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Effect of Polygenes on Xiong’s
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The transmission disequilibrium test (TDT), originally developed for mapping
disease genes, has recently been extended to identify quantitative trait loci (QTL).
For quantitative traits important for human health, generally multiple QTLs are
involved. In the investigation of the statistical properties of the TDT, background
polygenes (QTLs other than the QTL under test) generally have not been explic-
itly considered. The effects of background polygenes on the statistical properties
of the TDT are thus largely unknown. Investigation of these effects will provide
more realistic analyses of the statistical properties of the TDT under biologically
plausible situations, and thus provide more accurate guidelines on the applica-
tion of the TDT in practice. A general TDT (TDTG) has been developed to test
linkage of a QTL in nuclear families that may be composed of more than one
heterozygous parent and multiple children. Using the TDTG as an example, we
develop an analytical method to investigate the effects of background polygenes
on the power of the TDT. The accuracy of our analytical method is validated by
computation simulations. We found that the power of the TDTG is increased
with background polygenes when more than one child is employed in nuclear
families, and the effect is stronger with more children per family recruited for
study. The power of the TDTG increases dramatically when the number of chil-
dren recruited from each nuclear family increases from one to two or from two
to three. The type one error rate is not affected by the presence of background
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polygenes. The results of this study should be of theoretical significance in gen-
eralizing the investigation of the TDT to biologically plausible situations with
background polygenes. They should also be of practical values in providing guid-
ance on the recruitment of nuclear families with multiple children with the TDTG.
Genet. Epidemiol. 21:243–265, 2001.© 2001 Wiley-Liss, Inc.

Key words: quantitative trait loci; transmission disequilibrium test; polygene; linkage; association

INTRODUCTION

Complex traits refer to those determined by multiple genetic and environmental
factors (and potentially their interactions), whether they are discontinuously distrib-
uted complex diseases or continuously distributed quantitative traits. Mapping and
identification of genes underlying complex traits, especially those of primary health
importance, has been a challenge for geneticists. The challenge is largely due to the
limited power of and the large samples required by many currently employed ap-
proaches, such as sib pair linkage studies [Risch and Merikangas, 1996]. A powerful
approach, the transmission disequilibrium test (TDT), has been developed for identi-
fication of genes, originally for diseases [Spielman et al., 1993]. The TDT has been
increasingly used to identify genes underlying complex diseases or to detect linkage
and/or linkage disequilibrium (association) between markers and such genes [Spielman
and Ewens, 1996; Schaid, 1998]. In testing candidate genes for association with com-
plex diseases, the TDT is not plagued by the problem of population admixture or
stratification [Ewens and Spielman, 1995; Spielman and Ewens, 1996]. In the pres-
ence of association between genotypes and phenotypes, the TDT can be employed to
test linkage of candidate genes with complex traits [Spielman and Ewens, 1996;
Schaid, 1998]. When markers are at or very close to the genes underlying complex
traits, the TDT can be much more powerful than traditional sib pair linkage analyses
[Risch and Merikangas, 1996].

In addition to complex diseases, many continuously distributed quantitative traits
are of primary clinical and health significance. Examples of such quantitative traits
are blood pressure, cholesterol level, obesity, and bone mineral density. Recently, the
TDT has been extended to quantitative traits [e.g., Allison, 1997; Rabinowitz, 1997;
Xiong et al., 1998; Allison et al., 1999; George et al., 1999; Schaid and Rowland,
1999; Monks and Kaplan, 2000; Abecasis et al., 2000] for identification of quantita-
tive trait loci (QTL). Investigation of the statistical properties of these tests generally
assumes absence of QTLs other than the QTL under test [but see Allison et al.,
1999]. This is apparently not realistic, as we know that many or almost all those
quantitative traits that are of clinical and health significance are polygenic [e.g.,
Chagnon et al., 1998; Deng et al., 2000b] in that multiple QTLs underlie the trait
variation. Throughout this study, we will refer to the QTLs other than the QTL under
test as background polygenes.

Ignoring background polygenes in the investigation of the TDT tests that em-
ploy only one child [such as the TDTQ1–4 of Allison, 1997] is not a problem. How-
ever, potential problems may exist with the TDT that may employ multiple children
from nuclear families (such as the TDTQ5 of Allison [1997] and the TDTG of Xiong
et al. [1998]. With the existence of background polygenes, there will be genetic cor-



TDT Test of QTL With Background Polygenes 245

relation among sibs due to these polygenes when multiple children are employed in
nuclear families [Falconer, 1989]. In other words, the phenotypes of sibs are not
independent. How this nonindependence would affect the statistical properties (such
as the size, the type one error rate, and the statistical power) of the TDT has not been
thoroughly investigated and is generally unknown. Allison et al. [1999] performed
some preliminary investigation on the effects of residual variation (that may be due
to background polygenes) on the statistical power of the sibling-based TDT test for a
QTL. However, the detailed statistical properties (size and power) of the TDT for a
QTL, especially those TDT tests for nuclear families with both parents and multiple
children, are unknown. For the TDT to be robust (i.e., the size remains at the level
specified) and in order to provide accurate guidelines for the application of the TDT
in practice when multiple children are involved from nuclear families, the statistical
properties under biologically realistic situations with background polygenes should
be investigated thoroughly.

