
IP-Over-USB Gateway
Final Project Report

Ben Greenberg Bartosz Mach
Adviser: Dr. Vincenzo Liberatore

Name Signature Date

B. Greenberg

B. Mach

V.Liberatore

Executive Summary
The goal of team members of the IP-over-USB gateway project, Ben Greenberg,
Bartosz Mach, and Prof. Vincenzo Liberatore was to implement a robust gateway
on the Linux platform that is compatible with any device that implements a
standard Ethernet over the USB protocol. The gateway allows such devices to
automatically receive a temporary IP address and Internet access with minimal
user invention required in configuration, using only a standard USB 1.1 or 2.0
connection. In practice, computers running the Linux operating system can
access the gateway easily. Other operating systems have not been tested
extensively.

The gateway was implemented on a desktop PC equipped with USB gadget
interface cards and running the Debian 3.1 distribution of Linux. The gateway is
designed to allow both USB host devices (normally other desktop PCs) and USB
gadgets (PDAs, cameras, and similar devices) to connect, but only hosts were able
to be tested at this time. The main services provided include Dynamic Host
Configuration Protocol (DHCP), which dynamically configures the client
machine's IP settings, and Network Address translation (NAT), which allows the
clients to access a wider network such as the Internet. The gateway is setup to
automatically configure itself at boot time and can adapt to any number of gadget
interface cards being installed. Testing was done with PC clients running Debian
3.1 as well as Ubuntu 5.04 (a Linux distribution very similar to Debian) running
on both x86 (Intel/AMD) and PowerPC (Macintosh) platforms.

Tests have been performed with up to three concurrent clients. Performance,
when using a USB 2.0, is faster than 100baseT Ethernet but latency is worse.

One feature that remains to be implemented is manual configuration of network
hardware addresses. The current prototype generates hardware addresses for the
USB interfaces randomly, making for a very slight possibility of conflict if two
interfaces have the same address. Besides this feature and the testing of USB
gadgets as clients, the project follows the original plan and functions successfully.

Ben Greenberg
Bartosz Mach

April 15, 2005

1

Abstract
The team members of the IP-over-USB project, team leader Ben Greenberg,
Bartosz Mach, and adviser Prof. Vincenzo Liberatore, have built and configured a
network gateway device that provides NAT and DHCP services over USB
connections. The gateway is implemented on a Linux desktop PC and provides
network services over USB using the usbnet and g_ether drivers that ship with
the Linux kernel. These drivers support the CDC Ethernet standard.

The gateway auto-configures itself using a variety of scripting hooks, including
hotplugging. The gateway has been tested with up to three Linux clients
connected concurrently and, when using a USB 2.0 interface, has transfer speeds
competitive with Ethernet.

Introduction
As small electronic devices become commonplace, the desire for these devices to
have network connectivity is increasing. The most common network protocol
today is Internet Protocol (IP), which is used in the worldwide Internet as well as
most private local area and wide area networks. Traditionally, devices networked
via IP require the use of cat5 Ethernet cable. However, the ability to fit a cat5
connector onto increasingly smaller form factors is becoming difficult. Dr.
Liberatore has suggested the use of USB to network these devices, because USB
offers a “mini-B” form factor connector that is less than half the size of an
Ethernet connection.

To prove that USB can be used to build complex and useful networking
configurations, a full featured USB-over-IP gateway running on the Linux
platform has been implemented. The gateway allows Linux-based PCs that
implement the CDC Ethernet Protocol to be automatically connected to an
internal network and the access the Internet with very little configuration. The
gateway provides DHCP and NAT services to provide these features.

A team consisting of Ben Greenberg (team leader) and Bartosz Mach has
implemented the gateway under the advisement of Dr. Vincenzo Liberatore.
Though many of the tasks were completed cooperatively by Mr. Greenberg and
Mr. Mach, the task of modifying the USB card device drivers was completed by
Mr. Greenberg, and the configuration of NAT service and most of the work in
configuring the DHCP service was completed by Mr. Mach.

Takahiro Hirofuchi is currently working on a similar project entitled USB/IP
Project (http://usbip.naist.jp). This project is similar in some ways, but
Hirofuchi is working on doing the opposite of this project; he is carrying USB
traffic over traditional IP networks so that a USB device can be shared over an
existing network.

