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A Quick Example: PID NCS

[simulated in TrueTime; Henriksson, Cervin, Arzen, IFAC’OZ]
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* First-order plant (time-driven)
* Pl controller (event-driven)

+ Connected by a network

* Interfering traffic (48% of BW)

[Alldredge, MS Thesis, CWRU, ‘07]
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Networked Control Systems (1)

* Numerous distributed agents

* Physical and informational dependencies

( (

Figure 1: Formation example: physical situation (1), information flow graph (m), network multigraph (r)

[Branicky, Liberatore, Phillips: ACC’03]

Networked Control Systems (2)

 Control loops closed over heterogeneous networks
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Figure 1: Multiple LANs Example: network architecture

[Branicky, Liberatore, Phillips: ACC’03]




Fundamental Issues

» Time-Varying Transmission Period
* Network Schedulability, Routing Protocols
* Network-Induced Delays
» Packet Loss hy()
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[Branicky, Phillips, Zhang: ACC’00, CSM’01, CDC’02]

Mathematical Model:
NCS Architecture

An NCS Architecture is a 3-tuple:
» Agent Dynamics: a set of stochastic hybrid systems

dX()/dt = £, (Q (1), X (), O/l1], Y[1], R(2))
Y(t) = g,(0(1), X(0), O[], Y}[1], R(t))

* Network Information Flows: a directed graph
G1= (V’ E[)’ V= {17 27 M N}; e'g'ﬁ e = (lﬂ.])

* Network Topology: a colored, directed multigraph
GN= (V; C: EN)a V= {19 29 aN}a e'g'a €= (Ca la])

[Branicky, Liberatore, Phillips: ACC’03]




Early NCS Analysis & Design

Nilsson [PhD, ‘98]: Time-Stamp Packets, Gain Schedule on Delay
Walsh-Ye-Bushnell [‘99]: no delay+Max. Allowable Transfer Interval
Zhang-Branicky [Allerton’01]: ~~

Based on “Multiple Lyapunov
Functions” [Branicky, T-AC’98]
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Hassibi-Boyd [*99]: asynchronous dynamics systems
Elia-Mitter ['01], others: Info. thy. approach: BW reqts. for CL stability
Teel-Nesic ['03]: Small gain, composability

Other Analysis and Design Tools

i Stablllty Regions [Zhang-Branicky-Phillips, 2001]
(cf. stability windows)
* Traffic Locus

Stabiity Regions

[Branicky-Hartman-Liberatore, 2005]
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Both for an inverted pendulum on a cart (4-d), with feedback matrix
designed for nominal delay of 50 ms. Queue size = 25 (I), 120 (r).




Stability Regions for Time-Delay PID

« First-order plant (T=1)

* PID controller

* Gains designed for ©,=0.1:
(Kp=6.49, K=6.18, K,=0.39)

* 1, =0.05,0.07,0.1,0.15, 0.2,
0.25, 0.3 (lighter=increasing)

K, =349 ..9.49 K =3.18..9.19 Kp=0.16...0.41

« First-order plant (T=1)

« PID controller

* Gains designed for 7,=0.3
(Kp=2.46, K=2.13, K,=0.32)
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[Alldredge, MS Thesis, CWRU, ‘07]

Smith Predictor in the Loop

Numerically Calculated Stabiity Region Stability Region from Simulation

« First-order plant (T=1)

« PI controller

* Delay between Controller/Plant
» Compensate w/predictor (t,=1)

——
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[Alldredge, MS Thesis, CWRU, ‘07]




Network Scheduling in NCSs

Two problems:

hy(1) * Schedulability analysis
o « Scheduling optimization
An NCS transmission 7; with period 4, is

characterized by the following parameters:
Blocking time, b, = s;- a;
Transmission time, c;
Transmission delay, 7;

Network
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[Branicky, Phillips, Zhang: CDC’02]

Rate Monotonic Scheduling of NCSs

» Rate Monotonic (RM) scheduling [Liu and Layland]
— Assigns task priority based on its request rate
* From earlier example
— “Faster” plant requires higher transmission rate

— Therefore, should be assigned higher priority (based on RM
scheduling)

+ Can a set of NCSs be scheduled by RM - Schedulability Test [Sha,
Rajkumar, Lehoczky]

A set of N independent, non-preemptive, periodic tasks (with i = / being highest
priority and i = N being the lowest) are schedulable if foralli = 1, ..., N

e o G b g
B B TIPS A
’l1+/l‘2+ +h;+hv‘—,( )

where 5,; is the worst case blocking time of task i by lower priority tasks,
for NCS transmissions:

;= max .

