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Probabilistic and Statistical Properties of Words:
An Overview
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ABSTRACT

In the following, an overview is given on statistical and probabilistic properties of words, as
occurring in the analysis of biological sequences. Counts of occurrence, counts of clumps,
and renewal counts are distinguished, and exact distributions as well as normal approxima-
tions, Poisson process approximations, and compound Poisson approximations are derived.
Here, a sequence is modelled as a stationary ergodic Markov chain; a test for determining
the appropriate order of the Markov chain is described. The convergence results take the er-
ror made by estimating the Markovian transition probabilities into account. The main tools
involved are moment generating functions, martingales, Stein’s method, and the Chen-Stein
method. Similar results are given for occurrences of multiple patterns, and, as an example,
the problem of unique recoverability of a sequence from SBH chip data is discussed. Special
emphasis lies on disentangling the complicated dependence structure between word occur-
rences, due to self-overlap as well as due to overlap between words. The results can be used
to derive approximate, and conservative, con� dence intervals for tests.

Key words: word counts, renewal counts, Markov model, exact distribution , normal approxima-
tion, Poisson process approximation, compound Poisson approximation, occurrences of multiple
words, sequencing by hybridization , martingales, moment generating functions, Stein’s method,
Chen-Stein method.

1. INTRODUCTION

Statistical and probabilistic properties of words have been of considerable interest in many � elds,
such as reliability theory, and most recently in the analysis of biological sequences. Here we provide

an overview of the state of this research.
Two main aspects of word occurrences in biological sequences are: where do they occur and how many

times do they occur? An important problem, for instance, was to determine the statistical signi� cance of
a word frequency in a DNA sequence. The naive idea is the following: a word may be signi� cantly rare
in a DNA sequence because it disrupts replication or gene expression (perhaps a counter-selection factor),
whereas a signi� cantly frequent word may have a fundamental activity with regard to genome stability.
Well-known examples of words with exceptional frequencies in DNA sequences are certain biological
palindromes corresponding to restriction sites avoided, for instance, in E. coli (Karlin et al., 1992), and the
cross-over hotspot instigator sites in several bacteria (see Biaudet et al., 1998; Chedin et al., 1998; Sourice
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et al., 1998). Several papers aim at identifying over- and under-represented words in a particular genome
(for instance, Leung and Speed, 1996; Rocha et al., 1998). Statistical methods to study the distribution of
the word locations along a sequence and word frequencies have also been an active � eld of research.

Because DNA sequences are long, asymptotic distributions were proposed � rst. Exact distributions exist
now, motivated by the analysis of genes and protein sequences. Unfortunately, exact results are not adapted
in practice for long sequences because of heavy numerical calculation, but they allow the validation of
the quality of the stochastic approximations when no approximation error can be provided. For example,
BLAST is probably the best-known algorithm for DNA matching, and it relies on a Poisson approximation.
Approximate p-values can be given; yet the applicability of the Poisson approximation needs to be justi� ed.

Statistical properties of words only make sense with respect to some underlying probability model. DNA
sequences are commonly modeled as stationary random sequences. Typical models are homogeneous m-
order Markov chains (model Mm) in which the probability of occurrence of a letter at a given position
depends only on the m previous letters in the sequence (and not on the position); the independent case
is a particular case with m 5 0. Hidden Markov models (HMMs) reveal, however, that the composition
of a DNA sequence may vary over the sequence (Churchill, 1989; Muri, 1998; Durbin et al., 1998)
and can be studied with HMMs. However, no statistical properties of words have been yet derived in
such heterogeneous models. DNA sequences code for amino acid sequences (proteins) by nonoverlapping
triplets called codons. The three positions of the codons have distinct statistical properties, so that for
coding DNA we naturally think of three sequences where the successive letters come from the three codon
positions, respectively. The three chains and their transition matrices are denoted as Mm-3. In this paper,
we will focus on the homogeneous models Mm and give existing results for Mm-3.

Because these probabilistic models have to be � tted to the observed biological sequence, we will pay
attention to the in� uence of the model parameter estimation on the statistical results. Some asymptotic
results take care of this problem but the exact results require that the true model driving the observed
sequence is known.

The choice of the Markov model order depends on the sequence length because of the data requirements
in estimation. One might be able to test hierarchical models using Chi-square tests to assign which type
of Markovian dependence is appropriate for the underlying sequence. From a practical point of view, it
also depends on the composition of the biological sequence one wants to take into account. Indeed, if
the sequence was generated from an m-order Markov chain, then the model Mm should predict well the
(m 1 1)-letter words.

In this paper, we are concerned � rstly with the occurrences of a single pattern in a sequence. To begin,
we discuss the underlying probabilistic models (Section 2). The main complication for word occurrences
arises from overlaps of words. One might be interested either in overlapping occurrences or in particular
nonoverlapping ones (Section 3). After presenting results for the statistical distribution of word locations
along the sequence (Section 4), we focus on the distribution of the number of overlapping occurrences
(Section 5) and the number of renewals (Section 6). In Section 7, we will study the occurrences of
multiple patterns. Section 8 gives an example on how probabilistic and statistical considerations come into
play for DNA sequence analysis. Namely, we analyze so-called SBH chips, a fast and effective method
for determining a DNA sequence. These chips provide the `-tuple contents of a DNA sequence, where
typically ` 5 8, 10 or 12. A nontrivial combinatorial problem arises when determining the probability
that a randomly chosen DNA sequence can be uniquely reconstructed from its `-tuple contents. Finally,
Section 9, meant as an appendix, gives a compilation of more general techniques that are applied in this
paper. Throughout we only consider � nite words.

Necessarily, due to the abundance of literature, much of the existing work on probabilistic and statistical
aspects of words had to be omitted. The present paper is intended not to serve as a complete literature
survey (indeed even just a list of references would take up all the space of this volume), but rather to
introduce the reader to the major aspects of this � eld, to provide some techniques and to warn of major
pitfalls associated with the analysis of words.

For the same reason we completely omit the algorithmic aspect; an excellent starting point would be
Waterman (1995) or Gus� eld (1997); for a particular example see also Apostolico et al. (1998).

2. PROBABILISTIC MODELS FOR BIOLOGICAL SEQUENCES

In this paper, a biological sequence is either a DNA sequence or a protein sequence, that is, a � nite
sequence of letters either in the 4-letter DNA alphabet fA, C, G, Tg or the 20-letter amino-acid alphabet.
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To model a biological sequence, we will consider models for random sequences of letters. Even if we
observed a � nite biological sequence S 5 s1s2 sn , we consider for convenience an in� nite random
sequence X 5 (X i )i2Z on a � nite alphabet A, where Z is the set of integers. We present below two
classes of Markov models widely used to analyze biological sequences and discuss how to estimate their
parameters according to the observed sequence. Then we give a classical Chi-square test to choose the
appropriate order of the Markov model for a given sequence.

2.1. Models for random sequences of letters

The simplest model assumes that the letters X i ’s are independent and take on the value a 2 A with
probability m (a) 5 1=jAj, where jAj denotes the size of the alphabet. To re� ne this model, we can simply
assume independent letters taking value in A with probability (m (a))a2A such that

P
a2A m (a) 5 1. This

is called model M0. In practice, in particular for DNA sequences, this model is typically not very accurate.
Therefore, we consider a much more general homogeneous model, the model Mm: an ergodic stationary
m-order Markov chain on a � nite alphabet A with transition matrix ¦ 5 (p (a1 am , am1 1))a1,...,am1 12A
such that

p (a1 am , am 1 1) 5 P(X i 5 am1 1 j X i ¡ 1 5 am , . . . , X i ¡ m 5 a1).

In general, a stationary distribution m of an ergodic stationary Markov chain with transition matrix ¦
is de� ned as a solution of m 5 m¦ . This implies that the above Markov chain has a unique stationary
distribution m on Am de� ned by

m (a1 am) 5 P(X i X i 1 m ¡ 1 5 a1 am), 8i 2 Z

5
X

b2A
m (ba1 am ¡ 1)p (ba1 am ¡ 1, am ).

The model where the letters fX i gi 2Z are chosen independently with probabilities p1, p2, . . . , pjAj, cor-
responds to the transition matrix ¦ with identical rows (p1 p2 pjAj) and stationary distribution
m 5 (p1, p2, . . . , pjAj).

A coding DNA sequence is naturally read as successive nonoverlapping 3-letter words called codons.
These codons are then translated into amino acids via the genetic code to produce a protein sequence.
Several different codons can code for the same amino acid, and often the � rst two letters of a codon suf� ce
to determine the corresponding amino acid. Therefore, letters may have different importance depending on
their position with respect to the codon partition. To distinguish the letter probabilities according to their
position modulo 3 in the coding DNA sequence, we consider a stationary Markov chain with three distinct
transition matrices ¦1, ¦2 and ¦3 such that, for a1, . . . , am 1 1 2 A and k 2 f1, 2, 3g

pk (a1 am , am 1 1) 5 P(X 3 j 1 k 5 am 1 1 j X 3 j 1 k ¡ 1 5 am , . . . , X 3 j 1 k ¡ m 5 a1).

This is model Mm-3. The index k 2 f1, 2, 3g is called phase and represents the position of a letter inside
a codon. By convention, the phase of a word is the phase of its last letter in the sequence; codons are then
3-letter words in phase 3.

The stationary distribution m on Am £ f1, 2, 3g is given by

m (a1 am , k) 5 P(X 3 j 1 k ¡ m 1 1 X 3 j 1 k 5 a1 am), 8 j 2 Z

5
X

b2A
m (ba1 am ¡ 1, k ¡ 1)pk (ba1 am ¡ 1, am).

2.2. Estimation of the model parameters

Modeling a biological sequence consists of choosing a probabilistic model (see previous paragraph) and
then estimating the model parameters according to the unique realization that is the biological sequence. In
the case of model Mm , it means to estimate the transition probabilities p (a1 am , am 1 1); their estimators
are classically denoted by bp (a1 am , am 1 1).

We now derive the estimators that maximize the likelihood of the M1 model given the observed sequence;
we will then give the maximum-likelihood estimators in models Mm and Mm-3.
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Assume X 1 X n is a stationary Markov chain on A with transition matrix ¦ 5 (p (a, b))a ,b2A and
stationary distribution (m (a))a2A. The likelihood L of the model is

L (p (a, b), a, b 2 A) 5 m (X 1)
Y

a,b2A
(p (a, b))N (ab) ,

where N (ab) denotes the number of occurrences of the 2-letter word ab in the random sequence X 1 X n .
To � nd the transition probabilities that maximize the likelihood, one maximizes the log likelihood

log L (p (a, b), a, b 2 A) 5 log m (X 1) 1
X

a,b2A
N (ab) log p (a, b).

One can separately maximize
P

b2A N (ab) log p (a, b) for a 2 A, keeping in mind that
P

b2A p (a, b) 5 1.
Let a 2 A and choose c 2 A; we have

X

b2A
N (ab) log p (a, b) 5

X

b 65 c

N (ab) log p (a, b) 1 N (ac) log

0

@1 ¡
X

b 65 c

p (a, b)

1

A ,

and for b 65 c

@

@p (a, b)

Á
X

b2A
N (ab) log p (a, b)

!

5
N (ab)

p (a, b)
¡

N (ac)

p (a, c)
.

All the partial derivatives equal to zero means that

N (ab)

p (a, b)
5

N (ac)

p (a, c)
8b 2 A;

this implies in particular that

N (ab)
p (a, b)

5

P
d2A N (ad)P
d 2A p (a, d)

5
X

d2A
N (ad) :5 N (a°) 8b 2 A.

It follows that

bp (a, b) 5
N (ab)

N (a°)
8b 2 A.

Note that the second partial derivatives of the likelihood function are negative, assuring that we have indeed
determined a maximum.

Remark 2.1. For convenience with the notation, the estimators used in the remainder of the chapter
will be bp (a, b) 5 N (ab)=N (a) since N (a°) 5 N (a) except for the last letter of the sequence for which
the counts differ by 1.

It is important to note that the estimators bp (a, b) are random variables. Assuming that the biological
sequence is a realization of the random sequence, one can calculate a numerical value for the estimator of
p (a, b); that is

bp obs(a, b) 5
N obs(ab)
N obs(a°)

,

where N obs( ) denotes the observed count in the biological sequence. As we will see, some results are
obtained assuming that the true parameters p (a, b) are known and equal, in practice, to N obs(ab)=N obs(a°),
and do not take care of the estimation. It is indeed a common practice to substitute the estimator for the
corresponding parameter in distributional results, but sometimes it changes the distribution being studied,
as it is illustrated in Waterman (1995) p. 313.
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In the model Mm, the maximum-likelihood estimator of p (a1 am , am 1 1), a1, . . . , am 1 1 2 A, is

bp (a1 am , am1 1) 5
N (a1 amam1 1)

N (a1 am°)
,

and in the model Mm-3, we have 8a1, . . . , am 1 1 2 A, 8k 2 f1, 2, 3g,

bpk (a1 am , am 1 1) 5
N (a1 amam 1 1, k)
X

b2A
N (a1 amb, k)

.

2.3. Test for the appropriate order of the Markov model

To test which Markov model would be appropriate for a given sequence of length n, the most straightfor-
ward test is a Chi-square test, which can be viewed as a generalized likelihood ratio test. Most well-known
is the Chi-square test for independence (see, e.g., Rice, 1995). In general, suppose we have a sample of
size n cross-classi� ed in a table with U rows and V columns. For instance, we could have four rows
labeled A, C, G, T, and four columns labeled A, C, G, T, and we count how often a letter from the row is
followed by a letter from the column in the sequence.

First we test whether we may assume the sequence to consist of independent letters. To this purpose,
recall that N (ab) denotes the count in cell (a, b), whereas N (a°) is the ath row count, and let N (°b) be
the bth column count. Thus N (ab) counts how often letter a is followed by letter b in the sequence. Let
p (a, b) be the probability of cell (a, b), let p (a, °) be the ath row marginal probability, and let p (°, b)
be the bth column marginal probability. We test the null hypothesis of independence

H0 : p (a, b) 5 p (a, °)p (°, b)

against the alternative that the p (a, b) are free. Under H0 the maximum-likelihood estimate of p (a, b) is

p̂ (a, b) 5 p̂ (a, °)p̂ (°, b) 5
N (a°)

n ¡ 1

N (°b)

n ¡ 1
,

and under the alternative, the maximum-likelihood estimate of p (a, b), as there are n ¡ 1 consecutive pairs
in the sequence, is simply

p̂ (a, b) 5
N (ab)
n ¡ 1

.

The Pearson chi-square statistic is the sum of the squared differences between observed and expected
count, divided by the expected counts, namely

X 2 5
UX

a5 1

VX

b5 1

(N (ab) ¡ N (a°)N (°b)=(n ¡ 1)2

N (a°)N (°b)=(n ¡ 1)
.

(We think of the letters in the alphabet being enumerated here.) Under the null hypothesis, X 2 follows
asymptotically a chi-square distribution with (U ¡ 1)(V ¡ 1) degrees of freedom. Thus we would reject
the null hypothesis when X 2 is too large, compared to the corresponding chi-square distribution. As a
rule of thumb, this test is applicable when the expected frequency in each row and column is at least 5.
Applying this test to DNA counts, we thus would have to compare X 2 to a chi-square distribution with
(4 ¡ 1)(4 ¡ 1) 5 9 degrees of freedom. A typical cutoff level would be 5%, or, if one likes to be conservative,
1%. The corresponding critical values are 16.92 for 5%, and 21.67 for 1%. Thus, if X 2 . 16.92, we would
reject the null hypothesis of independence at the 5% level (meaning that, if we repeated this experiment
many times, in about 5% of the cases we would reject the null hypothesis when it is true). If X 2 . 21.67,
we could reject the null hypothesis at the 1% level (so in only about 1% of all trials would we reject the
null hypothesis when it is true). Otherwise we would not reject the null hypothesis.

If the null hypothesis of independence cannot be rejected at an appropriate level (say, 5%), then one
would � t an independent model. However, if the null hypothesis does get rejected, one would test for a
higher-order dependence. The next step would thus be to test for a � rst-order Markov chain. Here we would
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proceed as above, but now regarding how often a transition from a to b is followed by a transition from b
to c, where a, b, c 2 A. Thus, for a DNA sequence, where A 5 fA, C, G, Tg, we would have U 5 42 rows,
where we record the 2-letter words ab, and V 5 4 columns, for the transitions to c. Let N (ab, c) be the
count in cell (ab, c), the number of transitions from ab to c (the number of times that the 2-letter word ab
is followed by c in the sequence). (Previously this was also denoted by N (abc); however, here we would
like to use the separation between ab and c to refer to the cell sizes.) Let p (ab, c) be the probability of
cell (ab, c) and let p (a, b) and all other quantities be as above. We test the null hypothesis of a � rst-order
Markov chain

H0 : p (ab, c) 5 p (a, b)p (b, c)

against the alternative that the p (ab, c) are free. Under H0 the maximum-likelihood estimate of p (ab, c) is

p̂ (ab, c) 5
N (ab)

N (a°)

N (bc)

N (b°)
,

and under the alternative, the maximum-likelihood estimate of p (ab, c) is

p̂ (ab, c) 5
N (ab, c)

n ¡ 2
.

Enumerating the letters fA, C, G, Tg as 1, 2, 3, 4, the Pearson chi-square statistic is

X 2 5
4X

a5 1

4X

b5 1

4X

c5 1

¡
N (ab, c) ¡ (n ¡ 1)N (a, b)N (b, c)=(N (a, °)N (b, °))

¢2

(n ¡ 1)N (a, b)N (b, c)=(N (a, °)N (b, °))
.

This quantity now has to be compared to a chi-square statistic with (16 ¡ 1)(4 ¡ 1) 5 45 degrees of
freedom. If this hypothesis is rejected, one would test for a higher-order Markov chain in the analogous
way.

