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String Matching and 
Suffix Tree

Gusfield Ch1-7

EECS 458 
CWRU 

Fall 2004

BLAST (Altschul et al’90)
• Idea: true match alignments are very likely to 

contain a short segment that identical (or very 
high score).

• Consider every substring (seed) of length w, 
where w=12 for DNA and 4 for protein.

• Find the exact occurrence of each substring 
(how?)

• Extend the hit in both directions and stop at 
the maximum score.
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Problems
• Pattern matching: find the exact occurrences of 

a given pattern in a given structure ( string 
matching)

• Pattern recognition: recognizing approximate 
occurences of a given patttern in a given 
structure (image recognition)

• Pattern discovery: identifying significant patterns 
in a given structure, when the patterns are 
unknown (promoter discovery)

Definitions
• String S[1..m]
• Substring S[i..j]
• Prefix S[1..i]
• Suffix S[i..m]
• Proper substring, prefix, suffix
• Exact matching problem: given a string P

called pattern, and a long string T called 
text, find all the occurrences of P in T.

Naïve method
• Align the left end of P with the left end of T
• Compare letters of P and T from left to right, until

– Either a mismatch is found (not an occurrence
– Or P is exhausted (an occurrence)

• Shift P one position to the right
• Restart the comparison from the left end of P
• Repeat the process till the right end of P shifts 

past the right end of T
• Time complexity: worst case θ(mn), where m=|P| 

and n=|T|
• Not good enough!



3

Speedup
• Ideas: 

– When mismatch occurs, shift P more than one 
letter, but never shift so far as to miss an 
occurrence

– After shifting, ship over parts of P to reduce 
comparisons

– Preprocessing of P or T

Fundamental preprocessing
• Can be on pattern P or text T.
• Given a string S (|S|=m) and a position i

>1, define Zi: the length of longest 
common prefix of S and S[i..m]

• Example, S=abxyabxz

izi1

zi

Fundamental preprocessing
zxbayxba

zxbayxba
zxbayxba

zxbayxba

zxbayxba
zxbayxba

zxbayxba
0
0
0
3
0
0
0

Zi

zxbayxba
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Fundamental preprocessing
• Intention:

– Concatenate P and T, inserted by an extra 
letter $: S=P$T

– Every i, Zi≤|P|
– Every i>|P|+1 and Zi=|P| records the 

occurrences of P in T
• Question: running time to compute all the 

Zs? The naïve method according to the 
definition runs in θ((m+n)2) time!

Fundamental preprocessing
• Goal: linear time to compute all the Zs
• Z-box: for Zi>0, it is the box starting at i 

with length Zi.(ending at i+Zi-1),
• ri: the rightmost end of a Zj-box (j+Zj-1) for 

all 1<j ≤i such that Zj>1.
• li: the left node of Zj-box ending at ri

i riliZli1

α α

Fundamental preprocessing
• Computing Zk:

– Given Zi for all 1<i<k
– Let r=rk-1 and l=lk-1

1. k>r: compute Zk explicitly (updating accordingly r 
and l if Zk>0)

2. k≤r: k is in the Z-box starting at l (substring S[l..r]), 
therefor S[k]=S[k-l+1], S[k+1]=S[k-l+2], …, 
S[r]=S[Zl]. In other words, Zk≥min{Zk-l+1,r-k+1}

k rlZl1

α α ββ

k-l+1



5

Fundamental preprocessing
• A) Zk-l+1< (r-k+1): Zk=Zk-l+1, and r, l remain 

unchanged
• B) Zk-l+1 ≥ (r-k+1): Zk≥ (r-k+1) and start 

comparison between S[r+1] and S[r-k+2] until a 
mismatch is found (updating r and l accordingly 
if Zk≥ r-k+1)

k rlZl1

α α ββ

k-l+1

k rlZl1

α α ββ

k-l+1

β ?

Fundamental preprocessing
• Conclusions:

1. Zk is correctly computed
2. There are a constant number of operations 

besides comparisons for each k
– |S| iterations
– Whenever a mismatch occurs, the iteration 

terminates
– Whenever a match occurs, r is increased

3. In total at most |S| mismatches and at most 
|S| matches

4. Running time θ(|S|) and space θ (|S|)

Fundamental preprocessing
• Th: there is a θ(n+m)-time and space 

algorithm which finds all the occurrences 
of P in T, where m=|P| and n=|T|.