Ben Greenberg
Bartosz Mach

April 15, 2005

2

Methodology
The gateway is implemented on a desktop PC running Debian GNU/Linux 3.1
(a.k.a “sarge;” http://www.debian.org/releases/sarge/). The gateway is equipped
with a standard Ethernet adapter connected to CWRUnet (to provide access to
the Internet), four USB Gadget adapters to provide connectivity to other desktop
PCs, and two USB Host ports to provide connectivity to USB peripherals. The
gateway, running NAT and DHCP services, is implemented on the machine called
sasha. In the lab environment, three other available machines are connected to
sasha via USB and are acting as clients. Two of these, bruno and borat, are
EECS department provided machines also running Debian GNU/Linux 3.1. The
other machine, “Bart's Laptop” is group member Bartosz Mach's personal laptop
running Ubuntu Linux 5.04 (http://www.ubuntulinux.com). All are running 2.6
series Linux kernels. The Hardware Overview (Appendix I) shows how the router
is connected to the client machines. The Software Overview (Appendix I) shows
these interconnections in terms of software components. Note that the USB Host
ports are currently unused. Hardware to connect to these ports was not
obtainable.

Three major steps were required to build the gateway: encapsulation of Ethernet
frames over USB, configuration of NAT and DHCP, and automation.

Ethernet Over USB
In order to send IP packets over USB, encapsulation of an existing physical layer
protocol was chosen. The alternative would have been creating a physical layer
protocol for USB, which would be a daunting task. Additionally, the Linux 2.6
series kernel includes drivers that provide encapsulation of Ethernet framing over
USB. The usbnet and g_ether drivers provide this capability for USB host and
USB gadget, respectively. These drivers utilize the CDC Ethernet Networking
Control Model, a standard created by the USB Implementer's Forum. When
these drivers are loaded, they create a standard network interface visible to the
operating system that can be used the same as any conventional network
interface.

Using these drivers eliminates most of the work of using USB to handle network
traffic. However, the g_ether driver that ships with the Linux kernel version
2.6.8 (the development platform) only supports a single gadget adapter card.
Each adapter card only has one gadget interface, but the gateway specification
calls for more than one interface to be available. To support more than one card,
the g_ether driver was modified to bind a driver to all gadget interface cards
found on the system. The new version of the driver was installed over the existing
version on the sasha machine and supports all four of the computer's adapter
cards. The output of the diff command, showing the modifications to the driver,
is attached in Appendix II.

NAT and DHCP Configuration
The core functionality of the gateway is NAT, network address translation.

Ben Greenberg
Bartosz Mach

April 15, 2005

3

Configuration of NAT in Linux is handled through the iptables tool. Rules were
formulated to allow client machine's packets to be forward to CWRUnet and
incoming responses to be forwarded back to the correct recipient.

The network settings of client machines are dependent on the configuration of
the gateway, so DHCP functionality was added to provide “plug and play”
configuration of clients. A client machine simply needs to connect the USB cables
and run a DHCP client program to retrieve the settings from the gateway. On the
Linux clients used in the lab, the dhclient program is used. When the gateway is
configured properly, this step is all that is necessary for the client to establish a
network connection to CWRUnet via the gateway.

Automation
Configuring the gateway properly requires a series of commands to be executed
and configuration files to be modified. These settings vary depending on the
number of interface cards enabled. While altering these settings by hand is quite
possible, our gateway spec calls for automatic configuration. A series of shell
scripts, called by the system's startup procedure and the Linux kernel's “hotplug”
functionality, fully configures the gateway's NAT and DHCP settings. After boot
up, the machine is ready to be connected to a client and forward packets. The
system also adapts to the number of interface cards that are installed at boot
time.

Scripting occurs in three sections: a hook to dhclient that is called after an IP
address is assigned to the Ethernet interface, an init.d script that is called at boot
time, and a modification to the hotplugging subsystem net.agent script. The flow
of how these scripts are called is shown in Appendix III. Output of the relevant
scripts is attached in Appendix IV.

Comparison With Original Plan
The project originally had the following tasks:

1. ✓ Order and install USB gadget cards.

2. ✓ Modify net2280 driver to support multiple cards.

3. ✓ Configure NAT.

4. Develop hardware addressing scheme.

5. ✓ Configure dynamic addressing server.

6. Obtain and configure a USB gadget to network.

7. ✓ Alter scripts to provide automation for configuration.

Tasks that have been completed are checked off.