3. OVERLAPPING AND NONOVERLAPPING OCCURRENCES

Statistical inference is often based on independence assumptions. Even if the sequence letters are inde-
pendent and identically distributed, the different random indicators of word occurrences are not independent
due to overlaps. For example, if w 5 ATAT occurs at position i in the sequence, then another occurrence
of w is much more likely to occur at position i 1 2 than if w did not occur at position i , and an occurrence
of w at position i 1 1 is not possible. Many of the arguments needed for a probabilistic and statistical
analysis of word occurrences deal with disentangling this overlapping structure.

Let w 5 w1 w` be a word of length ` on a � nite alphabet A. Two occurrences of w may overlap in
a sequence if and only if w is periodic, meaning that there exists p 2 f1, . . . , ` ¡ 1g such that w i 5 w i 1 p ,
i 5 1, . . . , ` ¡ p. A word may have several periods. The set P(w ) of the periods of w is de� ned by

P (w ) :5 fp 2 f1, . . . , ` ¡ 1g : w i 5 w i 1 p , 8i 5 1, . . . , ` ¡ pg.

A word w is not periodic if and only if P(w ) is empty. For instance, AACAA is periodic and admits
two periods, 3 and 4. There are 4 occurrences of AACAA in the sequence TGAACAAACAACAATAGAACAAAA,
starting respectively at positions 3, 7, 10 and 18. The � rst 3 occurrences overlap and form a clump. A
clump of w in a sequence is a maximal set of overlapping occurrences of w in the sequence. By de� nition
two clumps of w in a sequence cannot overlap. A clump composed of exactly k overlapping occurrences
of w is called a k-clump of w . There are 2 clumps of AACAA in the previous sequence, the � rst one is
a 3-clump starting at positions 3 and the second one is a 1-clump starting at position 18. Let C k (w ) be
the set of the concatenated words composed of exactly k overlapping occurrences of w . For example,
C 1(AACAA) 5 fAACAAg and C 2(AACAA) 5 fAACAACAA, AACAAACAA g.

Renewals are another type of nonoverlapping occurrences of interest that require scanning the sequence
from one end to the other: the � rst occurrence of w in the sequence is a renewal and a given occurrence
of w is a renewal if and only if it does not overlap a previous renewal. Renewals of w do not overlap in
a sequence. In the above example, there are 3 renewals of AACAA starting at positions 3, 10 and 18.
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Depending on the problem, one could be interested in studying the overlapping occurrences of w
in a sequence, or in restricting attention to nonoverlapping occurrences: the beginnings of clumps, the
beginnings of k-clumps or the renewals. We now introduce notation related to occurrences of a word
w 5 w1 w`, of a clump of w , of a k-clump of w , of a renewal of w in a sequence, and to the
corresponding counts.

3.1. Occurrence and number of overlapping occurrence

An occurrence of w starts at position i in the sequence X 5 (X i )i 2Z if and only if X i X i 1 ` ¡ 1 5
w1 w`. Let Yi (w) be the associated random indicator

Yi (w ) :5 1Ifw starts at position i in X g. (3.1)

For convenience in some sections, Yi (w) will be the random indicator that an occurrence of w ends at
position i in X ; it will be made precise in that case.

In the stationary m-order Markovian model, the expectation of Yi (w ), which represents the probability
that an occurrence of w occurs at a given position in the sequence, is denoted by m m(w ) and is given by

m m(w) 5 m (w1 wm )p (w1 wm , wm 1 1) p (w` ¡ m w` ¡ 1, w`). (3.2)

When there is no ambiguity, the index m referring to the order of the model will be omitted.
The number of overlapping occurrences of w in the sequence (X i )i 5 1,...,n , simply called count of w ,

is de� ned by N (w ) 5 Nn(w) 5
Pn ¡ 1̀ 1

i 5 1 Yi (w ) (or N (w) 5
Pn

i 5 ` Yi (w ) if Yi (w ) is associated with an
occurrence of w ending at position i).

3.2. Clump and declumped counts

A clump of w starts at position i in the in� nite sequence X if and only if there is an occurrence of w
starting at position i that does not overlap a previous occurrence of w . It follows that

eYi (w) :5 1Ifa clump of w starts at position i in X g

5 Yi (w )(1 ¡ Yi ¡ 1(w )) (1 ¡ Yi ¡ 1̀ 1(w )). (3.3)

Often eYi (w ) is zero, depending on the overlapping structure of w . If we de� ne P 0(w ) as the set of the
principal periods of w , namely the periods that are not strictly multiples of the minimal period p0(w ) of
w , then it turns that

eYi (w) 5 Yi (w) ¡
X

p2P0(w )

Yi ¡ p (w ( p)w ), (3.4)

where w ( p) denotes the pre� x of w of length p, w ( p) 5 w1 w p , and w ( p)w is the concatenated word
w1 w pw1 w`. If p 2 P(w ) then w (p) is called a root of w ; if p 2 P 0(w ), w ( p) is called a principal
root of w . Equation (3.4) is obtained from the two following steps: (i) note that an occurrence of w starting
at position i overlaps a previous occurrence of w if and only if it is directly preceded by an occurrence
of a principal root of w , meaning that a principal root w (p) , p 2 P 0(w ), occurs at position i ¡ p, (ii)
note that the events E p 5 fYi ¡ p(w ( p)) 5 1g, p 2 P 0(w ), are disjoint. To prove (ii), we assume that two
different principal roots w ( p) and w (q) occur simultaneously at position i ¡ p and i ¡ q . If so, the minimal
root w ( p0) of w could be decomposed into w ( p0) 5 xy 5 yx where x and y are two nonempty words.
Proposition 1.3.2 from Lothaire (1983) says that two words commute if and only if they are powers of the
same word. Thus, we would obtain the contradiction that the minimal root is not minimal (see Schbath,
1995a, for more details).

It follows from Equation (3.4) that the probability em (w ) that a clump of w starts at a given position in
X is given by

em (w ) 5 m (w ) ¡
X

p2P0(w )

m (w ( p)w ). (3.5)

The number eN (w ) of clumps of w in the � nite sequence X 1 X n (or the declumped count) may be
different from the sum eN inf(w) 5

Pn ¡ 1̀ 1
i 5 1

eYi (w) because of a possible clump of w that would start in X
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before position 1 and would stop after position ` ¡ 1. The difference eN (w ) ¡ eN inf(w ) is either equal to 0
or equal to 1. In fact, it can be shown that P( eN (w ) 65 eN inf(w )) µ (` ¡ 1)(m (w ) ¡ em (w )) (see Reinert and
Schbath, 1998).

3.3. k-clump and number of k-clumps

A k-clump of w starts at position i in X if and only if there is an occurrence of a concatenated word
c 2 C k (w) starting at position i that does not overlap any other occurrence of w in the sequence X . As
we proceeded for a clump occurrence, an occurrence of c 2 C k(w ) is a k-clump of w in X if and only if
it is not directly preceded by any principal root w ( p) of w and it is not directly followed by any suf� x
w (q) 5 w` ¡ q 1 1 w` with q 2 P 0(w ). Some straightforward calculation yields the following expression
(Schbath, 1995a):

eYi,k (w ) :5 1Ifa k-clump of w starts at position i in X g (3.6)

5
X

c2 C k (w )

0

@Yi (c) ¡
X

p2P0(w )

Yi ¡ p(w ( p)c) ¡
X

q2P0(w )

Yi (cw (q)) 1
X

p,q2P0(w )

Yi ¡ p (w ( p)cw (q))

1

A .

It follows that the probability for a k-clump to start at a given position is given by

em k (w ) 5
X

c2 C k (w )

m (c) ¡ 2
X

c02 C k1 1(w )

m (c0) 1
X

c00 2 C k1 2(w )

m (c00).

This formula can be improved. Note that C k 1 1(w ) 5 fw ( p)c, c 2 C k (w ), p 2 P 0(w )g and m (w (p)c) 5
m (c) m (w (p) c)

m (c) 5 m (c) m (w (p) w )
m (w ) . By denoting

A (w ) 5
X

p2P0(w )

m (w ( p)w )
m (w )

,

we have that
P

c02 C k 1 1(w ) m (c0) 5 A (w )
P

c2C k (w ) m (c), and it follows that

em k (w ) 5 (1 ¡ A (w ))2
X

c2C k (w )

m (c)

5 (1 ¡ A (w ))2A (w )
X

c2 C k ¡ 1(w )

m (c)

...

5 (1 ¡ A (w ))2A (w )k ¡ 1m (w). (3.7)

As for the declumped count, the number of k-clumps of w in the � nite sequence may be different from
the sum eN (k)

inf (w) 5
Pn ¡ 1̀ 1

i 5 1
eYi,k (w) because of possible end effects. This difference can be controlled

in probability. Moreover, possible end effects may lead to a difference between the count N (w ) andP
k . 0 k eN (k)

inf (w ) but this can also be controlled (Reinert and Schbath, 1998).

3.4. Renewal and renewal count

A renewal of w starts at position i in X 1 X n if and only if there is an occurrence of w starting
at position i that either is the � rst one or does not overlap a previous renewal of w . Let Ii (w) be the
associated random indicator:

Ii (w ) 5 1Ifa renewal of w starts at position i in X 1 X n g

5 Yi (w )
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w )) (3.8)

with the convention that I j (w ) 5 0 if j , 1. Thus, for i µ `, a renewal occurrence of w at position i is
exactly a clump occurrence of w at i in the � nite sequence. Renewal count then makes extensive use of
the linear ordering in the sequence: it is de� ned by R (w) 5 Rn (w ) 5

Pn ¡ 1̀ 1
i 5 1 Ii (w ).
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4. WORD LOCATIONS ALONG A SEQUENCE

Here we are concerned with the length of the gaps between word occurrences. First we describe how
to get the exact distribution, and then we give asymptotic results.

4.1. Exact distribution of the length between word occurrences

Let w 5 w1 w` be a word of length ` on a � nite alphabet A. We assume that X 1 X n is a stationary
� rst-order Markov chain on A with transition matrix ¦ 5 (p (a, b))a,b2A and stationary distribution
(m (a))a2A. Here we are interested in the statistical distribution of the distance D between two successive
occurrences of w and, more precisely, in the probabilities f (d) 5 P(D 5 d) 5 P(w occurs at i 1
d and there is no occurrence of w between i 1 1 and i 1 d ¡ 1 j w occurs at i), d ¶ 1. In this section, we
say that a word w occurs at position i if an occurrence of w ends at position i ; it happens with probability
m (w ) given in (3.2).

The probability f (d) can be obtained via a recursive formula (Robin and Daudin, 1999), as � rst proposed
for independent and uniformly distributed letters by Blom and Thorburn (1982). It is clear that, if 1 µ d µ
` ¡ 1 and d 62 P(w), then f (d) 5 0. If d 2 P(w ) or if d ¶ `, then we decompose the event

E 5 fw occurs at i 1 dg

into the disjoint events

E 1 5 fw occurs at i 1 d and there is no occurrence of w between i 1 1 and i 1 d ¡ 1g

and

E 2 5 fw occurs at i 1 d and there are some occurrences of w between i 1 1 and i 1 d ¡ 1g.

Thus fE 1 j w at ig has probability f (d). Moreover E 2 is itself decomposed as E 2 5 [d ¡ 1
h5 1E 2(h), where

E 2(h) 5 fthere is no occurrence of w between i 1 1 and i 1 h ¡ 1, w occurs at i 1 h and i 1 dg

are again disjoint events.
If 1 µ d µ ` ¡ 1 and d 2 P(w ), then P(E j w at i ) 5 m (w)=m (w (` ¡ d )). Moreover, if there are

occurrences at positions i 1 h and i 1 d , for some h , d , then the occurrences necessarily overlap, and
this is only possible for d ¡ h 2 P(w); in this case, P(E 2(h) j w at i ) 5 f (h)m (w )=m (w ( ¡̀ d 1 h)). Thus,
we have

m (w )

m (w (` ¡ d))
5 f (d) 1

X

1µhµd ¡ 1
d ¡ h2P(w )

f (h)
m (w )

m (w (` ¡ d 1 h))
.

If d ¶ `, then P(E j w at i) 5 ¦d ¡ 1̀ 1(w`, w1)m (w)=m (w1). If there is an occurrence at positions i 1 h
and i 1 d , for some h , d , then we distinguish two cases depending on the possible overlap between the
occurrences at i 1 h and i 1 d : if d ¡ ` 1 1 µ h µ d ¡ 1, they overlap and we use the previous calculation;
if 1 µ h µ d ¡ `, they do not overlap and P(E 2(h) jw at i) 5 f (h)¦d ¡ ¡̀ h1 1(w`, w1)m (w)=m (w1). Thus,
from

P(E j w at i ) 5 P(E 1 j w at i) 1
d ¡ 1X

h5 1

P(E 2(h) j w at i)

we get

¦d ¡ 1̀ 1(w`, w1)
m (w)
m (w1)

5 f (d) 1
X

1µhµd ¡ `

f (h)¦d ¡ ` ¡ h1 1(w`, w1)
m (w)
m (w1)

1
X

d ¡ 1̀ 1µhµd ¡ 1
d ¡ h2P(w )

f (h)
m (w )

m (w ( ¡̀ d 1 h))
.

This is the proof of the next theorem (see Robin and Daudin, 1999).
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Theorem 4.1. The distribution f (d) 5 P(D 5 d) of the distance D between two successive occur-
rences of a word w in a Markov chain is given by the following recursive formula:

If 1 µ d µ ` ¡ 1 and d 2= P(w ), then f (d) 5 0.
If 1 µ d µ ` ¡ 1 and d 2 P(w),

f (d) 5
m (w )

m (w (` ¡ d))
¡

X

1µhµd ¡ 1
d ¡ h2P(w )

f (h)
m (w )

m (w (` ¡ d 1 h))
.

If d ¶ `,

f (d) 5 ¦d ¡ 1̀ 1(w`, w1)
m (w )
m (w1)

¡
X

1µhµd ¡ `

f (h)¦d ¡ ` ¡ h1 1(w`, w1)
m (w)
m (w1)

¡
X

d ¡ 1̀ 1µhµd ¡ 1
d ¡ h2P(w )

f (h)
m (w)

m (w ( ¡̀ d 1 h))
.

Since D is the distance between two successive occurrences of w , note that, even if d 2 P(w ), f (d) can
be null. For instance, by taking w 5 AAA, we have P (AAA) 5 f1, 2g, and f (1) 5 m (AAA)=m (AA) 5 p (A, A),
f (2) 5 p 2(A, A) ¡ f (1)p (A, A) 5 0.

Note that the recurrence formula on f (d) is not a “� nite” recurrence since calculating f (d) requires the
calculation of f (d ¡ 1), . . . , f (1), requiring substantial numerical calculations for large d . One can approach
this computation problem by using the generating function de� ned by ©D (t) :5 E(tD ) 5

P
d¶1 f (d)td .

Indeed, the key argument is that the ©D (t) expression is a rational function (Theorem 4.2 and Remark 4.3;
see Robin and Daudin, 1999) of the form P (t)=Q (t) so the coef� cient f (d) of td can be expressed with
a recurrence formula whose order is the degree of the polynomial Q (t ) (see Section 9.3).

Theorem 4.2. The generating function of D is

©D (t ) 5 1 ¡ m ¡ 1(w )

0

BB@
` ¡ 1X

u5 0
u2P(W )[f0g

tu

m (w ( ¡̀ u))
1

1

m (w1)

X

u¶1

¦u(w`, w1)t 1̀ u ¡ 1

1

CCA

¡ 1

.

Remark 4.3. If the transition matrix ¦ is diagonalizable, there exists ai , bi 2 C, i 5 2 jAj, such
that

1
m (w1)

X

u¶1

¦u (w`, w1)t 1̀ u ¡ 1 5
t `

1 ¡ t

0

@1 1
1 ¡ t

m (w1)

jAjX

i 5 2

ai

1 ¡ tbi

1

A

implying that the above expression is a rational function with a pole equal to 1.

Remark 4.4. Since ©D (t ) 5
P

d¶1 f (d)td , we have the general following properties:

E(D ) 5 © 0
D (1) 5 m ¡ 1(w )

Var(D ) 5 © 00
D (1) 1 © 0

D (1)(1 ¡ © 0
D (1)).

Successive derivations of ©D (t) are obtained using the decomposition stated in the previous remark.

