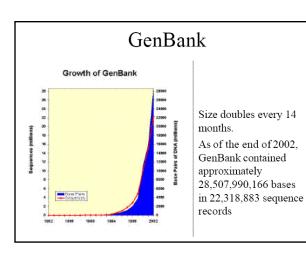
String Matching and Suffix Tree

Gusfield Ch1-7

EECS 458 CWRU Fall 2004



BLAST (Altschul et al'90)

- Idea: true match alignments are very likely to contain a short segment that identical (or very high score).
- Consider every substring (seed) of length *w*, where *w*=12 for DNA and 4 for protein.
- Find the exact occurrence of each substring (how?)
- Extend the hit in both directions and stop at the maximum score.

Problems

- Pattern matching: find the exact occurrences of a given pattern in a given structure (string matching)
- Pattern recognition: recognizing approximate occurences of a given pattern in a given structure (image recognition)
- Pattern discovery: identifying significant patterns in a given structure, when the patterns are unknown (promoter discovery)

Definitions

- String S[1..m]
- Substring S[i..j]
- Prefix S[1..i]
- Suffix S[i..m]
- Proper substring, prefix, suffix
- Exact matching problem: given a string *P* called pattern, and a long string *T* called text, find all the occurrences of *P* in *T*.

Naïve method

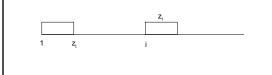
- Align the left end of P with the left end of T
- Compare letters of P and T from left to right, until
 Either a mismatch is found (not an occurrence
 - Or P is exhausted (an occurrence)
- Shift P one position to the right
- · Restart the comparison from the left end of P
- Repeat the process till the right end of P shifts past the right end of T
- Time complexity: worst case $\theta(mn),$ where m=|P| and n=|T|
- Not good enough!

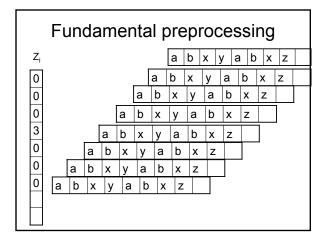
Speedup

- · Ideas:
 - When mismatch occurs, shift P more than one letter, but never shift so far as to miss an occurrence
 - After shifting, ship over parts of P to reduce comparisons
 - Preprocessing of P or T

Fundamental preprocessing

- Can be on pattern P or text T.
- Given a string S (|S|=m) and a position i
 >1, define Z_i: the length of longest common prefix of S and S[i..m]
- Example, S=abxyabxz



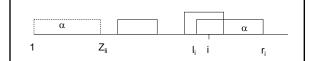


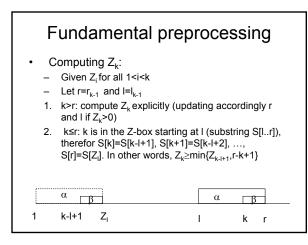
Fundamental preprocessing

- Intention:
 - Concatenate P and T, inserted by an extra letter \$: S=P\$T
 - Every i, Z_i≤|P|
 - Every i>|P|+1 and Z_i=|P| records the occurrences of P in T
- Question: running time to compute all the Zs? The naïve method according to the definition runs in θ((m+n)²) time!

Fundamental preprocessing

- Goal: linear time to compute all the Zs
- Z-box: for Z_i>0, it is the box starting at i with length Z_i (ending at i+Z_i-1),
- r_i: the rightmost end of a Z_j-box (j+Z_j-1) for all 1<j ≤i such that Z_i>1.
- Ii: the left node of Zi-box ending at ri







Fundamental preprocessing		
 A) Z_{k-l+1}< (r-k+1): Z_k=Z_{k-l+1}, and r, I remain unchanged B) Z_{k-l+1} ≥ (r-k+1): Z_k≥ (r-k+1) and start comparison between S[r+1] and S[r-k+2] until a mismatch is found (updating r and I accordingly if Z_k≥ r-k+1) 		
α β 1 k-l+1 Z	α	β k r
β α β 1 k-l+1 Z ₁	α	β? kr

Fundamental preprocessing

- Conclusions:
 - 1. Z_k is correctly computed
 - There are a constant number of operations besides comparisons for each k

 |S| iterations
 - Whenever a mismatch occurs, the iteration terminates
 - Whenever a match occurs, r is increased
 - 3. In total at most |S| mismatches and at most |S| matches
 - 4. Running time $\theta(|S|)$ and space $\theta(|S|)$

