
 1

Chapter 1

Introduction

Control Systems and Networks

Networked control systems (NCSs) are the collaboration of two engineering fields,

communication engineering (either wired or wireless) and control engineering.

Because most NCSs are done in a wired environment, understanding network protocols

such as Ethernet, token bus, token ring and CAN, is required to model the system’s

behavior.

 The ISO (International Standard Organization) has set up a guideline for

computer networking called the open system interconnection (OSI). The OSI is divided

into seven layers: the physical layer, the data link layer, the network layer, the transport

layer, the session layer, the presentation layer and the application layer from the lowest to

the highest respectively. The IEEE 802 committee has issued standards for local area

networks (LANs): IEEE 802.3 (Ethernet), IEEE 802.4 (token bus) and IEEE 802.5 (token

ring). In LANs, the sublayer responsible for time critical/real time information is the

medium access control (MAC). Technically, the MAC sublayer is the bottom part of the

data link layer. It is responsible the assurance of the connection between nodes over the

network.

Ethernet (IEEE 802.3) uses the carrier sense multiple access with collision

detection (CSMA/CD) protocol to control its communication. The transmitting nodes

terminate their transmission after detected collisions. They wait for a random period and

try to send the frames again. The protocol is bandwidth efficient as justified in [8].

 2

The token bus (IEEE 802.4) is physically connected in a linear or tree-shaped

manner. Logically, the connection between stations is considered as a ring, where each

station knows its two logical neighbors. However, in order to use the protocol, the worst-

case time delay must be known. Even though the physical connection is linear, it does not

mean that physically successive station will receive the token after the previous station is

done. The token is passed to the station’s logical neighbors.

When initialized, the hierarchy of stations is considered by the MAC sublayer by

their addresses, the station with the highest number is the beginner. The station with a

token may send frames during some amount of time and it has to pass the token on. The

token bus divides the data into four priority classes, 0, 2, 4 and 6. When a station gets a

token, data with priority 6 is sent first and priority 0 is the last with some measure to

guarantee the data with priority 0 gets some allocation.

The IEEE 802.5 (token ring) network has a special bit pattern, called the token,

available for a station to acquire when the network is idle. The token is removed from the

network when a station decides to make a transmission. The token is regenerated after

the transmitting station finishes its transmission. An implication of the token ring design

is that the ring itself must have a sufficient time delay to allow a complete token to allow

a token to circulate completely when all stations are idle.

Another common protocol in today’s business is the controller area network

(CAN). CAN is a serial communication protocol that was developed to support

applications in the automotive industry. The MAC sublayer in the protocol is carrier

sense multiple access with arbitration on message priority (CSMA/AMP). The protocol

uses a multicast technique, i.e. a station transmits a message and other stations decide to

 3

accept or ignore the message depending on the configuration of a masking filter. For

collision protection, each message has a specific priority that is used to arbitrate access to

the bus where logic zero is dominant over logic one. This conflict is resolved during

transmission at the bit level of the arbitration field. A common-use CAN-based system in

device-level manufacturing is the DeviceNet. It uses standard CAN with an additional

application and physical layer specification. [4]

Categorized by the MAC algorithms, the protocols fall into two categories, ones

that produce constant transmission periods and those that create time-varying

transmission periods. The algorithms used in the IEEE 802.4 standard and the IEEE

802.5 standard yield constant transmission periods, whereas the IEEE 802.3 standard and

CAN produce time-varying transmission periods. Bounds for the transmission period will

be needed to guarantee stability of NCSs. This topic was studied in [7], [9], &[10].

Also, based on the MAC algorithms, the delay between transmissions (networked-

induced delay) is divided into two groups, deterministic and non-deterministic. If the

MAC sublayer of a protocol accesses channel using the random back-off CSMA/CD in

the Ethernet, for example, the delay from the protocol will be random. On the other hand,

the scheduling protocols (the IEEE 802.4 standard and the IEEE 802.5 standard) will give

deterministic delay.

Other concerns for stability of NCSs are length of transmitted packets and packet

dropping. The underlying protocol of the MAC sublayer in the network is the key to

controlling the length of packets to be transmitted. In Ethernet, for example, the data field

of the protocol is 1,500 bytes, so the size of transmitted packets is unlikely to affect real-

time feedback signals which are only a few bytes each. The information can even be

 4

lumped and transmitted in one packet. On the other hand, the data field in the DeviceNet

is only 8 bytes. The sensor data must be divided and transmitted in several packets.

Packet dropping is often an inevitable event in network data transmission despite

the provisions network protocols. In real-time feedback control, it might be advantageous

to drop an old control signal and implement a new one. These issues were studied in [11].

Throughout the simulations within, we assume single packet transmission with a

fixed transmission period from a digital controller equipped with an estimator. The study

of delay estimation in feedback control systems in network environments is the focus. For

networks using scheduling protocols, we propose static delay estimation to compensate

the system. For random access protocols, the network-induced delay is non-deterministic.

The static delay compensation is not effective in these environments. Another approach,

called dynamic delay compensation, is proposed for this scenario. The study is elaborated

in Chapter 3.

Thesis Organization

This thesis is organized as follows. Some background material and related

mathematical analysis of NCSs are reviewed in Chapter 2. This chapter also includes

network delay modeling of some NCSs (CAN and Ethernet). However, the main

contributions to the NCSs are in Chapter 3. This chapter explains about the importance

of the compensation of immeasurable delay, e.g. τca, and how it affects systems if it is not

compensated for. We summarize and conclude our study in Chapter 4.

 5

Chapter2

Background

State-Space Model for Systems with Delay

Delay Less Than One Sampling Period†

Consider the linear state equations with input delayed by λ :

),()()(λ−+= tutt BAxx& (2.1)

 .Hx=y (2.2)

The general solution to the equation is

τλττ duetet
t

t

ttt)()()(
0

0)(
0

)(−+= ∫ −− Bxx AA& . (2.3)

By sampling the system with sampling period h the solution for the state is

 τλττ duekhehkh
hkh

kh

hkhh)()()()()(−+=+ ∫
+

−+ Bxx AA . (2.4)

where we assume 0 < λ < T.

 While the signal u(t) is assumed piecewise constant over the sampling period

interval, u(t-λ) is not piecewise constant over the sampling period interval. The delayed

signal will change once during sampling period. The modified solution to the equation is

)()()()()()()(khudehkhudekhehkh
hkh

kh

hkh
kh

kh

hkhh ττ
λ

τ
λ

τ BBxx AAA ∫∫
+

+

−+
+

−+ +−+=+ . (2.5)

A discrete-time state-space model of the system is given by

),(
)(

)(

)(

)(01 khu
hkhu

kh
khu

hkh







Γ
+








−







 ΓΦ
=







 +
I

x

00

x
 (2.6)

† See [1] for details

 6

where

).(

),(

,

)(
1

)(
0

hkhude

khude

e

kh

kh

hkh

hkh

kh

hkh

h

−=Γ

=Γ

=Φ

∫

∫
+

−+

+

+

−+

τ

τ

λ
τ

λ

τ

B

B

A

A

A

Longer Time Delay‡

If the time delay, λ, is longer than the sampling period, h. The analysis in 2.2.1

needs a little adaptation. Decompose λ into multiples of T:

λλ ′+−= hd)1(0 < λ’ ≤ h, (2.7)

where d is an integer. The analysis is modified to

)())1(()()(10 dhkhuhdkhukhhkh −Γ+−−Γ+Φ=+ xx , (2.8)

with the same Φ, Γ0 and Γ1 as in section 2.1.1.

The corresponding state-space description is

)(

0

0

0

)(

)2(

)(

)(

0000

000

000

00

)(
)(

))1((

)(01

khu

hkhu
hkhu

dhkhu
kh

khu
hkhu

hdkhu
hkh























+























−
−

−





















 ΓΓΦ

=























−

−−
+

I

x

I

I
x

MM

L

L

MOMMM

L

M . (2.9)

‡ See [3] for details

 7

Compensation for Network-Induced Delay

In this section we review the compensation discussed in [10], [11]. The

compensation of NCSs is considered for sensor-to-controller delay, τsc, only. Feedback

systems are categorized to full-state feedback or output feedback systems. With full-state

feedback, the estimator compensates τsc. In the output feedback system, the estimator has

to do both compensation and the estimate state of the system. These methods are

compromising as far as delays are measurable. We use these approaches as our basic idea

for developing the compensation for both of measurable and immeasurable delays.

Full-State Feedback

Let a system be described as in (2.1) and (2.2), λ < h. For every plant output, the

data is time-stamped by the sensor in order to acquire the information about current time

delay, τsc,k. Sensor information reaches the estimator at time ksckh ,τ+ . By assuming there

is no measurement noise and all states are measured, the plant information at that time is

dssuekhekhkh
ksc

kscksc

kh
kh

kscksc)()()()(
,

,,

0

)()(
,, Bxxx

AA ∫
+

−+=+=+
τ

ττττ , (2.10)

where)(.ksckh τ+x is the estimated state at time ksckh ,τ+ .