Proof of Theorem 4.2. The proof of Theorem 4.2 is not complicated since one just has to develop
the sum

P
d¶0 f (d)td with f (d) given by Theorem 4.1, but it is very technical. We thus only give the

main lines of the calculation. By replacing f (d) given by Theorem 4.1 in
P

d¶0 f (d)td , we obtain a sum
of � ve terms

©D (t ) 5 K 1 ¡ K 2 1 K 3 ¡ K 4 ¡ K 5
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with

K 1 5
¡̀ 1X

d 5 1
d2P(W )

m (w )

m (w (` ¡ d))
td

K 2 5
¡̀ 1X

d 5 1
d2P(W )

d ¡ 1X

h5 1
d ¡ h2P(W )

f (h)
m (w )

m (w (` ¡ d 1 h))
td

5
¡̀ 2X

h 5 1

f (h)
X

d 5 h1 1
d ¡ h2P(W )

m (w )

m (w (` ¡ d 1 h))
td

5
¡̀ 2X

h 5 1

f (h)
X

u5 1
u2P(W )

m (w )

m (w (` ¡ u))
th1 u

K 3 5
X

d¶`

¦d ¡ 1̀ 1(w`, w1)
m (w )

m (w1)
td

5
m (w)
m (w1)

t` ¡ 1
X

u¶1

¦u(w`, w1)tu

K 4 5
X

d¶`

d ¡X̀

h 5 1

f (h)¦d ¡ ` ¡ h 1 1(w`, w1)
m (w )
m (w1)

td

5
m (w)
m (w1)

t` ¡ 1
X

z¶1

zX

h5 1

f (h)¦ z ¡ h1 1(w`, w1)tz 1 1

5
m (w)

m (w1)
t` ¡ 1

X

h¶1

f (h)th
X

z¶h

¦ z ¡ h1 1(w`, w1)tz ¡ h 1 1

5
m (w)
m (w1)

t` ¡ 1©D (t)
X

u¶1

¦u (w`, w1)tu

and

K 5 5
X

d¶`

d ¡ 1X

h5 d ¡ 1̀ 1
d ¡ h2P(W )

f (h)
m (w )

m (w (` ¡ d 1 h))
td

5
X

z¶1

z1 ¡̀ 2X

h5 z
z1 ¡̀ h ¡ 12P(W )

f (h)
m (w )

m (w (h ¡ z 1 1))
t z1 ¡̀ 1

5
¡̀ 1X

h 5 1

f (h)
hX

z5 1
z1 ` ¡ h ¡ 12P(W )

m (w )

m (w (h ¡ z 1 1))
t z1 ¡̀ 1

1
X

h¶`

f (h)th
hX

z5 h ¡ 1̀ 2
z 1 ` ¡ h ¡ 12P(W )

m (w )

m (w (h ¡ z1 1))
tz ¡ h1 ` ¡ 1

5
¡̀ 1X

h 5 1

f (h)
` ¡ 1X

u 5 ` ¡ h
u2P(W )

m (w )

m (w (` ¡ u))
th1 u

1
X

h¶`

f (h)th
` ¡ 1X

u5 1
u2P(W )

m (w )

m (w (` ¡ u))
tu .
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Grouping K 1 ¡ K 2 ¡ K 5 and K 3 ¡ K 4 leads to

©D (t) 5 (1 ¡ ©D (t ))

0

BB@
` ¡ 1X

u5 1
u2P(W )

m (w )

m (w (` ¡ u))
tu 1

m (w)

m (w1)
t` ¡ 1

X

u¶1

¦u(w`, w1)tu

1

CCA ,

hence

©D (t) 5 1 ¡

0

BB@1 1
` ¡ 1X

u5 1
u2P(W )

m (w )

m (w (` ¡ u))
tu 1

m (w )

m (w1)
t` ¡ 1

X

u¶1

¦u(w`, w1)tu

1

CCA

¡ 1

.

Using m (w )=m (w (`)) 5 1 establishes the theorem.

The distance D between two successive occurrences of w can be seen as the distance between the j-th
and ( j 1 1)-th occurrence of w in the sequence, since we use an homogeneous model. It may be useful
to study the distance D (r) between the j-th and ( j 1 r)-th occurrence of w , called r-scan by Karlin and
colleagues (e.g., Dembo and Karlin, 1992). The distance D (r) is the sum of r independent and identically
distributed random variables with the same distribution as D . So we have

©D (r ) (t ) 5
¡
©D (t )

¢r
.

We get the exact distribution of D (r) from the Taylor expansion of ©D (r ) (t): the probability P(D (r) 5 d)
is the coef� cient of td in the series.

4.2. Asymptotic distribution of r-scans

In the preceding paragraph, we presented how to get the exact distribution of an r-scan D (r) , the distance
between a word occurrence and the (r ¡ 1)-th next one, in a stationary Markov chain. When analyzing
a biological sequence, assume we observe (h 1 1) occurrences of a given motif, so that we observe h
distances D1, . . . , Dh between occurrences of the motif. Thus we observe (h ¡ r 1 1) so-called r-scans
D (r)

i 5
Pi 1 r ¡ 1

j 5 i D j . To detect poor and rich regions with this motif, one is interested in studying the
signi� cance of the smallest and the largest r-scans, or more generally in the kth smallest r-scan, denoted
by mk , and the kth largest r-scan, denoted by Mk . In this section, we present a Poisson approximation
for the statistical distribution of the extreme value mk obtained by Dembo and Karlin (1992) using the
Chen-Stein method. A similar result also exists for Mk by following an identical setup, so it will not be
explained in detail here.

We start de� ning the Bernoulli variables that will be used in the Chen-Stein method (see Section 9.1):

W ¡
i (d) :5 1IfD (r)

i µ dg, d ¶ 0.

Denote by

W ¡ (d) 5
h ¡ r 1 1X

i 5 1

W ¡
i (d)

the number of r-scans less or equal to d . Note the duality principle

fW ¡ (d) , kg 5 fmk . dg, d ¶ 0.

We now use Theorem 9.1 to get a Poisson approximation for the distribution of W ¡ (d). To apply this
theorem, we � rst need to choose a neighborhood of dependence for each indicator variable; ideally the
indicator variables with index not from the neighborhood of dependence are independent of that indicator
variable. Secondly there are three quantities to bound, called b1, b2, and b3, given in (9.1), (9.2), and
(9.3). Piecing this together gives a bound on the total variation distance between the distributions. Here
we proceed as follows.
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For i 2 f1, . . . , h ¡ r 1 1g, we choose the neighborhood B i 5 f j j ji ¡ j j , r g. Let Z l ¡ be the Poisson
variable with expectation l¡ , where

l¡ 5 EW ¡ (d)

5 (h ¡ r 1 1)EW ¡
i (d)

5 (h ¡ r 1 1)P(D (r) µ d).

Theorem 9.1 gives that

dTV
¡
L (W ¡ (d)), L (Z l¡ )

¢

µ
1 ¡ e ¡ l¡

l¡

0

@
h ¡ r 1 1X

i 5 1

X

j 2B i

EW ¡
i (d)EW ¡

j (d) 1
h ¡ r 1 1X

i 5 1

X

j 2B i nfig

E(W ¡
i (d)W ¡

j (d))

1

A .

Here, dTV denotes the total variation distance; see Section 9.1.
Indeed, the neighborhood B i has been chosen so that W ¡

i (d) is independent of W ¡
j (d), 8 j 2= B i , leading

to b3 5 0. For j . i , we have

E(W ¡
i (d)W ¡

j (d)) 5 P(D (r)
i µ d , D (r)

j µ d)

5 P(D (r)
j µ d j D (r)

i µ d)P(D (r)
i µ d)

5 P(D (r)
j ¡ i 1 1 µ d j D (r)

1 µ d)P(D (r) µ d).

Therefore,

h ¡ r 1 1X

i 5 1

X

j 2B i nfig

E(W ¡
i (d)W ¡

j (d)) µ 2(h ¡ r 1 1)P(D (r) µ d)
rX

s5 2

P(D (r)
s µ d j D (r)

1 µ d)

µ 2l ¡
rX

s5 2

P(D (r)
s µ d j D (r)

1 µ d).

It can be shown that

P(D (r)
s µ d j D (r)

1 µ d) µ P

0

@
s1 r ¡ 1X

i 5 r 1 1

D i µ d

1

A 5 P(D (s ¡ 1) µ d).

We � nally get

dTV
¡
L (W ¡ (d)), L (Z l¡ )

¢
µ

Á
(2r ¡ 1)P(D (r) µ d) 1 2

r ¡ 1X

s5 1

P(D (s) µ d)

!

£ (1 ¡ e ¡ l ¡
).

From the duality principle,

jP(mk . d) ¡ P(Z l¡ , k)j µ
Á

(2r ¡ 1)P(D (r) µ d) 1 2
r ¡ 1X

s5 1

P(D (s) µ d)

!

£ (1 ¡ e¡ l¡
).

This approximation is very useful for the comparison between the expected distribution of the r-scans
and the one observed in the biological sequence. It has been applied in Karlin and Macken (1991) to the
E. coli genome by approximating the r-scan distribution given in Section 4.1 by a sum of r ¡ 1 independent
exponential random variables.
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5. WORD COUNT DISTRIBUTION

Again let w 5 w1 w` be a word of length ` on a � nite alphabet A and X 5 (X i )i 2Z be a random
sequence on A. This section is devoted to the statistical distribution of the count N (w ) of w in the sequence
X 1 X n . First we state how to compute the exact distribution in the model M1, using recursion techniques.
For long sequences, however, asymptotic results are obtainable, and, in general, easier to handle. Here the
appropriate asymptotic regime depends crucially on the length ` of the target word relative to the sequence
length n. For very short words, the law of large numbers can be applied to approximate the word count
by the expected word count. This being a very crude estimate, one can easily improve on it by employing
the Central Limit Theorem, which states that the word count distribution is asymptotically normal. This
approximation will be satisfactory when the words are not too long. For rare words, as a rule of thumb
words of length ` ± log n, a compound Poisson approximation will give better results. For the latter, the
error made in the approximation can be bounded in terms of the sequence length, the word length, and
word probabilities, so that it is possible to assess when a compound Poisson approximation will be a good
choice. Moreover, the error bound can be incorporated to give conservative con� dence intervals, as it will
be explained below.

5.1. Exact distribution

If X is a stationary � rst-order Markov chain, the exact distribution of the count N (w) can be easily
obtained using the distribution of the successive positions (T j ) j¶1 of the j-th occurrence of w in X 1 X n .
Indeed, we have the following duality principle:

fN (w ) ¶ jg 5 fT j µ ng.

The exact distribution of T j can be obtained as in Section 4.1, by deriving the Taylor expansion of the
generating function ©T j (t) of T j . If j 5 1, the generating function ©T1 (t ) can be obtained as ©D (t) (see
Theorem 4.2). We just state the result of Robin and Daudin (1999):

©T1(t) 5
t`

1 ¡ t

0

BB@
¡̀ 1X

u 5 0
u2P(W )[f0g

tu

m (w (` ¡ u))
1

1

m (w1)

X

u¶1

¦u (w`, w1)t 1̀ u ¡ 1

1

CCA

¡ 1

.

Now, T j ¡ T1 is a sum of j ¡ 1 independent and identically distributed random variables with the same

distribution as D . So we have ©T j (t) 5 ©T1 (t )
¡
©D (t)

¢ j ¡ 1. The coef� cient of ta in the Taylor expansion
of ©T j (t) is then equal to P(T j 5 a) 5 g j (a). Using the duality principle, we get

P(N (w ) 5 j) 5
nX

a5 `

(g j (a) ¡ g j 1 1(a)).

This generalizes the exact result that Gentleman and Mullin (1989) obtained for the case that the sequence
is composed of i.i.d. letters, where each letter occurs with equal probability. In this case, Gentleman (1994)
also gives an algorithm for calculating the word frequency distribution. Moreover, in the Markov case the
exact distribution of the count can also be obtained by other techniques: Kleffe and Langbecker (1990)
used an automaton built on the pattern structure matrix, whereas Régnier (1998) and Régnier (1999) used
a language decomposition approach with combinatorial methods.

5.2. The weak law of large numbers

As a crude � rst approximation, the weak law of large numbers states that the observed counts will
converge towards the expected counts. Indeed we may use Chebyshev’s inequality to bound the expected
deviation of the observed counts from the expected number of occurrences. This approximation is valid
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only for relatively short words, and in this case a normal approximation gives more information. Such an
approximation will be derived in the following subsection.

5.3. Asymptotic distribution: the Gaussian regime

We assume that X 5 (X i )i 2Z is a stationary m-order Markov chain on A, 0 µ m µ ` ¡ 2, with
transition probabilities p (a1 am , am1 1) and stationary distribution m (a1 am), a1, . . . , am1 1 2 A. In
this subsection, N (w ) 5

Pn
i 5 ` Yi (w ) and

Yi 5 Yi (w) 5 1Ifw ends at position i in X g.

If the model is known, the asymptotic normality of (N (w) ¡ EN (w ))=
p

n directly follows from a Central
Limit Theorem for Markov chains and the variance of N (w ) is given by Kleffe and Borodovsky (1992).
When m 5 1, the expectation and variance of N (w ) are

EN (w ) 5 (n ¡ ` 1 1)m1(w)

VarN (w ) 5 EN (w ) 1 2
X

p2P(w )

EN (w ( p)w ) ¡ E2N (w )

1
2

m (w1)
m 2

1(w )
n ¡ 2 1̀ 1X

d 5 1

(n ¡ 2` 1 2 ¡ d)¦d (w`, w1)

where m 1(w ) is given in Eq. (3.2).
In the problem of � nding exceptional words in biological sequences, the model is unknown and its

parameters are estimated from the observed sequence. The expected mean of N (w) is not available and
is approximated with an estimator bNm (w). In this paragraph, we get both the asymptotic normality of
(N (w ) ¡ bNm (w))=

p
n and the asymptotic variance. This is not a trivial problem since the estimation

changes fundamentally the variance expression.
The expected mean of N (w) is given by EN (w ) 5 (n ¡ ` 1 1)m (w ), where m (w ) 5 mm (w ) is the

probability that an occurrence of w ends at a given position in the sequence (see Eq. (3.2)). Estimating
each parameter by its maximum likelihood estimator gives an estimator bNm(w ) of EN (w ):

bNm (w ) 5
N (w1 wm 1 1) N (w` ¡ m w`)

N (w2 wm 1 1) N (w` ¡ m w` ¡ 1)
. (5.1)

Let us � rst consider the maximal model (m 5 ` ¡ 2) that is mainly used to � nd exceptional words
(Brendel et al., 1986; Leung and Speed, 1996; Rocha et al., 1998). We introduce the following notation:
w ¡ 5 w1 w` ¡ 1 (pre� x of w with length ` ¡ 1), ¡ w 5 w2 w` (suf� x of w with length ` ¡ 1) and
¡ w ¡ 5 w2 w` ¡ 1. Under the maximal model, the estimator of N (w) is

bN` ¡ 2(w ) 5
N (w1 w ¡̀ 1)N (w2 w`)

N (w2 w` ¡ 1)
5

N (w ¡ )N ( ¡ w )
N ( ¡ w ¡ )

;

moreover, the asymptotic normality of (N (w) ¡ bN` ¡ 2(w))=
p

n and the asymptotic variance can be obtained
in an elegant way using martingale techniques. (For an introduction to martingales, see, e.g., Chung,
1974.) Indeed, bN` ¡ 2(w) is a natural estimator of N (w ¡ )p ( ¡ w ¡ , w`), and N (w ) ¡ N (w ¡ )p ( ¡ w ¡ , w`) is
approximately a martingale as it is shown below.

We introduce the martingale Mn 5
Pn

i 5 ` (Yi ¡ E(Yi j Fi ¡ 1)) with Fi 5 s(X 1, . . . , X i ); it is easy to
verify that E(Mn j Fn ¡ 1) 5 Mn ¡ 1. Moreover, we have

E(Yi j Fi ¡ 1) 5 P(w ¡ ends at i ¡ 1 and w` occurs at i j Fi ¡ 1)

5 1Ifw ¡ ends at i ¡ 1gp ( ¡ w ¡ , w`),
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and
nX

i 5 `

E(Yi j Fi ¡ 1) 5
¡
N (w ¡ ) ¡ 1Ifw ¡ ends at ng

¢
p ( ¡ w ¡ , w`).

Therefore,

1
p

n
Mn 5

1
p

n

¡
N (w ) ¡ N (w ¡ )p ( ¡ w ¡ , w`)

¢

¡
1

p
n

1Ifw ¡ ends at ngp ( ¡ w ¡ , w`). (5.2)

Note that n ¡ 1=21Ifw ¡ ends at ngp ( ¡ w ¡ , w`) tends to zero as n ! 1. The next proposition establishes
the asymptotic normality of Mn=

p
n.

Proposition 5.1. Let V 5 m (w ¡ )p ( ¡ w ¡ , w`)(1 ¡ p ( ¡ w ¡ , w`)). We have

1
p

n
Mn

D¡ ! N (0, V ) as n ! 1.

Proof. This is an application of Theorem 9.5 for the one-dimensional random variable jn, i 5 n ¡ 1=2(Yi ¡
E(Yi j Fi ¡ 1)). Three conditions have to be satis� ed. Condition (i) holds from E(jn ,i j Fi ¡ 1) 5 0. We then
have to check that

Pn
i 5 ` Var(jn ,i j Fi ¡ 1) converges to V as n ! 1. Since Yi is a 0-1 random variable,

we have

Var(Yi j Fi ¡ 1) 5 E(Yi j Fi ¡ 1) ¡
¡
E(Yi j Fi ¡ 1)

¢2

5 1Ifw ¡ ends at i ¡ 1gp ( ¡ w ¡ , w`)
¡
1 ¡ p ( ¡ w ¡ , w`)

¢
.

We thus obtain

nX

i 5 `

Var(jn, i j Fi ¡ 1) 5
1

n

nX

i 5 `

Var(Yi j Fi ¡ 1)

5
1

n
N (w ¡ )p ( ¡ w ¡ , w`)(1 ¡ p ( ¡ w ¡ , w`))

¡
1
n

1Ifw ¡ ends at i ¡ 1gp ( ¡ w ¡ , w`)(1 ¡ p ( ¡ w ¡ , w`))

¡ ! V as n ! 1;

the convergence follows from the Law of Large Numbers: N (w ¡ )=n ! m (w ¡ ).
Finally, jjn,i j µ 2p

n
, so that 8e . 0, 8n . 4=e2, P(jjn, i j . e) 5 0, establishing condition (iii). Using

Theorem 9.5 proves the proposition.

Proposition 5.1 and Equation (5.2) also yield that

1
p

n

¡
N (w ) ¡ N (w ¡ )p ( ¡ w ¡ , w`)

¢ D¡ ! N (0, V ) as n ! 1.

