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Chapter 1  

Introduction 
 
 

Control Systems and Networks 

Networked control systems (NCSs) are the collaboration of two engineering fields, 

communication engineering (either wired or wireless) and control engineering.  

Because most NCSs are done in a wired environment, understanding network protocols 

such as Ethernet, token bus, token ring and CAN, is required to model the system’s 

behavior. 

 The ISO (International Standard Organization) has set up a guideline for 

computer networking called the open system interconnection (OSI). The OSI is divided 

into seven layers: the physical layer, the data link layer, the network layer, the transport 

layer, the session layer, the presentation layer and the application layer from the lowest to 

the highest respectively. The IEEE 802 committee has issued standards for local area 

networks (LANs): IEEE 802.3 (Ethernet), IEEE 802.4 (token bus) and IEEE 802.5 (token 

ring).  In LANs, the sublayer responsible for time critical/real time information is the 

medium access control (MAC). Technically, the MAC sublayer is the bottom part of the 

data link layer. It is responsible the assurance of the connection between nodes over the 

network. 

Ethernet (IEEE 802.3) uses the carrier sense multiple access with collision 

detection (CSMA/CD) protocol to control its communication. The transmitting nodes 

terminate their transmission after detected collisions. They wait for a random period and 

try to send the frames again. The protocol is bandwidth efficient as justified in [8].  
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The token bus (IEEE 802.4) is physically connected in a linear or tree-shaped 

manner. Logically, the connection between stations is considered as a ring, where each 

station knows its two logical neighbors. However, in order to use the protocol, the worst-

case time delay must be known. Even though the physical connection is linear, it does not 

mean that physically successive station will receive the token after the previous station is 

done. The token is passed to the station’s logical neighbors.  

When initialized, the hierarchy of stations is considered by the MAC sublayer by 

their addresses, the station with the highest number is the beginner. The station with a 

token may send frames during some amount of time and it has to pass the token on.  The 

token bus divides the data into four priority classes, 0, 2, 4 and 6. When a station gets a 

token, data with priority 6 is sent first and priority 0 is the last with some measure to 

guarantee the data with priority 0 gets some allocation.   

The IEEE 802.5  (token ring) network has a special bit pattern, called the token, 

available for a station to acquire when the network is idle. The token is removed from the 

network when a station decides to make a transmission.  The token is regenerated after 

the transmitting station finishes its transmission. An implication of the token ring design 

is that the ring itself must have a sufficient time delay to allow a complete token to allow 

a token to circulate completely when all stations are idle.  

Another common protocol in today’s business is the controller area network 

(CAN). CAN is a serial communication protocol that was developed to support 

applications in the automotive industry. The MAC sublayer in the protocol is carrier 

sense multiple access with arbitration on message priority (CSMA/AMP). The protocol 

uses a multicast technique, i.e. a station transmits a message and other stations decide to 
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accept or ignore the message depending on the configuration of a masking filter.  For 

collision protection, each message has a specific priority that is used to arbitrate access to 

the bus where logic zero is dominant over logic one.  This conflict is resolved during 

transmission at the bit level of the arbitration field.  A common-use CAN-based system in 

device-level manufacturing is the DeviceNet. It uses standard CAN with an additional 

application and physical layer specification. [4]  

Categorized by the MAC algorithms, the protocols fall into two categories, ones 

that produce constant transmission periods and those that create time-varying 

transmission periods. The algorithms used in the IEEE 802.4 standard and the IEEE 

802.5 standard yield constant transmission periods, whereas the IEEE 802.3 standard and 

CAN produce time-varying transmission periods. Bounds for the transmission period will 

be needed to guarantee stability of NCSs. This topic was studied in  [7], [9], &[10].  

Also, based on the MAC algorithms, the delay between transmissions (networked-

induced delay) is divided into two groups, deterministic and non-deterministic. If the 

MAC sublayer of a protocol accesses channel using the random back-off CSMA/CD in 

the Ethernet, for example, the delay from the protocol will be random. On the other hand, 

the scheduling protocols (the IEEE 802.4 standard and the IEEE 802.5 standard) will give 

deterministic delay. 

Other concerns for stability of NCSs are length of transmitted packets and packet 

dropping. The underlying protocol of the MAC sublayer in the network is the key to 

controlling the length of packets to be transmitted. In Ethernet, for example, the data field 

of the protocol is 1,500 bytes, so the size of transmitted packets is unlikely to affect real-

time feedback signals which are only a few bytes each. The information can even be 
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lumped and transmitted in one packet. On the other hand, the data field in the DeviceNet 

is only 8 bytes. The sensor data must be divided and transmitted in several packets.  

Packet dropping is often an inevitable event in network data transmission despite 

the provisions network protocols. In real-time feedback control, it might be advantageous 

to drop an old control signal and implement a new one. These issues were studied in [11].      

Throughout the simulations within, we assume single packet transmission with a 

fixed transmission period from a digital controller equipped with an estimator. The study 

of delay estimation in feedback control systems in network environments is the focus. For 

networks using scheduling protocols, we propose static delay estimation to compensate 

the system. For random access protocols, the network-induced delay is non-deterministic. 

The static delay compensation is not effective in these environments. Another approach, 

called dynamic delay compensation, is proposed for this scenario. The study is elaborated 

in Chapter 3. 

Thesis Organization 

This thesis is organized as follows. Some background material and related 

mathematical analysis of NCSs are reviewed in Chapter 2. This chapter also includes 

network delay modeling of some NCSs (CAN and Ethernet). However, the main 

contributions to the NCSs are in Chapter 3.  This chapter explains about the importance 

of the compensation of immeasurable delay, e.g. τca, and how it affects systems if it is not 

compensated for. We summarize and conclude our study in Chapter 4. 
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Chapter2 

Background 

State-Space Model for Systems with Delay 

Delay Less Than One Sampling Period† 

Consider the linear state equations with input delayed by λ : 
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The general solution to the equation is  
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where we assume 0 < λ < T. 

 While the signal u(t) is assumed piecewise constant over the sampling period 

interval, u(t-λ) is not piecewise constant over the sampling period interval. The delayed 

signal will change once during sampling period. The modified solution to the equation is  
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A discrete-time state-space model of the system is given by 
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where  
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Longer Time Delay‡ 

 
If the time delay, λ, is longer than the sampling period, h. The analysis in 2.2.1 

needs a little adaptation. Decompose λ into multiples of T: 

λλ ′+−= hd )1(        0 < λ’ ≤ h,     (2.7) 

where d is an integer. The analysis is modified to  
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with the same Φ, Γ0 and Γ1 as in section 2.1.1.  

The corresponding state-space description is 
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Compensation for Network-Induced Delay 
  

In this section we review the compensation discussed in [10], [11]. The 

compensation of NCSs is considered for sensor-to-controller delay, τsc, only. Feedback 

systems are categorized to full-state feedback or output feedback systems. With full-state 

feedback, the estimator compensates τsc. In the output feedback system, the estimator has 

to do both compensation and the estimate state of the system. These methods are 

compromising as far as delays are measurable. We use these approaches as our basic idea 

for developing the compensation for both of measurable and immeasurable delays.   

Full-State Feedback 

Let a system be described as in (2.1) and (2.2), λ < h. For every plant output, the 

data is time-stamped by the sensor in order to acquire the information about current time 

delay, τsc,k. Sensor information reaches the estimator at time ksckh ,τ+ . By assuming there 

is no measurement noise and all states are measured, the plant information at that time is  
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where )( .ksckh τ+x is the estimated state at time ksckh ,τ+ . 

   Applying the state feedback control law to the system 
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Figure 2.1 Plant and estimator timing for full state 
feedback 

 

Output feedback 

In practice, all states of some systems are not measured. Here we assume that the 

outputs from the plant are the only information we know. An estimator is needed to 

estimate the state. A conventional current-state estimator is used in this study.  

Without the delay, a current estimator is given by  

)))1((ˆ))1((())1((ˆ))1(( hkhkyhkhk c +⋅−+⋅++=+ xCLxx , 

where, )()())1((ˆ khukhhk Γ+⋅Φ=+ xx , ))1((*))1(( hkhku +−=+ xK and Lc is  

the estimator gain. The estimator is calculated in two steps. The estimator state )(khx is 

projected forward to the next sample, ))1((ˆ hk +x . Then the calculation is corrected with 

the received plant output to give ))1(( hk +x . 