 Applying the state feedback control law to the system

)()(,, kscksc khkhu ττ +⋅−=+ xK , (2.11)

)()(
~

))1((,1, ksckksc khhk τδτ +⋅⋅Φ=++ + xx . (2.12)

where

 kscksck h ,1, ττδ −−= + ,

 K⋅Γ+Φ=Φ)()()(
~

kkk δδδ ,

 8

 kek
δδ A=Φ)(,

.)(
0

dse
k

s
k ∫ ⋅=Γ

δ

δ BA

Figure 2.1 Plant and estimator timing for full state
feedback

Output feedback

In practice, all states of some systems are not measured. Here we assume that the

outputs from the plant are the only information we know. An estimator is needed to

estimate the state. A conventional current-state estimator is used in this study.

Without the delay, a current estimator is given by

)))1((ˆ))1((())1((ˆ))1((hkhkyhkhk c +⋅−+⋅++=+ xCLxx ,

where,)()())1((ˆ khukhhk Γ+⋅Φ=+ xx ,))1((*))1((hkhku +−=+ xK and Lc is

the estimator gain. The estimator is calculated in two steps. The estimator state)(khx is

projected forward to the next sample,))1((ˆ hk +x . Then the calculation is corrected with

the received plant output to give))1((hk +x .

 When τsc is taken into account, the current estimator scheme is described by

 9

1. Correction base on)(khy :

))(ˆ)(()(ˆ)(khkhykhkh c xCLxx ⋅−⋅+= ,

2. Forward to)(sckh τ+x :

dssueekh sc
scsc

kh

kh

skh
sc)()()(⋅⋅+=+ ∫

+ −+τ τττ Bx AA ,

3. Calculate the control law:

)()(scsc khkhu ττ +⋅−=+ xK ,

4. Forward to Tk)1(+ :

dssuekhehk
hkh

kh

shkh
sc

h

sc

sc)()())1((ˆ)()(⋅⋅++=+ ∫
+

+

−+−

τ

τ τ Bxx FA .

Figure 2.2 Plant and estimator timing diagram with
output feedback

Delay Modeling

Network induced delays can either be constant or random. If desire, the delays

can be made to be constant by buffering the delay to the maximum after each transfer.

This concept was proposed in Luck and Ray (1990), the drawback is, however, that

delays are made longer than necessary. [6]

 10

Constant Delay

In CAN-base networks, data (packet) contention for network channel usage is low

or non-existent since its topology is similar to a token bus network [4]. It is safe to say,

therefore, that there is only one packet in the network channel from one channel. This

includes periodically sent packets with idle network channels at the time of transmission.

In this case, the delays appear constant (with little-to-no fluctuation). Figure 2.3 exhibits

the delays from this case. Note that cable lengths and packet sizes affect the magnitude of

these delays. When there is more than one packet (the messages have different priority)

in the channel, and the messages are periodically sent, the transmission delays appear in

periodically symmetrical pattern as shown in Figure 2.4.

Figure 2.3 Network delays under the construction
constraints in [6] when there is no queuing.

 11

Figure 2.4 Delays of the CAN network in [6] when
sent messages have different priority.

Random Delay

In real communication systems, transmission delays might depend on one another

with an underlying probabilistic distribution, e.g. the Gamma distribution as stated in [5],

or they might not relate to one another. Empirical fitting of a single distribution to model

network delay is almost not possible. Mukherjee also stated in [5] that network delay is

not stationary (cannot be describe with a single time invariant mathematical model) over

a long period of time, but if slices into smaller period (10-30 min), the delay appears well

described as stationary.[12]

Markov delay Model

Markov chain captures dependency of delays between samples. The model

represents delays using various states, such as time-varying network loads or network

queues.

 12

Markov Chain

A finite Markov chain is a Markov process that takes values {rk} in a finite set S =

{1,2 ,3…,s}, with transition probabilities

ijkk qirjrP ===+)|(1 , (2.13)

The transition probabilities, qij, fulfill qij ≥ 0 for all Sji ∈, , and

1
1

=∑
=

s

j
ijq . (2.14)

The Markov State probability distribution is

)]()()([)(21 kkkk sππππ K= , (2.15)

where πi(k) is the probability that the Markov chain state at time k is i. The probability

distribution for rk is given by

Q)()1(kk ππ =+ , (2.16)

where the initial state probability

0)0(ππ = . (2.17)

A Markov chain is said to be regular if the transition matrix Q is a primitive

matrix, i.e. all its elements are strictly positive. That a Markov chain is regular means that

all states will be possible to reach in the future, there are no “dead ends” in the Markov

chain.

If a Markov chain is primitive the stationary probability distribution

)(lim kk ππ ∞→
∞ = is given uniquely satisfies

Q∞∞ = ππ , (2.19)

where ∞π is a probability distribution.

 13

 Let a Markov chain represents a network model with two distinct network loads –

low and high,

Figure 2.5 Markov delay model

},{ HLrk = ,

with an arbitrarily chosen transition matrix of









=

65.015.0

35.085.0
Q .

The probability distributions describing the Markov state at low load and high

load are a normal distribution with the means, sec007.0sec,003.0 == HL
µµ and the

standard deviation 002.022 == HL
σσ . Figure 2.7 is the Markov delay governed under the

stated conditions.

 14

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

Delay (sec)

Fr
eq

ue
nc

y

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

Figure 2.6 Simulated delays histogram according to the state
of the Markov chain when the load and is low, l, and high, h.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1

2

3

4

5

6

7

8

9

1 0
x 1 0

-3

s a m p l e s

d
e

la
y(

se
c)

Figure 2.7 The Markov delay of two network loads – Low
and High with QLL = 0.85, QLH = 0.15, QHL = 0.35 and QHH =
0.65.

 15

Sensor-to-controller delay VS controller-to-actuator
delay

 From his experiments, Nilsson distinguished the difference between the sensor-to-

controller delay,τsc, and the controller-to-actuator delay,τca, he found in CAN as:

“Sensor-to-controller delay When the message is to be sent the bus ca be idle or a
message can be under transmission. The probability for bus idle depends on the period
of the process. It will show up as a delta in the probability distribution function. If the
bus is busy we will get a nonzero τw (waiting time for a message) but there will never
be a queue of messages. The delay τw will be uniformly distributed from 0 to the time it
takes to send a message. The modeled distribution is shown in Figure 2.8.
 Controller-to-actuator delay The delay from controller to actuator can only take two
values when we have a one-load process. The reason for this is that if there was a
message waiting when the message was sent from the sensor, the transmission of the
waiting message starts before the message to the actuator is ready for transmission. In
this case, the delay until the transmission starts will be the time to transmit the load
message. If there is no waiting message the message to the actuator will be sent
immediately after some computation time in the controller node. The modeled
distribution is shown in Figure 2.8.”

(a)

(b)

Figure 2.8 (a) Delay measurements (b) Probabilistic
distribution functions of τsc and τca in [6] of CAN

 In the same study, network induced delays for an Ethernet network were

measured. The measurement at low network load showed that the τsc is periodic and the

τca is constant. The variation increases as the network load increases. Because the MAC

sublayer of Ethernet employs CDMA/CD which backs off and waits for a random period

 16

of time before retransmission if packet collision is detected, the delays become non-

deterministic in high-load environment.

Figure 2.9 Delays measurement on Ethernet
with low network load in [6]

Figure 2.10 Network delays measured from
Ethernet with an extra network load as set in [6]

 17

Figure 2.11 Delay measurements of Ethernet as
setup in [6] in high-load environment

 The point here is the characteristic difference between τsc and τca. Therefore,

compensating τca using techniques for τsc might not be able to capture some of the

characteristics of the τca. We propose τca compensation estimated value derived from

mean value and interpolation. Detailed discussions of the method are done in Chapter 3.

 18

Chapter3

Network Induced Delays and
Compensation

Introduction

A networked control system consists of a plant with sensors and actuators, a

compensator (controller and estimator), and the underlying network. Defining by its

source and destination, sensor-to-controller delay, τsc, is the time it takes a packet to go

from sensor to controller. Another delay is controller-to-actuator delay,τca. Compensation

for these delays is crucial to preserve the desired response. Ignoring it, even stability of

the system is in jeopardy.

 The effect of measurable delays (e.g. τsc) on networked control systems (NCSs)

was studied in [11]. However, the effect and the analysis of the immeasurable delay,τca,

were not included in the study. Since τca is also a factor that contributes to instability,

study of the delay should not be overlooked.

Throughout the study, we assume that τsc is distinct from τca ,which cannot be

measured since the actuator does not have computational capability.

Figure 3.1 NCSs schematic with measurable
and immeasurable delays

 19

Compensation of ττca

Let a system be described by

)()()(casctutt ττ −−⋅+= BxAx && . (3.1)

The system is sampled and integrated over one sampling period,

 ∫
+ −+ −−⋅+=+

hkh

kh casc
shkhh dssuekhehkh)()()()(ττBxx AA . (3.2)

Because the control signal, u(kh), is piecewise constant over sampling periods, the

delayed version of it will be piecewise constant over a similarly delayed period.