Fundamental preprocessing

- Th: there is a θ(n+m)-time and space algorithm which finds all the occurrences of P in T, where m=|P| and n=|T|.
- Notes:
 - Alphabet-independent
 - Space requirement can be reduced to $\theta(m)$
 - Not well suited for multiple patterns searching
 - Strictly linear, every letter in T has to be compared at least once

Projects

- Topics
- Meeting: 3 times, as a group
- Presentations: 25 minutes/student (~20m talk + 5m questions)
- Term paper: single space, 11pt, 1in margin. 5-6p, 9-10p 10-12p, exclude references

The Boyer-Moore algorithm: an example

• P=abxabxab, T=daaabxababxabxab

d a a a b x a b a b x a b x a b

abxabxab

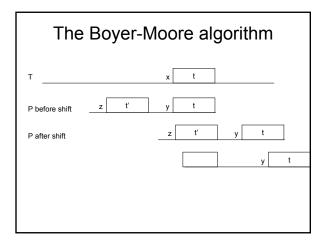
abxabxab

daaabxababxabxab abxabxab

abxabxab

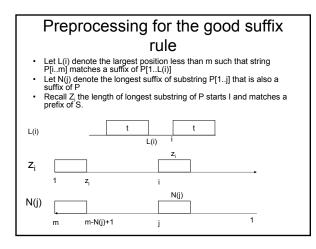
The Boyer-Moore algorithm

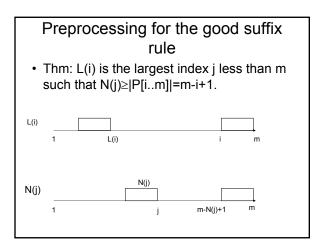
- Rule 1: right-to-left comparison
- Rule 2: Bad character rule
 - For each x∈∑, R(x) denotes the right-most occurrence of x in P (0 if doesn't appear)
 - When a mismatch occurs, T[k] against P[i], shift P right by max{1, i-R(T[k])} places. This takes T[k] against P[R(T[k])]
 - $-|\Sigma|$ space to store R-values
- Rule 3: good suffix rule

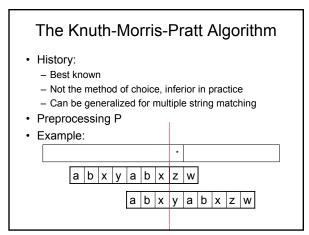


The Boyer-Moore algorithm

- Rule 3: good suffix rule
 - When a mismatch occurs, T[k] against P[i]
 - Find the rightmost occurrence of P[(i+1)..m] in P such that the letter to the left differs P[i]
 - Shift P right such that this occurrence of P[(i+1)..m] is against T[(k+1)..(m+k-i)]
 - If there is no occurrence of P[(i+1)..m], find the longest prefix of P matches a suffix of P[(i+1)..m], shift P right such that this prefix is against the corresponding suffix

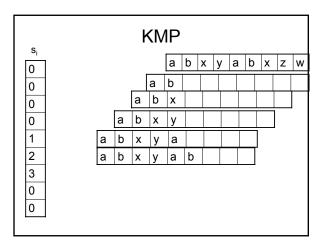






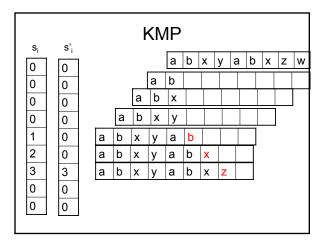
KMP

- Idea:
 - left to right comparison,
 - Shift P more places without missing occurrence
- A prefix of P matches a proper suffix of P[1..i] and the next letters do not match!
- Define s_i of P, 2<=i<=m the length of longest proper suffix of P[1..i] that matches a prefix of P, s₁=0.