A hardware addressing scheme never was completed. At one point, this task was
removed from the project plan but added again later. By the time this task was
added a second time, it was determined that implementing a general and correct
solution would require further modification of the net2280 driver. Development

Ben Greenberg
Bartosz Mach

April 15, 2005

4

on the driver had already been completed and it was decided that the cost of
further modifications (in terms of time and possible conflicts) was not
expendable at this point in the project. The purpose of implementing a static
hardware addressing scheme is to ensure that none of the hardware addresses
randomly generated by the g_ether driver collide with each other. Each
hardware address is 48 bits long, meaning that the probability of a collision is
2/248, or 7.1x10-15.

At the time the project was started, it was believed that a compatible USB gadget
would be obtainable from a lab on campus. As time went on, it became apparent
that a gadget was not easy to come by. This task had to be dropped.

Results

Functionality
A set of requirements to verify the completeness of the project was established.
These requirements are divided for the gateway machine (sasha) and the client
machines.

Gateway

1. After system boot, all network interfaces (Ethernet and USB) will be created
and enabled.

2. After system boot, NAT will be fully configured to allow CWRUnet access to
client machines and forward appropriate packets back to these machines.

3. After system boot, a DHCP server should be configured and enabled such that
any client machine may request network settings from the gateway.

4. All of the above should work no matter how many interface cards are installed
in the gateway.

5. The gateway should continue to operate properly if any clients suddenly
disconnect.

Client

1. The appropriate driver should load when a USB cable is connected from the
client to the gateway.

2. All necessary network settings should be configurable via DHCP—no other
configuration should be required.

3. After DHCP configuration, the client should be able communicate with the
gateway directly.

4. After DHCP configuration, the client should be able to communicate with any
publicly accessible machine on CWRUnet (this includes the Internet).

All of these requirements have been met by the project at this point.

Ben Greenberg
Bartosz Mach

April 15, 2005

5

Performance
Throughput and latency were tested in order to compare the USB network with a
traditional Ethernet network. The lab computers all had USB 1.1 ports, but Bart's
laptop (running Ubuntu Linux 5.04) had USB 2.0 ports. USB 2.0 is rated at
480Mbps, USB 1.1 at 12Mbps, and the Ethernet used is 100BaseT.

Within the local network
These results show bandwidth and latency on the local network of the gateway,
within the EECS Networks Lab. Throughput results were generated by
transmitting a 200MB file from the sender to the receiver via FTP using the GNU
ftp utility. For each computer pair the file was transmitted 3 times and the
average throughput is listed. RTT times were generated by issuing 50 pings
(using the GNU ping utility) from the sender to the receiver. For each pair, the
minimum, average, and maximum RTT is listed.

Sender Receiver
Avg Throughput

(Kbs)

RTT
(min/avg/max)

(ms)
Protocol

sasha Laptop 12738 0.2/0.3/1.3 USB 2.0
sasha bruno 972 0.6/1.4/3.1 USB 1.1
sasha alig 7480 0.2/0.2/0.3 Ethernet

Table 1: Results of tests on the local network.

Within CWRUnet
These results show performance when connected to another machine on the Case
network, specifically a machine in the Jennings Computing Center. The tests are
the same ones used on the local network.

Sender Receiver
Avg Throughput

(Kbs)

RTT
(min/avg/max)

(ms)
Protocol

Laptop megadeth 2100 0.2/0.3/1.3 USB 2.0
bruno megadeth 691 0.6/1.4/3.1 USB 1.1
alig megadeth 2000 0.2/0.2/0.3 Ethernet

Table 2. Results of tests on CWRUnet.

Over the Internet
To test performance on the wider Internet, a 42.6MB file was fetched via FTP
from each machine. The file was fetched three times and the average transfer
speed is listed. To determine RTT, 50 pings were sent from the sender to the
receiver and the average, minimum, and maximum RTTs are listed. The file
fetched is ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.9.tar.gz and
ftp.kernel.org is the server pinged.

Ben Greenberg
Bartosz Mach

April 15, 2005

6

Sender Receiver
Avg Throughput

(Kbs)

RTT
(min/avg/max)

(ms)
Protocol

sasha Laptop 867 52.2/52.9/58.9 USB 2.0
sasha bruno 498 52.8/5.7/56.1 USB 1.1
sasha alig 533 51.0/51.6/57.4 Ethernet

Table 3: Results of tests on the Internet.