 When τsc is taken into account, the current estimator scheme is described by  
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1. Correction base on )(khy : 
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Figure 2.2 Plant and estimator timing diagram with 
output feedback   

 

Delay Modeling 

Network induced delays can either be constant or random. If desire, the delays 

can be made to be constant by buffering the delay to the maximum after each transfer. 

This concept was proposed in Luck and Ray (1990), the drawback is, however, that 

delays are made longer than necessary. [6] 
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Constant Delay 

In CAN-base networks, data (packet) contention for network channel usage is low 

or non-existent since its topology is similar to a token bus network [4]. It is safe to say, 

therefore, that there is only one packet in the network channel from one channel. This 

includes periodically sent packets with idle network channels at the time of transmission. 

In this case, the delays appear constant (with little-to-no fluctuation). Figure 2.3 exhibits 

the delays from this case. Note that cable lengths and packet sizes affect the magnitude of 

these delays. When there is more than one packet (the messages have different priority) 

in the channel, and the messages are periodically sent, the transmission delays appear in 

periodically symmetrical pattern as shown in Figure 2.4. 

 

 
Figure 2.3 Network delays under the construction 
constraints in [6] when there is no queuing. 
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Figure 2.4 Delays of the CAN network in [6] when 
sent messages have different priority.    

 
Random Delay 

In real communication systems, transmission delays might depend on one another 

with an underlying probabilistic distribution, e.g. the Gamma distribution as stated in [5], 

or they might not relate to one another. Empirical fitting of a single distribution to model 

network delay is almost not possible. Mukherjee also stated in [5] that network delay is 

not stationary (cannot be describe with a single time invariant mathematical model) over 

a long period of time, but if slices into smaller period (10-30 min), the delay appears well 

described as stationary.[12]         

Markov delay Model 

Markov chain captures dependency of delays between samples. The model 

represents delays using various states, such as time-varying network loads or network 

queues.  
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Markov Chain 

 
A finite Markov chain is a Markov process that takes values {rk} in a finite set S = 

{1,2 ,3…,s}, with transition probabilities 

ijkk qirjrP ===+ )|( 1 ,    (2.13) 

The transition probabilities, qij, fulfill qij ≥ 0 for all Sji ∈,  , and 

1
1

=∑
=

s

j
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The Markov State probability distribution is  

         )]()()([)( 21 kkkk sππππ K= ,   (2.15) 

where πi(k) is the probability that the Markov chain state at time k is i. The probability 

distribution for rk is given by  

Q)()1( kk ππ =+ ,     (2.16) 

where the initial state probability 

0)0( ππ = .      (2.17) 

A Markov chain is said to be regular if the transition matrix Q  is a primitive 

matrix, i.e. all its elements are strictly positive. That a Markov chain is regular means that 

all states will be possible to reach in the future, there are no “dead ends” in the Markov 

chain. 

If a Markov chain is primitive the stationary probability distribution 

)(lim kk ππ ∞→
∞ =  is given uniquely satisfies 

Q∞∞ = ππ ,     (2.19) 

where ∞π  is a probability distribution. 
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 Let a Markov chain represents a network model with two distinct network loads – 

low and high,   

 

Figure 2.5 Markov delay model 

},{ HLrk = , 

with an arbitrarily chosen transition matrix of 









=

65.015.0

35.085.0
Q .  

The probability distributions describing the Markov state at low load and high 

load are a normal distribution with the means, sec007.0sec,003.0 == HL
µµ  and the 

standard deviation 002.022 == HL
σσ . Figure 2.7 is the Markov delay governed under the 

stated conditions.  
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Figure 2.6 Simulated delays histogram according to the state 
of the Markov chain when the load and is low, l, and high, h. 

 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1

2

3

4

5

6

7

8

9

1 0
x  1 0

-3

s a m p l e s

d
e

la
y(

se
c)

 
Figure 2.7 The Markov delay of two network loads – Low 
and High with QLL = 0.85, QLH = 0.15, QHL = 0.35 and QHH = 
0.65. 
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Sensor-to-controller delay VS controller-to-actuator 
delay  
 
 From his experiments, Nilsson distinguished the difference between the sensor-to-

controller delay,τsc, and the controller-to-actuator delay,τca, he found in CAN as: 

“Sensor-to-controller delay When the message is to be sent the bus ca be idle or a 
message can be under transmission. The probability for bus idle depends on the period 
of the process. It will show up as a delta in the probability distribution function. If the 
bus is busy we will get a nonzero τw (waiting time for a message) but there will never 
be a queue of messages. The delay τw will be uniformly distributed from 0 to the time it 
takes to send a message. The modeled distribution is shown in Figure 2.8. 
 Controller-to-actuator delay The delay from controller to actuator can only take two 
values when we have a one-load process. The reason for this is that if there was a 
message waiting when the message was sent from the sensor, the transmission of the 
waiting message starts before the message to the actuator is ready for transmission. In 
this case, the delay until the transmission starts will be the time to transmit the load 
message. If there is no waiting message the message to the actuator will be sent 
immediately after some computation time in the controller node. The modeled 
distribution is shown in Figure 2.8.” 

 
(a) 

 

 
(b)

Figure 2.8 (a) Delay measurements (b) Probabilistic 
distribution functions of τsc and τca in [6] of CAN 

 
  In the same study, network induced delays for an Ethernet network were 

measured. The measurement at low network load showed that the τsc is periodic and the 

τca is constant. The variation increases as the network load increases. Because the MAC 

sublayer of Ethernet employs CDMA/CD which backs off and waits for a random period 
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of time before retransmission if packet collision is detected, the delays become non-

deterministic in high-load environment. 

 
Figure 2.9 Delays measurement on Ethernet 
with low network load in [6] 

 

 
Figure 2.10 Network delays measured from 
Ethernet with an extra network load as set in [6] 
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Figure 2.11 Delay measurements of Ethernet as 
setup in [6] in high-load environment 
  

 The point here is the characteristic difference between τsc and τca. Therefore, 

compensating τca using techniques for τsc might not be able to capture some of the 

characteristics of the τca. We propose τca compensation estimated value derived from 

mean value and interpolation. Detailed discussions of the method are done in Chapter 3.     
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Chapter3 

Network Induced Delays and 
Compensation 
 

Introduction 

A networked control system consists of a plant with sensors and actuators, a 

compensator (controller and estimator), and the underlying network. Defining by its 

source and destination, sensor-to-controller delay, τsc, is the time it takes a packet to go 

from sensor to controller. Another delay is controller-to-actuator delay,τca. Compensation 

for these delays is crucial to preserve the desired response. Ignoring it, even stability of 

the system is in jeopardy. 

   The effect of measurable delays (e.g. τsc) on networked control systems (NCSs) 

was studied in [11]. However, the effect and the analysis of the immeasurable delay,τca, 

were not included in the study. Since τca is also a factor that contributes to instability, 

study of the delay should not be overlooked.    

Throughout the study, we assume that τsc is distinct from τca ,which cannot be 

measured since the actuator does not have computational capability. 

 
Figure 3.1 NCSs schematic with measurable 
and immeasurable delays    
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Compensation of ττca 

Let a system be described by  

)()()( casctutt ττ −−⋅+= BxAx && .    (3.1) 

The system is sampled and integrated over one sampling period,  
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Because the control signal, u(kh), is piecewise constant over sampling periods, the 

delayed version of it will be piecewise constant over a similarly delayed period.                       
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Interpretation of these equations is not as complicated as the equations themselves 

may look. After a sampling instant, sampled data travel through network to the 

compensator (Figure 3.2). The compensator calculates appropriate control signal, u(kh), 

with the factor of the τsc in consideration. The control signal, however, cannot be put to 

use immediately because of the τca. The previous control signal, u(kh-h), therefore, is 

used during the sampling period before the control signal, u(kh), reaches the actuators. 

Note that computational delays were absorbed into τsc (if measurable) or τca (if 

immeasurable). 
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Figure 3.2 Timing diagram of a delayed system 

 
Practically, several states of a system might not be observable, the gathered 

information, hence, is incomplete for full-state feedback calculation. To estimate such 

systems, estimators and controllers should be constructed as below, 

1. Current Estimator  
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2. Network induced delay from the sensor to the controller  
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3.   The Control Law  
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4. Network induced delay from the controller to the actuator  
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5. Forward to )(ˆ hkh+x  
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The equations describe fully compensated system if τsc and τca are known. 