We initially wanted to prove such convergence for

Tn 5
1

p
n

¡
N (w) ¡ N (w ¡ )bp ( ¡ w ¡ , w`)

¢
,

where

bp ( ¡ w ¡ , w`) 5
N ( ¡ w )

N ( ¡ w ¡ )
.
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To this purpose, we decompose Tn as follows:

Tn 5
1

p
n

¡
N (w) ¡ N (w ¡ )p ( ¡ w ¡ , w`)

¢

¡
1

p
n

N (w ¡ )
¡
bp ( ¡ w ¡ , w`) ¡ p ( ¡ w ¡ , w`)

¢

5
1

p
n

¡
N (w) ¡ N (w ¡ )p ( ¡ w ¡ , w`)

¢

¡
1

p
n

N (w ¡ )

N ( ¡ w ¡ )

¡
N ( ¡ w) ¡ N ( ¡ w ¡ )p ( ¡ w ¡ , w`)

¢

5
1

p
n

Mn ¡
1

p
n

N (w ¡ )
N ( ¡ w ¡ )

M 0
n 1 o(1), (5.3)

where M 0
n is the martingale M 0

n 5
Pn

i 5 `

¡
Yi ( ¡ w ) ¡ E(Yi ( ¡ w) j Fi ¡ 1)

¢
. Now, using Theorem 9.5 gives

1
p

n

³
Mn

M 0
n

´
¡ ! N

³³
0
0

´
;

³
V V12

V21 V22

´´
(5.4)

with

V21 5 V12 5 lim
n!1

1

n

nX

i 5 `

E
¡¡

Yi ¡ E(Yi j Fi ¡ 1)
¢¡

Yi (
¡ w ) ¡ E(Yi (

¡ w) j Fi ¡ 1)
¢¢

and

V22 5 lim
n!1

1
n

nX

i 5 `

Var(Yi ( ¡ w) j Fi ¡ 1).

With the same technique as for the derivation of V , as Yi Yi ( ¡ w) 5 Yi , we get V21 5 V12 5 V and
V22 5 m ( ¡ w ¡ )p ( ¡ w ¡ , w`)(1 ¡ p ( ¡ w ¡ , w`)). Note that the Law of Large Numbers guarantees that,
almost surely,

N (w ¡ )

N ( ¡ w ¡ )
!

m (w ¡ )

m ( ¡ w ¡ )
as n ! 1. (5.5)

From (5.3)–(5.5), we are now able to deduce that Tn converges in distribution to N (0, s2
` ¡ 2(w )) with

s2
¡̀ 2(w ) 5 V11 ¡ 2

m (w ¡ )

m ( ¡ w ¡ )
V12 1

³
m (w ¡ )

m ( ¡ w ¡ )

´2

V22

5 m (w ¡ )

³
1 ¡

m (w ¡ )
m ( ¡ w ¡ )

´
p ( ¡ w ¡ , w`)(1 ¡ p ( ¡ w ¡ , w`))

5
m (w )

m ( ¡ w ¡ )

¡
m ( ¡ w ¡ ) ¡ m (w ¡ )

¢
(1 ¡ p ( ¡ w ¡ , w`))

5
m (w )

m ( ¡ w ¡ )

¡
m ( ¡ w ¡ ) ¡ m (w ¡ ) ¡ m ( ¡ w ) 1 m (w )

¢

5
m (w )

m ( ¡ w ¡ )2

¡
m ( ¡ w ¡ ) ¡ m ( ¡ w )

¢¡
m ( ¡ w ¡ ) ¡ m (w ¡ )

¢
.

We have just proved the following theorem.

Theorem 5.2. As n ! 1, we have

1
p

n

¡
N (w ) ¡ bN` ¡ 2(w )

¢ D¡ ! N (0, s2
` ¡ 2(w))
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with

s2
` ¡ 2(w ) 5

m (w )

m ( ¡ w ¡ )2
(m ( ¡ w ¡ ) ¡ m ( ¡ w ))(m ( ¡ w ¡ ) ¡ m (w ¡ )),

and

N (w) ¡ bN` ¡ 2(w )q
nbs2

¡̀ 2(w )

D¡ ! N (0, 1),

where nbs2
¡̀ 2(w ) is the plug-in estimator of ns2

` ¡ 2(w):

nbs2
` ¡ 2(w ) 5

bN` ¡ 2(w )

N ( ¡ w ¡ )2

¡
N ( ¡ w ¡ ) ¡ N ( ¡ w )

¢¡
N ( ¡ w ¡ ) ¡ N (w ¡ )

¢
.

In the nonmaximal models (m , ` ¡ 2), it is straightforward to extend the previous martingale approach
to prove the asymptotic normality of (N (w ) ¡ bNm(w ))=

p
n and to derive the asymptotic variance. Indeed,

for each value of ` ¡ m , the difference N (w ) ¡ bNm(w ) has to be decomposed as a linear combination of
martingales, exactly as it was done for Tn . For instance, if w 5 abcde and m 5 1,

N (abcde) ¡ bN 1(abcde) 5 N (abcde) ¡
N (ab)N (bc)N (cd)N (de)

N (b)N (c)N (d)

5 N (abcde) ¡ N (abcd)
N (de)

N (d)

1
N (de)

N (d)

³
N (abcd) ¡ N (abc)

N (cd)

N (c)

´

1
N (de)N (cd)

N (d)N (c)

³
N (abc) ¡ N (ab)

N (bc)

N (b)

´
.

Another approach consists of using the d-method as proposed in Lundstrom (1990). The idea is to con-
sider N (w ) ¡ bNm(w ) as f (N ) where N is the count vector N 5 (N (w), N (w1 wm1 1), . . . , N (w` ¡ m w`),
N (w2 wm 1 1), . . . , N (w` ¡ m w` ¡ 1)) (see Equation (5.1)). There exists a covariance matrix § such
that

1
p

n
(N ¡ EN )

D¡ ! N (0, §)

(see Waterman, 1995, for an exposition). The next step is to use the d-method (Theorem 9.3) to transfer
this convergence to f (N ):

1
p

n
( f (N ) ¡ f (EN ))

D¡ ! N (0, r§rt ),

where r 5
±

@f (x1 ,...,x2(` ¡ m ))
@x j

jEN

²

j 5 1,..., 2( ¡̀ m)
is the partial derivative vector of f . Since f (EN ) 5 0, we

� nally get

1
p

n

¡
N (w ) ¡ bNm (w)

¢ D¡ ! N (0, r§rt ).

However, this method does not easily provide an explicit formula for the asymptotic variance since the
function f and its derivative depends on ` ¡ m.

The conditional approach of Prum et al. (1995) provides an alternative to the problem. Initially presented
for the model M1, this method has been generalized to the general model Mm , 0 µ m µ ` ¡ 2 (Schbath,
1995b). The principle is to work conditionally on the suf� cient statistic Sm of the model Mm , namely the
collection of counts fN (a1 am 1 1), a1, . . . , am1 1 2 Ag and the � rst m letters of the sequence. Using
the technique developed by Cowan (1991), one can derive both the conditional expectation E(N (w ) j Sm )
and the conditional variance of N (w ). The key arguments are � rst that the conditional expectation is
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asymptotically equivalent to bNm (w ), leading to the asymptotic normality of (N (w ) ¡ E(N (w ) j Sm ))=
p

n,
and second, that n ¡ 1Var(N (w ) j Sm ) has the limiting value s2

m (w ) with

s2
m (w ) 5 m (w ) 1 2

X

p2P(w ), pµ` ¡ m ¡ 1

m (w ( p)w ) 1 m (w)2

£

0

@
X

a1 ,...,am

n(a1 am°)2

m (a1 am )
¡

X

a1 ,...,am1 1

n(a1 am1 1)2

m (a1 am1 1)
1

1 ¡ 2n(w1 wm°)

m (w1 wm )

1

A , (5.6)

where n( ) denotes the number of occurrences inside w , and n(a1 am°) stands for
P

b2A n(a1 amb).
Since the conditional moment of order 4 of N (w)=

p
n is bounded, it follows that

1
p

n

¡
N (w ) ¡ bNm (w )

¢ D¡ ! N (0, s2
m (w )).

The overlapping structure of w clearly appears in the limiting variance. It is an exercise to verify that the
limiting variances given by Theorem 5.2 and Equation (5.6) with m 5 ` ¡ 2 are identical.

Both martingale and conditional approaches can be extended to the Mm-3 model (see Introduction for
de� nition and notation). When one wants to distinguish the occurrences of w in a coding DNA sequence
according to a particular phase k 2 f1, 2, 3g (k represents the position of the word with respect to the
codons), one is interested in the count N (w , k) of w in phase k in X 1 X n ; recall that the word phase
is the phase of its last letter. Here we state the result in the maximal model; see Schbath (1995b) for the
general case.

Theorem 5.3. Assume X 5 (X i )i 2Z is a stationary (` ¡ 2)-order Markov chain on A with transition
probabilities pk (a1 a` ¡ 2, b) and stationary distribution m (a1 a` ¡ 2, k), a1, . . . , a` ¡ 2, b 2 A, k 2
f1, 2, 3g. As n ! 1, we have

1
p

n

³
N (w , k) ¡

N (w ¡ , k ¡ 1)N ( ¡ w , k)

N ( ¡ w ¡ , k ¡ 1)

´
D¡ ! N (0, s2

¡̀ 2(w , k))

with

s2
` ¡ 2(w , k) 5

m (w , k)
m ( ¡ w ¡ , k ¡ 1)2

¡
m ( ¡ w ¡ , k ¡ 1) ¡ m ( ¡ w , k)

¢

£
¡
m ( ¡ w ¡ , k ¡ 1) ¡ m (w ¡ , k ¡ 1)

¢

and

m (w ¡ , k ¡ 1) 5 m (w1 w` ¡ 2, k ¡ 2)pk ¡ 1(w1 w` ¡ 2, w ¡̀ 1)

m ( ¡ w , k) 5 m ( ¡ w ¡ , k ¡ 1)pk ( ¡ w ¡ , w`)

m (w , k) 5 m (w ¡ , k ¡ 1)pk ( ¡ w ¡ , w`).

Yet another approach is Stein’s method for normal approximations, namely Theorem 9.2. Let us for the
moment assume that we have the independent model M0. Put

s2 5 VarN (w )

5
nX

i 5 `

nX

j 5 `

¡
E(Yi (w )Y j (w )) ¡ m (w )2¢

5 2
nX

i 5 `

X

`µ jµi

¡
E(Yi (w )Y j (w )) ¡ m (w )2¢

5 2
nX

i 5 `

iX

j 5 (i ¡ 1̀ 1)_`

¡
E(Yi (w)Y j (w)) ¡ m (w )2¢

5 2
X

p2P(w )[f0g

(n ¡ ` ¡ p 1 1)
¡
m (w ( p)w ) ¡ m (w )2¢

.
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Note that

s ±
p

n.

De� ne

Z i (w ) 5
1

s
(Yi (w ) ¡ m (w)) , i 5 `, . . . , n.

Put

W 5
nX

i 5 `

Z i (w ) 5
1
s

fN (w) ¡ (n ¡ ` 1 1)m (w )g.

Choose S j 5 fi : ji ¡ j j µ ` ¡ 1g, and N j 5 fi : ji ¡ j j µ 2` ¡ 1g. With this neighborhood structure, we
use Theorem 9.2 with B 5 1

s , D1 5 2` ¡ 1, and D2 5 4` ¡ 3, and H the set of indicators of half-lines.
This provides an explicit bound on the Kolmogorov-Smirnov distance to the normal distribution. Note that,
due to the independence, the quantities x1, x2 and x3 vanish.

Theorem 5.4. Assume the independent model M0. There are constants a and c such that, for any word
w of length `,

jP(W µ x ) ¡ © (x )j µ c

»
a

1

s
(4` ¡ 3) 1

n

s3=2
(a 1 1)(2` ¡ 1)(4` ¡ 3)

¼
.

Moreover the result could be generalized to the model Mm, using a neighborhood of size proportional
to log n. As Theorem 9.2 would need some modifying (the quantities to bound should be in terms of
conditional expectations with respect to sigma-� elds rather than with respect to sums, to proceed as in
Schbath, 1998), the result as well as the multivariate generalization will not be presented here.

5.4. Asymptotic distribution: the Poisson regime

In the previous section, we showed that the count N (w ) of a word w in a random sequence of length
n can be approximated by a Gaussian distribution for large n. This Gaussian approximation is in fact not
good when the expected count (n ¡ ` 1 1)m (w ) is very small, meaning that w is a rare word. Poisson
approximations are appropriate for counts of rare events. As an illustration, it is well known that a sum
of independent Bernoulli variables can be either approximated by a Gaussian distribution or a Poisson
distribution, depending on the asymptotic behavior of the expected value.

When the sequence letters are independent, Poisson and compound Poisson approximations for N (w )
have been widely studied in the literature (Chryssaphinou and Papastavridis, 1988a,b; Chryssaphinou and
Papastavridis, 1988b; Arratia et al., 1990; Godbole, 1991; Hirano and Aki, 1993; Godbole and Schaffner,
1993; Fu, 1993). Markovian models under different conditions have then been considered (Rajarshi, 1974;
Godbole, 1991; Godbole and Schaffner, 1993; Hirano and Aki, 1993; Geske et al., 1995; Schbath, 1995a;
Erhardsson, 1997), but few works concern general periodic words and provide explicit parameters of the
limiting distribution. As we will see, a Poisson distribution is not satisfactory for periodic words because
of possible overlaps; a compound Poisson distribution is proposed. Two classes of tools can be used:
generating functions, which do not provide any approximation error, and the Chen-Stein method, which
gives a bound for the total variation distance between the two distributions (see Section 9.1 for details).
In this section, we chose to present the Chen-Stein approach under a � rst-order Markovian model with
known parameters; generalizations to higher order and to estimated parameters are presented at the end of
the section. No assumption is made on the overlapping structure of the word w . Our two basic references
are Arratia et al. (1990) and Schbath (1995a); for the case that the sequence is composed of i.i.d. letters
see also Apostolico et al. (1998).

We assume that X 5 (X i )i 2Z is a stationary � rst-order Markov chain on A, with transition probabilities
p (a, b) and stationary distribution m (a), a, b 2 A. Let w 5 w1 w` be a word of length ` on A. Here,
Yi 5 Yi (w) 5 1Ifw starts at position i in X g and m (w ) 5 EYi (w).

Applying Theorem 9.1 to the Bernoulli variables Yi , we obtain a bound b1 1 b2 1 b3 for the total variation
distance between the distribution of N (w ) and the Poisson distribution with mean (n ¡ ` 1 1)m (w); the
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mean does not converge to 0 under the rare word assumption nm (w ) 5 O(1). Note that nm (w ) 5 O(1)
also means ` 5 O(log n). The main dif� culty when applying Theorem 9.1 comes from the b2 term and
the possible overlaps of periodic words. Indeed, let w be a periodic word; its set of period P (w ) is not
empty. Take B i 5 fi ¡ 2` 1 1, . . . , i 1 2` ¡ 1g for the neighborhood of i 2 I 5 f1, . . . , n ¡ ` 1 1g; it
guarantees that b1 and b3 tend to 0 as n ! 1 1. We get

b2 :5
X

i 2I

X

j 2B i nfi g

EYi Y j 5 2(n ¡ ` 1 1)
X

p2P(w )

m (w ( p)w ) 1 O(n`m2(w));

this quantity can be of order O(1) for small periods p. The Poisson approximation is however valid for the
count of nonperiodic words because the set of periods is empty. For periodic words, the crucial argument is
to consider clumps that, by de� nition, cannot overlap. We � rst prove that the declumped count eN (w ) can be
approximated by a Poisson distribution with mean (n ¡ ` 1 1)em (w ) (see Eq. (3.5)) by applying Theorem 9.1
to the Bernoulli variables eYi (w ) de� ned in (3.3). Then, we prove a compound Poisson approximation for
N (w ) by applying Theorem 9.1 to the Bernoulli variables eYi,k (w ) de� ned in (3.6) and by using that N (w )
is asymptotically equivalent to

P
i 2I

P
k¶1 keYi,k (w ) in probability. For simplicity, the variables eYi (w ) and

eYi,k (w ) are denoted by eYi and eYi,k .

Poisson approximation for the declumped count. Our aim is to approximate the vector eY 5 (eYi (w )) i2I

of Bernoulli variables by a vector Z 5 (Z i )i2I with independent Poisson coordinates with mean EZ i 5
EeYi (w ) 5 em (w ), where em ( ) is de� ned in (3.5). To apply Theorem 9.1, we choose the following neigh-
borhood of i 2 I :

B i :5 f j 2 I : j j ¡ i j µ 3` ¡ 3g.

The neighborhood is such that, for j not in B i , there are no letters X h common to eYi and eY j , and
moreover, the X h’s de� ning eYi and those de� ning eY j are separated by at least ` positions. It is important
to consider a lag converging to in� nity with n since it leads to the exponential decay of the b3 term given
by Theorem 9.1, as we will see below. Deriving a bound for the total variation distance between eY and Z
consists of bounding the quantities b1, b2 and b3 given in (9.1), (9.2) and (9.3). Bounding b1 presents no
dif� culty:

b1 :5
X

i2I

X

j 2B i

EeYiEeY j µ (n ¡ ` 1 1)(6` ¡ 5)em2(w) 5 O
³

log n

n

´
.

Since clumps of w do not overlap in the sequence, eYi eY j 5 0 for j j ¡ i j , `. Therefore, we get

b2 :5
X

i2I

X

j 2B i nfig

EeYi eY j µ 2
X

i 2I

i 1 3 ¡̀ 3X

j 5 i 1 `

EeYi eY j ,

using the symmetry of B i . Now we have

EeYi eY j µ EeYiY j 5 em (w )¦ j ¡ i ¡ 1̀ 1(w`, w1)
m (w )
m (w1)

and

b2 µ
2

m (w1)
(n ¡ ` 1 1)em (w )m (w )

2` ¡ 2X

s5 1

¦ s(w`, w1) 5 O
³

log n

n

´
.

Bounding b3 is a little more involved, but we give all the steps because the same technique is used for the
compound Poisson approximation of the count and will not be described in detail then. By de� nition we
have

b3 :5
X

i2I

EjE(eYi ¡ EeYi j s(eY j , j 2= B i ))j.
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Since s(eY j , j 2= B i ) » s(X 1, . . . , X i ¡ 2 1̀ 1, X i 1 2` ¡ 1, . . . , X n), properties of conditional expectation and
the Markov property give

b3 µ
X

i2I

EjE(eYi ¡ EeYi j X i ¡ 2 1̀ 1, X i 1 2 ¡̀ 1)j

µ
X

i2I

X

x ,y 2A
jE(eYi ¡ EeYi j X i ¡ 2 1̀ 1 5 x , X i 1 2` ¡ 1 5 y )j

£ P(X i ¡ 2 1̀ 1 5 x , X i 1 2` ¡ 1 5 y ).