These results show that USB 2.0 is highly competitive with Ethernet when it
comes to bandwidth. In fact, the USB 2.0 transfers are much faster than Ethernet
when transferring directly to the gateway. This was expected due to USB 2.0's
480Mbs rated speed in considerably higher the 100BaseT Ethernet used in the
tests. The USB 1.1 transfers, rated at 12Mbs, were significantly slower. Although
USB 2.0's transfer speeds were fast, there were a good deal lower than the rated
speed. It is likely that this is due to the overhead introduced the by the
encapsulation drivers, and further research is needed on this issue.

Surprisingly, USB 2.0 did a good deal better than Ethernet when downloading
files from the Internet. The explanation is not clear, since this traffic is received
by the gateway over Ethernet before being sent over USB, but it should be noted
that these tests were casual and not performed in a scientific manner.

USB 2.0 is also competitive when it comes to latency, although it did have higher
maximum values than Ethernet. USB 1.1 performed very poorly. However, even
USB 1.1's miserable performance doesn't matter when accessing the Internet,
where latency bottlenecks overshadow these differences.

Implications
The major implication of the IP-Over-USB gateway project is that it paves the
way for a standalone device that provides gateway functionality over USB. In such
a device became commonplace, any device with CDC Ethernet and a USB port
could connect to the Internet in a “plug and play” fashion. It would be feasible for
a manufacturer to load a scaled-down Linux operating system into a small device
such as a PDA or digital camera and have confidence that a user with access to
such a router could easily have it access the Internet.

The bandwidth and latency results show that USB (at least USB 2.0) has the
performance to be a viable technology for networking.

Conclusions
The team's main goal of configuring a Linux-based PC to act as an IP-Over-USB
gateway has been fully implemented. Linux-based client PCs are able to connect
to the host PC and automatically receive a temporary IP address, routing and
DNS information, and receive full access to the local network (including other
client PCs connected to the gateway) and the Internet. The gateway

Ben Greenberg
Bartosz Mach

April 15, 2005

7

automatically configures itself to provide these services at boot time.

One of the original goals that was not completed was the task of obtaining a CDC
Ethernet compliant USB gadget, such as a PDA, and using it to demonstrate IP-
Over-USB on small devices. This task was dropped due to the lack of availability
of such a gadget. Additionally, one of the three client PCs broke down and was
no longer usable for testing. The team members contacted those in charge of
equipment in the networking lab and were informed that repair was not possible
at the time. However, a workaround was implemented by replacing the broken-
down PC with Bart's notebook running Ubuntu Linux. This workaround allowed
the team members to successfully test IP-Over-USB on a portable computer
running a distribution of Linux different from that of the host PC, as well as test
performance over USB 2.0 connections.

Another original goal that was dropped was configuring the host PC to eliminate
the chance of two USB devices receiving the same MAC address. This task was
dropped due to the fact that it would require extensive modification of the USB
card device driver that time would not allow. However, the probability of a
conflict is very unlikely.

Recommendations
Over the course of the project, the configuration changes in the host PC were
applied manually by the team members. Although a person with knowledge of
Linux could replicate the team members' work, a first step to furthering the
project would be to automate the configuration in an easy-to-use install script
that would prepare a desktop PC with appropriate hardware to act as a gateway.
Additionally, testing should be done using USB gadgets as clients and the issue of
a possible MAC address clash should also be solved to make the modified USB
card driver “airtight.”

In the long run, a scaled down Linux distribution consisting of only what is
required for the gateway could be created and compiled for an embedded
processor. This would allow a manufacturer to produce a small standalone device
acting as the gateway, similar to how Ethernet gateways are currently sold.

More tests should be done on USB's performance. It would be interesting to
know how much of a role the encapsulation driver overhead plays on
performance. It would also be useful to have a detailed, scientific analysis of
results. Additionally, it is important to determine how cable length and quality
plays a role on performance.