.)(

)(

)()()(

)(

)(

)(

∫

∫
∫

+

++

−+

++

+

−+

+ −+

⋅+

−⋅+

−⋅+=+

hkh

kh

shkh

kh

kh

shkh

kh

kh

shkhh

casc

casc

sc

sc

khudse

hkhudse

hkhudsekhehkh

ττ

ττ

τ

τ

B

B

Bxx

A

A

AA

 (3.3)

Interpretation of these equations is not as complicated as the equations themselves

may look. After a sampling instant, sampled data travel through network to the

compensator (Figure 3.2). The compensator calculates appropriate control signal, u(kh),

with the factor of the τsc in consideration. The control signal, however, cannot be put to

use immediately because of the τca. The previous control signal, u(kh-h), therefore, is

used during the sampling period before the control signal, u(kh), reaches the actuators.

Note that computational delays were absorbed into τsc (if measurable) or τca (if

immeasurable).

 20

Figure 3.2 Timing diagram of a delayed system

Practically, several states of a system might not be observable, the gathered

information, hence, is incomplete for full-state feedback calculation. To estimate such

systems, estimators and controllers should be constructed as below,

1. Current Estimator

)),(ˆ)(()(ˆ)(khkhykhkh xHLxx −+=

2. Network induced delay from the sensor to the controller

 ∫
+

−+ −⋅+=+
sc

scsc

kh

kh

skh
sc hkhudsekhekh

τ
τττ),()()()(Bxx AA

3. The Control Law

),()(sckhkhu τ+−= xK

4. Network induced delay from the controller to the actuator

 ∫
++

+

−++ −⋅++=++
casc

sc

cascca

kh

kh

skh
sccasc hkhudsekhekh

ττ

τ

τττ τττ),()()()(Bxx AA

 21

5. Forward to)(ˆ hkh+x

 ∫
+

++

−+−− ⋅+++=+
hkh

kh

shkh
casc

h

casc

casc khudsekhehkh
ττ

ττ ττ).()()(ˆ)()(Bxx AA

The equations describe fully compensated system if τsc and τca are known.

Zhang’s works ([10], [11]) show an approach to measure the τsc by timestamping data

from sensor and taking the time difference when the data reaches controller. The

technique does not hold for compensating for τca since the delay is yet to happen at the

time of the state estimation. Estimating τca from information at hand is desirable,

therefore.

Static Delay Estimation & Dynamic Delay Estimation

We propose two approaches to compensate for τca, static delay estimation (SDE)

and dynamic delay estimation (DDE). If the network information has been monitored and

statistics of the delays is available, estimating the τca with the mean may enable recovery

of the desired response. If, for example, contention for channel usage is resolved, a

constant time delay is expected and compensation for the system could be done by the

SDE. We called the approach static because the compensated value is static through out

the operation.

The DDE is designed for networks with non-deterministic delay. This method

employs the advantages of interpolation to help estimating the delay. Because the delays

and their estimates vary from sample to sample, the term “dynamic” is adopted. The

algorithms to estimate the delay are next, followed by a description.

 22

Figure 3.3 Timing diagram for the algorithms

Step 1: Current Estimator

)),(ˆ)(()(ˆ)(khkhykhkh xHLxx −+=

Step 2: Network induced delay from the sensor to the controller

 ∫
+

−+ −⋅+=+
ksc

kscsc

kh

kh

skh
ksc hkhudsekhekh

,

,),()()()(
,

τ
τττ Bxx

AA

Step 3: The Control Law

),()(sckhkhu τ+−= xK

Step 4: Interpolation to estimate τca, k-1
 *,**

 4.1 Repeat Step 1 to step 3 for k-1

4.2 n-point interpolation tableau

4.2.1 Network induced delay from controller to actuator


∗ Step 4 can be done before estimating current position, ()(khx)
** Skip step 4 for SDE

 23

∫

>−−

−

>−−

−

++−

+−

−++−

−>−−

−⋅

++−=++−
ncaksc

ksc

ncaksc

kca

hkh

hkh

shkh

kscncakscp

hkhudse

hkhehkh
0,1,

1,

0,1,

1,

),2(

)()(

)(

1,0,1,

ττ

τ

ττ

τ τττ

B

xx

A

A

4.2.2 Forward to)(ˆ khpx

∫

>−−

>−−

++−

−

>−
−−

−⋅

+++−=
kh

hkh

skh

ncaksc
h

p

ncaksc

ncaksc

hkhudse

hkhekh

0,1,

0,1,

).(

)()(ˆ

)(

0,,
)(

ττ

ττ ττ

B

xx

A

A

4.3 Interpolate for τca,k-1 using Neville’s algorithm•

nnpnca

nn

n
pca

pca

pca

Pkh

P

P
Pkh

P

P
Pkh

Pkh

=

=

=

=

−

)(ˆ:

)(ˆ:

)(ˆ:

)(ˆ:

,,

1

...012
22,2,

12

01

11,1,

00,0,

x

x

x

x

τ

τ

τ

τ

N
MM

M

O

,

))(ˆ)(ˆ(

))()(ˆ())(ˆ)((

1,0,

2...1231,2...0121,
...012 khkh

PkhykhPkhkhy
P

npp

nnpnnp
n

−

−−−−

−

−+−
=

xx

xx
,

....0121, nkca P=−τ

Step 5: Compensate kca,τ with caτ̂

5.1 Static Delay Estimation (SDE)

N

N

i
ica

cakca

∑
=== 1

,

,ˆ
τ

ττ where Ni ...3,2,1=

∫
++

+

−++ −⋅++=++
caksc

ksc

caksckca

kh

kh

skh
ksccaksc hkhudsekhekh

ττ

τ

τττ τττ
,

,

,,),()()()(
,, Bxx AA

• See Appendix A for details on Neville’s algorithm

 24

5.2 Dynamic Delay Estimation (DDE)

5.2.1 1,ˆ −= kcaca ττ

∫
−

−

++

+

−++
− −⋅++=++

1,,

,

1,,,),()()()(
,1,,

kcaksc

ksc

kcaksckca

kh

kh

skh
ksckcaksc hkhudsekhekh

ττ

τ

τττ τττ Bxx AA

5.2.2
N

Nj

ji
ica

ca

∑
+

==
,

ˆ
τ

τ where 1...3,2,1 −= kj ; MN3,2,1,0= and

10 −≤+< kNj

∫
++

+

−++ −⋅++=++
caksc

ksc

caksckca

kh

kh

skh
ksccaksc hkhudsekhekh

ττ

τ

τττ τττ
ˆ

)ˆ(
,,

,

,

,,),()()ˆ(Bxx AA

Step 6: Forward to)(ˆ hkh+x

 ∫
+

++

−+
−

−−

−

− ⋅+++=+
hkh

kh

shkh
kcaksc

h

kcaksc

kcaksc khudsekhehkh
1,,

1,,).()()(ˆ)(
1,,

)(

ττ

ττ ττ Bxx AA

(a) SDE

(b) DDE

Figure 3.4 Flow chart of the algorithm (a) SDE (b) DDE

 25

Explanation of these equations is as follow. At Step 1, the estimator corrects and

updates its states, and passing the result (via network) to controller. The time it takes for

the information transmission from Step 1 to Step 2 is induced by network traffic (τsc).

After compensated for τsc in Step 2, controller calculates updated control signal (Step 3).

At Step 4, the interpolation tableau is calculated (reminder: sensor and actuator do not

possess computational ability).

Firstly, Repeat the calculation of Step 1 to Step 3 for the previous sampling period

(k-1). Next, an n-point array representing a range of possible candidates of τca (0 ≤ τca ≤

h-τsc) where n is an integer. A forward calculation for each possible values for τca is

performed (np kh ,3,2,1)(ˆ
Lx). Hence, interpolation tableau is created. The measured output

(y(kh)) is used to interpolated among these calculated values. This gives an estimate of

the actualτca. (Step 4.2 & Step 4.3)

Figure 3.5 n-point tableau

There are no clear rules on how many points the tableau should contain. However,

if the tableau contains fewer points than necessary, interpolation error is generated due to

information scarcity. On the other hand, if the function is not one-to-one, and the tableau

contains information beyond the minimum or maximum point (depending on whether the

function is concave or convex), interpolation is going to be generated due to interpolation

 26

nature. (Consult results and discussions section in Real-time experiments for graphic

details.)

Compensate the system with the result from Step 4.3 (for DDE) or Step 5.1 (for

SDE). Lastly, predict result of Step 5 using the caτ̂ (Step 6).

Offline Experiments

Reviewed in Chapter 1 and Chapter 2, each network protocols give different delay

characteristics depending on their MAC-sublayer algorithms. In [6], the study conducted

various CAN and Ethernet network environments and measured the network-induced

delays from each setup. Inspired by that study, we created arrays of delays emulated from

those various scenarios and used our algorithms (either SDE or DDE) to compensate for

the τca.