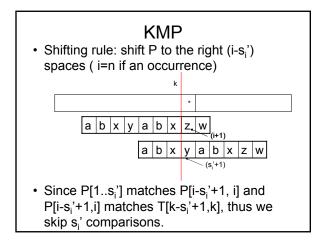


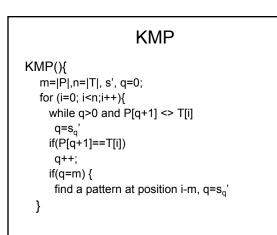
KMP

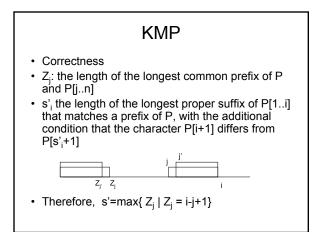
- Define s_i', 2<=i<=m, the length of the longest proper suffix of P[1..i] that matches a prefix of P with the additional condition that character P[i+1] differs from P[s_i'+1].
- Obviously s_i'<=s_i for any i











KMP

- Running time:
 - In total s phases (of comparison/shift), s≤n
 - Every 2 consecutive phases overlap one letter (the mismatched one) from T
 - Therefore, in total n+s ≤ 2n
- Questions:
 - Any letter from T is skipped for comparison?
 - $\, \mbox{The times of comparison for a letter is at most}$
 - a constant time? (real time algorithm)

Original preprocessing of KMP: calculating s' directly

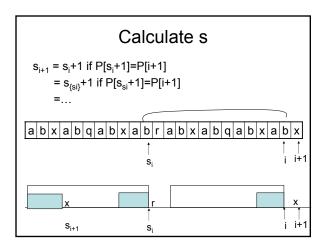
- s_i: the length of longest proper suffix of P[1..i] that matches a prefix of P
- s_i', the length of the longest proper suffix of P[1..i] that matches a prefix of P and P[i+1] <> P[s_i'+1].
- So s_i' = s_i if P[i+1] <> P[s_i+1]
 s_i' = s'_{si} otherwise

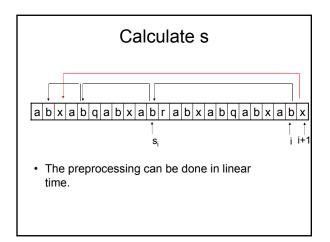
х

si

i

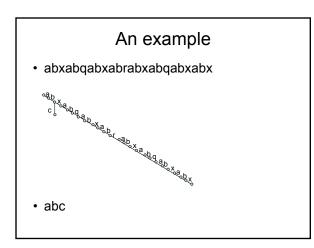
x

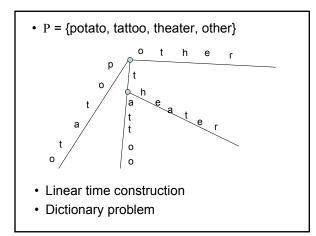




Multiple pattern matching problem

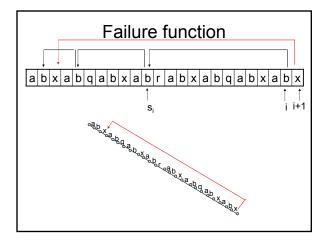
- Given a set of pattern P = {P₁, P₂,..., P_k} and a text (databases) T, find all the occurrences of all the patterns...
- Keyword tree: given a set of pattern $P = \{P_1, P_2, ..., P_k\}$, the keyword tree K is a tree:
 - Rooted, directed
 - Each edge is labeled with one letter
 - Edges coming out of a node have distinct labels
 - Every pattern is spelled out (map to one node)
 - Every leaf maps to some pattern





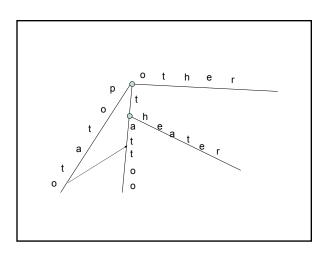
Multiple pattern matching problem

- Given a set of pattern P = {P₁, P₂,..., P_k} and a text (databases) T, find all the occurrences of all the patterns.
- The sum of the lengths of patterns: m, length of text: n. Previous algorithms imply a search algorithm of θ(m+kn) time.
- There are algorithms running in $\theta(m\text{+}n\text{+}\text{I})$ time, where I is the total number of occurrences of all the patters
- Using keyword tree of P
- · The same idea as in KMP



Multiple pattern matching problem

- L(v) denote the string from the root to v and Ip(v) denote the length of the longest proper suffix of string L(v) that is a prefix of some pattern in P.
- lp(v) for all the node v in K can be computed in linear time θ(m)
- Use the same failure links v->n(v)



Aho-Corasick algorithm

- · Create the keyword tree
- Compute the lp(v) and n(v) for each node v in the keyword tree
- Search the text against the tree, when a mismatch, T shifts lp(v) spaces and starts to compare from n(v)
- Total running time θ(m+n+l)