A general TDT (TDTG) developed by Xiong et al. [1998] allows that both par-
ents may be heterozygous and that multiple children from each family can be em-
ployed. Although the TDTG is general in its practical application, its development
and investigation implicitly assume that the QTL under test is the only QTL underly-
ing the trait variation.

In this study, we investigate the statistical properties (size and power) of the
TDTG for identification of a QTL in the presence of background polygenes. The
effects of background polygenes on the TDTG test of a QTL are investigated for a
range of parameter values. Other issues such as the effect of the number of children
from each nuclear family on the power of the TDTG are also investigated. The inves-
tigation is new in that 1) the effect of background polygenes is first explicitly inves-
tigated for a TDT test with nuclear families (parents and children, 2) the statistical
properties (both the size and the power) are investigated, and 3) the detailed effects
of the number of children on the statistical properties are investigated. The results
will be discussed for practical applications of the TDTG.

METHODS

In this section, we introduce the TDTG test of Xiong et al. [1998]. Then we
derive the noncentrality parameter of the TDTG statistic in the presence of back-
ground polygenes. The noncentrality parameter is essential for the analytical compu-
tation of the statistical power of the TDTG. Finally, we perform simulations to validate
the accuracy of our analytical power computation. As shown by Xiong et al. [1998],
even with multiple children and more than one heterozygous parent in nuclear fami-
lies, the TDTG is a valid test of linkage in the presence of population admixture.
Therefore, to focus on studying the effects of background polygenes, we assume that
the study population is randomly mating so that Hardy-Weinberg equilibrium holds.
We also assume a two-allele model at the QTL and marker locus.

TDTG Test

We assume that there are n nuclear families, each with at least one parent being
heterozygous for the marker locus under test. Such families will be referred to as
informative families. Assume that there are two alleles M and m at the marker locus



246 Deng et al.

under test. For the ith (i = 1,...,n) nuclear family, we assume that the marker allele M
is transmitted to nMi children from heterozygous parent(s). Let Y denote the pheno-
typic value of the quantitative trait under study. For the j-th child in the set of nMi

children, let YMij be his/her phenotypic value. We can denote nmi and Ymij similarly for
the allele m. nMi and nmi can be simply counted based on the genotypes of parents
and children. The total number of children receiving M and m alleles from heterozy-
gous parents are, respectively,

1 1

 and .
n n

M Mi M mi
i i

n n n n
= =

= =∑ ∑
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then the TDT statistic can be computed as:
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is an unbiased estimator of the variance of Y
–

M – Y
–

m [Xiong et al., 1998]. With large
sample sizes, the TDTG approximately follows a c2-distribution with 1 d.f.

To focus on the investigation of the effects of background polygenes on the
power of the TDTG, we consider the situation when the marker is a functional muta-
tion of the QTL under study. The situation when the marker is not at a QTL but is
linked to and is in linkage disequilibrium with a QTL is considered in the Appendix.
The analytical results of both situations are validated later by our simulations.
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Theory With Background Polygenes for the TDT G

Assume that the QTL locus under study has two alleles, Q and q. Let p be the
frequency of the allele Q and p′ = 1 – p be the frequency of the allele q. Let a (>0)
be the mean (genotypic value) for individuals of the genotype QQ, d the genotypic
value of Qq individuals, and -a the genotypic value of qq individuals. d is equal to 0,
a, and -a, respectively with additive, dominant and recessive genetic effects. Under
partial dominant or partial recessive genetic effects, -a < d < a but d ≠ 0. The addi-
tive genetic variance of this locus is s2

A = 2pp′[a + (p′ – p)d]2, and the dominant
genetic variance is sD

2 = (2pp′d)2 [Falconer, 1989]. The total genetic variance due to
this QTL is sG

2 = sA
2 + sD

2. We assume that the variance due to all other QTLs (back-
ground polygenes, s 2

pg) and all random environmental effects (se
2) is sE

2
 (sE

2
 =  s2

pg +
s 2

e). The heritability h2 due to this QTL is

2
2

2 2
.G

G E

h
σ

σ σ
=

+

Under a genetic model (such as additive, dominant, or recessive), once three of the
four parameters of the h2, sE

2, and a and p at the QTL are given, the fourth parameter
can be computed easily [Falconer, 1989]. The phenotypic value of an ith individual
in the population is:

,
ji g pg iy y eµ µ= + + +

where m is the mean baseline value of the quantitative trait, mgj
 is the genotypic value

at the QTL for the jth genotype, ypg the genotypic value due to the background poly-
genes, ei represents a random variable for all environmental effects. mgj

 is equal to a,
d, and -a, respectively, for the genotypes of g2(QQ), g1(Qq), and g0(qq). Without loss
of generality, we can assume that m = 0. ei is assumed to follow a normal distribution
with mean 0 and variance s 2

e, i.e.,

2~ (0, ),i ee N σ

where N(m,s 2) denotes the probability density function (p.d.f.) for a normal random
variable x with mean m and variance s 2. We assume that the background polygenes
and the QTL under study are in linkage equilibrium and unlinked. It is assumed that
the effects (ypg) of the background polygenes are additive and follow a normal distri-
bution with mean mpg and variance s 2

pg, i.e.,

2~ ( , ).pg pg pgy N µ σ

Let mQ and sQ
2 be the mean and variance, respectively, of phenotypic values of

the children who receive the Q allele from heterozygous parents. mq and s 2
q are simi-

larly defined for the q allele. Let nQ and nq, respectively, be the numbers of the
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children who receive the Q and q alleles from heterozygous parents in informative
nuclear families. Given a sample, the noncentrality parameter of the distribution of
the statistic TDTG is [Xiong et al., 1998]:

2 2[ ( ) ( )] ( )
,

( ) ( )
Q q Q q

Q q Q q
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Var Y Y Var Y Y

µ µ
λ

− −
= =

− − (2)

where Y
–

Q is the mean phenotypic value of the children who receive the Q allele from
heterozygous parents in the sample. Y

–
q is similarly defined for the allele q. In the

denominator, Var(Y
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q) are functions of sQ

2, sq
2, nQ, and nq, which will

be derived in the following.
To compute analytically the statistical power of the TDTG, l and thus mQ, sQ

2,
mq, sq

2, nQ, and nq should be derived in terms of the parameters such as p, p′, genetic
effects (such as a and d at the QTL under study) and s 2

pg. Let go, gf, and gm, respec-
tively, denote the genotypes of children, fathers, and mothers in informative fami-
lies. Recalling that m = 0, within a nuclear family, conditional on the parental genotypes
of gf and gm, the mean value of all children is
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where P denotes probability throughout and Y denotes the phenotypic value. Over all
the informative nuclear families, the mean value of all the children is
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The phenotypic variance of children within one nuclear family is:
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The phenotypic variance of children over all informative nuclear families is:
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Let Qqp denote the event that at least one parent (denoted by the subscript p) is
heterozygous, and Qo denote the event that a heterozygous parent transmits the allele
Q to an offspring (denoted by the subscript o). Then, based on the derivative prin-
ciple for equations 3a–d, the expected phenotypic value of a child who receives the
alleles Q and q from heterozygous parents are, respectively:

3 3 3

1 1 1

( | , ) ( ( , , | , )) ,
o

m f o

Q p o g o f m p o pg
g g g

E Y Qq Q P g g g Qq Qµ µ µ
= = =

 
= = + 

  
∑ ∑ ∑ (4a)

3 3 3

1 1 1

( | , ) ( ( , , | , )) .
o

m f o

q p o g o f m p o pg
g g g

E Y Qq q P g g g Qq qµ µ µ
= = =

 
= = + 

  
∑ ∑ ∑ (4b)

The phenotypic variances of a child who receives the alleles Q and q from
heterozygous parents are, respectively:
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where P(go, gf, gm | Qqp, Qo) is the probability of the genotypes of children and parents,
conditional on that a nuclear family has at least one heterozygous parent and the het-
erozygous parent(s) transmit the Q allele to the child. It can be easily seen that

( , , , , )
( , , | , ) ,

( , , , , )
f m o

o f m p o
o f m p o

o f m p o
g g g

P g g g Qq Q
P g g g Qq Q

P g g g Qq Q
=

∑∑∑

where P(go, gf, gm, Qqp, Qo) can be computed analytically, given a specific set of
genotypes of parents and a child. For example, if the genotypes of father, mother,
and their offspring are, respectively, Qqf, Qqm, and Qqo, we have:
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P(go, gf, gm | Qqp, qo) is similarly defined adn can be obtained similarly with the
approach outlined above for the P(go, gf, gm | Qqp, Qo).

Therefore, we can compute mQ, mq, sQ
2, and sq

2 analytically as outlined above.
With sQ

2 and sq
2, we can compute Var(Y

–
Q) and Var(Y

–
q). Assume that there are n infor-

mative nuclear families in the sample and the ith (i = 1,...,n) nuclear family has nQi

children who receive the Q allele from the heterozygous parent(s). Note that a child
of the genotype QQ is counted twice if the parents are both heterozygotes (Qq). This
is because, in this case, the QQ child receives a Q allele from the father and the other
Q allele from the mother. More accurately, nQi is the number of the Q alleles trans-
mitted to the children in the ith family from heterozygous parent(s). nqi is similarly
defined for the q allele in the ith family. Since only those children within one family
are correlated due to the background polygenes and children of different randomly
ascertained nuclear families are independent, we have:

1 2

1 2

1 1

2

2
1 ,

( ) ( / )

1
( , ),

Qinn

Q Qij Q
i j

n
Q

Qij Qij
i ij ijQ Q

Var Y Var Y n

Cov Y Y
n n

σ
= =

=

=

= +

∑∑

∑ ∑
(5)

where ij 1 and ij 2 (ij 1, ij 2 = 1,...,nQi) index two children (the ij 1th and the ij 2th children)
in the ith family. Cov(YQij1

,YQij2
) is the covariance of the phenotypic values of the

ij 1th and ij 2th child in the ith family. nQ is the total number of the Q allele passed
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from heterozygous parents to children in all nuclear families. Under additive back-
ground polygenic effects, the covariance of two different children is:

1 2 2

0     (when individuals 1 and 2 are from different families) 
.( , ) 1

 (when individuals 1 and 2 are from the same family)
2 pg

Cov Y Y
σ


= 


Note, it is not necessary to assume that the background polygenic effects are addi-
tive. When the background polygenic effects are not additive, the general relation-
ship of Cov(Y1,Y2) with s 2

pg (and its components) can be found in Falconer [1989].
To derive
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let us consider two mutually exclusive situations: One is that a nuclear family has
only one heterozygous parent and the other is that a nuclear family has two het-
erozygous parents. In the first situation, it is relatively simple and we need only to
consider the covariance of every two different children within each family. This is
because a child may at most receive a Q allele from the one heterozygous parent in
the family and the ij 1th and the ij 2th child (ij 1 ≠ ij 2) cannot be the same individual.
However, for the second situation it is different. The difference lies in that when
both parents are hterozygous, a child can receive two Q alleles, one from each parent
with a probability of 0.25. In this case, a QQ child is counted twice in the total
number of the nQi, and then Cov(YQij1