To evaluate the right-hand term, we introduce the set of possible words of length ` ¡ 1 preceding a clump
of w :

G (w ) 5 fg 5 g1 g` ¡ 1 : for all p 2 P (w ), g ¡̀ p g` ¡ 1 65 w ( p) g. (5.7)

Thus a clump of w starts at position i in (X i )i 2Z if and only if one of the words gw , g 2 G (w ), starts at
position i ¡ ` 1 1. Therefore, we can write

eYi (w) 5
X

g2G(w )

Yi ¡ 1̀ 1(gw). (5.8)

This gives us

b3 µ
X

i2I

X

x ,y 2A

X

g2G(w )

jE(Yi ¡ 1̀ 1(gw ) ¡ EYi ¡ 1̀ 1(gw ) j X i ¡ 2 1̀ 1 5 x , X i 1 2 ¡̀ 1 5 y )j

£ P(X i ¡ 2 1̀ 1 5 x , X i 1 2` ¡ 1 5 y )

5
X

i2I

X

x ,y 2A

X

g2G(w )

jP(X i ¡ 2 1̀ 1 5 x , Yi ¡ 1̀ 1(gw ) 5 1, X i 1 2` ¡ 1 5 y )

¡ m (gw)P(X i ¡ 2 1̀ 1 5 x , X i 1 2` ¡ 1 5 y )j

5
X

i2I

X

x ,y 2A

X

g2G(w )

­­­­m (x )¦`(x , g1)
m (gw )

m (g1)
¦`(w`, y ) ¡ m (gw)m (x )¦4` ¡ 2(x , y )

­­­­.

We now diagonalize the transition matrix. Let (at )t 5 1, ..., jAj be the eigenvalues of ¦ such that ja1j ¶ ja2j ¶
¶ jajAjj. The Perron-Frobenius Theorem (see, e.g., Karlin and Taylor, 1975) ensures that a1 5 1 and

ja2j , 1; we abbreviate a2 by a; (1, 1, . . . , 1)T is a right-eigenvector of ¦ for the eigenvalue 1 whereas the
vector of the stationary distribution (m (a), a 2 A) is a left-eigenvector of ¦ for the eigenvalue 1. Let D 5
Diag(1, a, a3, , ajAj). We decompose ¦ 5 P DP ¡ 1 such that the � rst column of P is (1, 1, . . . , 1)T ;
then the � rst row of P ¡ 1 is the vector of the stationary distribution (m (a), a 2 A). For all t 2 f1, . . . , jAjg,
I t denotes the jAj £ jAj matrix such that all its entries are equal to 0 except I t (t , t ) 5 1, and we de� ne
Q t :5 P I t P ¡ 1. We now use that ¦` 5 P D `P ¡ 1 5

PjAj
t 5 1 a`

t Q t and Q 1(a, b) 5 m (b), 8a, b 2 A:

b3 µ (n ¡ ` 1 1)jaj`
X

g2G(w )

m (gw )
X

x ,y 2A
m (x )

£

­­­­­­
1

m (g1)

X

(t , t 0)

a`
t a`

t 0

a`
Q t (x , g1)Q t 0 (w`, y ) ¡

jAjX

t 5 1

a4` ¡ 2
t

a`
Q t (x , y )

­­­­­­

5 (n ¡ ` 1 1)jaj`
X

g2G(w )

m (gw )
X

x ,y 2A
m (x )

£

­­­­­­
1

m (g1)

X

(t , t 0) 65 (1,1)

a`
t a`

t 0

a`
Q t (x , g1)Q t 0 (w`, y ) ¡

jAjX

t 5 2

a4` ¡ 2
t

a`
Q t (x , y )

­­­­­­

µ (n ¡ ` 1 1)jaj`
X

g2G(w )

m (gw )c (`, w`),
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where

c (`, a) 5 max
b2A

X

x ,y 2A
m (x )

­­­­­­
1

m (b)

X

(t , t 0) 65 (1,1)

a`
t a`

t 0

a`
Q t (x , b)Q t 0 (a, y ) ¡

jAjX

t 5 2

a4 ¡̀ 2
t

a`
Q t (x , y )

­­­­­­
.

Note that c (`, w`) 5 O(1). From (5.8) we have
P

g2G(w ) m (gw ) 5 em (w ) and

b3 µ (n ¡ ` 1 1)em (w )c (`, w`)jaj` 5 O(jaj`).

We have proved the next theorem.

Theorem 5.5. Let Z 5 (Z i )i 2I be independent Poisson variables with expectation EZ i 5 EeYi (w) 5
em (w ). We have

dTV
¡
L (eY ), L (Z )

¢
µ (n ¡ ` 1 1)(6` ¡ 5)em2(w) 1 (n ¡ ` 1 1)em (w )c (`, w`)jaj`

1
2

m (w1)
(n ¡ ` 1 1)em (w )m (w )

2 ¡̀ 2X

s5 1

¦s (w`, w1).

The declumped count eN (w) can be approximated by eN inf(w) :5
P

i 2I
eYi (w ) since

dTV
¡
L ( eN (w )), L ( eN inf(w ))

¢
µ P( eN (w ) 65 eN inf(w )) µ (` ¡ 1)(m (w ) ¡ em (w ))

(see Section 3). Using the triangle inequality leads to the following corollary:

Corollary 5.6. Let Z be a Poisson variable with expectation EZ 5 (n ¡ ` 1 1)em (w ). We have

dTV
¡
L ( eN (w )), L (Z )

¢
µ (n ¡ ` 1 1)(6` ¡ 5)em 2(w ) 1 (n ¡ ` 1 1)em (w)c (`, w`)jaj`

1
2

m (w1)
(n ¡ ` 1 1)em (w)m (w )

2` ¡ 2X

s5 1

¦ s(w`, w1)

1 (` ¡ 1)(m (w ) ¡ em (w )).

Compound Poisson approximation for the count. To approximate the distribution of the count N (w ), we
� rst use that N (w) is asymptotically equivalent to N inf(w ) :5

Pn ¡ 1̀ 1
i 5 1

P
k¶1 keYi,k in probability (Reinert

and Schbath, 1998):

dTV ( L (N (w )), L (N inf(w ))) µ P(N (w ) 65 N inf(w )) µ 2(` ¡ 1)(m (w) ¡ em (w)).

Our goal is now to approximate the vector (eYi,k )(i,k)2I , I 5 f1, . . . , n ¡ ` 1 1g £ f1, 2, . . .g, of Bernoulli
variables by a vector (Z i,k )(i,k)2I with independent Poisson coordinates with expectation EZ i,k 5 EeYi,k 5
em k (w ) where em k ( ) is given in Equation (3.7). The neighborhood B i,k of (i, k) is such that, for ( j, k 0) not
in B i,k , the letters X h’s de� ning eYi,k and those de� ning eY j,k are separated by at least ` positions. Since
eYi,k can be described by at most X i ¡ 1̀ 1, . . . , X i 1 (k 1 1)(` ¡ 1) , we consider

B i,k :5 f( j, k 0) 2 I : ¡ (k 0 1 3)(` ¡ 1) µ j ¡ i µ (k 1 3)(` ¡ 1)g.

We bound successively the quantities given in (9.1), (9.2) and (9.3). By de� nition

b1 :5
X

(i,k)2I

X

( j,k 0)2B i,k

EeYi,kEeY j,k 0

µ
n ¡ 1̀ 1X

i 5 1

X

k¶1

X

k 0¶1

i 1 (k 1 3)(` ¡ 1)X

j 5 i ¡ (k 01 3)(` ¡ 1)

em k (w )em k 0 (w )

µ (n ¡ ` 1 1)
X

k¶1

X

k 0¶1

¡
(k 1 k 0 1 6)(` ¡ 1) 1 1

¢
em k (w )em k 0 (w ).
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From (3.5) and (3.7), we use that

X

k¶1

em k (w) 5 em (w ), (5.9)

X

k¶1

kem k (w) 5 m (w), (5.10)

and we obtain

b1 µ (n ¡ ` 1 1)
±

2(` ¡ 1)em (w )m (w ) 1 (6` ¡ 5)em (w )2
²

.

The b2 term involves products such as eYi,k eY j ,k 0 with ( j, k 0) 2 B i,k . Since a k-clump of w at position i
cannot overlap a k 0-clump of w , many of these products are zero. To identify them, we need to describe
in more detail the compound words c 2 C k (w ) and c0 2 C k 0 (w) that may occur at positions i and j . For
this purpose, we introduce the set of words of length ` ¡ 1 that can follow a clump of w :

D(w ) 5 fd 5 d1 d` ¡ 1 : 8p 2 P(w ), d1 dp 65 w` ¡ p 1 1 w`g.

Therefore, we can write

eYi,k (w ) 5
X

g2G(w ),c2 C k (w ),d2D (w )

Yi ¡ 1̀ 1(gCd). (5.11)

For convenience, we simply write
P

gcd for the sum over g 2 G (w ), c 2 C k (w ), d 2 D(w ), and
P

g 0c0d 0

for the sum over g0 2 G (w ), c0 2 C k 0 (w ), and d0 2 D(w ). This gives us

b2 :5
X

(i,k)2I

X

( j ,k 0)2I nf(i,k)g

EeYi,k eY j,k 0

5
n ¡ 1̀ 1X

i 5 1

X

k¶1

X

k 0¶1

X

gcd

X

g0c0d 0

i 1 (k1 3)(` ¡ 1)X

j 5 i ¡ (k 0 1 3)( ¡̀ 1)

EYi ¡ 1̀ 1(gcd)Y j ¡ 1̀ 1(g0c0d 0).

For i ¡ jc0j , j , i 1 jcj, we have Yi ¡ 1̀ 1(gcd)Y j ¡ 1̀ 1(g0c0d 0) 5 0 because clumps do not overlap. We
then distinguish two cases:

(1) g 0c0d 0 at position j ¡ ` 1 1 overlaps gcd at position i ¡ ` 1 1 (this is only possible over at most
2(` ¡ 1) letters); that is, for

j 2 fi ¡ jc0j ¡ 2` 1 3, . . . , i ¡ jc0jg [ fi 1 jcj, . . . , i 1 jcj 1 2` ¡ 3g,

let b21 denote the associated term.
(2) g0c0d 0 at position j ¡ ` 1 1 does not overlap gcd at position i ¡ ` 1 1; that is, for

j 2 fi ¡ (k 0 1 3)(` ¡ 1), . . . , i ¡ jc0j ¡ 2` 1 2g [ fi 1 jcj 1 2` ¡ 2, . . . , i 1 (k 1 3)(` ¡ 1)g;

let b22 denote the associated term.
By symmetry, we have

b21 µ 2
n ¡ 1̀ 1X

i 5 1

X

k¶1

X

k 0¶1

X

gcd

X

g0c0d 0

i 1 jcj1 2` ¡ 3X

j 5 i 1 jcj
EYi ¡ 1̀ 1(gCd)Y j ¡ 1̀ 1(g0C 0d 0).

Summing over k 0, g 0, c0 and d 0 gives

b21 µ 2
n ¡ 1̀ 1X

i 5 1

X

k¶1

X

gcd

i 1 jcj1 2 ¡̀ 3X

j 5 i 1 jcj
EYi ¡ 1̀ 1(gcd)eY j (w );
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now, summing over d and using that eY j (w) µ Y j (w ) leads to

b21 µ 2
n ¡ 1̀ 1X

i 5 1

X

k¶1

X

gc

i 1 jcj1 2` ¡ 3X

j 5 i 1 jcj
EYi ¡ 1̀ 1(gc)Y j (w).

An occurrence of gc at position i ¡ ` 1 1 does not overlap an occurrence of w at position j ¶ i 1 jcj;
thus it follows that

EYi ¡ 1̀ 1(gc)Y j (w) 5 m (gc)¦ j ¡ i ¡ jcj1 1(w`, w1)
m (w )

m (w1)
,

and

b21 µ 2(n ¡ ` 1 1)
m (w )
m (w1)

2 ¡̀ 2X

s5 1

¦s (w`, w1)
X

k¶1

X

gc

m (gc).

Finally, note that
X

k¶1

X

gc

m (gc) 5
X

k¶1

X

k¤¶k

em k¤ (w ) 5
X

k¤¶1

k¤em k¤ (w) 5 m (w ),

which leads to

b21 µ 2(n ¡ ` 1 1)
m 2(w )

m (w1)

2` ¡ 2X

s5 1

¦s(w`, w1) 5 O
³

log n

n

´
.

The b22 term is easier to bound and we get

b22 µ 2(n ¡ ` 1 1)
em (w )
mmin

((` ¡ 2)m (w ) 1 em (w )) 5 O

³
log n

n

´
,

where m min is the smallest value of fm (a), a 2 Ag.
Finally, we have

b2 µ 2(n ¡ ` 1 1)
m 2(w )
m (w1)

2` ¡ 2X

s 5 1

¦ s(w`, w1) 1 2(n ¡ ` 1 1)
em (w)
m min

((` ¡ 2)m (w) 1 em (w)) .

Bounding b3 consists of following the different steps previously described for the declumped count and
using the decomposition (5.11) instead of (5.8). Since there is no interest in repeating this technical part,
we just give the bound of b3 and state the theorem:

b3 µ (n ¡ ` 1 1)em (w)c2(`)jaj`

with

c2(`) 5
X

x ,y 2A
m (x ) max

a,b2A

0

@ 1

m (b)

X

(t ,t 0) 65 (1,1)

­­­­­
a`

t a`
t 0

a`
Q t (x , b)Q t 0 (a, y )

­­­­­1
jAjX

t 5 2

­­­­­
a5` ¡ 3

t

a`
Q t (x , y )

­­­­­

1

A .

Theorem 5.7. Let (Z i,k )(i,k)2I be independent Poisson variables with expectation EZ i,k 5 EeYi,k (w ) 5
em k (w ). With the previous notation, we have

dTV
¡
L

¡
(eYi,k (w ))(i,k)2I

¢
, L

¡
(Z i,k )(i,k)2I

¢¢

µ (n ¡ ` 1 1)

³
2(` ¡ 1)em (w )m (w ) 1 (6` ¡ 5)em (w)2

´
1 (n ¡ ` 1 1)em (w )c2(`)jaj`

1 2(n ¡ ` 1 1)
m 2(w )
m (w1)

2` ¡ 2X

s5 1

¦s(w`, w1)

1 2(n ¡ ` 1 1)
em (w )

mmin

¡
(` ¡ 2)m (w) 1 em (w)

¢
.
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From the total variation distance properties, we have

dTV

0

@ L

0

@
X

(i,k)2I

keYi,k

1

A , L

0

@
X

(i,k)2I

kZ i,k

1

A

1

A µ dTV
¡
L

¡
(eYi,k (w ))(i,k)2I

¢
, L

¡
(Z i,k )(i,k)2I

¢¢
.

Since the Z i,k ’s are independent Poisson variables,
P

(i,k)2I kZ i,k is distributed like
P

k¶1 kZ k where
the Z k ’s are independent Poisson variables with expectation (n ¡ ` 1 1)em k (w ). Note that the latter is a
compound Poisson distribution. Using the triangle inequality leads to the following corollary:

Corollary 5.8. Let (Z k )k¶1 be independent Poisson variables with expectation EZ k 5 (n ¡ 1̀ 1)em k (w );
CP denotes the compound Poisson distribution of

P
k¶1 kZ k . With the previous notation, we have

dTV ( L (N (w )), CP) µ (n ¡ ` 1 1)
±
2(` ¡ 1)em (w )m (w) 1 (6` ¡ 5)em (w )2

²
1 (n ¡ ` 1 1)em (w )c2(`)jaj`

1 2(n ¡ ` 1 1)
m2(w )

m (w1)

2 ¡̀ 2X

s5 1

¦s (w`, w1) 1 2(n ¡ ` 1 1)
em (w )

mmin

¡
(` ¡ 2)m (w ) 1 em (w )

¢

1 2(` ¡ 1)(m (w ) ¡ em (w )) 5 O

³
log n

n

´
.

Also using the Chen-Stein method, Erhardsson (1997) obtained a different type of bound using a Markov
chain coupling instead of the local approach. Related results for Poisson approximations using a Markov
chain coupling have been announced by Roos and Stark (1999). The special case of runs of 1 in a random
sequence of letters in the binary alphabet f0, 1g has been extensively studied: Erdös and Réyni (1970)
gave the asymptotic behavior of the longest run in a sequence of Bernoulli trials and of the length of
the longest segment that contains a proportion of 1 greater than a predescribed level a. Their result was
re� ned by Deheuvels, Devroye, and Lynch (1986). The compound Poisson approximation for counts of
runs in the case where the sequence letters are independent has been considered by Eichelsbacher and
Roos (1999), also employing the Chen-Stein method using recent results by Barbour and Utev (1998)
(the limiting distribution is the same as the one given above, reduced to this special case). Very recently,
Barbour and Xia (1999) obtained a more accurate limiting approximation for the case of runs of length 2;
this approximation is based on a perturbation of a Poisson distribution.

Such a bound on the total variation distance between, for instance, the word count distribution and the
associated compound Poisson distribution has the great advantage of providing con� dence intervals (see
Section 9.1). Indeed, using notation from Corollary 5.8, for all t 2 R, we have

­­­­­­
P(N (w) ¶ t) ¡ P

0

@
X

k¶1

kZ k ¶ t

1

A

­­­­­­
µ dTV

0

@ L (N (w )), L

0

@
X

k¶1

kZ k

1

A

1

A .