We implemented our algorithms on a double integrator system. Its step-responses

were designed to exhibit characteristics of ς = 0.5 and ωn = 1.5784 rad/sec. The state

space of this double integrator is

).(
1

0
)(

00

10
)(tutt 








+








= xx&

 Let the system be sampled with zero-order hold at the rate of T second/sampling

).(
2

)(
10

1
)(

2

kTu
T

T
kT

T
TkT 








+








=+ xx

Constructing the estimator for the double integrator with compensation for τsc and

τca from the algorithms is as follows:

 1. Estimator Correction

 27

[][])(ˆ10)()(ˆ)(
2

1 kTkTy
L
L

kTkT xxx ⋅−⋅







+= ,

2. Network induced delay from the sensor to the controller

)(2)(
10

1
)(

,

2
,

,
, TkTukTkT

ksc

ksc
ksc

ksc −⋅













+⋅








=+

τ

ττ
τ xx ,

3. The control law

[])()(,21 ksckTKKkTu τ+⋅−= x ,

4. Network induced delay from the controller to the actuator†

)(2)(
10

1
)(

*

2*

,

*
*

, TkTukTkT

ca

ca

ksc
ca

caksc −⋅















++⋅








=++

τ

τ
τ

τ
ττ xx ,

5. Forward to next sample‡

)(2

)(

2)(
10

1
)(ˆ

*
,

*
,

2*
,

2

*
,

*
, kTu

T

TT
T

kThTkT

caksc

caksc
caksc

caksc
caksc ⋅

















−−

−−
+

++++⋅






 −−=+
ττ

ττ
ττ

ττττ
xx .

Using Matlab, the controller gain, K, and estimator gain, L, were calculated. Our

controller gain, K, was []5208.17728.1 . In [3], it is suggested that responses from

estimators are conventionally two to four times faster than the response from the

controller. Here, we chose it to be two times faster. Correspondingly, the estimator gain,

L, was 






−
5857.1

4997.0
. Also, the interpolations for τca in this section were aided by a

† *

caτ is caτ for SDE, and 1, −kcaτ for DDE

‡
*

caτ is caτ for SDE, and 1, −kcaτ for DDE

 28

function in MATLAB called “interp1.m”. The results from DDE in this section were

interpolated from twenty-point tableau.

Scenarios

Four scenarios parallel to NCSs were investigated. We chose a suitable algorithm

to estimate for the compensation of τca in each scenario.

First scenario: one plant, one sensor, one compensator
and one actuator on a network

Figure 3.6 Network diagram describes in the first scenario

In this scenario, the network is connected to only three components, a sensor, an

actuator and a controller and it is a dedicated network to only one plant without

connections to other networks. Because of these conditions, measurement of the

transmission delays not only satisfies a (statistically) stationary condition; but, indeed, it

is a constant. Moreover, not only τsc can be measured, but also τca since the network is

exclusive and there is only one controller to use the communications. The delay

measurement can be done finding the corresponded delay of that network physical length.

Here we assumed a transmission delay of 0.08 sec. The emulation of the network-

induced delay of the scenario is represented in Figure 3.7.

 29

Figure 3.7 Arrays of created delay under the first scenario
constraints

The response of the designed system is as shown in Figure 3.8. Presumably, the

step responses of this system with the presence of network-induced delays, also as shown

in Figure 3.8, are unbounded due to out of date control signal (see compensation of τca).

Figure 3.8 Step responses showing effect of τsc compensation

 30

Even though the responses in Figure 3.8 for both of the τsc–uncompensated

system and the τsc–compensated system diverged, the τsc–compensated system diverged

at slower rate than the uncompensated system.

For the NCSs similar to this scenario, recovering performance of the system can

be done by finding corresponding transmission delays (for both τsc and τca) and

compensating them (Figure 3.9).

Figure 3.9 Response of τsc-and-τca-compensated
system (τsc = 0.08 sec and τca = 0.08 sec)

Figure 3.10 Control signals of the double-integrator
system when i) only compensated for τsc (Figure 3.8)

ii) compensated for both τsc and τca (Figure 3.9)

 31

Second Scenario: one plant, multiple sensors, multiple
compensators and multiple actuators without competition for
network channel

Figure 3.11 Network diagram for the second scenario

This scenario is a replica of a CAN. The system components consist of multiple

controllers, multiple sensors and multiple actuators. Transmissions of the controllers are

controlled by message priority (CSMA/AMP). According to [6], priority of messages on

networks, constancy of sampling interval and network channel accessibility affect the

characteristics of delays. For example, characteristics of measured delays will be

statistically stationary when sampling time interval is constant and the sending message

has higher priority than other messages on the network.

We emulated characteristics of the delay,τca, of delay-measurement experiments

on CAN in [6]. Depiction of our emulated array of delays is shown in Figure 3.11. We

choose the loaded network delay to be 0.04 sec and load-free network delay to be 0.02

sec.

 32

Figure 3.12 Emulated network-induced delay under
the second scenario

We used SDE to estimate τca in this system. The system were compensated with

mean of τca (caτ = 0.025 sec).

Responses of the system are shown in Figure 3.13

Figure 3.13 Step responses of the system from the
second scenario when both delays were compensated
for and when only τsc was compensated for

A new array of delays under the same conditions as the one in Figure 3.12 has

been created (Figure 3.14). We compensated τca of this new environment with mean

 33

value of the array, caτ = 0.025 sec (same compensation approach as Figure 3.12). The

desired response and the response of the system are shown in Figure 3.15.

Figure 3.14 Emulated network-induced delay under
the second scenario

Figure 3.15 Desired response and response of the full-
compensated system (using SDE to estimate the delay
in Figure 3.14)

Even tough, we used the caτ to compensate the system, and the mean of these two

arrays were the same, but delay characteristics of the two arrays (Figure 3.12 and Figure

3.14) were different. As a result, the responses of the compensated system were unique.

 34

Surprisingly, the response of the system with the new array of delay could not be

recovered. This is because we compensated τca with “static” values. As shown in Figure

3.14, τca was a time-varying function, therefore; using single number to represent the

array of variety might not be an effective approach for that the precision of control

signals depending on this calculation.

Third Scenario: multiple plants, multiple compensators and
multiple actuators with compensators compete for the
network channel

Figure 3.16 Network diagram of the third scenario

The scenario represents a network control system connected to another network

using Ethernet as an underlying algorithm. Hence, it is likely not possible to predict

behavior of network-induced delay under this scenario since compensators of each plant

independently seizes the network channel to transmit its messages. This means there

 35

might be times that multiple compensators try to transmit data simultaneously; it might

also mean there is no channel usage at all. The uncertainty surely affects the estimate for

τca.

Consider the delay measurements from the Case Western Reserve University’s

network (CWRUnet). This experiment was conducted in [11]. Zhang measured the delays

from two computers in the same room under the same workgroup with the characteristics

as shown,

Figure 3.16 CWRUNet delays measured in [11]

Figure 3.17 Histogram of CWRUNet delays
measured in [11]

 36

 We tried SDE as the algorithm of estimation using mean and mode as the

compensation value. The gotten responses confirmed with the idea concluded from the

second scenario.

Figure 3.18 Step response the system using SDE as the
algorithm of estimation where mean of the delay (=caτ
0.0185 sec) was the compensation value

Figure 3.19 Step response of the system using SDE as
the algorithm of estimation where mode of the delay
(=caτ 0.0060 sec) was the compensation value

To estimate the delays under this scenario, one can only rely on the delays’

history, (1,3,2,1, ,,,, −kcacacaca ττττ K). This approach is described as DDE in the earlier

 37

section. DDE tracks changes of the system response; uses this data to interpolate for τca

and feeds the results to the compensator. We used the measured delay from Figure 3.16

to be our array of τca, and used DDE to be method of estimation. Two approaches of

DDE have been tested in this scenario. Figure 3.20a shows the responses from the

compensation where caτ̂ is calculated at Step 5.2.1 and 5.2.2 where N = 3.

Figure 3.20a Responses of the system employing DDE
as the algorithm

 The difference in the response of the system between both methods is trivial, by

the factor of x10-3. (Figure 3.20b) This difference contributed from the uniqueness of

compensation-value selection of each methods. During information-collection period of

caτ̂ of Step 5.2.2 (the first three point of Figure 3.20b), we assigned those caτ̂ to be

1, −kcaτ , which is the same compensation values employed by Step 5.2.1. Hence, the

difference of the two signal during the period is zero as shown.

 38

Figure 3.20b Difference of the two responses of
Figure 3.20a

Generally, it is possible that measurable delay, i.e. τsc, and immeasurable delay,

i.e. τca, might share similarities in their natures in some networked environment. In such

cases, measurements of measurable delay are acceptable candidates of the compensation

values of the immeasurable delay. This is because the two network-induced delays are

symmetrical; therefore, the delays are expected to be nearly identical. The undergoing

assumption that supports the logic is that the controller and the actuator are equally

spacing from the plant either logically or physically according to MAC sublayer

algorithm of delay measurement.

Real-time experiments

A client-server program, the Microsoft® Visual Basic for its interface and

SocketWrench, an ActiveX program developed by the Catalyst co. ltd.

(http://www.catalyst.com), for network communications, was developed to test validity

of our algorithms.