Ben Greenberg
Bartosz Mach

April 15, 2005

8

C
W

R
U

N
et

E
th

er
ne

t
A

da
pt

er

U
S

B
G

ad
ge

t
Ad

ap
te

r
U

S
B

G
ad

ge
t

A
da

pt
er

U
SB

 G
ad

ge
t

Ad
ap

te
r

U
S

B
 G

ad
ge

t
A

da
pt

er

`

br
un

o

`

bo
ra

t

sa
sh

a

10
.1

.1
.0

/2
4

10
.1

.2
.0

/2
4

10
.1

.3
.0

/2
4

E
th

er
ne

t

U
SB

, B
 c

on
ne

ct
or

U
SB

, A
 c

on
ne

ct
or

Le
ge

nd

U
S

B
H

os
t

A
da

pt
er

U
SB

 H
os

t
Ad

ap
te

r

B
ar

t’s
 la

pt
op

U
N

U
S

E
D

U
N

U
S

E
D

U
N

U
S

E
D

U
SB

 G
ad

ge
t

Ad
ap

te
r

U
S

B
G

ad
ge

t
A

da
pt

er
U

S
B

G
ad

ge
t

A
da

pt
er

Ben Greenberg
Bartosz Mach 9

Ben
Text Box
APPENDIX I, Part A

C
W

R
U

N
et

`

br
un

o

`

bo
ra

t

10
.1

.1
.0

/2
4

10
.1

.2
.0

/2
4

10
.1

.3
.0

/2
4

E
th

er
ne

t

U
SB

, B
 c

on
ne

ct
or

U
SB

, A
 c

on
ne

ct
or

Le
ge

nd

B
ar

t’s
 la

pt
op

U
N

U
S

E
D

U
N

U
S

E
D

U
N

U
S

E
D

us
bn

et
 d

riv
er

us
b0

 in
te

rfa
ce

us
bn

et
 d

riv
er

us
b0

 in
te

rfa
ce

us
bn

et
 d

riv
er

us
b0

 in
te

rfa
ce

ne
t2

28
0

dr
iv

er
us

b1
 in

te
rfa

ce
ne

t2
28

0
dr

iv
er

us
b0

 in
te

rfa
ce

ne
t2

28
0

dr
iv

er
us

b2
 in

te
rfa

ce
ne

t2
28

0
dr

iv
er

us
b3

 in
te

rfa
ce

sa
sh

a

ip
ta

bl
es

 N
AT

us
bn

et
 d

riv
er

us
b4

 in
te

rfa
ce

us
bn

et
 d

riv
er

us
b4

 in
te

rfa
ce

3c
59

x
dr

iv
er

et
h0

 in
te

rfa
ce

Ben Greenberg
Bartosz Mach 10

Ben
Text Box
APPENDIX I, Part B

--- net2280/net2280.c 2005-02-19 18:12:15.000000000 -0500
+++ kernel-source-2.6.8/drivers/usb/gadget/net2280.c 2004-08-14 01:36:14.000000000 -0400
@@ -44,8 +44,8 @@
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

-#define DEBUG /* messages on error and most fault paths */
-#define VERBOSE /* extra debug messages (success too) */
+#undef DEBUG /* messages on error and most fault paths */
+#undef VERBOSE /* extra debug messages (success too) */

 #include <linux/config.h>
 #include <linux/module.h>
@@ -82,7 +82,6 @@
 #define USE_RDK_LEDS /* GPIO pins control three LEDs */
 #define USE_SYSFS_DEBUG_FILES

-#define MAX_CONTROLLERS 10

 static const char driver_name [] = "net2280";
 static const char driver_desc [] = DRIVER_DESC;
@@ -1802,12 +1801,7 @@ EXPORT_SYMBOL (net2280_set_fifo_mode);
 * perhaps to bind specific drivers to specific devices.
 */

-//static struct net2280 *the_controller;
-//static struct net2280 *controllers[MAX_CONTROLLERS];
-//static int controllers_size = 0;
-
-//static struct controller_item controllers;
-static struct list_head controller_list;
+static struct net2280 *the_controller;

 static void usb_reset (struct net2280 *dev)
 {
@@ -1940,9 +1934,7 @@ static void ep0_start (struct net2280 *d
 */
 int usb_gadget_register_driver (struct usb_gadget_driver *driver)
 {
- struct net2280 *dev = NULL;
- struct controller_item *controller_item;
- struct list_head *list_ptr;
+ struct net2280 *dev = the_controller;
 int retval;
 unsigned i;

@@ -1956,49 +1948,41 @@ int usb_gadget_register_driver (struct u
 || !driver->unbind
 || !driver->setup)
 return -EINVAL;
+ if (!dev)
+ return -ENODEV;
+ if (dev->driver)
+ return -EBUSY;