,YQij2
) is equal to Var(YQQ), because in this case

the ij 1 and ij 2 are the same person. Therefore, the total number of covariance between
children who receive a Q allele in the ith family is 0.5 nQi(nQi – 1), in which there are
0.25nQi variances due to those children (QQ) who receive one Q allele from the
mother and the other Q allele from the father and who is counted twice in the count-
ing of nQi. Let the number of children in each nuclear family be J, the same for all
families. J is also the expected number of nQi [This is simply because nQi + nqi = 2J
and E(nQi) = E(nqi)].

Conditional on that at least one parent in the family is heterozygote, the prob-
abilities that one and only one parent is heterozygote or that both parents are het-
erozygotes are, respectively:
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Therefore, we have
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where by definition, Var(YQQ) = se
2 + s 2

pg, and

2 1 2

1 2 1 2, , , ,

( , ) and ( , )Qij Qij Qij Qij
j j one j j two

Cov Y Y Cov Y Y∑ ∑

account for the situations when nuclear families have one and two heterozygous
parents, respectively.

Similarly, we can derive that:
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where nq is the total number of q alleles passed from heterozygous parents to chil-
dren in the sampled nuclear families.
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Finally, we need to derive the covariance of random variables Y
–

Q and Y
–

q. Not-
ing that children from different families are independent, we have:
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Similar to the derivation for the

1 2

1 2,
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in equation 5, to count the number of covariances [Cov(YQij1
, YQij2

)] between two
children who receive the Q and q alleles, respectively, from heterozygous parents in
one family, we again consider two situations. The first is that the nuclear families
have one and only one parent being heterozygous. The second situation is that the
nuclear families have two heterozygous parents. Under the null hypothesis, in the
first situation the number of children who receive the Q allele is expected to be equal
to the number of children who receive the q allele. No child can receive both the Q
and the q alleles from the heterozygous parent at the same time. The ij 1th and the
ij 2th children (ij 1 ≠ ij 2) cannot be the same individual. However, for the second situa-
tion, it is more complex and will be considered further for several cases depending
upon the genotypes of the two children under consideration. For the first case, con-
sider the covariances of children of genotypes QQ and Qq, or QQ and qq, or Qq and
qq, or Qq1 and Qq2. For the Qq1 and Qq2, the index 1 and 2 in the subscripts indicate
that the two children are different individuals although they have the same genotype
Qq. In this first case, the two children who receive the Q or q alleles are different
individuals counted in the nQi and nqi. For the second case, consider the variance of
children of genotypes Qq. In this case, a child of the genotype Qq is counted twice,
once in the nQi and once in the nqi, hence Cov(YQij1

, Yqij2
) = Var(YQq) = se

2 + s 2
pg. Let

the number of children in each nuclear family be J. We have:
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Finally, we need to derive nQ and nq as functions of population parameters. Let
us denote the total number of families needed to be screened to recruit n informative
families as Ns, then it can be seen easily that

2 2 2 2 2[1 ( ) [2(2 )( ) 2 (2 )].S Sn N p p N pp p p pp pp= − + = + +′ ′ ′ ′ ′ (10a)

Therefore, the expected total number of heterozygous parents nH in the n informative
families is:
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(10b)

For a sample of nuclear families each having J children, the expected number of nQ

and nq are:

( ) ( ) ( ) / 2Q q HE n E n JE n= = (10c)

Specifying a significance level (a) and a statistical power (h), we can, by the
aid of some statistical software package [e.g., Wolfram, 1996], obtain the value for
the noncentrality parameter l for the TDTG statistic which approximately follows a
c2-distribution with 1 d.f. With the l value and the equations 2, 4–10, we can com-
pute required sample sizes Ns, and n for specified a and h given parameter values (p,
p′,a, d, s 2

pg, and J). A computer program for the analytical power computation is
available from the authors upon request.
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Computer Simulations

To validate the above derivations and our analytical power computation for the
TDTG in the presence of background polygenes, we performed computer simulations
for a range of parameter values. The comparison of simulation and analytical results
can provide a mechanism to crosscheck and validate these results. In the absence of
segregation distortion, random mating populations are simulated, in which p, p′, a, d,
and h2 due to the QTL, s 2

pg, and se
2 are specified. When the marker locus is not a

QTL (the analytical investigation of this case is presented in the Appendix), the marker
genotype frequency (f), the degree of linkage disequilibrium (d), and the recombina-
tion rate (q) between the marker and the QTL are also specified. With the parameters
specified, genotypes of parents of nuclear families are first simulated. Only for those
informative nuclear families with at least one parent heterozygous at the marker lo-
cus, J children′ genotypes and phenotypes are simulated. The genotypes of children
are simulated according to random transmission from parents to children under the
null hypothesis. Once the genotypes of children are simulated, their phenotypes are
simulated as described earlier [Deng et al., 2000a]. Only informative nuclear fami-
lies are employed for analyses (equation 1). The effect of background polygenes is
indexed by their heritability (h2

pg). The background polygenes are simulated by 10
QTLs, each with the same small additive effects so that at each of such QTLs, the
heritability h2

