String Matching and

 Suffix Tree
Gusfield Ch1-7

EECS 458
CWRU
Fall 2004

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLAST (Altschul et al'90)

\qquad

- Idea: true match alignments are very likely to contain a short segment that identical (or very high score).
- Consider every substring (seed) of length w, where $w=12$ for DNA and 4 for protein.
- Find the exact occurrence of each substring (how?)
- Extend the hit in both directions and stop at the maximum score.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problems

- Pattern matching: find the exact occurrences of a given pattern in a given structure (string matching)
- Pattern recognition: recognizing approximate occurences of a given pattern in a given structure (image recognition)
- Pattern discovery: identifying significant patterns in a given structure, when the patterns are unknown (promoter discovery)

Definitions

- String S[1..m]
- Substring S[i..j]
- Prefix S[1..i]
- Suffix S[i..m]
- Proper substring, prefix, suffix
- Exact matching problem: given a string P called pattern, and a long string T called text, find all the occurrences of P in T.

Naïve method

- Align the left end of P with the left end of T
- Compare letters of P and T from left to right, until
\qquad
- Either a mismatch is found (not an occurrence
- Or P is exhausted (an occurrence)
- Shift P one position to the right
- Restart the comparison from the left end of P
- Repeat the process till the right end of P shifts past the right end of T
- Time complexity: worst case $\theta(\mathrm{mn})$, where $\mathrm{m}=|\mathrm{P}|$ and $\mathrm{n}=|\mathrm{T}|$
- Not good enough!
\qquad

NaïVe method
- Align the left end of P with the left end of T
- Compare letters of P and T from left to right, until
- Either a mismatch is found (not an occurrence
- Or P is exhausted (an occurrence)
- Shift P one position to the right
- Restart the comparison from the left end of P
- Repeat the process till the right end of P shifts
past the right end of T
- Time complexity: worst case $\theta(\mathrm{mn})$, where $\mathrm{m}=\|\mathrm{P}\|$
and $\mathrm{n}=\|\mathrm{T}\|$
- Not good enough!

Speedup

- Ideas:
- When mismatch occurs, shift P more than one letter, but never shift so far as to miss an occurrence
- After shifting, ship over parts of P to reduce comparisons
- Preprocessing of P or T
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fundamental preprocessing

\qquad

- Can be on pattern P or text T.
- Given a string $S(|S|=m)$ and a position i >1, define Z_{i} : the length of longest
\qquad common prefix of S and $S[i . . \mathrm{m}]$
- Example, $S=a b x y a b x z$

Fundamental preprocessing

- Intention:
- Concatenate P and T , inserted by an extra letter $\$$: $\mathrm{S}=\mathrm{P} \$ \mathrm{~T}$
- Every i, $\mathrm{Z}_{\mathrm{i}} \leq|\mathrm{P}|$
- Every $\mathrm{i}>|\mathrm{P}|+1$ and $\mathrm{Z}_{\mathrm{i}}=|\mathrm{P}|$ records the occurrences of P in T
- Question: running time to compute all the Zs? The naïve method according to the definition runs in $\theta\left((m+n)^{2}\right)$ time!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fundamental preprocessing

\qquad

- Goal: linear time to compute all the Zs
- Z-box: for $Z_{i}>0$, it is the box starting at i with length Z_{i}. (ending at $\mathrm{i}+\mathrm{Z}_{\mathrm{i}}-1$), \qquad
- r_{i} : the rightmost end of a Z_{j}-box $\left(j+Z_{j}-1\right)$ for all $1<j \leq i$ such that $Z_{j}>1$.
- I_{i} : the left node of Z_{j}-box ending at r_{i}

Fundamental preprocessing

\qquad

- Computing Z_{k} :
- Given Z_{i} for all $1<i<k$
\qquad
- Let $r=r_{k-1}$ and $l=l_{k-1}$