• Notes: 
– Alphabet-independent
– Space requirement can be reduced to θ(m)
– Not well suited for multiple patterns searching
– Strictly linear, every letter in T has to be 

compared at least once
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Projects
• Topics
• Meeting: 3 times, as a group
• Presentations: 25 minutes/student (~20m 

talk + 5m questions)
• Term paper: single space, 11pt, 1in 

margin. 5-6p, 9-10p 10-12p, exclude 
references

The Boyer-Moore algorithm: 
an example

• P=abxabxab, T=daaabxababxabxab

baxbaxbabaxbaaad

baxbaxba

baxbaxba

baxbaxbabaxbaaad

baxbaxba

baxbaxba

The Boyer-Moore algorithm
• Rule 1: right-to-left comparison
• Rule 2: Bad character rule

– For each x∈∑, R(x) denotes the right-most 
occurrence of x in P (0 if doesn’t appear)

– When a mismatch occurs, T[k] against P[i], 
shift P right by max{1, i-R(T[k])} places. This 
takes T[k] against P[R(T[k])]

– |∑| space to store R-values
• Rule 3: good suffix rule
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The Boyer-Moore algorithm

t

y

T

t

x

z t’P before shift

y tz t’P after shift

y t

The Boyer-Moore algorithm
• Rule 3: good suffix rule

– When a mismatch occurs, T[k] against P[i]
– Find the rightmost occurrence of P[(i+1)..m] in 

P such that the letter to the left differs P[i]
– Shift P right such that this occurrence of 

P[(i+1)..m] is against T[(k+1)..(m+k-i)]
– If there is no occurrence of P[(i+1)..m], find 

the longest prefix of P matches a suffix of 
P[(i+1)..m], shift P right such that this prefix is 
against the corresponding suffix

Preprocessing for the good suffix 
rule

• Let L(i) denote the largest position less than m such that string 
P[i..m] matches a suffix of P[1..L(i)]

• Let N(j) denote the longest suffix of substring P[1..j] that is also a 
suffix of P

• Recall Zi the length of longest substring of P starts I and matches a 
prefix of S.

izi1

zi

jm-N(j)+1 1

N(j)

m

zi

N(j)

t

L(i)

tL(i)
i
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Preprocessing for the good suffix 
rule

• Thm: L(i) is the largest index j less than m 
such that N(j)≥|P[i..m]|=m-i+1.

iL(i)1

L(i)

j m-N(j)+1 m

N(j)

1

N(j)

m

The Knuth-Morris-Pratt Algorithm

• History:
– Best known
– Not the method of choice, inferior in practice
– Can be generalized for multiple string matching

• Preprocessing P
• Example:

wzxbayxba

wzxbayxba

*

KMP
• Idea: 

– left to right comparison,
– Shift P more places without missing 

occurrence
• A prefix of P matches a proper suffix of 

P[1..i] and the next letters do not match!
• Define si of P, 2<=i<=m the length of 

longest proper suffix of P[1..i] that matches 
a prefix of P, s1=0.



9

KMP
wzxbayxba

ba
xba

yxba

ayxba

0
0
3
2
1
0
0
0
0

si

bayxba

KMP
• Define si’, 2<=i<=m, the length of the 

longest proper suffix of P[1..i] that matches 
a prefix of P with the additional condition 
that character P[i+1] differs from P[si’+1].