Exact string matching applications

- · Sequence-tagged-sites
- · Exact string matching with wild cards
- Two-dimensional exact matching
- Regular expression pattern matching

Suffix tree

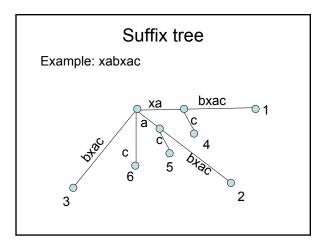
- Introduction
- Construction
- Applications
- Reading: Gusfield Ch5-7

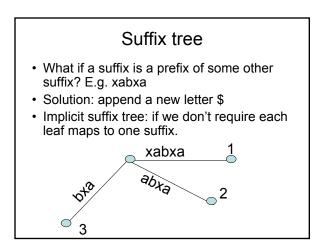
Suffix tree

- Given a finite alphabet set ∑, a string S of length m, e.g., S=abxabc
- Suffix tree of S:
 - Rooted, directed
 - Edges labeled by substrings of S
 - Edges coming out of a node start with distinct letters
 - Exactly m leaves
 - Leaf i spells out suffix S[i..m]

Keyword tree

- Keyword tree: given a set of pattern P = $\{P_1, P_2, ..., P_k\}$, the keyword tree K is a tree:
 - Rooted, directed
 - Each edge is labeled with one letter
 - Edges coming out of a node have distinct labels
 - Every pattern is spelled out (map to one node)
 - Every leaf maps to some pattern





First construction algorithm

- · For a string S:
 - Assume no suffix is a prefix of some other suffix.
 - Make every suffix as a pattern P_i=S[i..m]
 - Apply the linear time keyword tree construction algortihm
 - Concatenate "paths" into "edges"

Running time:

- Linear in the sum of the lengths of patterns $Sum_i |P_i|$ = $m(m\!+\!1)/2$
- θ(m²)
- Goal: design a linear time algorithm $\theta(m)$

Why suffix tree

- 1st application: exact matching
- Suppose in $\theta(n)$ time we can build the suffix tree for the text T
- Given any pattern P, at any time
 - Match letters of P along the suffix tree, until
 - Either no more matches are possible, P doesn't occur anywhere in T
 - Or P is exhausted: the labels of the leaves in side the subtree under the last matching edge are the starting positions of the occurrences.

1st application

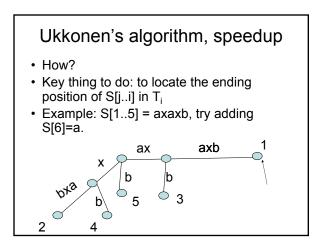
- · Conclusion:
 - Exact string matching done in θ (m+n+l) time
 - Exact multiple string matching done in $\theta(m+n+l)$ time,
 - L the number of occurrences
- · Other applications:
 - Multiple keyword search
 - Longest repeating substring
 - Longest common substring of two/more strings

Ukkonen's linear time construction

- Using implicit suffix tree of S[1..i]: T_i.
- Construct T_i incrementally:
 - From T_i to T_{i+1}
 - Need to add S[i+1] to every suffix of S[1..i] and the empty string, there are i+1 of them...
 - Append S[i+1] to suffix S[j..i] becoming a suffix of S[j..(i+1)], j=1, 2... i, i+1.
 - Three suffix extension rules:

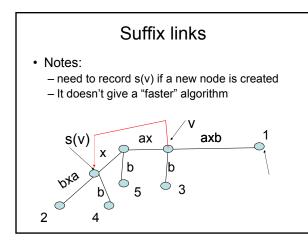
Suffix extension rules

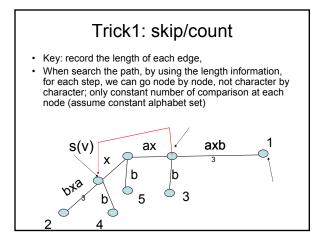
- Let β denote the path of S[j..i]
- 1. β ends at a leaf, append S[i+1] to the corresponding edge label
- 2. Some paths start from the end of β , but non of them starts with S[i+1], add a new leaf edge, labeled by S[i+1]
- 3. Some path from the end of β starts with S[i+1], already in the tree, do nothing
- Straightforward implementation $\theta(m^3)$