- list_ptr = &controller_list;
- for (list_ptr = controller_list.next; list_ptr != &controller_list; list_ptr = list_ptr->next)
- {
- controller_item = list_entry(list_ptr, struct controller_item, list);
- dev = controller_item->the_controller;
-
- if (!dev)
- return -ENODEV;
- if (dev->driver)
- return -EBUSY;

Ben Greenberg
Bartosz Mach 11

Ben
Text Box
APPENDIX II: Changes made to the net2280 driver

-
- for (i = 0; i < 7; i++)
- dev->ep [i].irqs = 0;
+ for (i = 0; i < 7; i++)
+ dev->ep [i].irqs = 0;

- /* hook up the driver ... */
- driver->driver.bus = NULL;
- dev->driver = driver;
- dev->gadget.dev.driver = &driver->driver;
- retval = driver->bind (&dev->gadget);
- if (retval) {
- DEBUG (dev, "bind to driver %s --> %d\n",
- driver->driver.name, retval);
- dev->driver = NULL;
- dev->gadget.dev.driver = NULL;
- return retval;
- }
-
- device_create_file (&dev->pdev->dev, &dev_attr_function);
- device_create_file (&dev->pdev->dev, &dev_attr_queues);
-
- /* ... then enable host detection and ep0; and we're ready
- * for set_configuration as well as eventual disconnect.
- */
- net2280_led_active (dev, 1);
- ep0_start (dev);
-
- DEBUG (dev, "%s ready, usbctl %08x stdrsp %08x\n",
- driver->driver.name,
- readl (&dev->usb->usbctl),
- readl (&dev->usb->stdrsp));
-
+ /* hook up the driver ... */
+ driver->driver.bus = NULL;
+ dev->driver = driver;
+ dev->gadget.dev.driver = &driver->driver;
+ retval = driver->bind (&dev->gadget);
+ if (retval) {
+ DEBUG (dev, "bind to driver %s --> %d\n",
+ driver->driver.name, retval);
+ dev->driver = NULL;
+ dev->gadget.dev.driver = NULL;
+ return retval;
 }
+
+ device_create_file (&dev->pdev->dev, &dev_attr_function);
+ device_create_file (&dev->pdev->dev, &dev_attr_queues);
+
+ /* ... then enable host detection and ep0; and we're ready
+ * for set_configuration as well as eventual disconnect.
+ */
+ net2280_led_active (dev, 1);
+ ep0_start (dev);
+
+ DEBUG (dev, "%s ready, usbctl %08x stdrsp %08x\n",
+ driver->driver.name,
+ readl (&dev->usb->usbctl),
+ readl (&dev->usb->stdrsp));
+
 /* pci writes may still be posted */
 return 0;
 }
@@ -2032,38 +2016,27 @@ stop_activity (struct net2280 *dev, stru

Ben Greenberg
Bartosz Mach 12

 int usb_gadget_unregister_driver (struct usb_gadget_driver *driver)
 {
- struct net2280 *dev = NULL;
- struct list_head *list_ptr;
- struct controller_item *controller_item;
+ struct net2280 *dev = the_controller;
 unsigned long flags;

- while (!list_empty(&controller_list))
- {
- list_ptr = controller_list.next;
- controller_item = list_entry(list_ptr, struct controller_item, list);
- dev = controller_item->the_controller;
-
- if (!dev)
- return -ENODEV;
- if (!driver || driver != dev->driver)
- return -EINVAL;
+ if (!dev)
+ return -ENODEV;
+ if (!driver || driver != dev->driver)
+ return -EINVAL;

- spin_lock_irqsave (&dev->lock, flags);
- stop_activity (dev, driver);
- spin_unlock_irqrestore (&dev->lock, flags);
+ spin_lock_irqsave (&dev->lock, flags);
+ stop_activity (dev, driver);
+ spin_unlock_irqrestore (&dev->lock, flags);

- driver->unbind (&dev->gadget);
- dev->gadget.dev.driver = NULL;
- dev->driver = NULL;
+ driver->unbind (&dev->gadget);
+ dev->gadget.dev.driver = NULL;
+ dev->driver = NULL;
+
+ net2280_led_active (dev, 0);
+ device_remove_file (&dev->pdev->dev, &dev_attr_function);
+ device_remove_file (&dev->pdev->dev, &dev_attr_queues);