 39

The difference between this program and the program in [11] are this is a

standalone program and the algorithm behinds the two are different. In this program, the

computation is done by calling dynamic library link files (DLLs) while in [11] the

program relies on MATLAB for its computational ability. Moreover, the program in [11]

is conducted under the assumption of the delays (τsc and τca) were bundled together and

then compensated as measurable delays whereas in this program the delays were

differentiated to be measurable (e.g. τsc) and immeasurable delay (e.g. τca).

Clock Synchronization

There are several ways to synchronize the clocks, e.g. hardware synchronization,

software synchronization or combination of the both. This program used the scheme

reviewed in [2] & [11]; compensators send special signals to plants asking for clock

readings; the plants send the readings back to the compensators. The compensators

update their clocks with correction of the offset and round trip time.

Every message in this experiment sent out by the plant and the compensator is

time stamped for precise calculation for τsc; therefore, the plant and the compensator

clocks have to be synchronized.

Set-up

The program was set up on two computers, one as a plant (computer 1) and the

other as a compensator (computer 2). On the compensator side, we developed two

dynamic library links (DLLs), ctrl.dll1 and dbinte.dll2, to compute the control law and to

simulate the plant. In order to compensate immeasurable delay, we developed another

DLL called interp.dll3 to take care of the interpolation.

1 , 2, 3 Source codes are shown in Appendix B

 40

Figure 3.21 Network diagram of the experiment

Figure 3.22 Logical diagram of the experiment

Results and Discussions

 Step Input

We used the same double integrator to be the plant of this experiment. We ran the

experiment over the CWRUNet and used DDE for delay compensation with the desired

response as shown in Figure 3.8. The results from real-time experiments agreed with the

MATLAB experiment (offline experiment). This confirmed the validity of our algorithm

validity. The step response from our real-time experiments is as show in Figure 3.23.

 41

Figure 3.23 Step Response from the experiment

However, when the prepared tableau fail to represent range of the τca, the

interpolation will also fail as we found out in one of our tests.

Figure 3.24 Step response, delay and interpolation of
the delay of the system

 Here the real τca is over the range of prepared tableau also it violated one of the

requirements, kh < kh + τsc + τca ≤ kh + h. We simulated this situation and re-ran it

 42

using the same algorithm but changed the sampling period to 1 sec and extended the

tableau range to 0.5 (from 0.2). The Step response of the adjusted system is shown in

Figure 3.25

Figure 3.25 Step response of the adjusted-estimation
system

From our tests we found out if the f(τca) is not a one-to-one function, extending

the tableau range might increase the odds of interpolation error. We suggest that the

expansion and/or truncation of the range should be done only when interpolation shows

arithmetically impossible results for the delay (either they are larger than the prepared

tableau range or the results are negative value).

Figure 3.26 shows parabolic function of the double integrator (second order

system) used in the experiment. The shown parabola is at the 65th
 sampling period.

 43

Figure 3.26 fifty-point tableau and twenty-point tableau
of the double integrator system in the experiment setup

Sinusoidal Input

For static-signal input, i.e. step function, after the response of the system reached

the steady state, it becomes less sensitive to its environment. However, when fed the

system wit time-varying-signal input, i.e. sinusoidal signal, the state-estimation error of

the response can be seen clearer than the static signal. This is because the signal changes

with time; thus the response does not have steady state.

 We estimated the double integrator with low frequency sinusoidal signals. The

sampling period is 1 sec with the desired parameters as follows: the overshoot is less than

20% and settling is less than 10 sec. Figure 3.27 shows the estimation output, referent

input and the delays,τca, measured and interpolation result

 44

Figure 3.27 Output of the compensated double integrator
with the sinusoidal signal as the reference input

Figure 3.28 Error between Input and output of the system
in Figure 3.27

The delay shows in Figure 3.27 is almost zero because the size of the control

signal is very small in comparison to the CWRUNet’s bandwidth. The error shows in

Figure 3.27 came from the nature of feedback control.

Furthermore, we planted our system in a more non-deterministic-delay

environment. The result of the experiment is shown in Figure 3.29.

 45

Figure 3.29 Output of the compensated double integrator
system in non-deterministic delay environment

Figure 3.30 Error between input and output of the
system in Figure 3.29

The glitches in Figure 3.30 came from the nature of the DDE – it compensates the

system immeasurable delay, τ ca,k, with the last known immeasurable delay, τca,k-1. When

compare Figure 3.27 to Figure 3.29, the state estimation error of Figure 3.27 (Figure

3.28) is smoother than the error of Figure 3.29 (Figure 3.30). This is because the delays in

Figure 3.26 were less variance than the delay in Figure 3.29.

 46

Effect of Designs

The next simulations intend to study the effect of pole placement on the system

stability with time delay without compensation for the delays. Various pole locations

have been studied starting with more sensitive locations (i.e. near the unit circle in the z-

plane) then moving to stabler locations (close to origin of the z-plane). Simulations of the

system have been conducted in three cases, i) without any compensation, ii) with

compensation for τsc and iii) with compensation for τsc and τca with the DDE. Delays

used through out the simulations were the same delays as shown in Figure 3.20.

In the first simulation, the closed-loop poles are at 3781.06249.0 jz ±= . The

result is shown in Figure 3.31. From the figure, ii shows that the system without any

compensation has the worst response. The compensation-for-τsc system lessens the

magnitude of damage done to the system, but the system is still unstable.

Next, the closed-loop poles are moved to 3131.05716.0 jz ±= . The unit step

response is shown in Figure 3.32.

Figure 3.31 Step responses of the system where the
closed-loop poles are 3781.06249.0 jz ±=

 47

Figure 3.32 Step responses of the system where the
closed-loop poles located at 3131.05716.0 jz ±=

Even though the uncompensated system and the τsc-compensated system are still

unstable, the instability of both systems becomes less extreme.

The closed-loop poles are now at 2941.04860.0 jz ±= . The uncompensated

system is still unstable as shown in Figure 3.33; however, the τsc-compensated system

becomes stable but the dynamics of the system differs from the desire response because

of the affect of the τca.

Moreover, when the closed loop poles were moved to 2850.04710.0 jz ±= ,

even the response of uncompensated system became stable. The step responses are shown

in Figure 3.34.

 48

Figure 3.33 Step responses of the system where the
closed-loop poles located at 2941.04860.0 jz ±=

Figure 3.34 Step responses of the system where the
closed-loop poles located at 2850.04710.0 jz ±=

From Figure 3.30 – 3.34, responses of the system were gradually become stable

(bounded output). This can be concluded that if the closed-loop poles were placed inside

guaranteed region, even the response of uncompensated system can be bounded. Thus, it

is interesting to investigate this ‘guaranteed region’ (bounded response) in different

compensation scenarios.

 49

We tested the system (double integrator) under three scenarios – i) uncompensated

system, ii) τsc–compensated system and iii) fully compensated system. The poles were

placed in unit circle in Z-plane. The responses were checked for boundedness. The tests

were done uniformly over the unit-circle. Then, we refined our scale to find the edge of

the bounded region (steady oscillating). The parameters of the tested system were that h =

0.4 sec and τsc = τca = 0.08 sec. The plots are presented in Figure 3.35 (a) – (c) where x

represents the response with growing oscillation, o represents the response with steady

oscillation, and � represents the response with decaying oscillation.

(a) Bounded region of the scenario in i)

 50

 (b) Bounded region of the scenario in ii)

(c) Bounded region of the scenario in iii)

Figure 3.35 Bounded and unbounded regions of the double
integrator system when i) uncompensated system
ii) τsc – compensated system iii) fully compensated system

 51

Chapter 4

Summary

For deterministic-delay networks, compensating the system by using mean values

of the delays are sufficient to stabilize systems (SDE). It is, however, more complicate in

non-deterministic-delay networks. DDE is proposed to use in the situation. The approach

is to estimate the delays from current sampled data to determine the τca. Resulting in

estimating the delay from previous sampling period; nevertheless, the estimated delay

should not be much different from the real delay since it is the same network and the

estimation is contiguous from one sample to another. However, sporadic bursts in

network traffic are inevitable occurrence. The effect can be seen in form of glitches in the

response at the time burstiness occurred.

Position of pole placement may relieve severity of instability of the system in the

manner that when closed-loop poles are placed to stabler area, the systems are able

tolerate more disturbance (in the simulations the system becomes more tolerable to the

error accounted for the lack of compensation for τsc and/or τca). This leads to a topic of

greedy control. The realization is that when employ a greedy control, an accurate

estimator is crucial. Yet, there exist noises that may deteriorate proficiency of estimators.

Hence, we do not recommend the method of pole shifting to be solely solution for the

delay problem. However, deftly placing the poles would alleviate the problem. Yet,

choosing location for the poles is a form of art and there is no right or wrong as long as

the constraints were met. The way to master the skill is by observation and practices.

Moreover, stability region of the model NCS when compensations for ôsc and ôca are

absent is smallest but it grows as delays have been compensated. This confirms our

 52

assumption that if immeasurable delay is left uncompensated, system response will

degrade.