• Obviously si’<=si for any i

KMP
wzxbayxba

ba
xba

yxba

bayxba

0
0
3
2
1
0
0
0
0

si

xbayxba

0
0
3
0
0
0
0
0
0

s’i

zxbayxba
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KMP
• Shifting rule: shift P to the right (i-si’) 

spaces ( i=n if an occurrence)

wzxbayxba

wzxbayxba

*

(i+1)(i+1)

(si’+1)

• Since P[1..si’] matches P[i-si’+1, i] and 
P[i-si’+1,i] matches T[k-si’+1,k], thus we 
skip si’ comparisons.

k

KMP
KMP(){

m=|P|,n=|T|, s’, q=0;
for (i=0; i<n;i++){

while q>0 and P[q+1] <> T[i]
q=sq’

if(P[q+1]==T[i])
q++;

if(q=m) {
find a pattern at position i-m, q=sq’

}

KMP
• Correctness
• Zj: the length of the longest common prefix of P 

and P[j..n]
• s’i the length of the longest proper suffix of P[1..i] 

that matches a prefix of P, with the additional 
condition that the character P[i+1] differs from 
P[s’i+1] 

j

iZj

j’

Zj’

• Therefore,  s’=max{ Zj | Zj = i-j+1}
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KMP
• Running time:

– In total s phases (of comparison/shift), s≤n
– Every 2 consecutive phases overlap one letter 

(the mismatched one) from T
– Therefore, in total n+s ≤ 2n

• Questions:
– Any letter from T is skipped for comparison?
– The times of comparison for a letter is at most 

a constant time? (real time algorithm)

Original preprocessing of KMP: 
calculating s’ directly

• si: the length of longest proper suffix of P[1..i] 
that matches a prefix of P

• si’, the length of the longest proper suffix of 
P[1..i] that matches a prefix of P and P[i+1] <> 
P[si’+1].

• So si’ = si if P[i+1] <> P[si+1]
si’ = s’si otherwise

xx

si i

Calculate s
si+1 = si+1 if P[si+1]=P[i+1]

= s{si}+1 if P[ssi+1]=P[i+1]
=…

xbaxbaqbaxbarbaxbaqbaxba

i i+1si

i i+1si

xrx

si+1



12

Calculate s

xbaxbaqbaxbarbaxbaqbaxba

i i+1si

• The preprocessing can be done in linear 
time.

Multiple pattern matching problem

• Given a set of pattern Ρ = {P1, P2,…, Pk} and a 
text (databases) T, find all the occurrences of all 
the patterns…

• Keyword tree: given a set of pattern Ρ = {P1, 
P2,…, Pk}, the keyword tree K is a tree:
– Rooted, directed
– Each edge is labeled with one letter
– Edges coming out of a node have distinct labels
– Every pattern is spelled out (map to one node)
– Every leaf maps to some pattern 

An example
• abxabqabxabrabxabqabxabx

a b x a b q a b x a b r a b x a
q a

b

x a b x

b

• abc

c



13

• Ρ = {potato, tattoo, theater, other}

p

o

t

a

t
o

t

o t h e r

a
t
t

o
o

a
e

h

t
e r

• Linear time construction
• Dictionary problem

Multiple pattern matching problem
• Given a set of pattern Ρ = {P1, P2,…, Pk} and a 

text (databases) T, find all the occurrences of all 
the patterns.

• The sum of the lengths of patterns: m, length of 
text: n. Previous algorithms imply a search 
algorithm of θ(m+kn) time. 

• There are algorithms running in θ(m+n+l) time, 
where l is the total number of occurrences of all 
the patters

• Using keyword tree of Ρ
• The same idea as in KMP

Failure function

xbaxbaqbaxbarbaxbaqbaxba

i i+1si

a b x a b q a b x a b r a b x a
q a

b

x a b x

b
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Multiple pattern matching problem

• L(v) denote the string from the root to v 
and lp(v) denote the length of the longest 
proper suffix of string L(v) that is a prefix of 
some pattern in Ρ.

• lp(v) for all the node v in K can be 
computed in linear time θ(m)

• Use the same failure links v->n(v)

p

o

t

a

t
o

t

o t h e r

a
t
t

o
o

a
e

h

t
e r

Aho-Corasick algorithm
• Create the keyword tree
• Compute the lp(v) and n(v) for each node 

v in the keyword tree
• Search the text against the tree, when a 

mismatch, T shifts lp(v) spaces and starts 
to compare from n(v)

• Total running time θ(m+n+l) 
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Exact string matching applications

• Sequence-tagged-sites
• Exact string matching with wild cards
• Two-dimensional exact matching
• Regular expression pattern matching