1. $k>r$: compute Z_{k} explicitly (updating accordingly r and I if $\mathrm{Z}_{\mathrm{k}}>0$)
2. $\mathrm{k} \leq \mathrm{r}$: k is in the Z-box starting at I (substring $\mathrm{S}[1 . . \mathrm{r}]$), \qquad therefor $S[k]=S[k-1+1], S[k+1]=S[k-1+2], \ldots$,
\qquad

Fundamental preprocessing

- A) $Z_{k-l+1}<(r-k+1): Z_{k}=Z_{k-l+1}$, and r, I remain unchanged
- B) $Z_{k-1+1} \geq(r-k+1): Z_{k} \geq(r-k+1)$ and start comparison between $S[r+1]$ and $S[r-k+2]$ until a
\qquad mismatch is found (updating r and I accordingly if $Z_{k} \geq r-k+1$)

Fundamental preprocessing

\qquad

- Conclusions:

1. Z_{k} is correctly computed
2. There are a constant number of operations besides comparisons for each k \qquad

- $|S|$ iterations
- Whenever a mismatch occurs, the iteration \qquad terminates
- Whenever a match occurs, r is increased

3. In total at most $|\mathrm{S}|$ mismatches and at most |S| matches
4. Running time $\theta(|\mathrm{S}|)$ and space $\theta(|\mathrm{S}|)$

Fundamental preprocessing

- Th: there is a $\theta(\mathrm{n}+\mathrm{m})$-time and space algorithm which finds all the occurrences of P in T, where $m=|P|$ and $n=|T|$.
- Notes:
- Alphabet-independent
- Space requirement can be reduced to $\theta(m)$
- Not well suited for multiple patterns searching \qquad
- Strictly linear, every letter in T has to be compared at least once \qquad
\qquad

Projects

- Topics
- Meeting: 3 times, as a group
- Presentations: 25 minutes/student (~20m
\qquad talk + 5m questions)
- Term paper: single space, 11pt, 1 in \qquad margin. $5-6 p, 9-10 p 10-12 p$, exclude references \qquad
\qquad
\qquad

The Boyer-Moore algorithm: an example

- $\mathrm{P}=a b x a b x a b, \mathrm{~T}=$ daaabxababxabxab

| $a b$ | x | |
| :--- | :--- | :--- | :--- |

\qquad
\qquad
daaablababxabxab
abla $a|x| a \mid b$
$a b \times a b \times a b$

The Boyer-Moore algorithm

- Rule 1: right-to-left comparison
- Rule 2: Bad character rule
- For each $x \in \sum, R(x)$ denotes the right-most occurrence of x in P (0 if doesn't appear)
- When a mismatch occurs, T[k] against $P[i]$, \qquad shift P right by max\{1, $i-R(T[k])\}$ places. This takes $T[k]$ against $P[R(T[k])]$
$-|\Sigma|$ space to store R-values
\qquad
- Rule 3: good suffix rule \qquad
\qquad

The Boyer-Moore algorithm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Boyer-Moore algorithm

\qquad

- Rule 3: good suffix rule
- When a mismatch occurs, $T[k]$ against $P[i]$
- Find the rightmost occurrence of $\mathrm{P}[(\mathrm{i}+1) . . \mathrm{m}]$ in
\qquad P such that the letter to the left differs $P[i]$
- Shift P right such that this occurrence of
\qquad $P[(i+1) . . m]$ is against $T[(k+1) . .(m+k-i)]$
\qquad
- If there is no occurrence of $P[(i+1) . . m]$, find the longest prefix of P matches a suffix of $P[(i+1) . . m]$, shift P right such that this prefix is against the corresponding suffix

Preprocessing for the good suffix rule

- Let L (i) denote the largest position less than m such that string $P[i . . m]$ matches a suffix of $P[1 . . L(i)]$
- Let $N(j)$ denote the longest suffix of substring $P[1 . . j]$ that is also a
suffix of P
- Recall Z_{i} the length of longest substring of P starts I and matches a prefix of S.