Estimation of the parameters. When the transition probabilities are unknown and can only be estimated
from the observed sequence, we need to evaluate the total variation distance between the word count
distribution and the distribution of

P
k¶1 kZ 0

k where the Z 0
k ’s are independent Poisson variables with

expectation (n ¡ ` 1 1)bem k (w ), where bem k (w ) is the observed value of the plug-in maximum likelihood
estimator of em k (w ). Similarly, we want to know the total variation distance between the declumped count,
eN (w ), and the Poisson variable with expectation (n ¡ ` 1 1)bem (w ). For this we use the triangle inequality
and the fact that the total variation distance between two Poisson variables with expectation l and l0 is
less than jl ¡ l0j:

dTV
¡
L ( eN (w )), Po((n ¡ ` 1 1)bem (w))

¢
µ dTV

¡
L ( eN (w )), Po((n ¡ ` 1 1)em (w ))

¢

1 (n ¡ ` 1 1)jbem (w ) ¡ em (w)j.
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Using the Law of Iterated Logarithm for Markov chains (Senoussi, 1990) and Equation (3.2), one can
show that

bm (w) 5 m (w)

Á
1 1 O

Á
`
p

log log n
p

n

!!
almost surely (a.s.)

(see Schbath, 1995b). Under the rare word condition nm (w ) 5 O(1), we get

nbm (w ) ¡ nm (w ) 5 O

Á
`
p

log log n
p

n

!
a.s.

Now, using Equation (3.5), we obtain

nbem (w ) ¡ nem (w) 5 O

Á
`2

p
log log n
p

n

!
a.s.

This quantity converges to zero as n ! 1, because the rare word condition implies that ` 5 O(log n).
Thus,

dTV
¡
L ( eN (w )), Po

¡
(n ¡ ` 1 1)bem (w )

¢¢
µ dTV

¡
L ( eN (w )), Po

¡
(n ¡ ` 1 1)em (w )

¢¢

1 O

Á
`2

p
log log n
p

n

!
.

The approximation follows from Corollary 5.8.
Note that we do not have an explicit bound for this additional error term. However, for long sequences

the error term due to the maximum-likelihood estimation will be small compared to the bound on the
(compound) Poisson approximation error.

Similarly, the total variation distance between the two compound Poisson distributions is bounded by

dTV

0

@ L

0

@
X

k¶1

kZ k

1

A , L

0

@
X

k¶1

kZ 0
k

1

A

1

A µ
X

k¶1

jnbem k (w) ¡ nem k (w )j.

Using Equation (3.7), this quantity tends to zero as n ! 1 when nm (w) 5 O(1) (see Schbath, 1995b).

Generalization to Mm. Let us now assume that the sequence (X i )i 2Z is a m-order Markov chain on
the alphabet A, with transition probabilities p (a1 am , am 1 1), a1, , am 1 1 2 A. The basic idea is to
rewrite the sequence over the alphabet Am by de� ning

Xi 5 X i X i 1 1 X i 1 m ¡ 1,

so that the sequence (Xi )i2Z is a � rst-order Markov chain on Am with transition probabilities such that,
for A 5 a1 am 2 Am and B 5 b1 bm 2 Am ,

¦ (A, B) 5

»
p (a1 am , bm ) if a2 am 5 b1 bm ¡ 1
0 else.

Denote by W 5 W1 W` ¡ m1 1 the word w 5 w1 . . . w` written using the alphabet Am , so that W j 5
w j . . . w j 1 m ¡ 1. The results presented below are valid for the number N (W) of overlapping occurrences
and the number eN (W) of clumps of W in X1 Xn ¡ m 1 1. Since an occurrence of w at position i in
X 1 X n corresponds to an occurrence of W at position i ¡ m 1 1 in X1 Xn ¡ m 1 1, we simply have
N (w ) 5 N (W). In contrast, clumps of W in X1 Xn ¡ m1 1 are different from clumps of w in X 1 X n

because W is less periodic than w , leading to eN (W) 65 eN (w ). Let us take a simple example: w 5 ATA
and m 5 2. Put A 5 AT 2 A2 and B 5 TA 2 A2; we then have W 5 AB. The sequence TATATATAT
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contains a unique clump of AT whereas the associated sequence BABABABA contains 3 clumps of AB.
Indeed, AB has no period and ATA has one period. In fact, the periods of W are those periods of w that are
strictly less than ` ¡ m 1 1. Therefore, the Poisson approximation for the declumped count in an m-order
Markov chain does not follow immediately from the case m 5 1; a rigorous proof would require applying
the Chen-Stein theorem with an adapted neighborhood and bounding the new quantities b1, b2 and b3 in
Mm, but this has not been carried out yet.

Since N (w ) 5 N (W), Corollary 5.8 ensures that N (w ) can be approximated by a sum
P

k¶1 kZ k ,
where Z k is a Poisson variable whose expectation is (n ¡ ` 1 1) times the probability that a k-clump of
W starts at a given position in X1 Xn ¡ m 1 1. From Equation (3.7), we obtain

EZ k 5 (n ¡ ` 1 1)(1 ¡ A 0(w ))2A 0(w )k ¡ 1m (w )

with

A 0(w ) 5
X

p2P0(w )[f1, ...,` ¡ mg

m (w ( p)w )

m (w )
.

An important consequence is that, in Mm , the compound Poisson approximation for words that cannot
overlap on more than m ¡ 1 letters, comes from a single Poisson approximation.

5.5. Large deviation approach

For long sequences, the probability that a given word occurs more than a certain number of times can
be approximated using a Gaussian or a compound Poisson distribution (Sections 5.3 and 5.4). The aim of
this section is to show that large deviation techniques can also be used to approximate the probability that
a given word frequency deviates from its expected value. Let w 5 w1 w` be a word of length `; recall
that m (w) denotes the probability that w occurs at a given position in X 1 X n . We now aim to provide
good approximations for P( 1

n ¡ 1̀ 1 N (w ) ¶ m (w) 1 b) and P( 1
n ¡ 1̀ 1 N (w ) µ m (w ) ¡ b) with 0 , b , 1.

We assume that X 1 X n is a stationary � rst-order Markov chain on a � nite alphabet A with transition
probabilities p (a, b) . 0, a, b 2 A. (Generalizing to Mm follows the same setup as in Section 5.4.) To
use Theorem 9.4 for 1

n ¡ 1̀ 1 N (w), we need to consider the irreducible Markov chain X1, …, Xn ¡ 1̀ 1 on
A`, where Xi 5 X i X i 1 ` ¡ 1, with transition matrix I¦ 5 (¦ (u, v))u ,v 2A` such that

¦ (u1 u`, v1 v`) 5

»
p (u`, v`) if u j 1 1 5 v j , j 5 1 ` ¡ 1,
0 else.

The count N (w ) can then be written as

N (w ) 5
n ¡ 1̀ 1X

i 5 1

1IfX i X i 1 ` ¡ 1 5 w1 w`g

5
n ¡ 1̀ 1X

i 5 1

1IfXi 5 w g :5
n ¡ 1̀ 1X

i 5 1

f (Xi )

with f (u) 5 1Ifu 5 wg, u 2 A`. We have E f (X1) 5 m (w ). Let I be the function I (x ) 5 suph2R(hx ¡
log l(h)), x 2 R, with l(h) the largest eigenvalue of the matrix I¦h 5 (¦h(u, v))u ,v 2A` de� ned by

¦h(u, v) 5

»
eh¦ (u, v) if v 5 w ,
¦ (u, v) else.

Let 0 , b , 1; applying Theorem 9.4 to the closed subset [m (w ) 1 b, 1 1] and the open subset (m (w) 1
b, 1 1), we get

lim
n! 1 1

1
n ¡ ` 1 1

log P
³

1
n ¡ ` 1 1

N (w) ¶ m (w) 1 b

´
5 ¡ I (m (w ) 1 b);
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similarly we have

lim
n! 1 1

1

n ¡ ` 1 1
log P

³
1

n ¡ ` 1 1
N (w ) µ m (w ) ¡ b

´
5 ¡ I (m (w ) ¡ b).

Denoting the observed count of w in the biological sequence by N obs(w), we get for large n:

if N obs(w ) . (n ¡ ` 1 1)m (w ) and b :5
N obs (w )
n ¡ 1̀ 1 ¡ m (w), then

P(N (w ) ¶ N obs(w)) ’ exp
³

¡ (n ¡ ` 1 1)I
³

N obs(w )

n ¡ ` 1 1

´´
,

if N obs(w ) , (n ¡ ` 1 1)m (w ) and b :5 m (w ) ¡ N obs(w )
n ¡ 1̀ 1 , then

P(N (w ) µ N obs(w )) ’ exp
³

¡ (n ¡ ` 1 1)I
³

N obs(w )

n ¡ ` 1 1

´´
.

Note that this approximation has been obtained assuming the transition probabilities p (a, b), a, b 2 A are
known. Moreover, since l(h) is an eigenvalue of a jAj` £ jAj` matrix, the word length ` is a limiting
factor for the numerical calculation, even if jAj 5 4.

6. RENEWAL COUNT DISTRIBUTION

As a particular case of nonoverlapping occurrence counts, in this section we count renewals of a word
w 5 w1w2 . . . w` in a random sequence X 1 X n as de� ned in Section 3. We then consider the renewal
count Rn(w ) 5

Pn ¡ 1̀ 1
i 5 1 Ii (w ), where Ii (w ) is the random indicator that a renewal of w starts at position

i in X 1 X n (see (3.8)). Exact results can be found in Régnier (1999); in particular, a combinatorial
approach and language decompositions are used to derive the moment generating function of the renewal
count. Because those tools are very different from the ones used in this paper, we only present asymptotic
results.

6.1. Gaussian approximation

When the letters X 1, . . . , X n are independent and identically distributed, the asymptotic distribution of
the renewal count was studied by Breen et al. (1985); Tanushev (1996) proved a Central Limit Theorem in
the Markovian case. The main technique being generating functions, no bound on the rate of convergence
is obtained. Here we present the result from Tanushev (1996).

Note that, once asymptotic mean and variance are established, the normal approximation follows from
the Markov renewal Central Limit Theorem. First we derive the expected renewal count.

If the Ii (w )’s had the same expectation, say mR (w ), then ERn (w ) 5 (n ¡ ` 1 1)m R (w ). This is the
commonly used expectation (see Breen et al., 1985, or Tanushev, 1996, for instance), but it ignores the end
effect. For i . `, the Ii (w )’s are effectively identically distributed by stationarity of the Markov process,
but this is not the case for 1 µ i µ `.

We start with the calculation of m R (w). Recall that P(w) is the set of periods of w and that w ( p) 5
w1w2 w p denotes the word composed of the � rst p letters of w . We consider the overlap-matching
polynomial Q (z) associated with w (see, e.g., Guibas and Odlyzko, 1980; Li, 1980; Biggins and Cannings,
1987) de� ned by

Q (z) 5
X

p2P(w )[f0g

m (w)

m (w ( ¡̀ p))
z p .

When the Markov process is in stationarity, we have from renewal theory that

mR (w ) 5
m (w )

Q (1)
. (6.1)

To understand this formula, note that we can decompose the event fthere is an occurrence of w starting at
position ig, i . `, as the disjoint union of fthere is a renewal of w starting at position ig and fthere is a
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renewal of w starting at position j directly followed by the letters w` ¡ i 1 j 1 1 w` and j ¡ i is a period
of w g, for j 2 fi ¡ ` 1 1, . . . , i ¡ 1g. This can be written as follows

Yi (w) 5
iX

j 5 i ¡ 1̀ 1

I j (w )Y j 1 `(w ¡̀ i 1 j 1 1 w`)1Ifi ¡ j 2 P(w ) [ f0gg

5
X

p2P(w )[f0g

Ii ¡ p (w )Yi 1 ¡̀ p (w ¡̀ p1 1 w`).

Taking expectations on both sides thus gives

m (w ) 5
X

p2P(w )[f0g

m R (w )m (w` ¡ p w`)
1

m (w ¡̀ p)
.

Hence

m R (w ) 5
m (w )P

p2P(w )[f0g p (w` ¡ p , w` ¡ p 1 1) p (w` ¡ 1, w`)
,

which gives the result (6.1).
As previously noted, the � rst variables I1(w ), . . . , I`(w ) are not identically distributed because of bound-

ary effects. For the asymptotic results of interest in this section, this end effect may be ignored. Note,
however, that Régnier (1999) provides the exact renewal count expectation, namely

ERn(w ) 5 (n ¡ ` 1 1)mR (w ) 1 m R (w )
Q 0(1)
Q (1)

.

Calculating the asymptotic variance is a little more involved, relying much on the overlap-matching
polynomial. To this purpose, similarly to Tanushev (1996), we de� ne A as the jAj£jAj matrix where each
row is the vector (m (a), a 2 A) of the stationary distribution. With ¦ denoting the Markovian transition
matrix, put

Z 5
1X

k 5 1

(¦ ¡ A )k . (6.2)

Put

s2 5 m 2
R (w)

³
(1 ¡ 2`) 1 2

Q 0(1)
Q (1)

1
2Z (w`, w1)

m (w1)

´
.

Then Tanushev (1996) proved the following theorem, using generating functions. (It is a special case of
his theorem, which in fact proves a multivariate approximation.)

Theorem 6.1. We have that, as n ! 1,

Rn(w ) ¡ nmR (w )
p

n
D¡ ! N (0, s2).

The theorem is much easier to prove in the i.i.d. case, which is carried out in Waterman (1995). In fact,
all that is needed is to establish the variance expression (which will not be presented here); everything else
follows from the Renewal Central Limit Theorem.

6.2. Poisson approximation

Similarly as with the declumped count, we can also derive a Poisson approximation for the renewal
count under the rare word condition nm (w) 5 O(1). Indeed this is very simple. Recall (3.1)

Yi (w ) :5 1Ifw starts at position i in X g.
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We write, for i . `,

Ii (w) 5 Yi (w)
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w ))

5 Yi (w)
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w ))

1 Yi (w )

0

@
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w)) ¡
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w ))

1

A

5 eYi (w) 1 Yi (w )

0

@
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w )) ¡
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w ))

1

A , (6.3)

whereas Ii (w ) 5 Yi (w )
Qi ¡ 1

j 5 1(1 ¡ Y j (w)) if 1 µ i µ `. Note that a renewal occurrence in the � rst `
positions is a clump occurrence observed in the � nite sequence, and conversely. Thus we have

Rn(w ) 5
n ¡ 1̀ 1X

i 5 1

Ii (w)

5 eN (w ) 1
n ¡ 1̀ 1X

i 5 1̀ 1

Yi (w )

0

@
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w)) ¡
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w ))

1

A .

We have already derived a Poisson approximation for the number of clumps eN (w) (see Section 5.4). Let
us consider the difference

Rn(w ) ¡ eN (w) 5
n ¡ 1̀ 1X

i 5 1̀ 1

Yi (w)

0

@
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w)) ¡
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w ))

1

A .

For a summand to be nonzero, � rstly we need that Yi (w) 5 1. Note that a renewal always implies an
occurrence, so that

i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ I j (w)) ¶
i ¡ 1Y

j 5 i ¡ 1̀ 1

(1 ¡ Y j (w )).

The product being always 0 or 1, the two products are different if and only if
Qi ¡ 1

j 5 i ¡ 1̀ 1(1 ¡ I j (w)) 5 1

and
Qi ¡ 1

j 5 i ¡ 1̀ 1(1 ¡ Y j (w )) 5 0. This implies that there is no renewal between the positions i ¡ ` 1 1 and
i ¡ 1, but that there must be an occurrence not only at position i but also at some position j between
i ¡ ` 1 1 and i ¡ 1. This occurrence again cannot be a renewal, so that it must be part of a larger clump;
repeating this argument we see that the occurrence at i must be part of a clump that started before position
i ¡ ` 1 1. This implies that there had to be an occurrence of w somewhere between i ¡ 2` 1 2 and i ¡ `,
and this occurrence is in the same clump as the occurrence at i . Thus

P(Rn(w) 65 eN (w )) µ
n ¡ 1̀ 1X

i 5 1̀ 1

i ¡X̀

j 5 i ¡ 2 1̀ 2

EYi (w )Y j (w )

µ (n ¡ 2` 1 1)(` ¡ 1)m (w )2 1
m (w1)

. (6.4)

This quantity will be small under the asymptotic framework nm (w) 5 O(1). Thus we may use the Poisson
bound for the number of clumps derived above, and just add an error term of order log n=n. Indeed this
has been the idea behind the proof of Geske et al. (1995), although Geske et al. (1995) prove the result
only for words having at most one principal period. Related results have been obtained by Chryssaphinou
and Papastavridis (1988b).
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7. OCCURRENCES OF MULTIPLE PATTERNS

When characterizing protein families via short motifs, for instance, one is interested in the distribution
of the joint occurrences of multiple patterns rather than single patterns. It is also of interest to determine
the statistical signi� cance of the count of degenerated words like A(C or G)G(A or T). Asymptotic results,
similar to the above approximations, are available for the distribution of joint occurrences and joint counts
of multiple patterns and we will present them in this section. As we will see, the main new feature one
has to consider are the possible overlaps between different words from the target family.

Thus we are interested in the family of q words fw 1, . . . , w q g, where w r 5 w r
1w r

2 w r
`r

. For two

words w 1 5 w 1
1w 1

2 w 1
`1

and w 2 5 w 2
1w 2

2 w 2
`2

on A, we describe the possible overlaps between w1

and w 2 by de� ning

P(w 1, w2) :5 fp 2 f1, . . . , `1 ¡ 1g : w 2
i 5 w 1

i 1 p , 8i 5 1, . . . , (`1 ¡ p) ^ `2g.

Thus P (w 1, w 2) 65 ; means that an occurrence of w 2 can overlap an occurrence of w 1 from the right, and
P(w 2, w 1) 65 ; means that w 2 can overlap w 1 from the left. Note the lack of symmetry; for example, if
w 1 5 AAAGAAGAA and w 2 5 AAGAATCA , we have P(w1, w 2) 5 f4, 7, 8g and P(w 2, w 1) 5 f7g. To avoid
trivialities, we make the following assumption.

(A1) 8r 65 r 0, w r is not a substring of w r 0
.

Again we model the sequence fX i gi 2Z as a stationary ergodic Markov chain.