 53

Appendices

Appendix A: Neville’s Algorithm

Let P1 be the value at x of the unique polynomial of degree zero (i.e., a constant)

passing through point (x1, y1); so P1 = y1. Likewise define P2, P3, P4, … PN. Now let P12

be the value at x of the unique polynomial of degree one passing through both (x1, y1) and

(x2, y2). Likewise, P23, P34, P45, … P(N-1)N. Similarly, for higher-order polynomials, up to

P123…N, which is the value of the unique interpolating polynomial through all N points,

i.e., the desired answer. The various P’s form a “tableau” with “ancestors” on the left

leading to a single “descendant” at the extreme right. For example, with N = 4,

 1234

444

234

34
333

123

23
222

12
111

:

:

:

:

P

Pyx

P
P

Pyx

P
P

Pyx

P
Pyx

=

=

=

=

Neville’s algorithm is a recursive way of filling in the numbers in the tableau a

column at a time, form left to right. It is based on the relationship between a “daughter” P

to its two “parents”,

mii

miiiimiiimi
miii xx

PxxPxx
P

+

+++−+++
++ −

−+−
=))...(2)(1()1)...(1(

))...(1(

)()(

This recursive works because the two parents already agree at point 11 −++ mii xx K .

 54

Appendix B

 Appendix B1: Source code for Plant

Option Explicit

Private Type SysTime
sysYear As Integer
sysMonth As Integer
sysDay As Integer
sysDayofWeek As Integer
sysHour As Integer
sysMin As Integer
sysSec As Integer
sysMilliSec As Integer
End Type

Dim TestTime As SysTime, Delaycheck As SysTime
Dim samples As Integer
Dim Tsc(51) As Double, ctrl(51) As Double, Tca(51) As Double
Dim x1 As Double, x2 As Double
Dim Y2(51) As Double

Private Declare Sub GetSystemTime Lib "kernel32" _
(lpSystemTime As SysTime)

'Plant caluculation function
Private Declare Function dbintgX1Kh2Tsc Lib "dbinte" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX2Kh2Tsc Lib "dbinte" _
(ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX1Tsc2Tca Lib "dbinte" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX2Tsc2Tca Lib "dbinte" _
(ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX1Tca2H Lib "dbinte" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal
ctls As Double) As Double
Private Declare Function dbintgX2Tca2H Lib "dbinte" _
(ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal ctls As Double) As
Double

Private Sub CnntButt_Click()
ServerSock.AutoResolve = False
If ServerSock.BindAddress = "" Then
 ServerSock.BindAddress = Trim(Plant_IP.Text)
End If
ServerSock.Blocking = False
ServerSock.Binary = False
ServerSock.SocketType = SOCK_STREAM
ServerSock.BufferSize = 1024
ServerSock.LocalPort = CInt(Val(CtrlPort.Text))
Plant_IP.Enabled = False
CtrlPort.Enabled = False
If CnntButt.Caption = "Listen" Then
CnntButt.Enabled = False
ServerSock.Listen
Else
ServerSock.Action = SOCKET_CLOSE
End If
UpdateForm
End Sub

Private Sub DisconBtt_Click()
If MsgBox("Are you sure you want to disconnect the controller?", vbQuestion + vbYesNo, App.Title) = vbNo Then
 Exit Sub

 55

 End If
If ServerSock.Connected Then
 If MsgBox("Connection to be disconnect", vbYesNo) = vbNo Then
 Exit Sub
 Else
 ServerSock.Disconnect
 SamplingPeriod.Enabled = False
 End If
Else
 MsgBox "Your connection hasn't been estrablished"
End If
ServerSock.Action = SOCKET_CLOSE
Call Form_Load
End Sub

Private Sub Form_Load()
Plant_IP.Text = "0.0.0.0"
Controller_IP.Enabled = False
Controller_IP.Text = "0.0.0.0"
CtrlPort.Text = CLng(Val(IPPORT_ECHO))
Start.Enabled = True
SamplingPeriod.Enabled = False
samples = 1
Y1(0) = 0
Y1(1) = 0
Tsc(0) = 0
Tca(0) = 0
ctrl(0) = 0
End Sub

Private Sub Gplot_Click()
graph.Show
End Sub
Private Sub Plant_IP_Change()
UpdateForm
End Sub

Private Sub Plant_IP_GotFocus()
Plant_IP.SelStart = 0
Plant_IP.SelLength = Len(Plant_IP.Text)
End Sub

Private Sub Plant_IP_KeyPress(KeyAscii As Integer)
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then
KeyAscii = 0: Beep
End If
End Sub
Private Sub CtrlPort_Change()
UpdateForm
End Sub

Private Sub CtrlPort_GotFocus()
CtrlPort.SelStart = 0
CtrlPort.SelLength = Len(CtrlPort.Text)
End Sub

Private Sub CtrlPort_KeyPress(KeyAscii As Integer)
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then
KeyAscii = 0: Beep
End If
End Sub

Private Sub SamplingPeriod_Timer()

x1 = dbintgX1Kh2Tsc(Y1(samples), Y2(samples), Tsc(samples), ctrl(samples))
x2 = dbintgX2Kh2Tsc(Y2(samples), Tsc(samples), ctrl(samples))

x1 = dbintgX1Tsc2Tca(x1, x2, Tca(samples), ctrl(samples))
x2 = dbintgX2Tsc2Tca(x2, Tca(samples), ctrl(samples))

 56

Y1(samples + 1) = dbintgX1Tca2H(x1, x2, 0.4, Tsc(samples), Tca(samples), ctrl(samples + 1))
Y2(samples + 1) = dbintgX2Tca2H(x2, 0.4, Tsc(samples), Tsc(samples), ctrl(samples + 1))

samples = samples + 1

If samples > 50 Then
SamplingPeriod.Enabled = False
MsgBox "END", vbExclamation
Call DisconBtt_Click
Exit Sub
End If
Call SensorDelay

End Sub
Private Sub ServerSock_Accept(SocketId As Integer)

If ServerSock.Listening Then
ServerSock.Action = SOCKET_ACCEPT
End If
End Sub

Private Sub ServerSock_Connect()
MsgBox "Accepted connection from client at" & ServerSock.PeerAddress, vbOKOnly
Controller_IP.Text = ServerSock.PeerAddress
Controller_IP.Enabled = False
UpdateForm

End Sub

Private Sub ServerSock_Disconnect()
ServerSock.Disconnect
MsgBox "Client disconnected"
UpdateForm
Call Form_Load
End Sub

Private Sub ServerSock_Read(DataLength As Integer, IsUrgent As Integer)
Dim StrBuffer As String 'Change it to Float
Dim uPosition As Integer
ServerSock.Read StrBuffer, DataLength

 If InStr(1, Trim(StrBuffer), "y", 1) = 2 And InStr(1, Trim(StrBuffer), "k", 1) = 9 Then
 Call SyncClock
 Exit Sub

 Else
 uPosition = CInt(InStr(1, StrBuffer, "u", 1))
 Tsc(samples) = CDbl(Mid(Trim(StrBuffer), 2, uPosition - 2))
 ctrl(samples + 1) = CDbl(Mid(StrBuffer, uPosition + 1, DataLength - uPosition))
 If SamplingPeriod.Enabled = False Then
 SamplingPeriod.Enabled = True
 End If
 FrmCtrller.Text = StrBuffer
 FrmCtrller.Refresh
 End If
End Sub

Private Sub UpdateForm()
 Dim strTitle As String, bEnable As Integer

 strTitle = App.Title
 bEnable = True
 If Len(Trim(Plant_IP.Text)) = 0 Then bEnable = False
 If Len(Trim(CtrlPort.Text)) = 0 Then bEnable = False

 If ServerSock.Listening Then
 CnntButt.Caption = "Pause"
 CnntButt.Enabled = False
 strTitle = strTitle & "Paused"

 57

 ElseIf ServerSock.Connected Then
 CnntButt.Caption = "Pause"
 CnntButt.Enabled = False
 Plant_IP.Enabled = False
 CtrlPort.Enabled = False
 Else
 CnntButt.Caption = "Listen"
 CnntButt.Enabled = bEnable
 Plant_IP.Enabled = True
 CtrlPort.Enabled = True

 End If

FrmCtrller.Text = ""
ToCtrller.Text = ""

 End Sub

Private Sub SyncClock()
Dim Wtime As Long
Dim SentWtime As String
GetSystemTime TestTime
Wtime = (TestTime.sysHour * 3.6 + TestTime.sysMin * 0.06 _
 + TestTime.sysSec * 0.001 + TestTime.sysMilliSec * 0.000001) * 1000000

SentWtime = ":" & CStr(Wtime) & ":"
ServerSock.Write SentWtime, Len(SentWtime)

End Sub

Private Sub SensorDelay()
Dim sendchk As Double
Dim ToCtrller As String
 GetSystemTime Delaycheck
 sendchk = (Delaycheck.sysHour * CDbl(3600) + Delaycheck.sysMin * CDbl(60) + Delaycheck.sysSec _
 + Delaycheck.sysMilliSec / 1000) 'clock in seconds
 ToCtrller = "@" & CStr(Y1(samples)) & "," & CStr(sendchk)
 ServerSock.Write ToCtrller, Len(ToCtrller)

 End Sub

Private Sub Start_Click()

