
Optimizing Exact Genetic Linkage Computations

Ma’ayan Fishelson
Computer Science Department

Technion,Haifa 32000, Israel

fmaayan@cs.technion.ac.il

Dan Geiger
Computer Science Department

Technion,Haifa 32000, Israel

dang@cs.technion.ac.il

ABSTRACT
Genetic linkage analysis is a challenging application which
requires Bayesian networks consisting of thousands of ver-
tices. Consequently, computing the likelihood of data, which
is needed for learning linkage parameters, using exact infer-
ence procedures calls for an extremely efficient implementa-
tion that carefully optimizes the order of conditioning and
summation operations. In this paper we present the use of
stochastic greedy algorithms for optimizing this order. Our
algorithm has been incorporated into the newest version of
superlink, which is currently the fastest genetic linkage
program for exact likelihood computations in general pedi-
grees. We demonstrate an order of magnitude improvement
in run times of likelihood computations using our new opti-
mization algorithm, and hence enlarge the class of problems
that can be handled effectively by exact computations.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics; G.2.2 [Discrete Mathematics]: Graph
Theory—Graph algorithms; G.3 [Probability and Statis-
tics]: Probabilistic algorithms

General Terms
Algorithms, Performance, Experimentation

Keywords
Bayesian networks, Combinatorial Optimization, DAG Mod-
els, Genetic Linkage Analysis, Greedy Algorithms, Proba-
bilistic Algorithms, superlink, Treewidth

1. INTRODUCTION
Genetic linkage analysis is a useful statistical tool for

mapping disease genes and for associating functionality of
genes with their location on the chromosome. Two main ap-
proaches to computing pedigree likelihood exactly are Elston-
Stewart [10] and Lander-Green [16, 17, 18]. Both algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’03, April 10–13, 2003, Berlin, Germany.
Copyright 2003 ACM 1-58113-635-8/03/0004 ...$5.00.

are variants of variable elimination methods that use dif-
ferent strategies to find an elimination order. The Elston-
Stewart algorithm “peels” one nuclear family after another,
whereas the Lander-Green algorithm “peels” one locus after
another.

In [11], we propose a new algorithm to computing pedigree
likelihood exactly, and implement it in a computer program
called superlink. This algorithm combines and general-
izes the previous two approaches by using the framework
of Bayesian networks as the internal representation of link-
age analysis problems. Using this representation enables
efficient handling of a wide variety of linkage problems, by
choosing the elimination order automatically according to
the linkage problem at hand. It has been shown in [11] that
superlink v1 outperforms leading linkage software with re-
gards to speed and memory requirements. The main compu-
tational step is computing sums of products of high dimen-
sional probability tables. The order in which the sums and
products are performed has a large impact on both the time
and memory requirements of the computations. In super-
link v1, a simple greedy algorithm was used to determine
this order.

In this paper we define a refined optimization problem
behind the main computational step and present a stochastic
greedy algorithm as a heuristic to solving this problem. The
stochastic greedy algorithm has been incorporated into the
newest version of superlink (v1.1) reported herein. We
present the experimental results of this optimized version of
superlink and compare it to the previous version (v1). As
can be seen from the experimental results, we often attain
orders of magnitude speedup in run times on the tested data
sets comprising of 100-400 individuals and 10-20 loci. No
other linkage program can perform these exact likelihood
computations.

The rest of the paper is organized as follows. Section 2
elaborates on definitions and methods for Bayesian networks,
which are the basis for efficient likelihood computations in
linkage analysis. Section 3 defines the optimization prob-
lem and describes two greedy algorithms for approximately
solving it. Section 4 gives a brief description of the program
superlink. Experimental results are reported in Section 5.
Comparison to other algorithms is discussed in Section 6.
Finally, Section 7 summarizes our conclusions.

2. BAYESIAN NETWORKS
Consider a directed acyclic graph G, namely, a directed

graph with no directed cycles, such that each vertex v corre-
sponds to a variable Xv and is associated with a probability

114

distribution P (Xv = xv | Pav = pav) where Pav are the
variables corresponding to vertices that have edges leading
into v. Further, define the joint probability distribution for
X1, . . . , Xn via

P (x1, ..., xn) =
n∏

v=1

P (xv | pav) (1)

The directed acyclic graph together with the joint prob-
ability distribution is called a Bayesian network and is de-
noted by (G, P) [20, 23].

Note that in the above definition, and throughout this pa-
per, we use capital letters for variable names and lowercase
letters to denote specific values taken by those variables.
Sets of variables are denoted by boldface capital letters, and
assignments of values to the variables in these sets are de-
noted by boldface lower case letters. We also use P (x) as a
short hand notation for P (X = x).