1 = h2
pg/10, the frequency of the allele with higher trait values p1 = 0.7,

and the genotypic effect a1 at these QTL can be easily determined by h2
1 and p1

[Falconer, 1989].
For a desired statistical power h and a specified significance level a, we first

compute the sample size (n) of informative nuclear families (each with J children)
needed by our analytical power computation method. Then nuclear families each
with J children are simulated. The TDTG is applied to the n nuclear families. When a
QTL or a marker locus that is linked to and is in linkage disequilibrium with this
QTL is simulated, the simulated statistical power is the proportion of times that the
TDTG analyses is significant in the simulations (10,000 times unless otherwise speci-
fied) performed. The simulated statistical power (h′) can be compared with the speci-
fied level of h in the analytical power computation. The closer the h′ to the h, the
more accurate is our analytical power computation. Once our analytical power com-
putation is validated by simulations, the investigation of the power of the TDTG

under various degrees of background polygenic effects is conducted by our analyti-
cal method. To validate the TDTG in the presence of background polygenes, under a
specified significance level a, we also examine the size (the type I error rate) in
simulations (a′) with a marker locus that is not linked to and/or is in linkage equilib-
rium with a QTL. The agreement of the simulated a′ and the specified a would
validate the TDTG analyses in that they have correct levels of type I error rate.

RESULTS
Accuracy of Our Analytical Power Computation

Table I presents some representative data of our extensive simulation studies for a
range of parameter values for the situations when the marker is a QTL and when the
marker is not a QTL but is linked to and is in linkage disequilibrium with a QTL. It
can be seen that, for all the three typical models of genetic effects (recessive, additive,



256 Deng et al.

and dominant), the sample sizes (n) computed from our analytical method under a
specified statistical power (h), if employed in computer simulations, can yield the simu-
lated statistical power (h′) that is very close to h. This is true when the marker locus is
a QTL and when the marker locus is not a QTL but is linked to and is in linkage
disequilibrium with a QTL. Therefore, the accuracy of our analytical derivation and
the power computation for the TDTG is validated by our computer simulations.

TABLE I. Accuracy of the Analytical Power Computation and the Validity of the TDTG With
Background Polygenes*

n(h′) n(h′) a′
Genetic effects h2

pg p (marker is a QTL) (marker is not a QTL) (a = 0.05)

Recessive 0.0 0.3 331 (0.79) 773 (0.81) 0.050
0.5 244 (0.80) 482 (0.79) 0.053
0.7 170 (0.80) 958 (0.82) 0.051

0.3 0.3 328 (0.78) 757 (0.80) 0.050
0.5 244 (0.80) 488 (0.80) 0.051
0.7 168 (0.79) 923 (0.80) 0.052

0.6 0.3 310 (0.76) 718 (0.76) 0.051
0.5 231 (0.77) 462 (0.76) 0.048
0.7 158 (0.76) 874 (0.76) 0.053

Additive 0.0 0.3 141 (0.80) 347 (0.81) 0.054
0.5 160 (0.80) 315 (0.79) 0.057
0.7 141 (0.80) 784 (0.83) 0.052

0.3 0.3 139 (0.79) 335 (0.80) 0.052
0.5 160 (0.80) 320 (0.80) 0.051
0.7 139 (0.78) 758 (0.80) 0.050

0.6 0.3 131 (0.76) 317 (0.76) 0.053
0.5 151 (0.76) 303 (0.77) 0.052
0.7 131 (0.75) 717 (0.77) 0.053

Dominant 0.0 0.3 170 (0.79) 420 (0.82) 0.055
0.5 244 (0.79) 472 (0.79) 0.050
0.7 331 (0.78) 1693 (0.82) 0.057

0.3 0.3 168 (0.79) 404 (0.80) 0.050
0.5 244 (0.79) 482 (0.80) 0.050
0.7 328 (0.78) 1650 (0.80) 0.051

0.6 0.3 158 (0.76) 382 (0.76) 0.051
0.5 231 (0.76) 456 (0.76) 0.050
0.7 310 (0.74) 1563 (0.77) 0.049

*n is the number of informative families (with at least one heterozygous parent) needed to achieve
80% power (h) with a = 10–4 computed by our analytical methods and h′ is the power obtained by
10,000 repeated simulations with the sample size n. In the investigation for this table, two children are
sampled for each nuclear family. At the QTL under test, p is specified, h2 = 0.1, and a can be computed
from the specified p and h2 and the genetic effects (recessive, additive, and dominant). h2

pg is the herita-
bility due to background polygenes that are simulated by 10 unlinked QTLs each with h1

2 = h2
pg/10 and

p1 = 0.7. When the marker polymorphism is not the functional polymorphism of a QTL, ƒM = 0.4, c =
0.02, d = 0.9dmax · dmax is the maximum linkage disequilibrium between the marker and the QTL in a
population, dmax is the minimum of p¦m and p′ƒM, where M and m are the two alleles at the marker
locus [Deng et al., 2000a]. a′ is the empirical size (type I error rate) for the TDTG test obtained from
10,000 repeated simulations when the marker is not a QTL and/or is not linked to a QTL, and/or is not
in linkage disequilibrium with a QTL. It is the proportion of the times that the TDTG test is significant
under the specified significance level of a (= 0.05). The significance level of a = 0.05 is chosen to
avoid unnecessary excessive simulations for the a at much lower levels such as a = 10–4.
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Validity of the TDT G in the Presence of Background Polygenes

The last column of Table I presents the results of the simulated significance
level a′ in the presence of background polygenes under the null hypothesis that the
marker locus is not linked to and/or not in linkage disequilibrium with a QTL. It can
be seen that, for a range of parameters simulated and under all the models of genetic
effects investigated, the simulated significance level is very close to the specified
significance level of a = 0.05, even when the background polygenes account for as
large as 60% of phenotypic variation (i.e., h2

pg = 0.6). Therefore, the TDTG is valid
and robust in the presence of background polygenes in that it can ensure the signifi-
cance level achieved in practice is the same as that specified in the testing.