- net2280_led_active (dev, 0);
- device_remove_file (&dev->pdev->dev, &dev_attr_function);
- device_remove_file (&dev->pdev->dev, &dev_attr_queues);
-
- DEBUG (dev, "unregistered driver '%s'\n", driver->driver.name);
- list_del(list_ptr);
- kfree(controller_item);
- }
+ DEBUG (dev, "unregistered driver '%s'\n", driver->driver.name);
 return 0;
 }
 EXPORT_SYMBOL (usb_gadget_unregister_driver);
@@ -2738,7 +2711,7 @@ static void net2280_remove (struct pci_d

 INFO (dev, "unbind\n");

-// the_controller = NULL;
+ the_controller = NULL;
 }

 /* wrap this driver around the specified device, but
@@ -2748,22 +2721,18 @@ static void net2280_remove (struct pci_d
 static int net2280_probe (struct pci_dev *pdev, const struct pci_device_id *id)
 {

Ben Greenberg
Bartosz Mach 13

 struct net2280 *dev;
- struct controller_item *controller_item_ptr;
 unsigned long resource, len;
 void *base = NULL;
 int retval, i;
 char buf [8], *bufp;
-

 /* if you want to support more than one controller in a system,
 * usb_gadget_driver_{register,unregister}() must change.
 */
- /*
 if (the_controller) {
 dev_warn (&pdev->dev, "ignoring\n");
 return -EBUSY;
 }
- */

 /* alloc, and start init */
 dev = kmalloc (sizeof *dev, SLAB_KERNEL);
@@ -2891,18 +2860,7 @@ static int net2280_probe (struct pci_dev
 use_dma
 ? (use_dma_chaining ? "chaining" : "enabled")
 : "disabled");
- //the_controller = dev;
-
- /* Add this device to the controller array */
- controller_item_ptr = kmalloc(sizeof(struct controller_item), SLAB_KERNEL);
- if (controller_item_ptr == NULL)
- {
- ERROR(dev, "Unable to allocate memory\n");
- retval = -ENOMEM;
- goto done;
- }
- controller_item_ptr->the_controller = dev;
- list_add_tail(&controller_item_ptr->list, &controller_list);
+ the_controller = dev;

 device_register (&dev->gadget.dev);
 device_create_file (&pdev->dev, &dev_attr_registers);
@@ -2949,9 +2907,6 @@ static int __init init (void)
 {
 if (!use_dma)
 use_dma_chaining = 0;
-
- INIT_LIST_HEAD(&controller_list);
-
 return pci_module_init (&net2280_pci_driver);
 }
 module_init (init);

Ben Greenberg
Bartosz Mach 14

System Start

Call /etc/init.d/
usbroutestart

Load net2280
driver (USB

gadget interface)

Load g_ether
driver

Load modules Read /etc/modules

Call modprobe

Create USB
network

interfaces

Run /etc/hotplug/
net.agent

usb0 usb1

Update iptables
settings

Run /etc/hotplug/
net.agent

Run /etc/hotplug/
net.agent

usb(n-1)

...

Update dhcpd
settings

Update iptables
settings

Update dhcpd
settings

Update iptables
settings

Update dhcpd
settings

...

...

The hotplug script will be run
for all created interfaces, usb0

to usb(n-1) where n is the
number of interface cards

installed.

Enable interface Enable interfaceEnable interface

...

End Boot

Automation Boot Process Flowchart

Load 3c59x driver
(Ethernet card)

Create eth0
interface

Obtain network
settings from
Case DHCP

server

Run dhclient

Add iptables
settings for eth0

dhclient
exit hook

Ben Greenberg
Bartosz Mach 15

Ben
Text Box
APPENDIX III

rm /etc/usbroute/last_addr
rm /etc/usbroute/interfaces
modprobe g_ether
cat /etc/usbroute/dhcp > /etc/dhcpd.conf
echo -e "\n\n" >> /etc/dhcpd.conf

Ben Greenberg
Bartosz Mach 16

Ben
Text Box
APPENDIX IV, Part A: Contents of /etc/init.d/usbroutestart on sasha

#init nat

iptables -t nat -D POSTROUTING 1 #delete the rule
ipaddr=`/sbin/ifconfig eth0 | grep "inet addr:" | sed 's/.*addr:\([0-9][0
-9]*\.[0-9][0-9]*\.[0-9][0-9]*\.[0-9][0-9]*\).*/\1/1'`
iptables -t nat -I POSTROUTING 1 -o eth0 -j SNAT --to $ipaddr