Zhang’s works  ( [10], [11] ) show an approach to measure the τsc by timestamping data 

from sensor and taking the time difference when the data reaches controller. The 

technique does not hold for compensating for τca since the delay is yet to happen at the 

time of the state estimation. Estimating τca from information at hand is desirable, 

therefore. 

Static Delay Estimation & Dynamic Delay Estimation 

We propose two approaches to compensate for τca, static delay estimation (SDE) 

and dynamic delay estimation (DDE). If the network information has been monitored and 

statistics of the delays is available, estimating the τca with the mean may enable recovery 

of the desired response. If, for example, contention for channel usage is resolved, a 

constant time delay is expected and compensation for the system could be done by the 

SDE. We called the approach static because the compensated value is static through out 

the operation. 

The DDE is designed for networks with non-deterministic delay. This method 

employs the advantages of interpolation to help estimating the delay. Because the delays 

and their estimates vary from sample to sample, the term “dynamic” is adopted. The 

algorithms to estimate the delay are next, followed by a description. 
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Figure 3.3 Timing diagram for the algorithms 

Step 1: Current Estimator  

                       )),(ˆ)(()(ˆ)( khkhykhkh xHLxx −+=  

Step 2: Network induced delay from the sensor to the controller  
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Step 3: The Control Law  

                           ),()( sckhkhu τ+−= xK  

Step 4: Interpolation to estimate τca, k-1
 *,** 

 4.1 Repeat Step 1 to step 3 for k-1 

4.2 n-point interpolation tableau 

4.2.1 Network induced delay from controller to actuator  

 
 
 
 
∗  Step 4 can be done before estimating current position, ( )(khx ) 
** Skip step 4 for SDE   
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4.3 Interpolate for τca,k-1 using Neville’s algorithm• 
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Step 5: Compensate kca,τ  with caτ̂  

5.1 Static Delay Estimation (SDE) 
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• See Appendix A for details on Neville’s algorithm 
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5.2 Dynamic Delay Estimation (DDE) 
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(a) SDE 

 

(b) DDE 
 

Figure 3.4 Flow chart of the algorithm (a) SDE (b) DDE 
 



 25

Explanation of these equations is as follow. At Step 1, the estimator corrects and 

updates its states, and passing the result (via network) to controller. The time it takes for 

the information transmission from Step 1 to Step 2 is induced by network traffic (τsc). 

After compensated for τsc in Step 2, controller calculates updated control signal (Step 3). 

At Step 4, the interpolation tableau is calculated (reminder: sensor and actuator do not 

possess computational ability).  

Firstly, Repeat the calculation of Step 1 to Step 3 for the previous sampling period  

(k-1). Next, an n-point array representing a range of possible candidates of τca (0 ≤ τca ≤ 

h-τsc) where n is an integer. A forward calculation for each possible values for τca is 

performed ( np kh ,3,2,1)(ˆ
Lx ). Hence, interpolation tableau is created. The measured output 

(y(kh)) is used to interpolated among these calculated values. This gives an estimate of 

the actualτca. (Step 4.2 & Step 4.3)   

 

Figure 3.5 n-point tableau 

There are no clear rules on how many points the tableau should contain. However, 

if the tableau contains fewer points than necessary, interpolation error is generated due to 

information scarcity. On the other hand, if the function is not one-to-one, and the tableau 

contains information beyond the minimum or maximum point (depending on whether the 

function is concave or convex), interpolation is going to be generated due to interpolation 
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nature. (Consult results and discussions section in Real-time experiments for graphic 

details.)  

Compensate the system with the result from Step 4.3 (for DDE) or Step 5.1 (for 

SDE). Lastly, predict result of Step 5 using the caτ̂ (Step 6).   

Offline Experiments 

Reviewed in Chapter 1 and Chapter 2, each network protocols give different delay 

characteristics depending on their MAC-sublayer algorithms. In [6], the study conducted 

various CAN and Ethernet network environments and measured the network-induced 

delays from each setup. Inspired by that study, we created arrays of delays emulated from 

those various scenarios and used our algorithms (either SDE or DDE) to compensate for 

the τca. 

We implemented our algorithms on a double integrator system. Its step-responses 

were designed to exhibit characteristics of ς = 0.5 and ωn = 1.5784 rad/sec. The state 

space of this double integrator is   
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Constructing the estimator for the double integrator with compensation for τsc and 

τca from the algorithms is as follows: 

 1. Estimator Correction  
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3.  The control law 
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5. Forward to next sample‡ 
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Using Matlab, the controller gain, K, and estimator gain, L, were calculated. Our 

controller gain, K, was [ ]5208.17728.1 .  In [3], it is suggested that responses from 

estimators are conventionally two to four times faster than the response from the 

controller. Here, we chose it to be two times faster. Correspondingly, the estimator gain, 

L, was 






−
5857.1

4997.0
.  Also, the interpolations for τca in this section were aided by a 

                                                 
† *

caτ is caτ  for SDE, and 1, −kcaτ  for DDE 

‡ 
*

caτ is caτ  for SDE, and 1, −kcaτ  for DDE 
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function in MATLAB called “interp1.m”. The results from DDE in this section were 

interpolated from twenty-point tableau.    

Scenarios 

Four scenarios parallel to NCSs were investigated. We chose a suitable algorithm 

to estimate for the compensation of τca in each scenario.  

First scenario: one plant, one sensor, one compensator 
and one actuator on a network 

 
 

 
 

Figure 3.6 Network diagram describes in the first scenario 
  

In this scenario, the network is connected to only three components, a sensor, an 

actuator and a controller and it is a dedicated network to only one plant without 

connections to other networks. Because of these conditions, measurement of the 

transmission delays not only satisfies a (statistically) stationary condition; but, indeed, it 

is a constant. Moreover, not only τsc can be measured, but also τca since the network is 

exclusive and there is only one controller to use the communications. The delay 

measurement can be done finding the corresponded delay of that network physical length.  

Here we assumed a transmission delay of 0.08 sec. The emulation of the network-

induced delay of the scenario is represented in Figure 3.7.  
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Figure 3.7 Arrays of created delay under the first scenario 
constraints  
 

The response of the designed system is as shown in Figure 3.8. Presumably, the 

step responses of this system with the presence of network-induced delays, also as shown 

in Figure 3.8, are unbounded due to out of date control signal (see compensation of τca).  

 
Figure 3.8 Step responses showing effect of τsc compensation 
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Even though the responses in Figure 3.8 for both of the τsc–uncompensated 

system and the τsc–compensated system diverged, the τsc–compensated system diverged 

at slower rate than the uncompensated system.  

For the NCSs similar to this scenario, recovering performance of the system can 

be done by finding corresponding transmission delays (for both τsc and τca) and 

compensating them (Figure 3.9). 

 
Figure 3.9 Response of τsc-and-τca-compensated 
system (τsc = 0.08 sec and τca = 0.08 sec) 

 
Figure 3.10 Control signals of the double-integrator 
system when i) only compensated for τsc (Figure 3.8) 

ii) compensated for both τsc and τca (Figure 3.9) 
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Second Scenario: one plant, multiple sensors, multiple 
compensators and multiple actuators without competition for 
network channel  

 

 

Figure 3.11 Network diagram for the second scenario  
 

This scenario is a replica of a CAN. The system components consist of multiple 

controllers, multiple sensors and multiple actuators. Transmissions of the controllers are 

controlled by message priority (CSMA/AMP). According to [6], priority of messages on 

networks, constancy of sampling interval and network channel accessibility affect the 

characteristics of delays. For example, characteristics of measured delays will be 

statistically stationary when sampling time interval is constant and the sending message 

has higher priority than other messages on the network. 

We emulated characteristics of the delay,τca, of delay-measurement experiments 

on CAN in [6]. Depiction of our emulated array of delays is shown in Figure 3.11. We 

choose the loaded network delay to be 0.04 sec and load-free network delay to be 0.02 

sec.  
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Figure 3.12 Emulated network-induced delay under 
the second scenario  

 
We used SDE to estimate τca in this system. The system were compensated with 

mean of τca ( caτ   = 0.025 sec).  