Preprocessing for the good suffix rule

- Thm: $L(i)$ is the largest index j less than m such that $N(j) \geq|P[i . . m]|=m-i+1$.

L(i)

$\mathrm{N}(\mathrm{j})$

The Knuth-Morris-Pratt Algorithm

- History:
- Best known
- Not the method of choice, inferior in practice
- Can be generalized for multiple string matching
- Preprocessing P
- Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline a & b & x & y & a & b & x & z & w \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{z} & \mathrm{w} \\
\hline
\end{array}
$$

KMP

- Idea:
- left to right comparison,
- Shift P more places without missing occurrence
- A prefix of P matches a proper suffix of $P[1 . . i]$ and the next letters do not match!
- Define s_{i} of $P, 2<=i<=m$ the length of longest proper suffix of $\mathrm{P}[1 . . \mathrm{i}]$ that matches a prefix of $P, s_{1}=0$.

KMP
- Idea:
- left to right comparison,
- Shift P more places without missing
occurrence
- A prefix of P matches a proper suffix of
P[1..i] and the next letters do not match!
- Define s_{i} of $P, 2<=i<=m$ the length of
longest proper suffix of $P[1 . . i]$ that matches
a prefix of $P, s_{1}=0$.

\qquad

KMP

- Define $\mathrm{s}_{\mathrm{i}}, 2<=\mathrm{i}<=m$, the length of the longest proper suffix of $\mathrm{P}[1 . \mathrm{i}$] that matches a prefix of P with the additional condition that character $\mathrm{P}[\mathrm{i}+1]$ differs from $\mathrm{P}\left[\mathrm{s}_{\mathrm{i}}{ }^{\prime}+1\right]$.
- Obviously $\mathrm{s}_{\mathrm{i}}{ }^{\prime}<=\mathrm{s}_{\mathrm{i}}$ for any i

KMP

- Shifting rule: shift P to the right ($i-s_{i}^{\prime}$) spaces ($i=n$ if an occurrence) \qquad

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{z}_{\mathbf{x}} & \mathrm{c} \\
\hline
\end{array}
$$

a	b	x	y	a	b	x	z	w	

- Since $\mathrm{P}\left[1 . . \mathrm{s}_{\mathrm{i}}{ }^{\prime}\right]$ matches $\mathrm{P}\left[\mathrm{i}-\mathrm{s}_{\mathrm{i}}{ }^{\prime}+1\right.$, i$]$ and $\mathrm{P}\left[\mathrm{i}-\mathrm{s}_{\mathrm{i}}^{\prime}+1, \mathrm{i}\right]$ matches $\mathrm{T}\left[\mathrm{k}-\mathrm{s}_{\mathrm{i}}^{\prime}+1, \mathrm{k}\right]$, thus we skip s, comparisons.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

KMP
- Correctness - Z_{i} : the length of the longest common prefix of P and $P[j . . n]$ - s_{i}^{\prime} the length of the longest proper suffix of $\mathrm{P}[1 . . \mathrm{i}]$ that matches a prefix of P, with the additional condition that the character $\mathrm{P}[i+1]$ differs from P[s' ${ }^{\prime}+1$]

KMP

- Running time:
- In total s phases (of comparison/shift), $s \leq n$
- Every 2 consecutive phases overlap one letter (the mismatched one) from T
- Therefore, in total $n+s \leq 2 n$
- Questions:
- Any letter from T is skipped for comparison?
- The times of comparison for a letter is at most a constant time? (real time algorithm)

Original preprocessing of KMP: calculating s' directly

- s_{i} : the length of longest proper suffix of $P[1 . . i]$ that matches a prefix of P
- s_{i}, the length of the longest proper suffix of $\mathrm{P}[1 . . \mathrm{i}]$ that matches a prefix of P and $\mathrm{P}[i+1]$ <> $\mathrm{P}\left[\mathrm{s}_{\mathrm{i}}{ }^{\prime}+1\right]$.
- So $\mathrm{s}_{\mathrm{i}}{ }^{\prime}=\mathrm{s}_{\mathrm{i}}$ if $\mathrm{P}[\mathrm{i}+1]$ <> $\mathrm{P}\left[\mathrm{s}_{\mathrm{i}}+1\right]$
$\mathrm{s}_{\mathrm{i}}{ }^{\prime}=\mathrm{s}_{\mathrm{si}}^{\prime}$ otherwise

Calculate s

\qquad
\qquad
\qquad

- The preprocessing can be done in linear \qquad time.