Start.Enabled = False
Call SensorDelay
End Sub

Appendix B2: Source code for Controller

Option Explicit

Private Type SysTime
sysYear As Integer
sysMonth As Integer
sysDayofWeek As Integer
sysDay As Integer
sysHour As Integer
sysMin As Integer
sysSec As Integer
sysMilliSec As Integer
End Type

Dim TestSysTime As SysTime
Dim xmitDelay As Single
Dim Delay As SysTime

Private Declare Sub GetSystemTime Lib "kernel32" _
(lpSystemTime As SysTime)
Private Declare Sub SetSystemTime Lib "kernel32" _

 58

(lpSystemTime As SysTime)

'Controller
Private Declare Function contrl Lib "contrl.dll" _
(ByVal k1 As Double, ByVal k2 As Double, ByVal x1 As Double, ByVal x2 As Double, ByVal Input1 As Double, ByVal
Input2 As Double) As Double

'Inerpolation
Private Declare Sub interp Lib "interp.dll" _
(First() As Double, Second() As Double, ByVal pointX As Double, ByVal N As Integer, outcome As Double)

'Estimator Calculation
Private Declare Function dbintgX1Kh2Tsc Lib "dbinte.dll" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX2Kh2Tsc Lib "dbinte.dll" _
(ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX1Tsc2Tca Lib "dbinte.dll" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX2Tsc2Tca Lib "dbinte.dll" _
(ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double
Private Declare Function dbintgX1Tca2H Lib "dbinte.dll" _
(ByVal x1 As Double, ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal
ctls As Double) As Double
Private Declare Function dbintgX2Tca2H Lib "dbinte.dll" _
(ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal ctls As Double) As
Double

Dim Gtca(51) As Double, XE1(51) As Double, XE2(51) As Double
Dim Tsc(51) As Double, Ctrl(51) As Double, Y(51) As Double
Dim N As Integer

Private Sub ClientSock_Connect()
UpdateForm
RcvSignal.Text = ""
SndSignal.Text = ""
SndSignal.SetFocus
PortNo.Enabled = False
PlantIP.Enabled = False
End Sub

Private Sub DisconBtt_Click()
If ClientSock.Connected Then
 ClientSock.Disconnect
 MsgBox "Connection as been disconnected", vbOKOnly
 CnntBtt.Enabled = True

 Else
 MsgBox "No connection yet", vbOKOnly + vbExclamation
 If CnntBtt.Enabled = False Then
 CnntBtt.Enabled = True
 End If
 End If
 Call Form_Load
 End Sub

Private Sub Form_Load()
PortNo.Text = CInt(Val(IPPORT_ECHO))
PlantIP.Text = "0.0.0.0"
RcvSignal.Text = ""
SndSignal.Text = ""
PortNo.Enabled = True
PlantIP.Enabled = True
N = 1
End Sub

Private Sub CnntBtt_Click()

CnntBtt.Enabled = False
ClientSock.AddressFamily = AF_INET
ClientSock.Protocol = IPPROTO_TCP

 59

ClientSock.SocketType = SOCK_STREAM
ClientSock.BufferSize = 1024
ClientSock.Binary = False
ClientSock.RemotePort = Val(PortNo.Text)
ClientSock.Blocking = False
ClientSock.AutoResolve = False
ClientSock.HostAddress = Trim(PlantIP.Text)
ClientSock.Connect
PortNo.Enabled = False
PlantIP.Enabled = False
End Sub

Private Sub PlantIP_Change()
UpdateForm
End Sub

Private Sub PlantIP_GotFocus()
PlantIP.SelStart = 0
PlantIP.SelLength = Len(PlantIP.Text)
End Sub

Private Sub PlantIP_KeyPress(KeyAscii As Integer)
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then
 KeyAscii = 0: Beep
 End If
End Sub

Private Sub PortNo_Change()
UpdateForm
End Sub

Private Sub PortNo_GotFocus()
PortNo.SelStart = 0
PortNo.SelLength = Len(PortNo.Text)
End Sub

Private Sub PortNo_KeyPress(KeyAscii As Integer)
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then
 KeyAscii = 0: Beep
 End If
End Sub

Private Sub ClientSock_Read(DataLength As Integer, IsUrgent As Integer)
Dim RStrBuffer As String
Dim DelayBuffer As Double
Dim dPosition As Integer
Dim ctrlTime As Double

 ClientSock.Read RStrBuffer, DataLength

 If Left(RStrBuffer, 1) = ":" And Right(RStrBuffer, 1) = ":" Then
 Call SyncClock(RStrBuffer)
 Exit Sub

 Else

 dPosition = InStr(RStrBuffer, ",")
 Y(N) = CDbl(Mid(RStrBuffer, 2, dPosition - 2))

 DelayBuffer = CDbl(Mid(RStrBuffer, dPosition + 1, Len(RStrBuffer) - dPosition))
 GetSystemTime Delay

 ctrlTime = (Delay.sysHour * CDbl(3600) + Delay.sysMin * CDbl(60) + Delay.sysSec _
 + Delay.sysMilliSec / CDbl(1000))

 Tsc(N) = ctrlTime - DelayBuffer
 RcvSignal.SelLength = 0
 RcvSignal.SelText = RStrBuffer
 RcvSignal.Refresh

 60

 Call ComputCtrller

 Exit Sub

 End If
End Sub

Private Sub UpdateForm()
 If ClientSock.Connected Then
 If Len(ClientSock.HostName) > 0 Then
 ThesisCtrl.Caption = ClientSock.HostName & " - " & App.Title
 Else
 ThesisCtrl.Caption = ClientSock.HostAddress & " - " & App.Title
 End If
 RcvSignal.Enabled = True
 End If
End Sub

Private Sub SyncButt_Click()
 Dim clkBuffer As String
 SyncButt.Enabled = True
 clkBuffer = "Syn Clock"
 ClientSock.Write clkBuffer, Len(clkBuffer)
 xmitDelay = Timer

End Sub

Private Sub SyncClock(WTime As String)
Dim Rtime As String
Dim TimeBuffer As Long
Dim setHour As Integer
Dim setMin As Integer
Dim setSec As Integer
Dim setMilliSec As Integer

 Rtime = (Mid(WTime, 2, Len(WTime) - 2))

 xmitDelay = ((Timer - xmitDelay) * 1000) / 2

 TimeBuffer = CLng(CLng(Rtime) + Int(xmitDelay))

 setHour = TimeBuffer / 3600000 - (TimeBuffer Mod 3600000) / 3600000

 setMin = (TimeBuffer - setHour * 3600000) / 60000 - _
 ((TimeBuffer - setHour * 3600000) Mod 60000) / 60000

 setSec = (TimeBuffer - setHour * 3600000 - setMin * 60000) / 1000 - _
 ((TimeBuffer - setHour * 3600000 - setMin * 60000) Mod 1000) / 1000

 setMilliSec = (TimeBuffer - setHour * 3600000 - setMin * 60000) Mod 1000
 SetSystemTime TestSysTime

 TestSysTime.sysHour = setHour
 TestSysTime.sysMin = setMin
 TestSysTime.sysSec = setSec
 TestSysTime.sysMilliSec = setMilliSec
 MsgBox "Sync Done"

 End Sub
Private Sub ComputCtrller() 'output is Yread right now we doing open loop est
'Varaibles have not been declare yet.
Dim x1 As Double, x2 As Double
Dim X1loop As Double, X2loop As Double

Dim Guesstca As Double, Loopout() As Double, Tca() As Double
Dim ToPlant As String, tcacount As Integer
Tsc(0) = 0
XE1(0) = 0

 61

XE2(0) = 0
Ctrl(0) = 0
Ctrl(1) = 0
x1 = dbintgX1Kh2Tsc(XE1(N), XE2(N), Tsc(N), Ctrl(N))
x2 = dbintgX2Kh2Tsc(XE2(N), Tsc(N), Ctrl(N))

'compute Ctrl Signal

Ctrl(N + 1) = contrl(2.1915, 2.1315, x1, x2, 0, 1)

ToPlant = CStr("D" & Tsc(N) & "u" & Ctrl(N + 1))

ClientSock.Write ToPlant, Len(ToPlant)

ReDim Tca(21)
ReDim Loopout(20)
Tca(1) = 0
If N > 1 Then
For tcacount = 1 To 20

X1loop = dbintgX1Kh2Tsc(XE1(N - 1), XE2(N - 1), Tsc(N - 1), Ctrl(N - 1))
X2loop = dbintgX2Kh2Tsc(XE2(N - 1), Tsc(N - 1), Ctrl(N - 1))

X1loop = dbintgX1Tsc2Tca(X1loop, X2loop, Tca(tcacount), Ctrl(N - 1))
X2loop = dbintgX2Tsc2Tca(X2loop, Tca(tcacount), Ctrl(N - 1))

X1loop = dbintgX1Tca2H(X1loop, X2loop, 0.4, Tsc(N - 1), Tca(tcacount), Ctrl(N))
X2loop = dbintgX2Tca2H(X2loop, 0.4, Tsc(N - 1), Tca(tcacount), Ctrl(N))