Responses of the system are shown in Figure 3.13 

 
Figure 3.13 Step responses of the system from the 
second scenario when both delays were compensated 
for and when only τsc was compensated for  

  
A new array of delays under the same conditions as the one in Figure 3.12 has 

been created (Figure 3.14). We compensated τca of this new environment with mean 
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value of the array, caτ   = 0.025 sec (same compensation approach as Figure 3.12). The 

desired response and the response of the system are shown in Figure 3.15.   

 
Figure 3.14 Emulated network-induced delay under 
the second scenario  

 
Figure 3.15 Desired response and response of the full-
compensated system (using SDE to estimate the delay 
in Figure 3.14) 
  

Even tough, we used the caτ  to compensate the system, and the mean of these two 

arrays were the same, but delay characteristics of the two arrays (Figure 3.12 and Figure 

3.14) were different. As a result, the responses of the compensated system were unique.   
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Surprisingly, the response of the system with the new array of delay could not be 

recovered. This is because we compensated τca with “static” values. As shown in Figure 

3.14, τca was a time-varying function, therefore; using single number to represent the 

array of variety might not be an effective approach for that the precision of control 

signals depending on this calculation.  

 
Third Scenario: multiple plants, multiple compensators and 
multiple actuators with compensators compete for the 
network channel 

 

 

Figure 3.16 Network diagram of the third scenario 
  

The scenario represents a network control system connected to another network 

using Ethernet as an underlying algorithm. Hence, it is likely not possible to predict 

behavior of network-induced delay under this scenario since compensators of each plant 

independently seizes the network channel to transmit its messages. This means there 
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might be times that multiple compensators try to transmit data simultaneously; it might 

also mean there is no channel usage at all. The uncertainty surely affects the estimate for 

τca.  

Consider the delay measurements from the Case Western Reserve University’s 

network (CWRUnet). This experiment was conducted in [11]. Zhang measured the delays 

from two computers in the same room under the same workgroup with the characteristics 

as shown, 

 
Figure 3.16 CWRUNet delays measured in [11] 

 
Figure 3.17 Histogram of CWRUNet delays 
measured in [11] 
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 We tried SDE as the algorithm of estimation using mean and mode as the 

compensation value. The gotten responses confirmed with the idea concluded from the 

second scenario.      

 
Figure 3.18 Step response the system using SDE as the 
algorithm of estimation where mean of the delay ( =caτ  
0.0185 sec) was the compensation value    

 

 
Figure 3.19 Step response of the system using SDE as 
the algorithm of estimation where mode of the delay 
( =caτ  0.0060 sec) was the compensation value    
 

To estimate the delays under this scenario, one can only rely on the delays’ 

history, ( 1,3,2,1, ,,,, −kcacacaca ττττ K ). This approach is described as DDE in the earlier 
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section. DDE tracks changes of the system response; uses this data to interpolate for τca 

and feeds the results to the compensator. We used the measured delay from Figure 3.16 

to be our array of τca, and used DDE to be method of estimation. Two approaches of 

DDE have been tested in this scenario. Figure 3.20a shows the responses from the 

compensation where caτ̂  is calculated at Step 5.2.1 and 5.2.2 where N = 3.  

 
Figure 3.20a Responses of the system employing DDE 
as the algorithm  

 
 The difference in the response of the system between both methods is trivial, by 

the factor of x10-3. (Figure 3.20b) This difference contributed from the uniqueness of 

compensation-value selection of each methods. During information-collection period of 

caτ̂  of Step 5.2.2  (the first three point of Figure 3.20b), we assigned those caτ̂  to be 

1, −kcaτ , which is the same compensation values employed by Step 5.2.1. Hence, the 

difference of the two signal during the period is zero as shown.  
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Figure 3.20b Difference of the two responses of 
Figure 3.20a 
 

Generally, it is possible that measurable delay, i.e. τsc, and immeasurable delay, 

i.e. τca, might share similarities in their natures in some networked environment. In such 

cases, measurements of measurable delay are acceptable candidates of the compensation 

values of the immeasurable delay. This is because the two network-induced delays are 

symmetrical; therefore, the delays are expected to be nearly identical. The undergoing 

assumption that supports the logic is that the controller and the actuator are equally 

spacing from the plant either logically or physically according to MAC sublayer 

algorithm of delay measurement.     

Real-time experiments  

A client-server program, the Microsoft® Visual Basic for its interface and 

SocketWrench, an ActiveX program developed by the Catalyst co. ltd. 

(http://www.catalyst.com), for network communications, was developed to test validity 

of our algorithms.  
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The difference between this program and the program in [11] are this is a 

standalone program and the algorithm behinds the two are different. In this program, the 

computation is done by calling dynamic library link files (DLLs) while in [11] the 

program relies on MATLAB for its computational ability. Moreover, the program in [11] 

is conducted under the assumption of the delays (τsc and τca) were bundled together and 

then compensated as measurable delays whereas in this program the delays were 

differentiated to be measurable (e.g. τsc) and immeasurable delay (e.g. τca).  

Clock Synchronization 
 

There are several ways to synchronize the clocks, e.g. hardware synchronization, 

software synchronization or combination of the both. This program used the scheme 

reviewed in [2] & [11]; compensators send special signals to plants asking for clock 

readings; the plants send the readings back to the compensators. The compensators 

update their clocks with correction of the offset and round trip time.  

Every message in this experiment sent out by the plant and the compensator is 

time stamped for precise calculation for τsc; therefore, the plant and the compensator 

clocks have to be synchronized.  

Set-up 

The program was set up on two computers, one as a plant (computer 1) and the 

other as a compensator (computer 2). On the compensator side, we developed two 

dynamic library links (DLLs), ctrl.dll1 and dbinte.dll2, to compute the control law and to 

simulate the plant.  In order to compensate immeasurable delay, we developed another 

DLL called interp.dll3 to take care of the interpolation. 
                                                 
1 , 2, 3 Source codes are shown in Appendix B 
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Figure 3.21 Network diagram of the experiment 

 
 

 
 
Figure 3.22 Logical diagram of the experiment 
 

Results and Discussions 

 Step Input 

We used the same double integrator to be the plant of this experiment. We ran the 

experiment over the CWRUNet and used DDE for delay compensation with the desired 

response as shown in Figure 3.8. The results from real-time experiments agreed with the 

MATLAB experiment (offline experiment). This confirmed the validity of our algorithm 

validity. The step response from our real-time experiments is as show in Figure 3.23.     
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Figure 3.23 Step Response from the experiment   

 
However, when the prepared tableau fail to represent range of the τca, the 

interpolation will also fail as we found out in one of our tests. 

 

Figure 3.24 Step response, delay and interpolation of 
the delay of the system 
  

 Here the real τca is over the range of prepared tableau also it violated one of the 

requirements, kh < kh + τsc + τca ≤  kh + h. We simulated this situation and re-ran it 
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using the same algorithm but changed the sampling period to 1 sec and extended the 

tableau range to 0.5 (from 0.2). The Step response of the adjusted system is shown in 

Figure 3.25 

 
Figure 3.25 Step response of the adjusted-estimation 
system 

  
From our tests we found out if the f(τca) is not a one-to-one function, extending 

the tableau range might increase the odds of interpolation error. We suggest that the 

expansion and/or truncation of the range should be done only when interpolation shows 

arithmetically impossible results for the delay (either they are larger than the prepared 

tableau range or the results are negative value). 

Figure 3.26 shows parabolic function of the double integrator (second order 

system) used in the experiment. The shown parabola is at the 65th
 sampling period. 
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Figure 3.26 fifty-point tableau and twenty-point tableau 
of the double integrator system in the experiment setup 

 
Sinusoidal Input 

For static-signal input, i.e. step function, after the response of the system reached 

the steady state, it becomes less sensitive to its environment. However, when fed the 

system wit time-varying-signal input, i.e. sinusoidal signal, the state-estimation error of 

the response can be seen clearer than the static signal. This is because the signal changes 

with time; thus the response does not have steady state.  