Gaussian approximation for the joint distribution of multiple word counts. We assume the general
model Mm, m µ minf`r ¡ 2, r 5 1, . . . , qg. We state the asymptotic normality of the vector n ¡ 1=2(N (w r ) ¡
bNm (w r ))r 5 1, ...,q :

1
p

n

¡
N (w r ) ¡ bNm (w r )

¢
r 5 1,...,q

D¡ ! N (0, §m).

To prove this result, we use a multivariate martingale central limit theorem. The estimated count bNm (w r )
is given by (5.1). The novelty consists here of deriving the asymptotic covariance matrix §m 5
(§m (w r , w r 0

))r,r 05 1,...,q .
Suppose all the words w r have the same length ` and m 5 ` ¡ 2 (the maximal model) then the martingale

technique (see Section 5.3) leads to

§` ¡ 2(w r , w r 0
) 5 m (w r)m (w r 0

)

Á
1Ifw r 5 w r 0 g

m (w r )
¡

1If(w r ) ¡ 5 (w r0
) ¡ g

m ((w r ) ¡ )

¡
1If¡ (w r ) 5 ¡ (w r 0

)g

m ( ¡ (w r ))
1

1If¡ (w r ) ¡ 5 ¡ (w r 0
) ¡ g

m ( ¡ (w r ) ¡ )

!
.

Note that when r 5 r 0, this formula reduces to the asymptotic variance s2
` ¡ 2(w r ) of Section 5.3.

More generally, for r 65 r 0, the conditional approach (see Section 5.3) leads to

§m(w r , w r 0
) 5

X

p2P(w r ,w r 0
)

pµ`r ¡ m ¡ 1

m

³
(w r)( p)w r0

´
1

X

p2P(w r 0
,w r )

pµ`r 0 ¡ m ¡ 1

m

³
(w r0

)(p)w r
´

1 m (w r )m (w r0
)

Á
X

a1 ,...,am

n(a1 am°)n0(a1 am°)
m (a1 am)

¡
X

a1 ,...,am1 1

n(a1 am1 1)n0(a1 am1 1)
m (a1 am 1 1)

¡
n(w r 0

1 w r0
m°)

m (w r 0
1 w r 0

m )

1
1Ifw r

1 w r
m 5 w r0

1 w r 0
m g ¡ n0(w r

1 w r
m°)

m (w r
1 w r

m )

!
,
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where n( ) denotes the number of occurrences inside w r and n0( ) denotes the number of occurrences
inside w r 0

. (When r 5 r 0, the formula reduces to (5.6).)
Note that, if one wants to study the total number of occurrences of a word family fw r , r 5 1, . . . , qg,

we have

1
p

n

Á qX

r 5 1

N (w r ) ¡
qX

r 5 1

bNm (w r )

!
D¡ ! N

0

@0,
X

r,r 0

§m(w r , w r 0
)

1

A .

Poisson and compound Poisson approximations for the joint distribution of the declumped counts and
multiple word counts. We assume the model M1 since generalization to Mm follows the single pattern
case. To give a bound on the error for a Poisson process approximation for overlapping counts, Reinert
and Schbath (1998) de� ne the following quantities for all r and r 0 in f1, . . . , qg, and for all a 2 A:

« r 5
3` ¡ `r ¡ 2X

s5 1

¦ s ,

« r,r 0 5

`r 1 `r 0 ¡ 2X

s 5 1

¦ s ,

M (w r , w r0
) 5

8
><

>:

X

p2P(w r ,w r 0 )

1

m ((w r 0 )(`r ¡ p))
if r 65 r 0,

0 if r 5 r 0,

T1(w r , w r0
) 5 (2n ¡ `r ¡ `r0 1 2)m (w r)em (w r0

)

0

@
« r 0 (w r 0

`r0 , w r
1)

m (w r
1)

1 M (w r 0
, w r )

1

A ,

T2(w r , w r0
) 5 (n ¡ `r 1 1)

±
(` ¡ 1)(em (w r )m (w r 0

) 1 m (w r )em (w r0
)) 1 (6` ¡ 5)em (w r )em (w r0

)
²

,

T3(w r , w r0
) 5 (n ¡ `r 1 1)m (w r )m (w r 0

)

0

@ « r,r 0 (w r
`r

, w r 0
1 )

m (w r 0
1 )

1
« r,r 0(w r0

`r 0
, w r

1)

m (w r
1)

1

A

1
(n ¡ `r 1 1)(6` ¡ 3`r ¡ 3`r 0 1 2)

mmin
em (w r)em (w r0

)

1
(n ¡ `r 1 1)(` ¡ 2)

m min

³
m (w r )em (w r0

) 1 m (w r0
)em (w r )

´

1 (n ¡ `r 1 1)m (w r )m (w r0
)

±
M (w r , w r 0

) 1 M (w r 0
, w r )

²
,

c1(`r , `, a) 5
X

x ,y 2A
m (x ) max

b2A

­­­­­­
1

m (b)

X

(t , t 0) 65 (1,1)

a
2` ¡ `r
t a

2` ¡ `r
t 0

a`
Q t (x , b)Q t 0(a, y ) ¡

jAjX

t 5 2

a4 ¡̀ 2
t

a`
Q t (x , y )

­­­­­­
,

c2(`r , `) 5
X

x ,y 2A
m (x ) max

a,b2A

0

@ 1
m (b)

X

(t , t 0) 65 (1,1)

­­­­­
a

2 ¡̀ `r
t a

2` ¡ `r
t 0

a`
Q t (x , b)Q t 0 (a, y )

­­­­­

1
jAjX

t 5 2

­­­­­
a5` ¡ 3

t

a`
Q t (x , y )

­­­­­

1

A . (7.1)

Here we choose as index set I 5
©
1, 2, . . . , q(n 1 1) ¡

Pq
s 5 1 `s

ª
; it can be written as the disjoint union

I 5
Sq

r5 1 Ir with

Ir 5

(
(r ¡ 1)(n 1 1) ¡

r ¡ 1X

s5 1

`s 1 1, . . . , r(n 1 1) ¡
rX

s5 1

`s

)
. (7.2)
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We de� ne [i ] by

[i] :5 i ¡ (r ¡ 1)(n 1 1) 1
r ¡ 1X

s5 1

`s with r 5 r(i) such that i 2 Ir . (7.3)

To apply Theorem 9.1, the Bernoulli process eY 5 (eYi )i2I and the Poisson process Z 5 (Z i )i2I are given
by

eYi 5 eY[i ](w
r ),

Z i ¹ Po(em (w r )), (7.4)

where r is such that i 2 I r . For i 2 I , we choose the neighborhood B i :5 f j 2 I : j[ j] ¡ [i]j µ 3` ¡ 3g.
Moreover, let ` 5 maxf`r , r 5 1, . . . , qg denote the maximal length of the words, and let `min denote the
minimal length of the words.

Then Reinert and Schbath (1998) prove the following results.

Theorem 7.1. Under assumption (A1) and with the notation (7.1) and (7.4), we have

dTV
¡
L (eY ), L (Z )

¢
µ (n ¡ `min 1 1)(6` ¡ 5)

Á qX

r 5 1

em (w r )

!2

1
X

1µr,r 0µq

T1(w r , w r 0
)

1 jaj`
qX

r 5 1

c1(`r , `, w r
`r

)(n ¡ `r 1 1)em (w r ).

Corollary 7.2. Let (Z r )r 5 1, ...,m be independent Poisson variables with EZ r 5 (n ¡ `r 1 1)em (w r ). With
the previous notation and under assumption (A1), we have

dT V
¡
L

¡
( eN (w r ))r 5 1, ...,q

¢
, L

¡
(Z r )r 5 1,...,q

¢¢

µ (n ¡ `min 1 1)(6` ¡ 5)

Á qX

r 5 1

em (w r)

!2

1
X

1µr,r 0µq

T1(w r , w r 0
)

1 jaj`
qX

r 5 1

c1(`r , `, w r
`r

)(n ¡ `r 1 1)em (w r ) 1
qX

r 5 1

(`r ¡ 1)
¡
m (w r ) ¡ em (w r )

¢
.

The proof is a direct application of Theorem 9.1, similar to that in Section 5.
Moreover, in a similar way a compound Poisson approximation for the numbers of occurrences can be

obtained. Choose as index set

I 5

(
1, 2, . . . , q(n 1 1) ¡

qX

s5 1

`s

)
£ f1, 2, . . .g.

To apply Theorem 9.1, the Bernoulli process eY 5 (eYi,k )(i,k)2I and the Poisson process Z 5 (Z i,k )(i,k)2I
are now de� ned as

eYi,k 5 eY[i],k (w r),

Z i,k ¹ Po(em k (w r )),

where r 5 r(i) is such that i 2 Ir ; Ir and [i] are given by (7.2) and (7.3). For (i, k) 2 I , the neighborhood
is still B i,k :5 f( j, k 0) 2 I : ¡ (k 0 1 3)(` ¡ 1) µ [ j ] ¡ [i] µ (k 1 3)(` ¡ 1)g.
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We make the following weak assumption about the overlap structure.

(A2) 8r 65 r 0, w r is not a substring of any composed word in C 2(w r0
).

Theorem 7.3. Under assumptions (A1), (A2) and with the notation (7.1), we have

dTV
¡
L (eY), L (Z)

¢
µ

X

1µr,r 0µq

T2(w r , w r0
) 1

X

1µr,r 0µq

T3(w r , w r 0
)

1 jaj`
qX

r5 1

c2(`r , `)(n ¡ `r 1 1)em (w r ).

Moreover the following corollary is easily obtained.

Corollary 7.4. Let (Z k )k¶1 be independent Poisson variables with expectation EZ k 5
Pq

r5 1(n ¡ `r 1
1)em k (w r ); CP denotes the compound Poisson distribution of

P
k¶1 kZ k . Under assumptions (A1), (A2)

and with the notation (7.1), we have

dTV

Á
L

Á qX

r 5 1

N (w r )

!
, CP

!
µ

X

1µr,r0µq

T2(w r , w r 0
) 1

X

1µr,r 0µq

T3(w r , w r 0
)

1 jaj`
qX

r 5 1

c2(`r , `)(n ¡ `r 1 1)em (w r )

1 2
qX

r 5 1

(`r ¡ 1)
¡
em (w r ) ¡ m (w r )

¢
.

Erhardsson (1997) derived a compound Poisson approximation for the special case of counting only
the total number of overlapping occurrences of words from the word family. As he uses a Markov chain
coupling rather than the local approach, his bound on the error has a slightly different � avor.

Poisson approximation for the renewal count distribution. Related results for renewal counts are avail-
able. For a Poisson approximation, the problem can be reduced to declumped counts, like in the case
of a single word. As in Tanushev (1996) we consider nonoverlapping occurrences in competition with
each other. For example, in the sequence CGTATATTAAAAATATTAGA , the set of words TAT, TTA and AA
has renewal occurrences of TAT at position 3 and 14, of TTA at position 7, and of AA at positions 10 and
12. The occurrences of TAT at position 5, of TTA at position 16, and of AA at positions 9 and 11 are not
counted because they overlap with some already counted words.

Let

Ic
i (w r ) 5 1Ifa competing renewal of w r starts at position i in X 1 X n g,

and let

R c
n(w r) 5

n ¡ `r 1 1X

i 5 1

Ic
i (w r )

be the number of competing renewals of w r in the sequence X 1X 2 X n . For a Poisson process ap-
proximation (and, following from that, a Poisson approximation for the counts), we want to assess
P(Ic

i (w r ) 65 eYi (w r )). First consider P(Ic
i (w r ) 5 1, eYi (w r ) 5 0). Note that, from (6.3), for i . `r ,

to have Ic
i (w r ) 5 1, eYi (w r ) 5 0, there must be an occurrence of w r at position i , and this occurrence

cannot be the start of a clump of w r , so that there must be an overlapping occurrence of w r at some
position j 5 i ¡ `r 1 1, . . . , i ¡ 1. Moreover, this occurrence cannot be a competing renewal, so there
must be another word w r 0

overlapping this occurrence. Hence we may bound

P(Ic
i (w r ) 5 1, eYi (w r ) 5 0) µ m2(w r)

X

p2P(w r )

1

m ((w r )(`r ¡ p))

qX

r 0 5 1

m (w r 0
)M (w r 0

, w r ).
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For i µ `r the above bound is still valid (the probability is even smaller since not always would there be
enough space for these clumps to occur). Secondly, consider P(Ic

i (w r ) 5 0, eYi (w r) 5 1). For Ic
i (w

r ) 5
0, eYi (w r ) 5 1 to occur, there must be an occurrence of w r at position i , overlapped by an occurrence of
a different word w r 0

, so that we may bound

P(Ic
i (w

r) 5 0, eYi (w r ) 5 1) µ m (w r )
qX

r0 5 1

m (w r0
)M (w r 0

, w r ).

Again, for i µ `r the above bound remains valid. Thus we have

P(Ic(w r ) 65 eY (w r )) µ (n ¡ `r 1 1)m (w r )
qX

r 0 5 1

m (w r 0
)M (w r 0

, w r)

0

@1 1 m (w r )
X

p2P(w r )

1

m ((w r )(`r ¡ p))

1

A .

Hence

P(Ic 65 eY ) µ
qX

r 5 1

(n ¡ `r 1 1)m (w r )
qX

r 0 5 1

m (w r 0
)M (w r 0

, w r )

0

@1 1 m (w r )
X

p2P(w r )

1

m ((w r )(`r ¡ p))

1

A .

Thus we obtain as a corollary of Theorem 7.1

Corollary 7.5. Under assumption (A1) and with the notation (7.1) and (7.4), we have

dTV
¡
L (Ic), L (Z )

¢
µ (n ¡ `min 1 1)(6` ¡ 5)

Á qX

r 5 1

em (w r)

!2

1
X

1µr,r 0µq

T1(w r , w r 0
)

1 jaj`
qX

r 5 1

c1(`r , `, w r
`r

)(n ¡ `r 1 1)em (w r )

1
qX

r 5 1

(n ¡ `r 1 1)m (w r )
qX

r 0 5 1

m (w r 0
)M (w r0

, w r)

0

@1 1 m (w r )
X

p2P(w r )

1

m ((w r )(`r ¡ p))

1

A .

Note that the order of the approximation is the same as in Theorem 7.1; the additional error terms are
comparable to T1 and T2, respectively. A Poisson approximation for the competing renewal counts follows
immediately.

Gaussian approximation for the joint distribution of competing renewal counts. A multivariate normal
approximation has been obtained by Tanushev (1996). The main problem here is to specify the covariance
structure. To state the result, quite a bit of notation is needed. For a matrix A denote its transposed matrix
by AT , and, if A is a square matrix, Diag(A ) represents the vector of the diagonal elements of A . De� ne
the probabilities of ending a word for 1 µ j µ `r ¡ 1 as

Pr ( j ) 5 P (collect � nal j letters of w r j start with correct `r ¡ j initial letters of w r )

5
m (w r )

m ((w r )(`r ¡ j ))
.
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Then the overlap-matching polynomials are de� ned as

Q r,r 0 (z) 5
X

p2P(w r ,w r 0 )[f0g

z pPr 0 (p).

De� ne the q £ q matrix

¢(z) 5 (Q r,r 0 (z))r,r 0 5 1, ...,q

and

¤ (z) 5 (¢¡ 1)(z))T

¤ 5 ¤ (1).

Furthermore denote

eK r (z) 5 z`r ¡ 1Pr (`r ¡ 1)

and the vector

eK (z) 5 ( eK 1(z), . . . , eK q (z))T .

Denote by

Diag( eK (z))

the q £ q diagonal matrix with the components of eK (z) as diagonal elements. Put

eK 5 eK (1).

Moreover put K r 5 m (w r
1)Pr (`r ¡ 1) and de� ne the vector

K 5 (K 1, . . . , K q )T .

Put

H (z) 5
d

dz
¤ (z)

H 5 H (1).

De� ne the vector

L 5 (`1K 1, . . . , `qK q )

and the matrix

eZ 5 Z [y ],

where I is the identity matrix, Z is de� ned in (6.2), and for a matrix A the matrix A [y ] is the q £ q matrix
whose (r, r 0) entry is the element of A at the row corresponding to the last letter w r

`r
of the word w r and

at the columns corresponding to the � rst letter w r 0
1 of w r 0

. De� ne the variance-covariance matrix

C 5
1

2

¡
¤K (¤K ¡ 2H K ¡ 2¤L )T 1 (¤K ¡ 2H K ¡ 2¤L )(¤K )T ¢

1 Diag(¤K )eZ Diag( eK )¤T 1 ¤Diag( eK )eZ T Diag(¤K ) 1 Diag(¤K ).
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De� ne the mean m c
R (w r ) by

(m c
R (w 1), . . . , m c

R (w q ))T 5 ¤K .

Now we have all the ingredients to state the normal approximation obtained by Tanushev (1996).

Theorem 7.6. Under Assumption (A1) we have

³
R c

n(w r) ¡ nm c
R (w r)

p
n

´

r 5 1,...,q

D¡ ! N (0, C ).

In the case of a single pattern, this theorem reduces to Theorem 6.1.

8. SEQUENCING BY HYBRIDIZATION

As a slightly more involved example of how statistics and probability on words are applied in DNA
sequence analysis, we describe a problem related to sequencing by hybridization; see Arratia et al. (1996)
for more details. Sequencing by hybridization is a tool to determine a DNA sequence from the unordered
list of all `-tuples contained in this sequence; typical numbers for ` are ` 5 8, 10, 12. It is based on the
fact that DNA nucleotides bind or hybridize with each other: A and T hybridize, and A and G hybridize. For
example, the sequence TGTGTGAGTG hybridizes with ACACACTCAC . In a sequencing chip, all 4` possible
oligonucleotides (“probes”) of length ` are attached to the surface of a substrate, each fragment at a distinct
location.