Effects of Background Polygenes on the TDT G

The investigation of the effect of background polygenes is conducted by com-
paring the power of the TDTG under the situations with and without background
polygenes (Tables I and II), and under the situations with different effects of back-
ground polygenes as reflected by h2

pg (Table I). The investigation in Tables I and II
assumes two children from each nuclear family. The effect of the number of children
per nuclear family on the power of the TDTG is investigated later in Figs. 1 and 2.
The power is reflected by the number (n) of informative families required for the
TDTG analyses (Table I) or the number (Ns) of families needed to be screened (Table
II) in order to recruit n informative families to achieve a certain statistical power by
the TDTG. It can be seen (Tables I and II, Fig. 1) that, with background polygenes,

TABLE II. Sample Sized (Ns) Needed to Be Screened by the TDTG in the Presence and Absence
of Background Polygenes*

Recessive Additive Dominant

p Absent Present Absent Present Absent Present

h2 = 0.05
0.3 984 941 437 417 527 504
0.5 660 642 437 424 660 642
0.7 527 504 437 417 984 941

h2 = 0.1
0.3 499 476 213 201 255 242
0.5 325 314 213 205 325 314
0.7 255 242 213 201 499 476

h2 = 0.2
0.3 256 242 101 94 120 113
0.5 157 150 101 96 157 150
0.7 120 113 101 94 256 242

h2 = 0.3
0.3 175 165 63 58 75 69
0.5 101 96 63 60 101 96
0.7 75 69 63 58 175 165

*In the first column, p and h2 are, respectively, the frequency of the allele Q and the heritability for the
QTL under test. The numbers under the column Absent are the number of families that is needed to be
screened to achieve 80% power with a = 10–4 when the background polygenes are absent. The num-
bers under the column Present are the number of families that is needed to be screened to achieve 80%
power with a = 10–4 when the background polygenes are present (h2

pg = 0.5) and accounted for. The
marker locus is located at a QTL.
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the power of the TDTG is increased. The power increase is slight when only two children
are recruited per family. The power increases with increasing effects of background poly-
genes as reflected by a smaller sample size required under a larger h2

pg (Table I).
Let TDT2 denote the TDTG test when each nuclear family has two children. It is

noted that, in the absence of background polygenes, the sample sizes needed to be
screened in order to achieve a specified power by the TDT2 are substantially less
than those given in tables 1–3 of Xiong et al. [1998] for the same corresponding
parameters. The analytical derivation for the power computation of Xiong et al. [1998]
when the marker is a QTL is correct and is the same as our own for the case when
there is no background polygenes. However, the numerical numbers given in tables
1–3 in Xiong et al. [1998] seem to be incorrect. There are no simulations to confirm
the numerical results derived from the analytical computations in Xiong et al. [1998].
Our results are all confirmed by cross-validating the results of simulations and ana-
lytical computations and should be correct. In addition, it is actually straightforward
to re-compute the numbers in tables 1–3 in Xiong et al. [1998] using their analytical
method and it can be shown that the numerical results in their tables 1–3 are not
correct. For example, for an additive model, the noncentrality parameter for the TDT1

(with only one child per family) given by Equation 10 in Xiong et al. [1998] can be
easily shown to be the same as our result when only one child per family is recruited
and l = Nsh

2(2 – h2). Therefore, given the heritability of 0.1 and a significant level
0.0001, to achieve 0.8 power, the theoretical noncentrality parameter value is l =
22.4. Then the number of nuclear families (with one child) needed to be screened Ns

is 426. For a family with two children, Ns is 213 in the absence of background poly-
genes and is the same as that given in our Table II, whereas in Table I of Xiong et al.
[1998], the number is 1,194. Their error is probably due to incorrect critical values
(corresponding to the specified power and significance levels) employed.

Fig. 1. The effect of the number of children per
nuclear family on the power of the TDTG with
and without background polygenes. In Figs. 1 and
2, the power of the TDTG is reflected by the num-
ber n of informative nuclear families required in
order to achieve the statistical power of 0.8 with
a = 0.0001. The marker is at the QTL under
study, a = 1, p = 0.7, and h2 = 0.1 for the TDT
under test, and h2

pg = 0.6. The filled diamonds
represent the n required without background poly-
genes, and the open diamonds represent the n re-
quired with background polygenes. Dominant
genetic effect at the QTL is assumed. In Figs. 1
and 2, the marker locus is at a QTL.
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In the absence of background polygenes, the trends of our numerical results
(TDT2 in Table II) are qualitatively consistent with those given in tables 1–3 of Xiong
et al. [1998] as reflected by the following. Ns does not change with the allele fre-
quency p of the allele Q at the QTL under additive genetic effects. Ns decreases with
p under recessive genetic effects and increases with p under dominant genetic ef-
fects. In the presence of background polygenes (Tables I and II), the trend is the
same qualitatively as the case without background polygenes under recessive and
dominant genetic effects (Table II). However, different from the case without back-
ground polygenes, under additive genetic effects, n decreases with an increasing h2

pg

(Table I) and Ns is influenced by p with background polygenes (Table II).