  We estimated the double integrator with low frequency sinusoidal signals. The 

sampling period is 1 sec with the desired parameters as follows: the overshoot is less than 

20% and settling is less than 10 sec. Figure 3.27 shows the estimation output, referent 

input and the delays,τca, measured and interpolation result    
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Figure 3.27 Output of the compensated double integrator 
with the sinusoidal signal as the reference input  

 
Figure 3.28 Error between Input and output of the system 
in Figure 3.27 

 
The delay shows in Figure 3.27 is almost zero because the size of the control 

signal is very small in comparison to the CWRUNet’s bandwidth. The error shows in 

Figure 3.27 came from the nature of feedback control.  

Furthermore, we planted our system in a more non-deterministic-delay 

environment. The result of the experiment is shown in Figure 3.29.  
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Figure 3.29 Output of the compensated double integrator 
system in non-deterministic delay environment 

 
Figure 3.30 Error between input and output of the 
system in Figure 3.29  

 
The glitches in Figure 3.30 came from the nature of the DDE – it compensates the 

system immeasurable delay, τ ca,k, with the last known immeasurable delay, τca,k-1. When 

compare Figure 3.27 to Figure 3.29, the state estimation error of Figure 3.27 (Figure 

3.28) is smoother than the error of Figure 3.29 (Figure 3.30). This is because the delays in 

Figure 3.26 were less variance than the delay in Figure 3.29. 
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Effect of Designs 

The next simulations intend to study the effect of pole placement on the system 

stability with time delay without compensation for the delays. Various pole locations 

have been studied starting with more sensitive locations (i.e. near the unit circle in the z-

plane) then moving to stabler locations (close to origin of the z-plane).  Simulations of the 

system have been conducted in three cases, i) without any compensation, ii) with 

compensation for τsc and iii) with compensation for τsc and τca with the DDE.  Delays 

used through out the simulations were the same delays as shown in Figure 3.20.  

In the first simulation, the closed-loop poles are at 3781.06249.0 jz ±= . The 

result is shown in Figure 3.31. From the figure, ii shows that the system without any 

compensation has the worst response. The compensation-for-τsc system lessens the 

magnitude of damage done to the system, but the system is still unstable. 

Next, the closed-loop poles are moved to 3131.05716.0 jz ±= . The unit step 

response is shown in Figure 3.32. 

 
Figure 3.31 Step responses of the system where the 
closed-loop poles are 3781.06249.0 jz ±=  
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Figure 3.32 Step responses of the system where the 
closed-loop poles located at 3131.05716.0 jz ±=  

 
Even though the uncompensated system and the τsc-compensated system are still 

unstable, the instability of both systems becomes less extreme.  

The closed-loop poles are now at 2941.04860.0 jz ±= .  The uncompensated 

system is still unstable as shown in Figure 3.33; however, the τsc-compensated system 

becomes stable but the dynamics of the system differs from the desire response because 

of the affect of the τca.  

Moreover, when the closed loop poles were moved to 2850.04710.0 jz ±= , 

even the response of uncompensated system became stable. The step responses are shown 

in Figure 3.34. 
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Figure 3.33 Step responses of the system where the 
closed-loop poles located at 2941.04860.0 jz ±=    

 

 
Figure 3.34 Step responses of the system where the 
closed-loop poles located at 2850.04710.0 jz ±=   
 

From Figure 3.30 – 3.34, responses of the system were gradually become stable 

(bounded output). This can be concluded that if the closed-loop poles were placed inside 

guaranteed region, even the response of uncompensated system can be bounded. Thus, it 

is interesting to investigate this ‘guaranteed region’ (bounded response) in different 

compensation scenarios.    
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We tested the system (double integrator) under three scenarios – i) uncompensated 

system, ii) τsc–compensated system and iii) fully compensated system. The poles were 

placed in unit circle in Z-plane. The responses were checked for boundedness. The tests 

were done uniformly over the unit-circle. Then, we refined our scale to find the edge of 

the bounded region (steady oscillating). The parameters of the tested system were that h = 

0.4 sec and τsc = τca = 0.08 sec. The plots are presented in Figure 3.35 (a) – (c) where x 

represents the response with growing oscillation, o represents the response with steady 

oscillation, and � represents the response with decaying oscillation.  

 

 
(a) Bounded region of the scenario in i) 
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 (b) Bounded region of the scenario in ii) 
 

 
(c) Bounded region of the scenario in iii) 

 
Figure 3.35 Bounded and unbounded regions of the double 
integrator system when i) uncompensated system              
ii) τsc – compensated system iii) fully compensated system
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Chapter 4  

Summary 
 

For deterministic-delay networks, compensating the system by using mean values 

of the delays are sufficient to stabilize systems (SDE).  It is, however, more complicate in 

non-deterministic-delay networks. DDE is proposed to use in the situation. The approach 

is to estimate the delays from current sampled data to determine the τca. Resulting in 

estimating the delay from previous sampling period; nevertheless, the estimated delay 

should not be much different from the real delay since it is the same network and the 

estimation is contiguous from one sample to another.  However, sporadic bursts in 

network traffic are inevitable occurrence. The effect can be seen in form of glitches in the 

response at the time burstiness occurred. 

Position of pole placement may relieve severity of instability of the system in the 

manner that when closed-loop poles are placed to stabler area, the systems are able 

tolerate more disturbance (in the simulations the system becomes more tolerable to the 

error accounted for the lack of compensation for τsc and/or τca). This leads to a topic of 

greedy control. The realization is that when employ a greedy control, an accurate 

estimator is crucial. Yet, there exist noises that may deteriorate proficiency of estimators. 

Hence, we do not recommend the method of pole shifting to be solely solution for the 

delay problem. However, deftly placing the poles would alleviate the problem. Yet, 

choosing location for the poles is a form of art and there is no right or wrong as long as 

the constraints were met. The way to master the skill is by observation and practices. 

Moreover, stability region of the model NCS when compensations for ôsc and ôca are 

absent is smallest but it grows as delays have been compensated. This confirms our 
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assumption that if immeasurable delay is left uncompensated, system response will 

degrade.           



 53

Appendices 

Appendix A: Neville’s Algorithm 

Let P1 be the value at x of the unique polynomial of degree zero (i.e., a constant) 

passing through point (x1, y1); so P1 = y1. Likewise define P2, P3, P4, … PN. Now let P12 

be the value at x of the unique polynomial of degree one passing through both (x1, y1) and 

(x2, y2). Likewise, P23, P34, P45, … P(N-1)N. Similarly, for higher-order polynomials, up to 

P123…N, which is the value of the unique interpolating polynomial through all N points, 

i.e., the desired answer. The various P’s form a “tableau” with “ancestors” on the left 

leading to a single “descendant” at the extreme right. For example, with N = 4,  
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Neville’s algorithm is a recursive way of filling in the numbers in the tableau a 

column at a time, form left to right. It is based on the relationship between a “daughter” P 

to its two “parents”, 
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This recursive works because the two parents already agree at point 11 −++ mii xx K . 
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Appendix B 

 Appendix B1: Source code for Plant  

 
Option Explicit 
 
Private Type SysTime 
sysYear As Integer 
sysMonth As Integer 
sysDay As Integer 
sysDayofWeek As Integer 
sysHour As Integer 
sysMin As Integer 
sysSec As Integer 
sysMilliSec As Integer 
End Type 
 
Dim TestTime As SysTime, Delaycheck As SysTime 
Dim samples As Integer 
Dim Tsc(51) As Double, ctrl(51) As Double, Tca(51) As Double 
Dim x1 As Double, x2 As Double 
Dim Y2(51) As Double 
 
Private Declare Sub GetSystemTime Lib "kernel32" _ 
(lpSystemTime As SysTime) 
 
'Plant caluculation function 
Private Declare Function dbintgX1Kh2Tsc Lib "dbinte" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX2Kh2Tsc Lib "dbinte" _ 
(ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX1Tsc2Tca Lib "dbinte" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX2Tsc2Tca Lib "dbinte" _ 
(ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX1Tca2H Lib "dbinte" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal 
ctls As Double) As Double 
Private Declare Function dbintgX2Tca2H Lib "dbinte" _ 
(ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal ctls As Double) As 
Double 
 
 
Private Sub CnntButt_Click() 
ServerSock.AutoResolve = False 
If ServerSock.BindAddress = "" Then 
   ServerSock.BindAddress = Trim(Plant_IP.Text) 
End If  
ServerSock.Blocking = False 
ServerSock.Binary = False 
ServerSock.SocketType = SOCK_STREAM 
ServerSock.BufferSize = 1024 
ServerSock.LocalPort = CInt(Val(CtrlPort.Text)) 
Plant_IP.Enabled = False 
CtrlPort.Enabled = False 
If CnntButt.Caption = "Listen" Then 
CnntButt.Enabled = False 
ServerSock.Listen 
Else 
ServerSock.Action = SOCKET_CLOSE 
End If  
UpdateForm 
End Sub 
 
Private Sub DisconBtt_Click() 
If MsgBox("Are you sure you want to disconnect the controller?", vbQuestion + vbYesNo, App.Title) = vbNo Then 
        Exit Sub 
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    End If  
If ServerSock.Connected Then 
    If MsgBox("Connection to be disconnect", vbYesNo) = vbNo Then 
    Exit Sub 
    Else 
    ServerSock.Disconnect 
    SamplingPeriod.Enabled = False 
    End If  
Else 
 MsgBox "Your connection hasn't been estrablished" 
End If  
ServerSock.Action = SOCKET_CLOSE 
Call Form_Load 
End Sub 
 
Private Sub Form_Load() 
Plant_IP.Text = "0.0.0.0" 
Controller_IP.Enabled = False 
Controller_IP.Text = "0.0.0.0" 
CtrlPort.Text = CLng(Val(IPPORT_ECHO)) 
Start.Enabled = True 
SamplingPeriod.Enabled = False 
samples = 1 
Y1(0) = 0 
Y1(1) = 0 
Tsc(0) = 0 
Tca(0) = 0 
ctrl(0) = 0 
End Sub 
 
Private Sub Gplot_Click() 
graph.Show  
End Sub 
Private Sub Plant_IP_Change() 
UpdateForm 
End Sub 
 
Private Sub Plant_IP_GotFocus() 
Plant_IP.SelStart = 0 
Plant_IP.SelLength = Len(Plant_IP.Text) 
End Sub 
 
Private Sub Plant_IP_KeyPress(KeyAscii As Integer) 
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then 
KeyAscii = 0: Beep 
End If  
End Sub 
Private Sub CtrlPort_Change() 
UpdateForm 
End Sub 
 
Private Sub CtrlPort_GotFocus() 
CtrlPort.SelStart = 0 
CtrlPort.SelLength = Len(CtrlPort.Text) 
End Sub 
 
Private Sub CtrlPort_KeyPress(KeyAscii As Integer) 
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then 
KeyAscii = 0: Beep 
End If  
End Sub 
 
Private Sub SamplingPeriod_Timer() 
 
x1 = dbintgX1Kh2Tsc(Y1(samples), Y2(samples), Tsc(samples), ctrl(samples)) 
x2 = dbintgX2Kh2Tsc(Y2(samples), Tsc(samples), ctrl(samples)) 
 
x1 = dbintgX1Tsc2Tca(x1, x2, Tca(samples), ctrl(samples)) 
x2 = dbintgX2Tsc2Tca(x2, Tca(samples), ctrl(samples)) 
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Y1(samples + 1) = dbintgX1Tca2H(x1, x2, 0.4, Tsc(samples), Tca(samples), ctrl(samples + 1)) 
Y2(samples + 1) = dbintgX2Tca2H(x2, 0.4, Tsc(samples), Tsc(samples), ctrl(samples + 1)) 
 
samples = samples + 1 
 
  
If samples > 50 Then 
SamplingPeriod.Enabled = False 
MsgBox "END", vbExclamation 
Call DisconBtt_Click 
Exit Sub 
End If  
Call SensorDelay 
 
End Sub 
Private Sub ServerSock_Accept(SocketId As Integer) 
 
If ServerSock.Listening Then 
ServerSock.Action = SOCKET_ACCEPT 
End If  
End Sub 
 
Private Sub ServerSock_Connect() 
MsgBox "Accepted connection from client at" & ServerSock.PeerAddress, vbOKOnly 
Controller_IP.Text = ServerSock.PeerAddress 
Controller_IP.Enabled = False 
UpdateForm 
 
End Sub 
 
Private Sub ServerSock_Disconnect() 
ServerSock.Disconnect 
MsgBox "Client disconnected" 
UpdateForm 
Call Form_Load 
End Sub 
  
Private Sub ServerSock_Read(DataLength As Integer, IsUrgent As Integer) 
Dim StrBuffer As String 'Change it to Float 
Dim uPosition As Integer 
ServerSock.Read StrBuffer, DataLength 
   
  If InStr(1, Trim(StrBuffer), "y", 1) = 2 And InStr(1, Trim(StrBuffer), "k", 1) = 9 Then 
  Call SyncClock 
  Exit Sub 
     
  Else 
  uPosition = CInt(InStr(1, StrBuffer, "u", 1)) 
  Tsc(samples) = CDbl(Mid(Trim(StrBuffer), 2, uPosition - 2)) 
  ctrl(samples + 1) = CDbl(Mid(StrBuffer, uPosition + 1, DataLength - uPosition)) 
  If SamplingPeriod.Enabled = False Then 
  SamplingPeriod.Enabled = True 
  End If  
  FrmCtrller.Text = StrBuffer 
  FrmCtrller.Refresh 
    End If  
End Sub 
 
Private Sub UpdateForm() 
 Dim strTitle As String, bEnable As Integer 
  
 strTitle = App.Title 
 bEnable = True 
 If Len(Trim(Plant_IP.Text)) = 0 Then bEnable = False 
 If Len(Trim(CtrlPort.Text)) = 0 Then bEnable = False 
   
 If ServerSock.Listening Then 
  CnntButt.Caption = "Pause" 
  CnntButt.Enabled = False 
  strTitle = strTitle & "Paused" 
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  ElseIf ServerSock.Connected Then 
  CnntButt.Caption = "Pause" 
  CnntButt.Enabled = False 
  Plant_IP.Enabled = False 
  CtrlPort.Enabled = False 
  Else 
  CnntButt.Caption = "Listen" 
  CnntButt.Enabled = bEnable 
  Plant_IP.Enabled = True 
  CtrlPort.Enabled = True 
 
  End If  
  
FrmCtrller.Text = "" 
ToCtrller.Text = "" 
   
 End Sub 
 
Private Sub SyncClock() 
Dim Wtime As Long 
Dim SentWtime As String 
GetSystemTime TestTime 
Wtime = (TestTime.sysHour * 3.6 + TestTime.sysMin * 0.06 _ 
        + TestTime.sysSec * 0.001 + TestTime.sysMilliSec * 0.000001) * 1000000 
 
SentWtime = ":" & CStr(Wtime) & ":" 
ServerSock.Write SentWtime, Len(SentWtime) 
 
End Sub 
 
Private Sub SensorDelay() 
Dim sendchk As Double 
Dim ToCtrller As String 
 GetSystemTime Delaycheck 
  sendchk = (Delaycheck.sysHour * CDbl(3600) + Delaycheck.sysMin * CDbl(60) + Delaycheck.sysSec _ 
          + Delaycheck.sysMilliSec / 1000)  'clock in seconds 
 ToCtrller = "@" & CStr(Y1(samples)) & "," & CStr(sendchk) 
 ServerSock.Write ToCtrller, Len(ToCtrller) 
  
  End Sub 
 
Private Sub Start_Click() 
 
Start.Enabled = False 
Call SensorDelay 
End Sub 

 
Appendix B2: Source code for Controller   
 
Option Explicit 
 
Private Type SysTime 
sysYear As Integer 
sysMonth As Integer 
sysDayofWeek As Integer 
sysDay As Integer 
sysHour As Integer 
sysMin As Integer 
sysSec As Integer 
sysMilliSec As Integer 
End Type 
 
Dim TestSysTime As SysTime 
Dim xmitDelay As Single 
Dim Delay As SysTime 
 
Private Declare Sub GetSystemTime Lib "kernel32" _ 
(lpSystemTime As SysTime) 
Private Declare Sub SetSystemTime Lib "kernel32" _ 



 58

(lpSystemTime As SysTime) 
 
'Controller 
Private Declare Function contrl Lib "contrl.dll" _ 
(ByVal k1 As Double, ByVal k2 As Double, ByVal x1 As Double, ByVal x2 As Double, ByVal Input1 As Double, ByVal 
Input2 As Double) As Double 
 