[Branicky, Phillips, Zhang: CDC’02]




Scheduling Optimization

minimize (maximize) J(h;) =Y Ji(hs)

subject to

o RM schedulability constraints:

h £ ... £ hy,
;—‘I o+ 1[7, + I;i— < iEVIZ), i=1,N;
o NCS stability constraints:
hi < heuri— b, i=1,...,N.

Performance measure J(h) relates the control performance as a function of
transmission period h.

[Branicky, Phillips, Zhang: CDC’02]

Scheduling of NCSs Revisited

+ Cf. Eker & Cervin on scheduling for real-time control
* If dynamic (#agents/BW): distributed BW allocation schemes
* Using rate constraints or packet-drop-rate results ...

Idea: when a set of NCSs is not guaranteed to be schedulable by RM, we can
drop some of data packets to make it schedulable and still guarantee stability.

Ex.: scheduling of the set of scalar plants [Branicky, Phillips, Zhang: CDC’02]
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Control and Scheduling Co-Design

¢ Control-theoretic
characterization of stability and
performance (bounds on
transmission rate)

* Transmission scheduling
satisfying network bandwidth
constraints

Simultaneous design/optimization
of both of these = Co-Design
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[Branicky, Phillips, Zhang: CDC’02]

“Dumbbell” Network Topology

Plant

10 Mbps <2>

y )
Controller ‘\‘\

T — '\I\\ Plant
©———® —— 3

\
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Plant

©,

* 10 Mbps link between
plants (2-n) and router (1),
with 0.1 ms fixed link delay

* 1.5 Mbps T1 line between
router (1) and controller (0),
with 1.0 ms fixed link delay

« First plant (2) under
observation

* Delays are asymmetric

[Hartman, Branicky, Liberatore: ACC’05]




NCS over Ethernet (1): Infinite Buffer
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* No packets are lost at router
* Delays can be arbitrarily large
» Threshold behavior:

n=38 same as n=1, n=39 diverges
* T1 line bottleneck, limits n < 41

[Branicky, Liberatore, Phillips: ACC’03]
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Figure 1: One-way delays (plant to controller) as a function of n for the case of infinite buffers.

NCS over Ethernet (2): Finite Buffer

» Packets are dropped (up to 14% at n=39), delays bounded
* Plant output degrades at high loads

* Average inter-arrival times nearly constant
* Detailed history determines performance
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igure 1: Buffer of size 4. Drop rate up to n = 39 (1): plant output (r) for n = 39

[Branicky, Liberatore, Phillips: ACC’03]
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NCS over Ethernet (3): Minimal Buffer

* Packets are dropped (up to 28% at n=39)
e Errors are small up to n=25
* Plant output diverges for n=39

Figure 1: Buffer of size 2. Drop rate up to n = 39 (1): plant output for n = 20 (m). n = 39 (r).

[Branicky, Liberatore, Phillips: ACC’03]

NCS over Ethernet (4): Cross-Traffic
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[Branicky, Liberatore, Phillips: ACC’03]
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Overall NCS Technical Approach

rigure 1: Overall NCS Design Loop
[Branicky, Liberatore, Phillips: ACC’03]

Co-Simulation Methodology

Simultaneously simulate both the dynamics of the
control system and the network activity

Vary parameters:

— Number of plants, controllers, sensors
— Sample scheduling

— Network topology, routing algorithms
— Cross-traffic

- Etc.