To use an SBH chip, the single-stranded target DNA is ampli� ed, labeled by a � uorescent, and exposed
to the sequencing chip. The probes on the chip will hybridize to a copy of the single-stranded target DNA
if the substring complementary to the probe exists in the target. These probes are then detected with a
spectroscopic detector. For example, if ` 5 4, the sequence TGTGTGAGTG will hybridize to the probes ACAC,
ACTC, CACA, CACT, CTCA and TCAC.

As chips can be washed and used again, and due to automatization, this method is not only fast but also
inexpensive. Although this method was originally developed to sequence DNA, to date a major use has
been to compare different DNA strings in order to detect mutations. In particular, SBH chips are employed
in the analysis of HIV blood samples to decide whether a virus in the sample is a known form of HIV or
a new mutation. Also such arrays are used in gene expression studies.

There are still technical dif� culties in producing an error-free chip; moreover the SBH image may be
dif� cult to read. However, even if these sources of errors are eliminated, a main drawback of the SBH
procedure is that more than one sequence may produce the same SBH data. For example, if ` 5 4, the
sequence ACACTCACAC will hybridize to the same probes as the sequence ACACACTCAC .

To control this error resulting from nonunique recoverability, we are interested in an estimate for the
probability that a sequence is uniquely recoverable, that is, the sequence is unambiguous. This probability
will depend on the probe length `, on the length n of the target sequence, and on the frequencies of
the different nucleotides, A, C, G and T, in the sequence. Furthermore we need to bound the error made
in estimating the probability of unique recoverability in order to make assertions about the reliability of
the chip.

As a simpli� cation, we assume that we not only know the set of all `-tuples in the sequence but also
their multiplicity (but not the order in which they occur). This multiset is called the `-spectrum of the
sequence. In the sequel, unique recoverability is understood to mean unique recoverability of a sequence
from its `-spectrum.

Pevzner (1989) characterizes unique recoverability from the `-spectrum using the de Bruijn-graph (see
van Lint and Wilson, 1992) whose vertices are the (` ¡ 1)-tuples in the sequence. Two vertices v and w
are joined by a directed edge from v to w if the `-spectrum contains an `-tuple for which the � rst (` ¡ 1)
nucleotides coincide with v and the last (` ¡ 1) nucleotides coincide with w . Pevzner (1989) showed that
a sequence is uniquely recoverable from its `-spectrum if and only if there is a unique (Eulerian) path
connecting all the vertices. Ukkonen (1992) conjectured and Pevzner (1995) proved that there are exactly
three structures that prevent unique recoverability:
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1. Rotation. The sequence starts and ends with the same (` ¡ 1)-tuple. In this case, the de Bruijn-graph
is a cycle, and any vertex could be chosen as starting point.

2. Transposition with a three-way repeat. If an (` ¡ 1)-tuple occurs three times in the sequence, then
the de Bruijn-graph has two loops at this vertex, and the order in which these loops are passed is not � xed.

3. Transposition with two interleaved pairs of repeats. There are two “interleaved” pairs of (` ¡ 1)-
tuple repeats, i.e. in the de Bruijn-graph there are two vertices x and y connected by a path of the form
. . . c . . . y . . . x . . . y . . ., where we described a path connecting all the vertices by listing the vertices in the
order they are used in the path. This implies that there are two ways of going from x to y in the graph.

Example 8.1. The sequence ACACACTCAC possesses as 4-spectrum the multiset fACAC, ACAC, CACA,
CACT, ACTC, CTCA, TCACg. The competing sequence ACACTCACAC has the same 4-spectrum. The de Bruijn-
graph for the sequence ACACACTCAC has as vertices ACA, CAC, ACT, CTC and TCA. There are two directed
edges from ACA to CAC, and one directed edge each from CAC to ACA, from CAC to ACT, from ACT to
CTC, from CTC to TCA, and from TCA to CAC. The competing sequence ACACTCACAC has the same de
Bruijn-graph. For the sequence ACACACTCAC , a path connecting all vertices is

ACA, CAC, ACA, (CAC, ACT, CTC, TCA), CAC.

The alternate path

ACA, (CAC, ACT, CTC, TCA), CAC, ACA, CAC

also connecting all the vertices, corresponds to the sequence, ACACTCACAC , with the same 4-spectrum.

Thus unique recoverability can be described in terms of possibly overlapping repeats of (` ¡ 1)-tuples
within a single sequence. We model DNA as a random sequence X 1X 2 . . . X n , where X 1, X 2, . . . are
independent and identically distributed over the alphabet fA,C,G,Tg. For a sequence to be uniquely recov-
erable, the event of an (` ¡ 1)-tuple repeat should be rare. This implies that we consider the occurrence
of (` ¡ 1)-tuples under a Poisson regime. (Note that we are interested in the con� guration in which the
repeats occur; hence we need a Poisson process approximation for the process of repeats rather than a
Poisson approximation for the number of repeats.) If repeats are rare, then three-way repeats are negligible,
and so is the probability that a sequence starts and ends with the same (` ¡ 1)-tuple. After bounding these
probabilities, we thus restrict our attention to interleaved pairs of repeats. Under the Poisson regime, if
there are k pairs of repeats, then the occurrences of these repeats are discrete uniform. Additional random-
ization makes the position of the repeats continuously uniform, so that all orderings of these pairs will
be approximately equally likely. This allows the application of a combinatorial argument using Catalan
numbers to obtain that the number of interleaved pairs of repeats, if k repeats are present, is approximately
2k=(k 1 1)!. If l is the expected number of repeats of `-tuples in a single sequence, we hence get, for the
probability P` that X 1X 2 . . . X n is uniquely recoverable from its `-spectrum,

P` º e ¡ l
X

k¶0

(2l)k

k!(k 1 1)!
.

The Chen-Stein method for Poisson approximation (Theorem 9.1) provides explicit bounds for the error
terms in this approximation, as follows.

In the sequence X 1 . . . X n of independent identically distributed letters, let p be the probability that two
random letters match. We write t for ` ¡ 1, as we are interested in (` ¡ 1)-repeats. Again we have to
declump: De� ne Yi,i 5 0 for all i , and

Yi, j 5

»
1IfX 1 X t 5 X j 1 1 X j 1 t g if i 5 0
(1 ¡ 1IfX i 5 X j g)1IfX i 1 1 X i 1 t 5 X j 1 1 X j 1 t g otherwise.

Thus Yi, j 5 1 if and only if there is a leftmost repeat starting after i and j . Put I 5 f(i, j), 1 µ i, j µ
n ¡ ` 1 1g. A careful analysis (see Arratia et al., 1996) yields that the process Y 5 (Ya)a2I is suf� cient to
decide whether a sequence is uniquely recoverable from its `-spectrum (although Y contains strictly less
information than the process of indicators of occurrences).
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For a Poisson process approximation, we � rst identify the expected number l of leftmost repeats. If
a 5 (i, j) does not have self-overlap, that is, if j ¡ i . t , then

E(Ya) 5

»
pt if i 5 0
(1 ¡ p)pt otherwise.

Hence the expected number l¤ of repeats without self-overlap is

l¤ 5

³
n ¡ 2t

2

´
(1 ¡ p) pt 1 (n ¡ 2t) pt .

If a does have self-overlap, then, in order to have a leftmost repeat at a, for indices in the overlapping set,
two matches are required, and for indices in the nonoverlapping set, one match is required. Let d 5 j ¡ i ;
then E (Ya) depends on the decomposition of t 1 d into a quotient q of d and a remainder r (such that
t 1 d 5 qd 1 r): if pq is the probability that q random letters match, then

E(Ya) 5

»
pr

q 1 1 pd ¡ r
q if i 5 0

( pq ¡ pq 1 1)r pd ¡ r
q otherwise.

If l¤ is bounded away from 0 and in� nity, which corresponds to having t 5 2log1=p(n) 1 c for some
constant c, then it can be seen that

l º
n2

2
(1 ¡ p) pt .

Under the regime that l is bounded away from 0 and in� nity, here is a short version of the general
result in Arratia et al. (1996). Let j¤ 5 maxa (P(X i 5 a)) be the probability of the most likely letter.

Theorem 8.2. Let Z ² (Z a)a2I be a process with independent Poisson distributed coordinates Ya,
with EZ a 5 EYa, a 2 I . Then

dTV(Y , Z ) µ b(n, t) ¹
»

16l2 t
n in the uniform case

njt
¤ in the nonuniform case.

In Arratia et al. (1996), a more general result is derived for general alphabets, and explicit bounds
are obtained. These bounds can be used to approximate the probability of unique recoverability. Recently
Arratia et al. (1999) have obtained results on the number of possible reconstructions for a given sequence
(when the reconstruction is not unique).

9. SOME PROBABILISTIC AND STATISTICAL TOOLS

9.1. The Chen-Stein method

The Chen-Stein method is a powerful tool for deriving Poisson approximations and compound Poisson
approximations in terms of bounds on the total variation distance. For any two random processes Y and
Z with values in the same space E , the total variation distance between their probability distributions is
de� ned by

dTV( L (Y ), L (Z )) 5 sup
B»E ,measurable

jP(Y 2 B ) ¡ P(Z 2 B )j

5 sup
h:E ! [0,1],measurable

jEh(Y ) ¡ Eh(Z )j.

First published by Chen (1975) as the Poisson analog to Stein’s method for normal approximations (Stein,
1972), it has found widespread application; word counts being just one of them. A friendly exposition is
found in Arratia et al. (1989) and a description with many examples can be found in Arratia et al. (1990)
and Barbour et al. (1992a). The key theorem for word counts in stationary Markov chains is Theorem 1
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in Arratia et al. (1990) with an improved bound by Barbour et al. (1992a) (Theorem 1.A and Theorem
10.A), giving the following theorem.

Theorem 9.1. Let I be an index set. For each a 2 I , let Ya be a Bernoulli random variable with
pa 5 P(Ya 5 1) . 0. Suppose that, for each a 2 I , we have chosen Ba » I with a 2 Ba. Let
Z a, a 2 I , be independent Poisson variables with mean pa. The total variation distance between the
dependent Bernoulli process Y 5 (Ya, a 2 I ) and the Poisson process Z 5 (Z a, a 2 I ) satis� es

dTV
¡
L (Y ), L (Z )

¢
µ b1 1 b2 1 b3,

where

b1 5
X

a2I

X

b2Ba

pa pb (9.1)

b2 5
X

a2I

X

b2Ba,b 65 a

E(YaYb ) (9.2)

b3 5
X

a2I

E
­­E

©
Ya ¡ pajs(Yb , b =2 Ba)

ª­­. (9.3)

Moreover, if W 5
P

a2I Ya and l 5
P

a2I pa , 1, then

dTV( L (W ), Po(l)) µ
1 ¡ e ¡ l

l
(b1 1 b2) 1 min

Á
1,

r
2
le

!
b3.

Note that b3 5 0 if Ya is independent of s(Yb , b =2 Bag. We think of Ba as a neighborhood of strong
dependence of Ya.

One consequence of this theorem is that for any indicator of an event, i.e. for any measurable functional
h from E to [0, 1], there is an error bound of the form jEh(Y ) ¡ Eh(Z )j µ dTV( L (Y ), L (Z )). Thus, if
T (Y ) is a test statistic then, for all t 2 R,

jP
¡
T (Y ) ¶ t

¢
¡ P

¡
T (Z ) ¶ t

¢
j µ b1 1 b2 1 b3,

which can be used to construct con� dence intervals and to � nd p-values for tests based on this statistic.
Note that this method can also be used to prove compound Poisson approximations. For multivariate

compound Poisson approximations it is very convenient. For univariate compound Poisson approximations,
better bounds are at hand, see Roos (1993), Barbour and Utev (1998), Barbour et al. (1992b).

9.2. Stein’s method for normal approximations

Stein’s method for the normal approximation was � rst published by Stein (1972). Recently Rinott and
Rotar (1996) applied it to obtain multivariate normal approximations with a bound on the error in the
distance of suprema over convex sets.

Let H denote the class of indicator functions of convex sets in Rd . Let Y j be random vectors taking
values in Rd , and let W 5

Pn
j 5 1 Y j the vector of sums. Assume there is a constant B such that jY j j :5Pd

i 5 1 jY( j, i) j µ B .

Theorem 9.2. Let Si and N i be subsets of f1, . . . , ng, such that i 2 Si » N i , i 5 1, . . . , n. Assume
that there exist constants D1 µ D2 such that

maxfjSi j, i 5 1, . . . , ng µ D1

and

maxfjN i j, i 5 1, . . . , ng µ D2,

where for sets, j j denotes cardinality.
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Then, for d 5 1 there exists a universal constant c such that

sup
h2H

jEh(W ) ¡ ©hj µ cfaD2B 1 n(a 1
p

EW 2)D1D2B 3 1 x1 1 x2 1 x3g.

For d ¶ 1 there exists a constant c depending only on the dimension d such that

sup
h2H

jEh(W ) ¡ ©hj µ cfaD 2B 1 naD1D2B 3(j log B j 1 log n)

1 x1 1 (j log B j 1 log n)(x2 1 x3)g.

Here a 5 2
p

d and

x1 5
nX

j 5 1

EjE(Y j j
X

k 62Sj

Yk )j

x2 5
nX

j 5 1

EjE(Y j (
X

k2Sj

Yk )T ) ¡ E(Y j (
X

k2Sj

Yk )T j
X

l 62 N j

Yl)j)

x3 5 jI ¡
nX

j 5 1

E(Y j (
X

k2Sj

Yk )T )j.

9.3. Moment-generating function

Here is a short outline on moment-generating functions; see, e.g., Rice (1995). The moment-generating
function M of a random variable X is de� ned as

©X (t ) 5 E(etX ).

So, if X has a discrete distribution p, we have that

©X (t) 5
X

x

et x p(x ).

If the moment-generating function exists for all t in an open interval containing zero, it uniquely determines
the probability distribution.

In particular, under regularity conditions the moments of a random variable can be obtained via the
moment-generating function using differentiation. Namely, if ©X (t) is � nite, we have

© 0
X (t ) 5

d

dt
E(etX ) 5 E(X etX ).

Thus

© 0
X (0) 5 EX

if both sides of the equation exist. Similarly, differentiating r times we obtain

©
(r)
X (0) 5 E(X r ).

A special case is when the moment-generating function ©X (t) is rational, that is, when ©X (t) can be
written as

©X (t ) 5
p0 1 p1t 1 . . . 1 pr tr

q0 1 q1t 1 . . . 1 qs ts 5
X

d

f (d)td ,

for some r, s and coef� cients p1, . . . , pr , q1, . . . , qs . By normalization we may assume q0 5 1. Then

p0 1 p1t 1 . . . 1 pr tr 5
X

d

f (d)td (1 1 q1t 1 . . . 1 qs t
s).
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Identi� cation of the coef� cients of t i on both sides yields

pi 5
iX

d 5 0

f (d)qi ¡ d for i µ r

0 5
iX

d 5 0

f (d)qi ¡ d for i . r.

This gives a recurrence formula for the coef� cients f (d); we have

f (0) 5 p0

f (d) 5 pd ¡
min(d ,s)X

i 5 1

f (d ¡ i)qi , d ¶ 1

where pd 5 0 for d . r.

9.4. The d-method

In general, the d-method, or propagation of error, is a linear approximation (Taylor expansion) of a
nonlinear function of random variables. Here we are particularly interested in the validity of a normal
approximation for functions of random vectors (see, e.g., Rice, 1995). The following theorem can be
found on p.313 in Waterman (1995).

Theorem 9.3. Let X n 5 (X n1, X n2, . . . , X nk ) be a sequence of random vectors satisfying

bn(X n ¡ m )
D¡ ! N (0, § )

with bn ! 1. The vector valued function g(x ) 5 (g1(x ), . . . , g`(x )) has real valued gi (x ) with nonzero
differential

@gi

@gx
5

³
@gi

@gx1

, . . . ,
@gi

@gxk

´
.

De� ne D 5 (di, j ) where di, j 5
@gi

@gx j
(m ). Then

bn(g(X n) ¡ g(m ))
D¡ ! N (0, D DT).

9.5. A large deviation principle

Assume X 1 X n is an irreducible Markov chain on a � nite alphabet A with transition probabilities
p (a, b), a, b 2 A. The following theorem for Markov chains can be found on p.78 in Bucklew (1990).

Theorem 9.4 (Miller). Let f be a function mapping A into R. Then, n ¡ 1 Pn
i 5 1 f (X i ) obeys a large

deviation principle with rate function I de� ned below: for every closed subset F » R and every open
subset O » R,

lim sup
n! 1 1

1
n

log P

Á
1
n

nX

i 5 1

f (X i ) 2 F

!
µ ¡ inf

x 2F
I (x ),

lim inf
n! 1 1

1

n
log P

Á
1

n

nX

i 5 1

f (X i ) 2 O

!
¶ ¡ inf

x 2O
I (x ).

The rate function I is positive, convex, uniquely equal to zero at x 5 E f (X 1) and given by

I (x ) 5 sup
h

(hx ¡ log l(h))

where l(h) is the largest eigenvalue of the matrix
¡
ehf (b)p (a, b)

¢
a,b2A.
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9.6. A CLT for martingales

The following theorem can be found in Dacunha-Castelle and Du� o (1983, p.80).

Theorem 9.5. Let (jn,i )i 5 1, ...,n be a triangular array of d-dimensional random vectors such that
Ejjjn, i jj22 , 1, and V be a positive d £ d matrix. Put Fn, i 5 s(jn ,1, . . . , jn,i ); E(jn, i j Fn,i ¡ 1) denotes
the conditional expectation vector of jn,i and Cov(jn ,i j Fn ,i ¡ 1) denotes the conditional covariance matrix
of jn,i . If as n ! 1

(i)
nX

i 5 1

E(jn,i j Fn, i ¡ 1)
P! 0,

(ii)
nX

i 5 1

Cov(jn, i j Fn,i ¡ 1) ! V ,

(iii) 8e . 0,
nX

i 5 1

P(jjn, i j . e j Fn, i ¡ 1)
P! 0,

then
Pn

i 5 1 jn ,i
D! N (0, V ).
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