'Inerpolation 
Private Declare Sub interp Lib "interp.dll" _ 
(First() As Double, Second() As Double, ByVal pointX As Double, ByVal N As Integer, outcome As Double) 
 
'Estimator Calculation 
Private Declare Function dbintgX1Kh2Tsc Lib "dbinte.dll" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX2Kh2Tsc Lib "dbinte.dll" _ 
(ByVal x2 As Double, ByVal sdelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX1Tsc2Tca Lib "dbinte.dll" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX2Tsc2Tca Lib "dbinte.dll" _ 
(ByVal x2 As Double, ByVal adelay As Double, ByVal ctls As Double) As Double 
Private Declare Function dbintgX1Tca2H Lib "dbinte.dll" _ 
(ByVal x1 As Double, ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal 
ctls As Double) As Double 
Private Declare Function dbintgX2Tca2H Lib "dbinte.dll" _ 
(ByVal x2 As Double, ByVal h As Double, ByVal sdelay As Double, ByVal adelay As Double, ByVal ctls As Double) As 
Double 
 
Dim Gtca(51) As Double, XE1(51) As Double, XE2(51) As Double 
Dim Tsc(51) As Double, Ctrl(51) As Double, Y(51) As Double 
Dim N As Integer 
 
Private Sub ClientSock_Connect() 
UpdateForm 
RcvSignal.Text = "" 
SndSignal.Text = "" 
SndSignal.SetFocus 
PortNo.Enabled = False 
PlantIP.Enabled = False 
End Sub 
 
Private Sub DisconBtt_Click() 
If ClientSock.Connected Then 
 ClientSock.Disconnect 
 MsgBox "Connection as been disconnected", vbOKOnly 
 CnntBtt.Enabled = True 
 
 Else 
  MsgBox "No connection yet", vbOKOnly + vbExclamation 
  If CnntBtt.Enabled = False Then 
      CnntBtt.Enabled = True 
  End If  
 End If  
 Call Form_Load 
 End Sub 
 
Private Sub Form_Load() 
PortNo.Text = CInt(Val(IPPORT_ECHO)) 
PlantIP.Text = "0.0.0.0" 
RcvSignal.Text = "" 
SndSignal.Text = "" 
PortNo.Enabled = True 
PlantIP.Enabled = True 
N = 1 
End Sub 
 
Private Sub CnntBtt_Click() 
 
CnntBtt.Enabled = False 
ClientSock.AddressFamily = AF_INET 
ClientSock.Protocol = IPPROTO_TCP 
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ClientSock.SocketType = SOCK_STREAM 
ClientSock.BufferSize = 1024 
ClientSock.Binary = False 
ClientSock.RemotePort = Val(PortNo.Text) 
ClientSock.Blocking = False 
ClientSock.AutoResolve = False 
ClientSock.HostAddress = Trim(PlantIP.Text) 
ClientSock.Connect 
PortNo.Enabled = False 
PlantIP.Enabled = False 
End Sub 
 
Private Sub PlantIP_Change() 
UpdateForm 
End Sub 
 
Private Sub PlantIP_GotFocus() 
PlantIP.SelStart = 0 
PlantIP.SelLength = Len(PlantIP.Text) 
End Sub 
 
Private Sub PlantIP_KeyPress(KeyAscii As Integer) 
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then 
 KeyAscii = 0: Beep 
 End If  
End Sub 
 
Private Sub PortNo_Change() 
UpdateForm 
End Sub 
 
Private Sub PortNo_GotFocus() 
PortNo.SelStart = 0 
PortNo.SelLength = Len(PortNo.Text) 
End Sub 
 
Private Sub PortNo_KeyPress(KeyAscii As Integer) 
If KeyAscii > 31 And KeyAscii <> 46 And (KeyAscii < 48 Or KeyAscii > 57) Then 
 KeyAscii = 0: Beep 
 End If  
End Sub 
 
Private Sub ClientSock_Read(DataLength As Integer, IsUrgent As Integer) 
Dim RStrBuffer As String 
Dim DelayBuffer As Double 
Dim dPosition As Integer 
Dim ctrlTime As Double 
   
   ClientSock.Read RStrBuffer, DataLength 
    
    
  If Left(RStrBuffer, 1) = ":" And Right(RStrBuffer, 1) = ":" Then 
   Call SyncClock(RStrBuffer) 
  Exit Sub 
    
  Else 
   
   dPosition = InStr(RStrBuffer, ",") 
   Y(N) = CDbl(Mid(RStrBuffer, 2, dPosition - 2)) 
      
   DelayBuffer = CDbl(Mid(RStrBuffer, dPosition + 1, Len(RStrBuffer) - dPosition)) 
   GetSystemTime Delay 
    
   ctrlTime = (Delay.sysHour * CDbl(3600) + Delay.sysMin * CDbl(60) + Delay.sysSec _ 
   + Delay.sysMilliSec / CDbl(1000)) 
       
   Tsc(N) = ctrlTime - DelayBuffer 
   RcvSignal.SelLength = 0 
   RcvSignal.SelText = RStrBuffer 
   RcvSignal.Refresh 
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   Call ComputCtrller 
     
   Exit Sub 
 
   End If  
End Sub 
 
Private Sub UpdateForm() 
 If ClientSock.Connected Then 
  If Len(ClientSock.HostName) > 0 Then 
    ThesisCtrl.Caption = ClientSock.HostName & " - " & App.Title 
  Else 
    ThesisCtrl.Caption = ClientSock.HostAddress & " - " & App.Title 
  End If  
  RcvSignal.Enabled = True 
  End If  
End Sub 
 
 
Private Sub SyncButt_Click() 
 Dim clkBuffer As String 
 SyncButt.Enabled = True 
 clkBuffer = "Syn Clock" 
 ClientSock.Write clkBuffer, Len(clkBuffer) 
 xmitDelay = Timer 
 
End Sub 
 
Private Sub SyncClock(WTime As String) 
Dim Rtime As String 
Dim TimeBuffer As Long 
Dim setHour As Integer 
Dim setMin As Integer 
Dim setSec As Integer 
Dim setMilliSec As Integer 
    
  Rtime = (Mid(WTime, 2, Len(WTime) - 2)) 
  
  xmitDelay = ((Timer - xmitDelay) * 1000) / 2 
   
  TimeBuffer = CLng(CLng(Rtime) + Int(xmitDelay)) 
  
  setHour = TimeBuffer / 3600000 - (TimeBuffer Mod 3600000) / 3600000 
   
  setMin = (TimeBuffer - setHour * 3600000) / 60000 - _ 
           ((TimeBuffer - setHour * 3600000) Mod 60000) / 60000 
 
  setSec = (TimeBuffer - setHour * 3600000 - setMin * 60000) / 1000 - _ 
           ((TimeBuffer - setHour * 3600000 - setMin * 60000) Mod 1000) / 1000 
   
  setMilliSec = (TimeBuffer - setHour * 3600000 - setMin * 60000) Mod 1000 
      SetSystemTime TestSysTime 
         
    TestSysTime.sysHour = setHour 
    TestSysTime.sysMin = setMin 
    TestSysTime.sysSec = setSec 
    TestSysTime.sysMilliSec = setMilliSec 
    MsgBox "Sync Done" 
   
  End Sub 
Private Sub ComputCtrller() 'output is Yread right now we doing open loop est 
'Varaibles have not been declare yet. 
Dim x1 As Double, x2 As Double 
Dim X1loop As Double, X2loop As Double 
 
Dim Guesstca As Double, Loopout() As Double, Tca() As Double 
Dim ToPlant As String, tcacount As Integer 
Tsc(0) = 0 
XE1(0) = 0 
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XE2(0) = 0 
Ctrl(0) = 0 
Ctrl(1) = 0 
x1 = dbintgX1Kh2Tsc(XE1(N), XE2(N), Tsc(N), Ctrl(N)) 
x2 = dbintgX2Kh2Tsc(XE2(N), Tsc(N), Ctrl(N)) 
 
'compute Ctrl Signal 
 
Ctrl(N + 1) = contrl(2.1915, 2.1315, x1, x2, 0, 1) 
 
ToPlant = CStr("D" & Tsc(N) & "u" & Ctrl(N + 1)) 
 