Loopout(tcacount) = X1loop
Tca(tcacount + 1) = Tca(tcacount) + (1 / 19#)
Next tcacount

ReDim Tca(20)
Tca(1) = 0
For tcacount = 1 To 19
Tca(tcacount + 1) = Tca(tcacount) + (1 / 19#)
Next tcacount

interp(Loopout(), Tca(), Y(N), 20, Guesstca) = Gtca(N)

Else
Gtca(N) = 0
End If

x1 = dbintgX1Tsc2Tca(x1, x2, Gtca(N), Ctrl(N))
x2 = dbintgX2Tsc2Tca(x2, Gtca(N), Ctrl(N))
x1 = dbintgX1Tca2H(x1, x2, 0.4, Tsc(N), Gtca(N), Ctrl(N + 1))
x2 = dbintgX2Tca2H(x2, 0.4, Tsc(N), Gtca(N), Ctrl(N + 1))

XE1(N + 1) = x1 + CDbl(0.0188) * (x1 - Y(N))
XE2(N + 1) = x2 + CDbl(0.8983) * (x2 - Y(N))

N = N + 1
End Sub

Appendix B3: Source code for DLLs

contrl.dll

controller.h
include <windows.h>
include <math.h>
include <stdlib.h>

double __declspec(dllexport) __stdcall contrl(double k1, double k2, double x1, double x2, double inp1, double inp2);

controller.c
#include "controller.h"

 62

double __declspec(dllexport) __stdcall contrl(double k1, double k2, double x1, double x2, double inp1, double inp2)
{
 double ctls;
 ctls = k1*(-x1+inp1)+k2*(-x2+inp2);
 return(ctls);
}

controller.def
LIBRARY contrl
EXPORTS
contrl

dbinte.dll
dbinte.h

include <windows.h>
include <math.h>
#include <stdlib.h>
double __declspec (dllexport) __stdcall dbintgX1Kh2Tsc(double X1, double X2, double Tsc, double ctrl);
double __declspec (dllexport) __stdcall dbintgX2Kh2Tsc(double X2,double Tsc, double ctls);
double __declspec (dllexport) __stdcall dbintgX1Tsc2Tca(double X1, double X2,double Tca, double ctls);
double __declspec (dllexport) __stdcall dbintgX2Tsc2Tca(double X2,double Tca, double ctls);
double __declspec (dllexport) __stdcall dbintgX1Tca2H(double X1, double X2,double h,double Tsc, double Tca, double
ctls);
double __declspec (dllexport) __stdcall dbintgX2Tca2H(double X2,double h,double Tsc, double Tca, double ctls);
dbinte.c
include "dbinte.h"
double __declspec (dllexport) __stdcall dbintgX1Kh2Tsc(double X1, double X2, double Tsc, double ctls)
{
 X1 = X1+Tsc*X2+Tsc*Tsc*ctls/2;
 return(X1);
}

double __declspec (dllexport) __stdcall dbintgX2Kh2Tsc(double X2,double Tsc, double ctls)
{
 X2 = X2+Tsc*ctls;
 return(X2);
}

double __declspec (dllexport) __stdcall dbintgX1Tsc2Tca(double X1, double X2,double Tca, double ctls)
{
 X1 = X1+Tca*X2+Tca*Tca*ctls/2;
 return(X1);
}

double __declspec (dllexport) __stdcall dbintgX2Tsc2Tca(double X2,double Tca, double ctls)
{
 X2 = X2+Tca*ctls;
 return(X2);
}
double __declspec (dllexport) __stdcall dbintgX1Tca2H(double X1, double X2,double h,double Tsc, double Tca, double
ctls)
{
 X1 = X1+(h-Tsc-Tca)*X2 + (h*h/2 +Tsc*Tsc/2 +Tsc*Tca +Tca*Tca/2 - h*Tsc-h*Tca)*ctls;
 return(X1);
}
double __declspec (dllexport) __stdcall dbintgX2Tca2H(double X2,double h,double Tsc, double Tca, double ctls)
{
 X2 = X2+(h-Tsc-Tca)*ctls;
 return(X2);
}

dbinte.def
LIBRARY dbinte
EXPORTS
dbintgX1Kh2Tsc @1
dbintgX2Kh2Tsc @2
dbintgX1Tsc2Tca @3
dbintgX2Tsc2Tca @4

 63

dbintgX1Tca2H @5
dbintgX2Tca2H @6

interp.dll

header.h
#include <windows.h>
#include <math.h>
#include <oleauto.h>
#include <stdlib.h>
void __declspec (dllexport) __stdcall interp(SAFEARRAY **psaArrayX,SAFEARRAY **psaArrayY,double x,int n, double
*y);

interp.cpp
#include "header.h"

void __declspec (dllexport) __stdcall interp(SAFEARRAY **psaArrayX, SAFEARRAY **psaArrayY, double x, int n, double
*y)

{
 long i,m,ns=0;
 double den,dif,dift,ho,hp,w;
 double *c,*d;
 double *elementXa, *elementYa;
 long lElementXa;
 HRESULT resultXa;
 HRESULT resultYa;

 c = (double*) malloc(n*sizeof(double));
 d = (double*) malloc(n*sizeof(double));

 resultYa = SafeArrayLock(*psaArrayY);
 elementYa = (double*) (*psaArrayY)->pvData;

 //locking array befoer using its element
 resultXa = SafeArrayLock(*psaArrayX);
 lElementXa =(*psaArrayX)->rgsabound[0].cElements;

 //using the element
 elementXa = (double*) (*psaArrayX)->pvData;

 dif= fabs((x - elementXa[0]));
 for (i=0;i<=n;i++){
 if ((dift=fabs(x-elementXa[i]))<dif){
 ns=i;
 dif=dift;
 }
 c[i]=elementYa[i];
 d[i]=elementYa[i];
 }

 *y = elementYa[ns--];
 for (m=1;m<n;m++) {
 for (i=0;i<=n-m;i++) {
 ho =elementXa[i]-x;
 hp =elementXa[i+m]-x;
 w =c[i+1]-d[i];
 den =ho-hp;
 /*if ((den =ho-hp) ==0) {
 fprintf(stderr, "divided by zero .. ") ;
 exit(1);
 } */
 den =w/den;
 d[i]=hp*den;
 c[i]=ho*den;
 }
 *y +=((2*ns<(n-m) ? c[ns+1] : d[ns--]));

 64

 }

 // releasing the array
 resultXa = SafeArrayUnlock(*psaArrayX);
 resultYa = SafeArrayUnlock(*psaArrayY);
}

interp.def
LIBRARY interp

EXPORTS
interp

 65

References

 [1] Åström, K. J.,& Wittenmark, B. (1997). Computer-Controlled System: Theory and
Design (3rd ed.). NJ: Prentice Hall.

[2] Chan, H., & Özgüner, Ü. (1995). “Closed-loop Control of Systems over
Communication Networks with Queues”. International Journal of Control, 62, pp. 493-
510

[3] Franklin, G. F., Workman, M. L.,& Powell D. (1997). Digital Control of Dynamic
Systems (3rd ed.). MA: Addison Wesley Longman.

[4] Lian, F., Moyne, J. R., & Tilbury, D. M. (2001, February). “Performance Evaluation
of Control Networks: Ethernet, ControlNet, and DeviceNet”. IEEE Control Systems
Magazine, 21(1), pp. 66-83.

[5] Mukherjee, A. (1994, December). “On the Dynamics and Significance of Low
Frequency Components of Internet Load”. Internetworking: Research and Experience, 5,
pp.163-205.

[6] Nilsson, J. (1998). Real-Time Control Systems with Delays. Doctoral dissertation,
Lund Institute of Technology, Lund, Sweden.

[7] Tachakittiroj, K. (1998). Stability of Sampled-Data System Including Quantization.
Unpublished doctoral dissertation, Case Western Reserve University, Cleveland, OH.

[8] Tanenbaum, A. S. S. (1996). Computer Networks (3rd ed.). NJ: Prentice Hall.

[9] Walsh, C.G., Ye, G., & Bushnell, L. (1999, June). “Stability Analysis of Networked
Control Systems”. Proceedings of the American Control Conference, pp. 2876-2880.

[10] Zhang, W., Branicky, M. S., & Phillips S. M. (2001, February). “Stability of
Networked Control Systems”. IEEE Control Systems Magazine, 21(1), pp. 84-99.

[11] Zhang, W. (2001). Stability Analysis of Networked Control Systems. Unpublished
doctoral dissertation, Case Western Reserve University, Cleveland, OH.

[12] Zhang, Y., Duffield, N., Paxson, V., & Shenker, S. (2001). On the Constancy of
Internet Path Properties. Retrieved March 20, 2002 from World Wide Web:
http://www.icir.org/vern/imw-2001/imw2001-papers/38.pdf.

[13] Flannery, Brian P., Press William H., Teukolsky, Saul H., Vetterling William T.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge
University Press

 66

[14] Flannery, Brian P., Press William H., Teukolsky, Saul H., Vetterling William T.
Numerical Recipes Example Book (C). Cambridge: Cambridge University Press