[Branicky, Liberatore, Phillips: ACC’03]
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Co-Simulation

[Branicky, Liberatore, Phillips: ACC’03]

Packet queueing

and forwarding Network dynamics

Visualization

|

~ Plant agent
(actuator,
Controller " N o &L sensor, ...)
agent
(SBCI PLCI ) l Router
i ool i s o BandWldth
(A A A ATACATI YT . .
m—— monitoring
Plant output
dynamics Simulation
Co-simulation of systems and networks | languages

Co-Simulation Components (1):
Network Topology, Parameters

controlker| 1)
—

\
- controllan2)
s

Capability like ns-2 to simulate network at packet level:
« state-of-art, open-source software

« follows packets over links

* queuing and de-queuing at router buffers

e GUI depicts packet flows

* can capture delays, drop rates, inter-arrival times

[Branicky, Liberatore, Phillips: ACC’03]




Co-Simulation Components (2):
Plant and Controller Dynamics

Extensions of ns-2 release:

* plant “agents”: sample/send output at specific intervals
« control “agents”: generate/send control back to plant
» dynamics solved numerically using Ode utility,

“in-line” (e.g., Euler), or through calls to Matlab

[Branicky, Liberatore, Phillips: ACC’03]

Inverted Pendulum NCS

. M
< : > -
L
) € >
b+ it — grsing = — X

* Same “dumbbell”
network topology as
before

« Full-state feedback

* Non-linear equations
linearized about
unstable equilibrium

» Sampled at 50 ms

» Feedback designed via
discrete LQR

» Control is acceleration

[Hartman, Branicky, Liberatore: ACC’05]
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Baseline Simulation
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[Hartman, Branicky, Liberatore: ACC’05]
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Threshold Behavior (2)

Control Signal

Router Queue Size
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Cross-Traffic (2)
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[Hartman, Branicky, Liberatore: ACC’05]
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Over-Commissioned (2)
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[Hartman, Branicky, Liberatore: ACC’05]

Other Co-Simulation Tools

* TrueTime [Lund; IFAC’02] (Simulink plus network modules)
* SHIFT [UCB], Ptolemy [Ed Lee et al., UCB]: case studies
* ADEVS + ns-2 for power systems [Nutaro et al,. ‘06]

Needs:

e comprehensive tools
ns-2 + Simulink/LabView/Modelica [+ Corbal]

* various Hardware-in-loop integrations
sensor/actuator/plant HW, pyprocessors, emulators, ...

18



“Industrial-Strength” Co-Simulation

[On-going work: A.T. Al-Hammouri, D. Agrawal, V. Liberatore, M. Branicky]

 Integrating two state-of-the-art tools:
— ns-2 network simulator
— Modelica language/simulation framework

* Modelica (www.modelica.org)
— Modeling and simulating large-scale physical systems
— Acausal Modeling
Libraries (e.g., standard, power systems, hydraulics,
pneumatics, power train)
One free simulation environment, some commercial
* ns-2 (www.isi.edu/nsnam/ns/)

— Simulate routing, transport, and application protocols over wired,
wireless, local- and wide area networks

M (\)/dlee\ll\llca Plant (simple drive train)
' \ R

Pl N
Torgue Inertia Spring=led Inertia2
m 1 L N 1 LoadTorcue
o B o—a=
-tau 717 — — ‘r
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]
&
g
2
KinematicPTP  ntegrator deserializer serializer
eltag={1.57 k=1 Y~
- Two newly added modules
I Reference Speed Generation I to communicate with ns-2

[Al-Hammouri, Agrawal, Liberatore, Branicky]
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ns-2
View

deserializer

From ns-2

Network node
(data source)

N

serializer

to Modelica

Network node
(data sink)

[Al-Hammouri, Agrawal,

Liberatore, Branicky]
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From Modelica
to ns-2
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[Al-Hammouri, Agrawal, Liberatore, Branicky]




Results (2)
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Liberatore, Branicky]

Pl

e E

Results (3)

Torque Inertia Spring=led Inertiaz - .
1 L
O—@—
— T

J=1 J=2

.{ Reference Speed 'Output Speedq =

T T Ml g
\ ﬁ A /‘/VW\(L g

\ \ il

=Nk \.

oo/

KinematicPTP

L s

T T 3 5 1 N
Integrator t deserializer serializer

deltag={1.57}

v

| Source-to-sink network delay = 44 msec

[Al-Hammouri, Agrawal, Liberatore, Branicky]
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Congestion Control / BW Allocation

In general:
» Congestion caused by
— Contention for BW w/o coordination
+ Congestion control (CC)
— Regulates sources xmit rates
— Ensures fairness, BW efficiency
+ CC facilitated by cooperation btw
— Routers (AQM)
— End-hosts (elastic sources)

Our objectives:

+ Efficiency & fairness

+ Stability of control systems

+ Fully distributed, asynchronous, & scalable
» Dynamic & self reconfigurable

[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]

Mathematical Formulation (1)

* NCSs regulate h based on congestion fed back from the
network

\
Tl EERNEEREEN— /

[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]

22



Mathematical Formulation (2)

+ Define a utility fn U(r) that is

» Optimization formulation
max EiU;(n—)
s.t. Eies(l)l"i <C,l=1,.,L

and 7i = 7 min, i

Performance measure
Monotonically increasing - . N

Strictly concave Ry
Defined for r> r_. (Stability) : //

min

ARSI fats.r, [N Of packeB)ses)

[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]

Distributed Implementation

« Two independent algorithms

NCS Plant

r(p1)

End-systems (plants) algorithm
Router algorithm (see refs.)

Router NCS Controller

- i Q

N —/

= U )]rm

¥ min

[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]
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NCS-AQM Cont

rol Loop

F———————===--- , T T [
1
: Model | ¢.“Queue
|
: Plant 111 Controller ',
| |
P9l G
1 | GP(S) _ kp |
I Gpfs) =k, t k/s |
I o e e e e e e e e e e e d " ____ I
[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]
Simulations & Results (1)
N NCS Plants: 10 Mbps / [0,10] msec %
. ﬂ = ax(t) + bu(t) ? planti1) 1544 S comrollen'ﬂ‘ %
dt O = N |
DIarﬁgJ\ . - . - clggng?uenfz 5
( o D >_ MI

cU(r)= ﬂea” <<
a :

1 Mbps / 10 msec

T ER-wiLy e

a Jlannf\n_—{;n — cl.aFnTUIIenfn 1) -~
 rmn= @) . S
ln bK +a > plantin} commllertn)( =

bK —a

O [Branicky et al. 2002]
O [Zhang et al. 2001]

[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]
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Simulations & Results (2)
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[Al-Hammouri-Branicky-Liberatore-Phillips, WPDRTS’06]
[Al-Hammouri-Liberatore-Branicky-Phillips, FeBID’06]
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NCS Research Opportunities

— Control theory:

(stoch.) HS, non-uniform/stoch. samp., event- vs. time-based, hierarachical and
composable (cf. Omola/Modelica), multi-timescale (months to ms)

— Delays, Jitter, Packet Loss Rates, BW
« Characterization of networks (e.g., time-varying RTT, OWD delays)
« Application and end-point adaptability to unpredictable delays
— Buffers (e.g., Liberatore’s PlayBack Buffers)
— Gain scheduling, hybrid/jump-linear controllers
— Time synchronization

— Application-oriented, end-to-end QoS (beyond stability to performance)

— Bandwidth allocation, queuing strategies, network partitioning
« Control theoretical, blank-slate designs, Stankovic’s *SP protocols

— Co-Design and Co-Simulation Tools

— Distributed, real-time embedded Middleware:
* Resource constraints vs. inter-operability and protocols

« Sensors/transducers (cf. IEEE 1451, LXI Consortium), distributed timing services (IEEE 1588
PTP, NTP; Eidson: “Time is a first-class object”), data gathering (Sha’s “observability”),
resource management (discovery, “start up”), “certificates”

— Applications:
« power systems, robotics, & haptics/tele-surgery (Case); manufacturing, T&M, ...

Ex.: Control Over CWRU Network

Plant Computer RTTS

Plant Computation
(MATLAB)

ActiveX
Automation |
Actuator v Sensor

Data Data
—_——

Plant
(C+ Program)

Controller

B m—
(C++ Program)

ActiveX
Automation | 1

A — wio delay
Scaled Step ., || - o,
(MATLAB) A I
Controller Computer Res ponses i \ a
h / \ L~ \4_,«_/:_}«.\_._,;;,,,?,
Experimental Setup el
0.4
0.2]
0 05 1 15 2
Need: Clock Synchronization e

[Zhang, PhD Thesis, CWRU, ‘01]
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IEEE 1588: Precision Time Protocol

[Dirk S. Mohl’s “IEEE 1588--Precise Time Synchronization” (top row); Correll-Barendt-Branicky, IEEE-1588 Conf. ‘05 (bottom row)]

Master ~ _ Slave Master Line Delay = 15 Slave
T neDeay=1s = 10708 -

Offset, ms

Offset, us

Time Index, s Time Index, s

PTPd (software-only PTP) Slave Offset: 0-10 min (I), 10-90 min (r)
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