Multiple pattern matching problem

- Given a set of pattern $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ and a text (databases) T, find all the occurrences of all the patterns...
- Keyword tree: given a set of pattern $\mathrm{P}=\left\{\mathrm{P}_{1}\right.$, \qquad $\left.P_{2}, \ldots, P_{k}\right\}$, the keyword tree K is a tree:
- Rooted, directed \qquad
- Each edge is labeled with one letter
- Edges coming out of a node have distinct labels \qquad
- Every pattern is spelled out (map to one node)
- Every leaf maps to some pattern
\qquad
\qquad
\qquad
\qquad

- $\mathrm{P}=\{$ potato, tattoo, theater, other $\}$

\qquad
\qquad
\qquad
\qquad
- Linear time construction
- Dictionary problem

Multiple pattern matching problem

- Given a set of pattern $P=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ and a text (databases) T, find all the occurrences of all the patterns.
- The sum of the lengths of patterns: m, length of \qquad text: n. Previous algorithms imply a search algorithm of $\theta(m+k n)$ time.
- There are algorithms running in $\theta(m+n+1)$ time, where I is the total number of occurrences of all the patters
\qquad

Using keyword tree of P

- The same idea as in KMP

Multiple pattern matching problem

- $L(v)$ denote the string from the root to v and $\operatorname{lp}(v)$ denote the length of the longest proper suffix of string $L(v)$ that is a prefix of
\qquad some pattern in P .
- Ip(v) for all the node v in K can be computed in linear time $\theta(\mathrm{m})$
- Use the same failure links $v->n(v)$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Aho-Corasick algorithm

- Create the keyword tree
- Compute the $\operatorname{lp}(v)$ and $n(v)$ for each node v in the keyword tree
- Search the text against the tree, when a mismatch, T shifts lp(v) spaces and starts \qquad to compare from $\mathrm{n}(\mathrm{v})$
- Total running time $\theta(m+n+1)$ \qquad
\qquad
\qquad

Exact string matching applications

- Sequence-tagged-sites
- Exact string matching with wild cards
- Two-dimensional exact matching
- Regular expression pattern matching
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\quad Suffix tree
- Introduction
- Construction
- Applications
- Reading: Gusfield Ch5-7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Suffix tree

- Given a finite alphabet set Σ, a string S of length $\mathrm{m}, \mathrm{e} . \mathrm{g}$., $\mathrm{S}=\mathrm{abxabc}$
- Suffix tree of S :
- Rooted, directed
- Edges labeled by substrings of S
- Edges coming out of a node start with distinct letters
- Exactly m leaves
- Leaf i spells out suffix S[i..m]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Keyword tree

- Keyword tree: given a set of pattern $\mathrm{P}=$ $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{k}}\right\}$, the keyword tree K is a
\qquad tree:
- Rooted, directed
- Each edge is labeled with one letter
- Edges coming out of a node have distinct \qquad labels
- Every pattern is spelled out (map to one node)
- Every leaf maps to some pattern \qquad
\qquad

Suffix tree

- What if a suffix is a prefix of some other suffix? E.g. xabxa
- Solution: append a new letter \$
- Implicit suffix tree: if we don't require each leaf maps to one suffix.