Effect of the Number of Children Within Nuclear Families on the TDT G

Power in the Presence of Background Polygenes

Although the TDTG was proposed as a general TDT for QTL identification that
may allow for multiple children from each nuclear family, how the number of chil-
dren from each nuclear family would affect the TDTG power is unclear. This is espe-
cially true in the presence of background polygenes. We compare the relationship of
the TDTG power with the number of children from each nuclear family in the pres-
ence and absence of background polygenes (Fig. 1). Although Fig. 1 only presents
results for the dominant genetic model, the results not shown for additive and reces-
sive effects are the same. In addition, we also investigate the relationship of the
TDTG power with the number of children from each nuclear family for biologically
plausible situations with background polygenes under various genetic models and
different effects of background polygenes (Fig. 2).

In Figures 1 and 2, the TDTG power is reflected by the number (n) of informative
familes required to achieve a certain statistical power. The smaller the n, the better
and the more powerful is the situation under consideration. It can be seen (Fig. 1)

Fig. 2. The effect of the number of children
per nuclear family on the power of the TDTG

under various models of genetic effect at the
QTL under test and under various h2

pg. The
marker is at the QTL under study, a = 1, p =
0.7, and h2 = 0.1 for the TDT under test. The
filled dots represent h2

pg = 0.3, and the open dots
represent h2

pg = 0.6. Diamonds, dominant genetic
effects; squares, additive effects; circles, reces-
sive effects.
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that the difference of the power of the TDTG in the presence and absence of back-
ground polygenes increases with an increasing number of children recruited from
each family. As expected, when only one child is recruited per family, the TDTG

power is not influenced by the presence of background polygenes. However, for
example, for the parameter values investigated when six children are recruited per
family, to achieve 80% power for a = 0.0001, it would require 110 families without
the background polygenes and only 67 nuclear families with the background poly-
genes. Therefore, although the effect of background polygenes on the TDT is only
slight when only two children are recruited per family as revealed in Tables I and II,
the difference can be large and significant when more children are recruited per fam-
ily. Figure 2 illustrates the increase of the power of the TDTG with more children per
family recruited and with large h2

pg under various genetic models. It is apparent from
Figs. 1 and 2 that when the number of children from each nuclear family increases,
the TDTG power increases as reflected by the decrease in the required number of
informative families (n). n decreases in a decelerated fashion when the number of
children per family increases and n decreases most dramatically when the number of
children per nuclear family changes from one to two, or from two to three. The rate
of decrease of n diminishes with an increasing number of children per nuclear fam-
ily. Therefore, it seems that the effort to recruit nuclear families with 2 or 3 children
would be most fruitful in terms of the power increase per additional child recruited.

DISCUSSION

In this study, we develop an analytical method to compute the power of the
TDTG of Xiong et al. [1998] under various degrees of the contribution of background
polygenes to phenotypic variation. The accuracy of the analytical method is vali-
dated by computation simulations. A computer program (in Visual C++) for imple-
menting the power computation of the TDTG in the presence or absence of background
polygenes is available from the authors upon request. In addition, this computer pro-
gram contains a module for obtaining simulated power of the TDTG. We found that
the power of the TDTG is affected by background polygenes when multiple children
are employed in nuclear families. The effect is more significant with more children
recruited from each nuclear family. The power of the TDTG increases dramatically
when the number of children recruited from each nuclear family increases from one
to two or from two to three.

The results of this study should be of theoretical significance in generalizing the
investigation of the TDT to biologically plausible situations with background poly-
genes. Although we employ the TDTG as an example of the TDT for investigation,
the principle and the approach may apply to other appropriate TDT tests, such as the
TDTQ5 of Allison [1997]. As shown by our work, the consideration of background
polygenes introduces much complexity in the analytical investigation of the statistical
power of the TDTG under various parameters so that we need to resort to computer
programming to implement our analytical computation approach. However, since al-
most all quantitative traits that are of primary clinical and health significance in hu-
mans are likely polygenic, incorporation of background polygenes into the investigation
of the statistical properties of the TDTG is necessary. In addition to the theoretical and
simulation investigation of the statistical power of the TDTG, we also investigated the
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validity of the TDTG as a test of linkage with multiple children in the presence of
background polygenes by simulations. The validity of the TDTG as a test of linkage
with multiple children in the presence of background polygenes is investigated by
comparing its simulated type I error with the pre-specified type I error for testing in
simulations for a range of parameter values. The close agreement between the simu-
lated and pre-specified significance levels validates the TDTG as a test of linkage of
QTL with multiple children in the presence of background polygenes. The results
given are accurate and valid as they have been cross-checked by both our analytical
computation method and computer simulations. By investigating some common sets
of parameter values with Xiong et al. [1998], we found that the numerical values
given in their tables 1–3 for the TDT2 are not correct and are overestimates of the true
values. However, their analytical derivations for the case when the marker is a QTL
are largely correct, although they did not perform simulations for confirmation. Their
analytical derivation is only approximate for the case when the marker is not a QTL
but is linked to and is in linkage disequilibrium with a QTL.

