem must be solved to obtain the optimal
controller.

VI. CONCLUSIONS

In this paper, we have characterized the stability region of
PI AQM controllers. The derivations are involved due to the
presence of time delays in the control loops. The paper has
shown a test to determine whether a control design is stable
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Fig. 13. Stabilizing (kp, ki) region for PIP controller with the parameters of
Example 4.4.
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Fig. 14. The output response (queue size) for the PIP when using the
parameters kh = 0.0014, kp = 2.0 ·10−3, and ki = 5.0 ·10−3 (Example 4.4).

or not. The understanding of the PI AQM stability region
is an essential step in the design of optimal PI controllers.
For example, the paper presented examples of PI controllers
that are stable and have significantly better performance than
previously proposed ones.

The paper has highlighted the importance of giving a
complete characterization of the stability region to evaluate
alternative designs. In general, the paper is the first step toward
the application of optimal control methods to congestion con-
trol. We speculate that similar procedures could be useful in
other areas of feedback control of computer systems. Another
lesson learned is that it is hard to deal with time delays, but
delays are unavoidable in networks systems. In particular, we
have highlighted the danger of aggressive controllers, such as
PIP, that become unstable in the presence of time delays.
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