Suffix links

- j=1: easy (use a pointer pointing to the longest path in T_i) append a to the edge
- Denote the leaf edge as (v, 1)
 - 1. If v is the root, j=2 is done straightforwardly
 - v is not the root: there is another node, denoted as s(v), such that if root to v spells out S[1..l], then root to s(v) spells out S[2..l]
 - When we have the information on s(v), continue search from it, not necessarily from the root again.
- Repeat for every j





Analysis of trick 1

- Every node has a depth, i.e., the number of nodes on the path from the root
- The depth of v is at most one greater than the depth of s(v),
- During the entire phase constructing T_{i+1} from T_i ($1 \le j \le i+1$): decrease node depth at most 2m (each j, decrease 1 to find v, and decrease 1 to find s(v); $i \le m$)
- The total number of node length that could be increased during a phase is bounded by the number of decrement (2m) and the maximum length of a path (m)
- So construction done in O(m)
- Applying suffix link and trick 1 gives an O(m²) time suffix tree building algorithm

Two observations

- Observation1: The space for the total number of letters in the edge labels could reach $\theta(m^2)$
- An alternate way to represent labels is necessary: Use position intervals [start, end] to represent label S[start..end]
- Observation2: When S[j..i] doesn't end at a leaf and there is an extending edge whose label starts with S[i+1], we are done for j, we are done for the phase i (S[j+1,j+1], S[j+2,j+1],..., S[i,j+1],
- Trick 2: whenever this happens, T_{i+1} is built

Last trick

- Observation 3: once a leaf, always a leaf. If a leaf is created and labeled by an index j, rule 1 will always apply.
- Trick 3: use a global parameter e to denote the last position thus to skip the extensions (only need to update e once per iteration).

Recall: Ukkonen's linear time construction

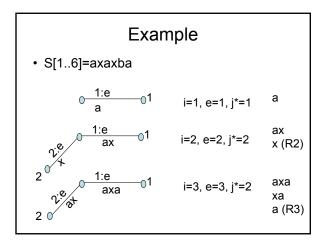
- Using implicit suffix tree of S[1..i]: T_i.
- Construct T_i incrementally:
 - From T_i to T_{i+1}
 - Need to add S[i+1] to every suffix of S[1..i] and the empty string, there are i+1 of them...
 - Append S[i+1] to suffix S[j..i] becoming a suffix of S[1..(i+1)], j=1, 2... i, i+1.
 - Three suffix extension rules:

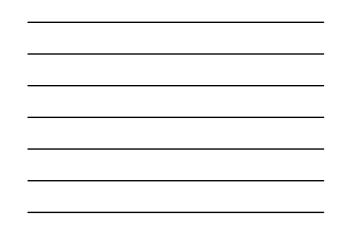
Recall: Suffix extension rules

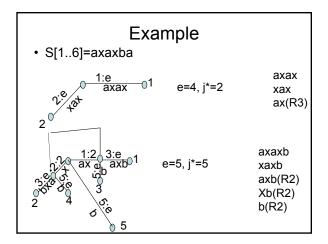
- Let β denote the path of S[j..i]
- 1. β ends at a leaf, append S[i+1] to the corresponding edge label
- 2. Some paths start from the end of β , but non of them starts with S[i+1], add a new leaf edge, labeled by S[i+1]
- 3. Some path from the end of β starts with S[i+1], already in the tree, do nothing

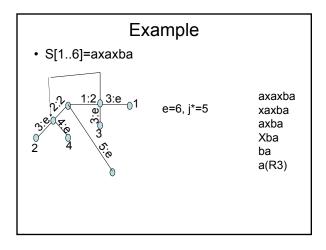
Time complexity: amortized analysis

- Increment e to skip the first j* (from last phase) extensions. (Skip some j at the beginning)
- Apply trick 1 to continue until trick 2 can be applied at jth extension, (skip some j at last)
 Set j*=j-1: update j* for the next phase use
- Next phase we can skip the first j* extensions...
- Every two consecutive phases overlap at most 1 index
- · Linear time algorithm!
- (j* of (i+1)th run is the previous position that rule 3/trick 2 applied in ith run.









The true suffix tree

- Append \$ to S and execute on T_m
- Correctness: every suffix is spelled out by some root-to-leaf path, no suffix is a prefix of some other suffix
- Generalized suffix tree for a set of strings:
 Concatenate strings into one, by adding some extra letters, but some synthetic suffixes
 - Build suffix tree for one string, then on top of it build for anther, then on top of it, build for anther...

Applications

- · Exact pattern search
- Longest common substring
- Tandem repeat
- Suffix array
- ...