First construction algorithm

- For a string S :
- Assume no suffix is a prefix of some other suffix.
- Make every suffix as a pattern $\mathrm{P}_{\mathrm{i}}=\mathrm{S}[\mathrm{i} . \mathrm{m}]$
- Apply the linear time keyword tree construction algortihm
- Concatenate "paths" into "edges"
- Running time:
- Linear in the sum of the lengths of patterns $\operatorname{Sum}_{\mathrm{i}}\left|\mathrm{P}_{\mathrm{i}}\right|=$ $m(m+1) / 2$
$-\theta\left(m^{2}\right)$
- Goal: design a linear time algorithm $\theta(\mathrm{m})$

Why suffix tree

\qquad

- $1^{\text {st }}$ application: exact matching
- Suppose in $\theta(\mathrm{n})$ time we can build the suffix tree for the text T
- Given any pattern P, at any time
- Match letters of P along the suffix tree, until
- Either no more matches are possible, P doesn't occur anywhere in T
- Or P is exhausted: the labels of the leaves in side the subtree under the last matching edge are the starting positions of the occurrences.

$1^{\text {st }}$ application

- Conclusion:
- Exact string matching done in $\theta(m+n+1)$ time
- Exact multiple string matching done in $\theta(m+n+1)$ time,
$-L$ the number of occurrences
- Other applications:
- Multiple keyword search
- Longest repeating substring
- Longest common substring of two/more strings
\qquad

$1^{\text {st }}$ application
- Conclusion:
- Exact string matching done in $\theta(\mathrm{m}+\mathrm{n}+\mathrm{l})$ time
- Exact multiple string matching done in
$\theta(\mathrm{m}+\mathrm{n}+1)$ time,
- the number of occurrences
- Other applications:
- Multiple keyword search
- Longest repeating substring
- Longest common substring of two/more
strings

Ukkonen's linear time construction

- Using implicit suffix tree of $S[1 . . i]: T_{i}$.
- Construct T_{i} incrementally:
- From T_{i} to $\mathrm{T}_{\mathrm{i}+1}$
- Need to add S[i+1] to every suffix of S[1..i] and the empty string, there are $\mathrm{i}+1$ of them..
- Append $S[i+1]$ to suffix $S[j . . i]$ - becoming a suffix of $S[j . .(i+1)], j=1,2 \ldots i, i+1$.
- Three suffix extension rules:

Suffix extension rules

- Let β denote the path of $S[j . . i]$

1. β ends at a leaf, append $S[i+1]$ to the corresponding edge label
2. Some paths start from the end of β, but non of them starts with $S[i+1]$, add a new leaf edge, labeled by $S[i+1]$
3. Some path from the end of β starts with $S[i+1]$, already in the tree, do nothing
\qquad
\qquad
\qquad

Straightforward implementation $\theta\left(\mathrm{m}^{3}\right)$

Ukkonen's algorithm, speedup

- How?
- Key thing to do: to locate the ending position of $S[j . i]$ in T_{i}
- Example: S[1..5] = axaxb, try adding S[6]=a.

\qquad
\qquad
\qquad
\qquad

Suffix links

- $\mathrm{j}=1$: easy (use a pointer pointing to the longest path in T_{i}) append a to the edge
\qquad
- Denote the leaf edge as ($\mathrm{v}, 1$)

1. If v is the root, $j=2$ is done straightforwardly
2. v is not the root: there is another node, denoted as $s(v)$, such that if root to v spells out $S[1 . . I]$, then root to $s(v)$ spells out $S[2.1]$
3. When we have the information on $s(v)$, continue search from it, not necessarily from the root again.

- Repeat for every j

Suffix links

\qquad

- Notes:
- need to record $s(v)$ if a new node is created
\qquad
- It doesn't give a "faster" algorithm

Trick1: skip/count

- Key: record the length of each edge,
- When search the path, by using the length information, for each step, we can go node by node, not character by character; only constant number of comparison at each node (assume constant alphabet set) \qquad
\qquad

\qquad
\qquad
2

Analysis of trick 1

- Every node has a depth, i.e., the number of nodes on the path from the root
- The depth of v is at most one greater than the depth of $\mathrm{s}(\mathrm{v})$,
- During the entire phase constructing $\mathrm{T}_{\mathrm{i}+1}$ from $\mathrm{T}_{\mathrm{i}}(1 \leq \mathrm{j} \leq$ $i+1$): decrease node depth at most $2 m$ (each j , decrease 1 to find v, and decrease 1 to find $s(v) ; i \leq m)$
- The total number of node length that could be increased during a phase is bounded by the number of decrement $(2 m)$ and the maximum length of a path (m)
- So construction done in $O(m)$
- Applying suffix link and trick 1 gives an $O\left(m^{2}\right)$ time suffix tree building algorithm

Two observations

- Observation1: The space for the total number of letters in the edge labels could reach $\theta\left(\mathrm{m}^{2}\right)$
- An alternate way to represent labels is necessary: Use position intervals [start, end] to represent label S[start..end]
- Observation2: When $\mathrm{S}[\mathrm{j} . . \mathrm{i}]$ doesn't end at a leaf and there is an extending edge whose label starts with $\mathrm{S}[i+1]$, we are done for j , we are done for the phase $i(S[j+1, i+1], S[j+2, i+1], \ldots, S[i, i+1]$,
- Trick 2: whenever this happens, $\mathrm{T}_{\mathrm{i}+1}$ is built

Last trick

- Observation 3: once a leaf, always a leaf. If a leaf is created and labeled by an index j, rule 1 will always apply.
- Trick 3: use a global parameter e to denote the last position thus to skip the extensions (only need to update e once per iteration).
\qquad

Recall: Ukkonen's linear time construction

- Using implicit suffix tree of $\mathrm{S}[1 . . \mathrm{i}]: \mathrm{T}_{\mathrm{i}}$.
- Construct T_{i} incrementally:
- From T_{i} to $\mathrm{T}_{\mathrm{i}+1}$
- Need to add S[i+1] to every suffix of S[1..i] and the empty string, there are $i+1$ of them..
- Append $S[i+1]$ to suffix $S[j . . i]$ - becoming a suffix of $\mathrm{S}[1 . .(\mathrm{i}+1)], \mathrm{j}=1,2 \ldots \mathrm{i}, \mathrm{i}+1$.
- Three suffix extension rules:

Recall: Suffix extension rules

- Let β denote the path of $S[j . . i]$

1. β ends at a leaf, append $S[i+1]$ to the corresponding edge label
2. Some paths start from the end of β, but non of them starts with $S[i+1]$, add a new \qquad leaf edge, labeled by $\mathrm{S}[i+1]$
3. Some path from the end of β starts with \qquad S[i+1], already in the tree, do nothing

Time complexity: amortized analysis

- Increment e to skip the first j* (from last phase) extensions. (Skip some j at the beginning) \qquad
- Apply trick 1 to continue until trick 2 can be applied at $\mathrm{j}^{\text {th }}$ extension, (skip some j at last) \qquad
- Set $j^{*}=j-1$: update j^{*} for the next phase use
- Next phase we can skip the first j* extensions... \qquad
- Every two consecutive phases overlap at most 1 index
- Linear time algorithm!
- $\left(j^{*}\right.$ of $(i+1)^{\text {th }}$ run is the previous position that rule 3/trick 2 applied in $\mathrm{i}^{\text {th }}$ run.
\qquad
\qquad
\qquad

The true suffix tree

- Append $\$$ to S and execute on T_{m}
- Correctness: every suffix is spelled out by some root-to-leaf path, no suffix is a prefix of some other suffix
- Generalized suffix tree for a set of strings:
- Concatenate strings into one, by adding some extra letters, but some synthetic suffixes
- Build suffix tree for one string, then on top of it build for anther, then on top of it, build for anther..
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications

- Exact pattern search
- Longest common substring
- Tandem repeat \qquad
- Suffix array
- ...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