Our results should also be of practical value in providing guidance on the re-
cruitment of nuclear families with multiple children. Nuclear families with multiple
children are valuable and can increase the power of QTL identification and reducing
the total number of individuals that need to be genotyped and phenotyped. For ex-
ample (Fig. 2), to achieve 80% power at a significance level of 0.0001 under domi-
nant genetic model with h2

pg = 0.3, to detect a QTL with h2 = 0.1, it would require
662 informative nuclear families with one child, 328 nuclear families with two chil-
dren, 215 families with three children, 157 families with four children, and 121 fami-
lies with five children. The total individuals that need to be phenotyped for these
types of nuclear families are, respectively, 662, 656, 645, 628, and 605. The total
number of individuals that need to be genotyped for these types of informative nuclear
families are, respectively, 1,986, 1,312, 1,075, 942, and 847. Therefore, recruitment
of nuclear families with five children is more efficient than nuclear families with
fewe children with regard to the genotyping and phenotyping amount involved. How-
ever, the efficiency with regard to genotyping and phenotyping may need to be con-
sidered jointly with the availability of nuclear families with more children and the
difficulty of recruiting more children from nuclear families in order to maximize the
overall efficiency of the project as a whole. This kind of consideration may be tai-
lored to specific situations of individual investigators for the availability and costs of
recruitment of families with multiple children with the aid of our computer program
that is available from authors upon request.
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APPENDIX

We outline here the analytical power computation for the case when the marker
is not at a QTL but is linked to and is in linkage disequilibrium with a QTL in the
presence of background polygenes. More detailed derivations are available upon re-
quest from the authors. Let the marker locus have two alleles M and m (with fre-
quencies of f and f′, respectively), and the QTL under test have two alleles Q and q.
The means and variances among children who receive the allele M and m from het-
erozygous parents are, respectively,
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where P(go, gf, Mmp, Mo) is the joint probability that father, mother, and an offspring
have genotypes of gf, gm, and go, respectively, and there is at least one parent het-
erozygous at the marker locus (the event denoted by Mmp) and a heterozygous par-
ent transmits the marker allele M to the child. For a specific combination of gf, gm,
and go, P(go, gf, gm, Mmp, Mo) can be computed which is a function of c (the recombi-
nation rate between the marker locus and the QTL), p (the frequency of Q), f, and
the coefficient (d) of linkage disequilibrium and the recombination rate c between
the marker and QTL. With this and a and d, we can compute the means and vari-
ances in equations A1a–d.

Let Y
–

M and Y
–

m be the mean phenotypic values of the children who receive the
alleles M and m, respectively, in the sample. The derivations for Var(Y

–
M), Var(Y

–
m),

and Cov(Y
–

M,Y
–

m) are almost the same as the derivations for Var(Y
–

Q), Var(Y
–

q), and
Cov(Y

–
Q,Y

–
q) as shown in detail in the text by replacing the allele Q with M, and q

with m. Briefly,

1 2

1 2

2

2
1 1 1 ,

( ) ( ) ( ) 2 ( , ),

1
( ) / ( , ).

Mi

M m M m M m

nn n
M

M Mij M Mij Mij
i j i j jM M

Var Y Y Var Y Var Y Cov Y Y

Var Y Var Y n Cov Y Y
n n

σ
= = =

− = + −

 
= = +  ∑∑ ∑ ∑

In the above equation,

1 2

1 2

2 2
2 2 2

,

2

( , ) [0.5 ( 2)( ) ( )
1 ( )

( ) (2 3 ) ( )].

Mij Mij
j j

MM

ff
Cov Y Y J J f f Cov Fulsib

f f

Jff Var Y ff J J Cov Fullsib

′= − + ′
− + ′

+ + −′ ′

∑

Var(YMM) is the phenotypic variance of the individuals with the marker genotype
MM. Let E(YMM) be the expected phenotypic value of individuals with the marker
genotype MM, which is,
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2 2

2

2
( ) .MQ QQ MQ Mq Qq Mq qq

MM

P P P P
E Y

f

µ µ µ+ +
=

Therefore, Var(YMM) can be obtained as follows,
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Similarly,
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where
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where

1 2
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In the above equation

2 2 2 2 2 2

2 2 2

2

( ) [ ( ) ( )( )
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( ) ( )

Mm MQ mQ QQ pg e MQ mq Mq mQ Qq pg e
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ff E Y
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and
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The number (n) of informative nuclear families in the total of Ns screened ones is

2 2 2 2 2[1 ( ) ] [2(2 )( ) 2 (2 )].s sn N f f N ff f f ff ff= − + = + +′ ′ ′ ′ ′

The total heterozygous parents in the n informative nuclear families is

2 2

2 2 2 2

2 2

2(2 )( ) 2 (2 )
( ) 2

2(2 )( ) 2 (2 ) 2(2 )( ) 2 (2 )

1

H

ff f f ff ff
E n n n

ff f f ff ff ff f f ff ff

n n

ff f f ff

+′ ′ ′ ′= +
+ + + +′ ′ ′ ′ ′ ′ ′ ′

= =
+ + −′ ′ ′

and E(nM) = E(nm) = JE(nH)/2.
With all the above derivations and by the same procedures as detailed in the

text, the analytical power of the TDTG when the marker locus is not a QTL can be
computed.
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