Suffix tree
• Introduction
• Construction
• Applications

• Reading: Gusfield Ch5-7

Suffix tree
• Given a finite alphabet set ∑, a string S of 

length m, e.g., S=abxabc
• Suffix tree of S:

– Rooted, directed
– Edges labeled by substrings of S
– Edges coming out of a node start with distinct 

letters
– Exactly m leaves
– Leaf i spells out suffix S[i..m]
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Keyword tree
• Keyword tree: given a set of pattern Ρ = 

{P1, P2,…, Pk}, the keyword tree K is a 
tree:
– Rooted, directed
– Each edge is labeled with one letter
– Edges coming out of a node have distinct 

labels
– Every pattern is spelled out (map to one 

node)
– Every leaf maps to some pattern 

Suffix tree

xa bxac
c

c
a

bxac

bx
ac c

1

23

4

5
6

Example: xabxac

Suffix tree
• What if a suffix is a prefix of some other 

suffix? E.g. xabxa
• Solution: append a new letter $
• Implicit suffix tree: if we don’t require each 

leaf maps to one suffix.
xabxa

abxa

bx
a

1

2

3
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First construction algorithm
• For a string S:

– Assume no suffix is a prefix of some other suffix.
– Make every suffix as a pattern Pi=S[i..m]
– Apply the linear time keyword tree construction 

algortihm
– Concatenate “paths” into “edges”

• Running time:
– Linear in the sum of the lengths of patterns Sumi|Pi| = 

m(m+1)/2
– θ(m2)
– Goal: design a linear time algorithm θ(m)

Why suffix tree
• 1st application: exact matching
• Suppose in θ(n) time we can build the 

suffix tree for the text T
• Given any pattern P, at any time

– Match letters of P along the suffix tree, until
– Either no more matches are possible, P 

doesn’t occur anywhere in T
– Or P is exhausted: the labels of the leaves in 

side the subtree under the last matching edge 
are the starting positions of the occurrences.

1st application
• Conclusion:

– Exact string matching done in θ(m+n+l) time
– Exact multiple string matching done in 
θ(m+n+l) time,

– L the number of occurrences
• Other applications:

– Multiple keyword search
– Longest repeating substring
– Longest common substring of two/more 

strings
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Ukkonen’s linear time construction

• Using implicit suffix tree of S[1..i]: Ti.
• Construct Ti incrementally:

– From Ti to Ti+1

– Need to add S[i+1] to every suffix of S[1..i] 
and the empty string, there are i+1 of them…

– Append S[i+1] to suffix S[j..i] – becoming a 
suffix of S[j..(i+1)], j=1, 2… i, i+1.

– Three suffix extension rules: 

Suffix extension rules
• Let β denote the path of S[j..i]
1. β ends at a leaf, append S[i+1] to the 

corresponding edge label
2. Some paths start from the end of β, but 

non of them starts with S[i+1], add a new 
leaf edge, labeled by S[i+1]

3. Some path from the end of β starts with 
S[i+1], already in the tree, do nothing

• Straightforward implementation θ(m3) 

Ukkonen’s algorithm, speedup
• How?
• Key thing to do: to locate the ending 

position of S[j..i] in Ti
• Example: S[1..5] = axaxb, try adding 

S[6]=a.
ax axbaxb 1

35

42

bxa

x
b b

b
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Suffix links
• j=1: easy (use a pointer pointing to the longest 

path in Ti) append a to the edge
• Denote the leaf edge as (v, 1)

1. If v is the root, j=2 is done straightforwardly
2. v is not the root: there is another node, denoted as 

s(v), such that if root to v spells out S[1..l], then root 
to s(v) spells out S[2..l]

3. When we have the information on s(v), continue 
search from it, not necessarily from the root again.

– Repeat for every j

Suffix links
• Notes: 

– need to record s(v) if a new node is created
– It doesn’t give a “faster” algorithm

ax axbaxb 1

35

42

bxa

x
b b

b

v
s(v)