Ben Greenberg
Bartosz Mach 17

Ben
Text Box
APPENDIX IV, Part B: Contents of /etc/dhcp-exit-hooks

case $ACTION in
add|register)
 case $INTERFACE in
 usb*)

DHCPDCONF=/etc/dhcpd.conf

while [-f /var/lock/usbroute.lock]
do

sleep .1s
echo $INTERFACE: sleep >> /usblog

done
touch /var/lock/usbroute.lock

echo $INTERFACE: done sleeping >> /usblog
start_addr=`head -n1 /etc/usbroute/start_addr`
if [! -f /etc/usbroute/last_addr]
then

ipaddr=$start_addr
ip1=`cat /etc/usbroute/start_addr | sed 's/\([0-9][0

-9]*\)\.[0-9][0-9]*\.[0-9][0-9]*\.[0-9][0-9]*.*/\1/1'`
ip2=`cat /etc/usbroute/start_addr | sed 's/[0-9][0

-9]*\.\([0-9][0-9]*\)\.[0-9][0-9]*\.[0-9][0-9]*.*/\1/1'`
ip3=`cat /etc/usbroute/start_addr | sed 's/[0-9][0-9]*\.[0

-9][0-9]*\.\([0-9][0-9]*\)\.[0-9][0-9]*.*/\1/1'`
ip4=`cat /etc/usbroute/start_addr | sed 's/[0-9][0-9]*\.[0

-9][0-9]*\.[0-9][0-9]*\.\([0-9][0-9]*\).*/\1/1'`
ip3=`expr $ip3 + 1`
nextaddr="$ip1.$ip2.$ip3.$ip4"

echo ip1=$ip1, ip2=$ip2, ip3 = $ip3, ip4=$ip4 > /firsttime
echo First Addr >> /etc/usbroute/log
echo $ipaddr > /etc/usbroute/last_addr

else
ip1=`cat /etc/usbroute/last_addr | sed 's/\([0-9][0

-9]*\)\.[0-9][0-9]*\.[0-9][0-9]*\.[0-9][0-9]*.*/\1/1'`
ip2=`cat /etc/usbroute/last_addr | sed 's/[0-9][0

-9]*\.\([0-9][0-9]*\)\.[0-9][0-9]*\.[0-9][0-9]*.*/\1/1'`
ip3=`cat /etc/usbroute/last_addr | sed 's/[0-9][0-9]*\.[0

-9][0-9]*\.\([0-9][0-9]*\)\.[0-9][0-9]*.*/\1/1'`
ip4=`cat /etc/usbroute/last_addr | sed 's/[0-9][0-9]*\.[0

-9][0-9]*\.[0-9][0-9]*\.\([0-9][0-9]*\).*/\1/1'`
ip3=`expr $ip3 + 1`
ipaddr="$ip1.$ip2.$ip3.$ip4"
echo $ipaddr > /etc/usbroute/last_addr

fi
sleep 1s
echo First Addr 2 >> /etc/usbroute/log
echo "subnet $ip1.$ip2.$ip3.0 netmask 255.255.255.0" { >>

Ben Greenberg
Bartosz Mach 18

Ben
Text Box
Appendix IV,Part C: Relevant portion of /etc/hotplug/net.agent

$DHCPDCONF
echo "range $ip1.$ip2.$ip3.2 $ip1.$ip2.$ip3.20;" >> $DHCPDCONF
echo "option routers $ip1.$ip2.$ip3.1;" >> $DHCPDCONF
echo -e "}\n" >> $DHCPDCONF

/sbin/ifconfig $INTERFACE $ipaddr netmask 255.255.255.0

iptables -t nat -D PREROUTING 1
iptables -t nat -I PREROUTING -i eth0 -j DNAT --to $start_addr-

$ip1.$ip2.$ip3.20
echo -n "$INTERFACE " >> /etc/usbroute/interfaces
DHCPINTERFACES=`head -n1 /etc/usbroute/interfaces`
echo INTERFACES=\"$DHCPINTERFACES\" > /etc/default/dhcp
/etc/init.d/dhcp restart
rm /var/lock/usbroute.lock
echo $INTERFACE END >> /etc/usbroute/log
;;

Ben Greenberg
Bartosz Mach 19

	hardware_diagram.pdf
	Page-1�

	software_diagram.pdf
	Page-1�

