String Matching and
Suffix Tree

Gusfield Ch1-7

EECS 458
CWRU
Fall 2004

Sequences fmilions)

GenBank

Growth of GenBank

Bl

i

Size doubles every 14
months.

As of the end 02002,
GenBank contained
approximately
28,507,990.,166 bases
in 22,318,883 sequence
records

SRR

=2 d 2 2 84 ¥HERYN

Bace Paire of DMA [mitlians)

-

CYEEE

BLAST (Altschul et al’90)

* |dea: true match alignments are very likely to
contain a short segment that identical (or very
high score).

» Consider every substring (seed) of length w,
where w=12 for DNA and 4 for protein.

» Find the exact occurrence of each substring
(how?)

» Extend the hit in both directions and stop at
the maximum score.

Problems

Pattern matching: find the exact occurrences of
a given pattern in a given structure (string
matching)

Pattern recognition: recognizing approximate
occurences of a given patttern in a given
structure (image recognition)

Pattern discovery: identifying significant patterns
in a given structure, when the patterns are
unknown (promoter discovery)

Definitions

String S[1..m]

Substring Sfi..j]

Prefix S[1..i]

Suffix Si..m]

Proper substring, prefix, suffix

Exact matching problem: given a string P
called pattern, and a long string T called
text, find all the occurrences of P in T.

Naive method

Align the left end of P with the left end of T
Compare letters of P and T from left to right, until
— Either a mismatch is found (not an occurrence

— Or P is exhausted (an occurrence)

Shift P one position to the right

Restart the comparison from the left end of P

Repeat the process till the right end of P shifts
past the right end of T

Time complexity: worst case 6(mn), where m=|P|
and n=|T|

Not good enough!

Speedup

* |ldeas:

— When mismatch occurs, shift P more than one
letter, but never shift so far as to miss an
occurrence

— After shifting, ship over parts of P to reduce
comparisons

— Preprocessing of Por T

Fundamental preprocessing

» Can be on pattern P or text T.

+ Given a string S (|]S|=m) and a position i
>1, define Z;: the length of longest
common prefix of S and S[i..m]

+ Example, S=abxyabxz

Z

1 Z i

Fundamental preprocessing

lafolx |y [afbx]z]

[alblx]y |alb|x |z

lalblxlylalbixz] |

lalb[x|ylalbix[z] |

lalblxlylalb|x[z] |
alblx|ylalb[x]|z

la[b[x [y [alblx[z]
lafox]ylalbix[z] |

[o]o]o]w]o]o]o] N

Fundamental preprocessing

* Intention:
— Concatenate P and T, inserted by an extra
letter $: S=P$T
—Every i, Zg|P|
— Every i>|P|+1 and Z=|P| records the
occurrences of Pin T
* Question: running time to compute all the
Zs? The naive method according to the
definition runs in 6((m+n)?) time!

Fundamental preprocessing

Goal: linear time to compute all the Zs
Z-box: for Z>0, it is the box starting at i
with length Z, (ending at i+Z;-1),

r;: the rightmost end of a Zi-box (j+Z-1) for
all 1<j <i such that Z>1.

I the left node of Z-box ending at r;

Fundamental preprocessing

Computing Z,:

— Given Zfor all 1<i<k

- Letr=r_, andI=l,

1. k>r: compute Z, explicitly (updating accordingly r
and | if Z,>0)

2. ksr: kis in the Z-box starting at | (substring SJl..r]),
therefor S[k]=S[k-I+1], S[k+1]=S[k-I+2], ...,
S[r]=S[Z]. In other words, Z>min{Z,,,r-k+1}

SRR r—

1 ki z | K v

Fundamental preprocessing

o A) Z 14< (r-k+1): Z,=Z, .4, @and r, | remain
unchanged

* B) Z 1y = (r-k+1): Z,> (r-k+1) and start
comparison between S[r+1] and S[r-k+2] until a

mismatch is found (updating r and | accordingly
if Z> r-k+1)

1 k1 Z

Fundamental preprocessing

+ Conclusions:
1. Zis correctly computed

2. There are a constant number of operations
besides comparisons for each k
— |S] iterations

— Whenever a mismatch occurs, the iteration
terminates

— Whenever a match occurs, r is increased
3. In total at most |S| mismatches and at most
|S| matches

4. Running time 0(|S|) and space 6 (|S])

Fundamental preprocessing

* Th: there is a 6(n+m)-time and space
algorithm which finds all the occurrences
of P in T, where m=|P| and n=|T]|.

* Notes:

— Alphabet-independent
— Space requirement can be reduced to 6(m)
— Not well suited for multiple patterns searching

— Strictly linear, every letter in T has to be
compared at least once

Projects

* Topics

* Meeting: 3 times, as a group

Presentations: 25 minutes/student (~20m

talk + 5m questions)

» Term paper: single space, 11pt, 1in
margin. 5-6p, 9-10p 10-12p, exclude
references

The Boyer-Moore algorithm:
an example
* P=abxabxab, T=daaabxababxabxab

[dla]alab]x|al blalb] x| alb] x|]
BEREERER
|a[blx|albix|a[]

[dlalal alb]x|alba[b]x|alb]x|a[b}
|alb]x[alb]x|ab
|a[blx|alblx|a]b]

The Boyer-Moore algorithm

* Rule 1: right-to-left comparison
* Rule 2: Bad character rule

— For each xe2, R(x) denotes the right-most
occurrence of x in P (0 if doesn’t appear)
—When a mismatch occurs, T[k] against P[i],
shift P right by max{1, i-R(T[Kk])} places. This
takes T[k] against P[R(T[k])]
— || space to store R-values
* Rule 3: good suffix rule

The Boyer-Moore algorithm

P before shift z ‘ v ‘ y ‘ ! ‘

P after shift z ‘ ¢ ‘ y ‘ t ‘

The Boyer-Moore algorithm

* Rule 3: good suffix rule

— When a mismatch occurs, T[k] against P[i]

— Find the rightmost occurrence of P[(i+1)..m] in
P such that the letter to the left differs Pi]

— Shift P right such that this occurrence of
P[(i+1)..m] is against T[(k+1)..(m+k-i)]

— If there is no occurrence of P[(i+1)..m], find
the longest prefix of P matches a suffix of

P[(i+1)..m], shift P right such that this prefix is
against the corresponding suffix

Preprocessing for the good suffix
rule

« Let L(i) denote the largest position less than m such that string
P[i..m] matches a suffix of P[1..L(i)]

« Let N(j) denote the longest suffix of substring P[1..j] that is also a

suffix of P
« Recall Z the length of longest substring of P starts | and matches a
prefix of S.
L@ I
L !
Z\
Z
1 Z; i
NG)
NO) []

m m-N(j)+1 i 1

Preprocessing for the good suffix
rule

« Thm: L(i) is the largest index j less than m
such that N(j)=|P[i..m]|=m-i+1.

L 1
1 L(i) i m
NG)
NG] 1
1 i m-N(j)+1 m

The Knuth-Morris-Pratt Algorithm

 History:

— Best known

— Not the method of choice, inferior in practice

— Can be generalized for multiple string matching
* Preprocessing P
+ Example:

| | |

lalblx]y[a]b]x |z |w]

alb|xy[a[b]x |z |w]

KMP

* |ldea:
— left to right comparison,
— Shift P more places without missing

occurrence

« A prefix of P matches a proper suffix of
P[1..i] and the next letters do not match!

* Define s, of P, 2<=i<=m the length of
longest proper suffix of P[1..i] that matches
a prefix of P, s,=0.

KMP

lalblx ly [afb[x [z [w

a

blxylal | |]]

a

[b [x [y lalb |

KMP

* Define s/, 2<=i<=m, the length of the
longest proper suffix of P[1..i] that matches
a prefix of P with the additional condition
that character P[i+1] differs from P[s;+1].

» Obviously s;/<=s; for any i

NSRRI

HEEEEEEEE

KMP

lao]x]yafb x|z w

KMP
« Shifting rule: shift P to the right (i-s;)
spaces (i=n if an occurrence)
k

‘ ’ ‘ ‘

alblxly|alb[x[z]w]

+1)
lalblx]y lalblx|zw]
=)

+ Since P[1..s;] matches P[i-s;+1, i] and
P[i-s+1,i] matches T[k-s;+1,k], thus we
skip s,/ comparisons.

KMP

KMP(){
m=|P|,n=[T], s’, q=0;
for (i=0; i<n;i++){
while g>0 and P[g+1] <> T[i]
a=sy
if(P[q+11==TIi])
g+,
if(q=m) {
find a pattern at position i-m, g=s,’
}

KMP

» Correctness

Z;: the length of the longest common prefix of P

and PJj..n]

s’; the length of the longest proper suffix of P[1..i]
that matches a prefix of P, with the additional
condition that the character PJ[i+1] differs from
Pls'i+1]

Z z i

* Therefore, s'=max{Z, | Z, = i-j+1}

10

KMP

* Running time:
— In total s phases (of comparison/shift), ssn

— Every 2 consecutive phases overlap one letter
(the mismatched one) from T

— Therefore, in total n+s < 2n
* Questions:
— Any letter from T is skipped for comparison?

— The times of comparison for a letter is at most
a constant time? (real time algorithm)

Original preprocessing of KMP:

calculating s’ directly

+ s;: the length of longest proper suffix of P[1..i]
that matches a prefix of P

+ s/, the length of the longest proper suffix of
P[1..i] that matches a prefix of P and P[i+1] <>
P[s;+1].

* So s/ =s;if P[i+1] <> P[s;+1]

s/ = s’ otherwise

[x] [x]

s\

Calculate s

Sy = S+1 if Ps+1]=P[i+1]
= syt 1 if Psg+1]=P[i+1]

IabxabqabxabrabxabqabxaTbXTI
I

s i it

= = .

|

|

I 1
Sitq s, i i+

11

Calculate s

I i

[a[b]x|a]blg[a[b]x|a]b|r |ab]x|a|b]a]a]b]x|a[b]x]

s i i+1

» The preprocessing can be done in linear
time.

Multiple pattern matching problem

Given a set of pattern P = {P,, P,,..., P,} and a

text (databases) T, find all the occurrences of all
the patterns...

Keyword tree: given a set of pattern P = {P,,
P,,..., P}, the keyword tree K is a tree:

— Rooted, directed

— Each edge is labeled with one letter

— Edges coming out of a node have distinct labels
— Every pattern is spelled out (map to one node)

— Every leaf maps to some pattern

An example

+ abxabgabxabrabxabgabxabx

« abc

» P ={potato, tattoo, theater, other}

* Linear time construction
+ Dictionary problem

Multiple pattern matching problem

+ Given a set of pattern P = {P,, P,,..., P,}and a
text (databases) T, find all the occurrences of all
the patterns.

* The sum of the lengths of patterns: m, length of

text: n. Previous algorithms imply a search

algorithm of 6(m+kn) time.

There are algorithms running in 6(m+n+l) time,

where | is the total number of occurrences of all

the patters

» Using keyword tree of P

* The same idea as in KMP

Failure function

u] i

[a[b]x|ab]q|a]b]x|a[b]r |a] b|x|a]b]a[a]b]x|a] b]x]

S, i i+1

13

Multiple pattern matching problem

* L(v) denote the string from the root to v
and Ip(v) denote the length of the longest
proper suffix of string L(v) that is a prefix of
some pattern in P.

* Ip(v) for all the node v in K can be
computed in linear time 6(m)

+ Use the same failure links v->n(v)

Aho-Corasick algorithm

 Create the keyword tree

+ Compute the Ip(v) and n(v) for each node
v in the keyword tree

» Search the text against the tree, when a
mismatch, T shifts Ip(v) spaces and starts
to compare from n(v)

* Total running time 6(m+n+l)

14

Exact string matching applications

+ Sequence-tagged-sites

« Exact string matching with wild cards
* Two-dimensional exact matching

* Regular expression pattern matching

Suffix tree

* Introduction
» Construction
Applications

Reading: Gusfield Ch5-7

Suffix tree

* Given a finite alphabet set Y., a string S of
length m, e.g., S=abxabc

» Suffix tree of S:
— Rooted, directed
— Edges labeled by substrings of S

— Edges coming out of a node start with distinct
letters

— Exactly m leaves
— Leaf i spells out suffix S[i..m]

15

Keyword tree

» Keyword tree: given a set of pattern P =
{P4, Py,..., P}, the keyword tree K is a
tree:

— Rooted, directed
— Each edge is labeled with one letter

— Edges coming out of a node have distinct
labels

— Every pattern is spelled out (map to one
node)

— Every leaf maps to some pattern

Suffix tree

Example: xabxac

Suffix tree

+ What if a suffix is a prefix of some other
suffix? E.g. xabxa

* Solution: append a new letter $

* Implicit suffix tree: if we don’t require each
leaf maps to one suffix.

16

First construction algorithm

» For a string S:
— Assume no suffix is a prefix of some other suffix.
— Make every suffix as a pattern P=S][i..m]

— Apply the linear time keyword tree construction
algortihm

— Concatenate “paths” into “edges”
* Running time:

— Linear in the sum of the lengths of patterns Sum,|P|| =
m(m+1)/2

—_ e(m2)
— Goal: design a linear time algorithm 6(m)

Why suffix tree

+ 1st application: exact matching

» Suppose in 6(n) time we can build the
suffix tree for the text T

» Given any pattern P, at any time
— Match letters of P along the suffix tree, until

— Either no more matches are possible, P
doesn’t occur anywhere in T

— Or P is exhausted: the labels of the leaves in
side the subtree under the last matching edge
are the starting positions of the occurrences.

1st application

Conclusion:

— Exact string matching done in 6(m+n+l) time

— Exact multiple string matching done in
0(m+n+l) time,

— L the number of occurrences
Other applications:

— Multiple keyword search

— Longest repeating substring

— Longest common substring of two/more
strings

17

Ukkonen’s linear time construction

* Using implicit suffix tree of S[1..i]: T..
+ Construct T, incrementally:
— From T;to Tjy4
— Need to add S[i+1] to every suffix of S[1..i]
and the empty string, there are i+1 of them...

— Append SJi+1] to suffix S[j..i] — becoming a
suffix of S[j..(i+1)], j=1, 2... i, i+1.

— Three suffix extension rules:

Suffix extension rules

+ Let B denote the path of SJj..i]

1. B ends at a leaf, append S[i+1] to the
corresponding edge label

2. Some paths start from the end of 3, but
non of them starts with S[i+1], add a new
leaf edge, labeled by S[i+1]

3. Some path from the end of B starts with
S[i+1], already in the tree, do nothing

+ Straightforward implementation 6(m3)

Ukkonen’s algorithm, speedup

* How?

» Key thing to do: to locate the ending
position of S[j..i] in T,

» Example: S[1..5] = axaxb, try adding
S[6]=a.

Suffix links

* j=1: easy (use a pointer pointing to the longest
path in T;) append a to the edge
* Denote the leaf edge as (v, 1)
1. If vis the root, j=2 is done straightforwardly
2. v is not the root: there is another node, denoted as
s(v), such that if root to v spells out S[1..1], then root
to s(v) spells out S[2..1]
3. When we have the information on s(v), continue
search from it, not necessarily from the root again.

— Repeat for every j

Suffix links

* Notes:
—need to record s(v) if a new node is created
— It doesn’t give a “faster” algorithm

s(v)

Trick1: skip/count

» Key: record the length of each edge,

* When search the path, by using the length information,
for each step, we can go node by node, not character by
character; only constant number of comparison at each
node (assume constant alphabet set)

s(v) ax »/ axb 1

19

Analysis of trick 1

Every node has a depth, i.e., the number of nodes on the
path from the root

The depth of v is at most one greater than the depth of
s(v),

During the entire phase constructing T, from T;(1 <j <
i+1): decrease node depth at most 2m (each j, decrease
1 to find v, and decrease 1 to find s(v); i < m)

The total number of node length that could be increased
during a phase is bounded by the number of decrement
(2m) and the maximum length of a path (m)

So construction done in O(m)

Applying suffix link and trick 1 gives an O(m?) time suffix
tree building algorithm

Two observations

Observation1: The space for the total number of
letters in the edge labels could reach 6(m?2)

An alternate way to represent labels is
necessary: Use position intervals [start, end] to
represent label S[start..end]

Observation2: When Sfj..i] doesn’t end at a leaf
and there is an extending edge whose label
starts with S[i+1], we are done for j, we are done
for the phase i (S[j+1,i+1], S[j+2,i+1],..., S[i,i+1],
Trick 2: whenever this happens, T, is built

Last trick

» Observation 3: once a leaf, always a leaf.

If a leaf is created and labeled by an index
j, rule 1 will always apply.

« Trick 3: use a global parameter e to

denote the last position thus to skip the
extensions (only need to update e once
per iteration).

20

Recall: Ukkonen’s linear time
construction
* Using implicit suffix tree of S[1..i]: T..
+ Construct T, incrementally:
— From T;to Tjy4

— Need to add S[i+1] to every suffix of S[1..i]
and the empty string, there are i+1 of them...

— Append SJi+1] to suffix S[j..i] — becoming a
suffix of S[1..(i+1)], j=1, 2... i, i+1.

— Three suffix extension rules:

Recall: Suffix extension rules

* Let B denote the path of SJj..i]

1. B ends at a leaf, append S[i+1] to the

corresponding edge label

2. Some paths start from the end of 3, but

non of them starts with S[i+1], add a new
leaf edge, labeled by SJ[i+1]

3. Some path from the end of j starts with

S[i+1], already in the tree, do nothing

Time complexity: amortized analysis

Increment e to skip the first j* (from last phase)
extensions. (Skip some j at the beginning)

Apply trick 1 to continue until trick 2 can be
applied at jth extension, (skip some j at last)

— Set j*=j-1: update j* for the next phase use

Next phase we can skip the first j* extensions...

Every two consecutive phases overlap at most 1
index

Linear time algorithm!

(j* of (i+1)t run is the previous position that rule
3/trick 2 applied in it" run.

21

Example
+ S[1..6]=axaxba

1:e

042;4444401 i=1, e=1, j*=1 a
1:e 1 .) ax
-9 ax i=2, e=2, j*=2 x (R2)
q/.
%
2 1:e
.2 axa 1 i=3, e=3, j*= i;a
el R3
2 a (R3)
Example
+ S[1..6]=axaxba
e 1 axax
) axax e=4, j*=2 xax
Ve ax(R3)
2
axaxb
e=5,["=5 xaxb
axb(R2)
Xb(R2)
b(R2)
Example
+ S[1..6]=axaxba
axaxba
e=6, j*:5 xaxba
axba
Xba
ba
a(R3)

22

The true suffix tree

« Append $ to S and execute on T,

» Correctness: every suffix is spelled out by
some root-to-leaf path, no suffix is a prefix
of some other suffix

» Generalized suffix tree for a set of strings:

— Concatenate strings into one, by adding some
extra letters, but some synthetic suffixes
— Build suffix tree for one string, then on top of it

build for anther, then on top of it, build for
anther...

Applications

Exact pattern search
Longest common substring
Tandem repeat

Suffix array

23