Trick1: skip/count
• Key: record the length of each edge,
• When search the path, by using the length information, 

for each step, we can go node by node, not character by 
character; only constant number of comparison at each 
node (assume constant alphabet set)

ax axbaxb 1

35

42

bxa

x
b b

b

s(v)
3

3
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Analysis of trick 1
• Every node has a depth, i.e., the number of nodes on the 

path from the root
• The depth of v is at most one greater than the depth of 

s(v),
• During the entire phase constructing Ti+1 from Ti (1 ≤ j ≤

i+1): decrease node depth at most 2m (each j, decrease 
1 to find v, and decrease 1 to find s(v); i ≤ m)

• The total number of node length that could be increased 
during a phase is bounded by the number of decrement 
(2m) and the maximum length of a path (m)

• So construction done in O(m)
• Applying suffix link and trick 1 gives an O(m2) time suffix 

tree building algorithm

Two observations
• Observation1: The space for the total number of 

letters in the edge labels could reach θ(m2)
• An alternate way to represent labels is 

necessary: Use position intervals [start, end] to 
represent label S[start..end]

• Observation2: When S[j..i] doesn’t end at a leaf 
and there is an extending edge whose label 
starts with S[i+1], we are done for j, we are done 
for the phase i (S[j+1,i+1], S[j+2,i+1],…, S[i,i+1],

• Trick 2: whenever this happens, Ti+1 is built  

Last trick
• Observation 3: once a leaf, always a leaf. 

If a leaf is created and labeled by an index 
j, rule 1 will always apply.

• Trick 3: use a global parameter e to 
denote the last position thus to skip the 
extensions (only need to update e once 
per iteration).
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Recall: Ukkonen’s linear time 
construction

• Using implicit suffix tree of S[1..i]: Ti.
• Construct Ti incrementally:

– From Ti to Ti+1

– Need to add S[i+1] to every suffix of S[1..i] 
and the empty string, there are i+1 of them…

– Append S[i+1] to suffix S[j..i] – becoming a 
suffix of S[1..(i+1)], j=1, 2… i, i+1.

– Three suffix extension rules: 

Recall: Suffix extension rules
• Let β denote the path of S[j..i]
1. β ends at a leaf, append S[i+1] to the 

corresponding edge label
2. Some paths start from the end of β, but 

non of them starts with S[i+1], add a new 
leaf edge, labeled by S[i+1]

3. Some path from the end of β starts with 
S[i+1], already in the tree, do nothing

Time complexity: amortized analysis

• Increment e to skip the first j* (from last phase) 
extensions. (Skip some j at the beginning)

• Apply trick 1 to continue until trick 2 can be 
applied at jth extension, (skip some j at last)
– Set j*=j-1: update j* for the next phase use

• Next phase we can skip the first j* extensions…
• Every two consecutive phases overlap at most 1 

index
• Linear time algorithm!
• (j* of (i+1)th run is the previous position that rule 

3/trick 2 applied in ith run.
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Example
• S[1..6]=axaxba

1:e 1 i=1, e=1, j*=1

1:e 1 i=2, e=2, j*=2
2:e

1:e 1 i=3, e=3, j*=2
2:e

2

2

a

x

ax

axa

ax

a

ax
x (R2)

axa
xa
a (R3)

Example

1 e=4, j*=2
2:e

• S[1..6]=axaxba

1:e axax
xax
ax(R3)

axax

xa
x

1 e=5, j*=5

3:e

1:2 axaxb
xaxb
axb(R2)
Xb(R2)
b(R2)

ax

bx
a

axb
3:e

b

2

2
3

x

4

2:25:e 5:
e

b

5

b
5:e

Example

1 e=6, j*=5

3:e

1:2 axaxba
xaxba
axba
Xba
ba
a(R3)

3:e

2
3

4

2:2

4:e 3:
e

5:e

• S[1..6]=axaxba
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The true suffix tree
• Append $ to S and execute on Tm
• Correctness: every suffix is spelled out by 

some root-to-leaf path, no suffix is a prefix 
of some other suffix

• Generalized suffix tree for a set of strings:
– Concatenate strings into one, by adding some 

extra letters, but some synthetic suffixes
– Build suffix tree for one string, then on top of it 

build for anther, then on top of it, build for 
anther…

Applications
• Exact pattern search
• Longest common substring
• Tandem repeat 
• Suffix array
• …