ClientSock.Write ToPlant, Len(ToPlant) 
 
ReDim Tca(21) 
ReDim Loopout(20) 
Tca(1) = 0 
If N > 1 Then 
For tcacount = 1 To 20 
 
X1loop = dbintgX1Kh2Tsc(XE1(N - 1), XE2(N - 1), Tsc(N - 1), Ctrl(N - 1)) 
X2loop = dbintgX2Kh2Tsc(XE2(N - 1), Tsc(N - 1), Ctrl(N - 1)) 
 
X1loop = dbintgX1Tsc2Tca(X1loop, X2loop, Tca(tcacount), Ctrl(N - 1)) 
X2loop = dbintgX2Tsc2Tca(X2loop, Tca(tcacount), Ctrl(N - 1)) 
 
X1loop = dbintgX1Tca2H(X1loop, X2loop, 0.4, Tsc(N - 1), Tca(tcacount), Ctrl(N)) 
X2loop = dbintgX2Tca2H(X2loop, 0.4, Tsc(N - 1), Tca(tcacount), Ctrl(N)) 
 
Loopout(tcacount) = X1loop 
Tca(tcacount + 1) = Tca(tcacount) + (1 / 19#) 
Next tcacount 
 
ReDim Tca(20) 
Tca(1) = 0 
For tcacount = 1 To 19 
Tca(tcacount + 1) = Tca(tcacount) + (1 / 19#) 
Next tcacount 
 
interp(Loopout(), Tca(), Y(N), 20, Guesstca) = Gtca(N) 
 
Else 
Gtca(N) = 0 
End If  
 
x1 = dbintgX1Tsc2Tca(x1, x2, Gtca(N), Ctrl(N)) 
x2 = dbintgX2Tsc2Tca(x2, Gtca(N), Ctrl(N)) 
x1 = dbintgX1Tca2H(x1, x2, 0.4, Tsc(N), Gtca(N), Ctrl(N + 1)) 
x2 = dbintgX2Tca2H(x2, 0.4, Tsc(N), Gtca(N), Ctrl(N + 1)) 
 
XE1(N + 1) = x1 + CDbl(0.0188) * (x1 - Y(N)) 
XE2(N + 1) = x2 + CDbl(0.8983) * (x2 - Y(N)) 
 
N = N + 1 
End Sub 
 

Appendix B3: Source code for DLLs 
 
contrl.dll 
 
controller.h 
# include <windows.h> 
# include <math.h> 
# include <stdlib.h> 
 
double __declspec(dllexport) __stdcall contrl(double k1, double k2, double x1, double x2, double inp1, double inp2); 
 
controller.c 
#include "controller.h" 
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double __declspec(dllexport) __stdcall contrl(double k1, double k2, double x1, double x2, double inp1, double inp2) 
{ 
 double ctls; 
 ctls = k1*(-x1+inp1)+k2*(-x2+inp2); 
 return(ctls); 
} 
 
controller.def 
LIBRARY contrl 
EXPORTS 
contrl 
 
dbinte.dll 
dbinte.h 
 
# include <windows.h> 
# include <math.h> 
#include <stdlib.h> 
double __declspec (dllexport) __stdcall dbintgX1Kh2Tsc(double X1, double X2, double Tsc, double ctrl);  
double __declspec (dllexport) __stdcall dbintgX2Kh2Tsc(double X2,double Tsc, double ctls); 
double __declspec (dllexport) __stdcall dbintgX1Tsc2Tca(double X1, double X2,double Tca, double ctls); 
double __declspec (dllexport) __stdcall dbintgX2Tsc2Tca(double X2,double Tca, double ctls); 
double __declspec (dllexport) __stdcall dbintgX1Tca2H(double X1, double X2,double h,double Tsc, double Tca, double 
ctls); 
double __declspec (dllexport) __stdcall dbintgX2Tca2H(double X2,double h,double Tsc, double Tca, double ctls); 
dbinte.c 
# include "dbinte.h" 
double __declspec (dllexport) __stdcall dbintgX1Kh2Tsc(double X1, double X2, double Tsc, double ctls) 
{ 
 X1 = X1+Tsc*X2+Tsc*Tsc*ctls/2; 
 return(X1); 
}  
 
double __declspec (dllexport) __stdcall dbintgX2Kh2Tsc(double X2,double Tsc, double ctls) 
{ 
 X2 = X2+Tsc*ctls; 
 return(X2); 
} 
 
double __declspec (dllexport) __stdcall dbintgX1Tsc2Tca(double X1, double X2,double Tca, double ctls) 
{ 
 X1 = X1+Tca*X2+Tca*Tca*ctls/2; 
 return(X1); 
} 
 
double __declspec (dllexport) __stdcall dbintgX2Tsc2Tca(double X2,double Tca, double ctls) 
{ 
 X2 = X2+Tca*ctls; 
 return(X2); 
} 
double __declspec (dllexport) __stdcall dbintgX1Tca2H(double X1, double X2,double h,double Tsc, double Tca, double 
ctls) 
{ 
 X1 = X1+(h-Tsc-Tca)*X2 + (h*h/2 +Tsc*Tsc/2 +Tsc*Tca +Tca*Tca/2 - h*Tsc-h*Tca)*ctls; 
 return(X1); 
} 
double __declspec (dllexport) __stdcall dbintgX2Tca2H(double X2,double h,double Tsc, double Tca, double ctls) 
{ 
 X2 = X2+(h-Tsc-Tca)*ctls; 
 return(X2); 
} 
 
dbinte.def 
LIBRARY dbinte 
EXPORTS  
dbintgX1Kh2Tsc @1 
dbintgX2Kh2Tsc @2 
dbintgX1Tsc2Tca @3 
dbintgX2Tsc2Tca @4 
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dbintgX1Tca2H @5 
dbintgX2Tca2H @6 
 
interp.dll 
 
header.h 
#include <windows.h> 
#include <math.h> 
#include <oleauto.h> 
#include <stdlib.h> 
void __declspec (dllexport) __stdcall interp(SAFEARRAY **psaArrayX,SAFEARRAY **psaArrayY,double x,int n, double 
*y); 
 
interp.cpp 
#include "header.h" 
 
void __declspec (dllexport) __stdcall interp(SAFEARRAY **psaArrayX, SAFEARRAY **psaArrayY, double x, int n, double 
*y)  
 
{ 
 long i,m,ns=0;  
 double den,dif,dift,ho,hp,w; 
 double *c,*d;  
    double *elementXa, *elementYa; 
 long lElementXa; 
 HRESULT resultXa; 
 HRESULT resultYa; 
   
  
 c = (double*) malloc(n*sizeof(double)); 
 d = (double*) malloc(n*sizeof(double)); 
 
 resultYa = SafeArrayLock(*psaArrayY); 
 elementYa = (double*) (*psaArrayY)->pvData; 
  
   
 //locking array befoer using  its element 
 resultXa = SafeArrayLock(*psaArrayX); 
    lElementXa =(*psaArrayX)->rgsabound[0].cElements;     
  
 //using the element 
 elementXa = (double*) (*psaArrayX)->pvData; 
  
    dif= fabs((x - elementXa[0])); 
 for (i=0;i<=n;i++){ 
  if ( (dift=fabs(x-elementXa[i]))<dif){ 
   ns=i; 
   dif=dift; 
  } 
  c[i]=elementYa[i];  
  d[i]=elementYa[i]; 
 }       
  
 *y = elementYa[ns--];   
 for (m=1;m<n;m++) { 
  for (i=0;i<=n-m;i++) { 
   ho  =elementXa[i]-x; 
   hp  =elementXa[i+m]-x; 
   w   =c[i+1]-d[i]; 
   den =ho-hp; 
   /*if ((den =ho-hp) ==0) { 
    fprintf(stderr, "divided by zero .. ") ; 
    exit(1); 
   } */ 
   den =w/den; 
   d[i]=hp*den; 
   c[i]=ho*den; 
  } 
 *y +=((2*ns<(n-m) ? c[ns+1] : d[ns--])); 
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 }   
  
 // releasing the array 
 resultXa = SafeArrayUnlock(*psaArrayX); 
 resultYa = SafeArrayUnlock(*psaArrayY); 
} 
 
interp.def 
LIBRARY interp 
 
EXPORTS 
interp 
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