We define the inference problem as follows. The input is
a Bayesian network along with a subset of vertices E. The
output is the probability table P (E = e) for a given disjoint
subset of variables E ⊆ {X1, ..., Xn}.

Suppose that X1, ..., Xk are the variables not in E, then
using Eq. (1),

P (e) =
∑
x1

...
∑
xk

P (x1, ..., xk, e)

=
∑
x1

...
∑
xk

∏
i

P (xi | pai).

The problem at hand is to perform the summation and
multiplication in an efficient order.

This computation can be abstracted into the problem of
evaluating expressions of the form,

E =
∑
x1

...
∑
xk

∏
l

fl(Yl) (2)

which consist of sums and products of high dimensional ma-
trices (called factors). More specifically, each fl is a factor
(or a table) that contains an entry for each value assignment
yl of Yl ⊆ {X1, ..., Xk}.

The product of two factors fm(Ym)fn(Yn) is defined as
the factor fl(Yl), where Yl = Ym

⋃
Yn. An entry of fl(Yl)

which corresponds to the value assignment yl is obtained
through the product of the entries of the factors fm(Ym)
and fn(Yn) which correspond to the value assignments ym

and yn consistent with yl.
The process of summing a variable Xi ∈ Yl from a factor

fl(Yl) produces a new factor f∗
l (Y∗

l), where Y∗
l = Yl\{Xi}.

An entry of f∗
l (Y∗

l) which corresponds to the value assign-
ment y∗

l is obtained through the sum of the entries in the
factor fl(Yl) corresponding to the value assignment yl for
every possible value xi of Xi.

Two extreme ways to compute expression (2) are: variable
elimination and conditioning (e.g., [9, 27]). In variable elimi-
nation we eliminate one variable at a time, by multiplying all
the factors that include the variable and then summing over
all possible values for the variable. In conditioning we in-
stantiate some of the variables, perform the computation for
each possible instantiation of the variables and then sum the
results. Factors including instantiated variables are reduced
to include only those entries corresponding to assignments
consistent with the instantiation.

In variable elimination we eliminate one variable at a time,
by summing over all possible values for the variable, until the
expression does not contain any summations. For example,
assume that we want to eliminate Xk from the expression.
This is done in several steps. First, we rearrange the order
of summation so that the sum over Xk is the innermost.
Then, we move all the terms fl(Yl) where Xk �∈ Yl outside
the summation over Xk. Suppose that the factors f1, ...fm

remain in the scope of the summation over Xk. A new
factor f(Y) which is a product of these m factors, defined
over Y =

⋃m
j=1 Yj , is constructed:

f(Y) =
m∏

j=1

fj(Yj). (3)

In the last step, we marginalize Xk out of f(Y) by sum-
ming over all possible values of Xk. We obtain a new factor
f ′(Y′), where Y′ = Y − {Xk}:

f ′(Y′) =
∑
xk

f(Y). (4)

Note that with these steps we have rewritten E of Eq. (2)
as

E =
∑
x1

...
∑

xk−1

f ′(Y′)
∏
l>m

fl(Yl).

The resulting expression has the same general form of Eq. (2).
Therefore, other variables can now be eliminated by repeat-
ing the same sequence of steps.

The time complexity of variable elimination is propor-
tional to the total size of the factors created during the
computation, and it depends on the order of elimination.

The second approach to compute E in Eq. (2) is to per-
form the calculation using conditioning. We compute E by
considering expressions of the form

Ex1 =
∑
x2

...
∑
xk

∏
l

f∗
l (Y∗

l).

where f∗
l is fl restricted to the case where X1 = x1 and

Y∗
l = Y − {X1}. Note that

E =
∑
x1

Ex1 .

The motivation for this approach is that computing Ex1 is
easier than computing E, since it involves one less summa-
tion and some of the factors are smaller. The complexity
of this procedure depends on the number of possible joint
assignments to the variables that we condition on, since
the same computation is repeated for each joint assignment.
This approach is called global conditioning in [27].

The advantage of conditioning over variable elimination
is the lower memory overhead. The main disadvantage of
this approach is that in different evaluations of Ex1 , identi-
cal subexpressions are often recomputed several times. This
results in higher time requirements. Therefore, hybrid algo-
rithms, such as the one suggested in [8], combining variable
elimination with conditioning to achieve a space-time trade-
off have been proposed. These algorithms first choose a set
of variables to condition on, then the probability of the data

115

is computed for each joint assignment of values to these
variables, using variable elimination. Finally, the results are
summed to obtain the desired likelihood.

3. CONSTRAINED ELIMINATION
In this section we define the constrained elimination prob-

lem, the solution of which optimizes variable elimination
procedures with or without memory constraints. Section 3.1
provides a formal definition of the problem. Sections 3.2
and 3.3 describe two greedy algorithms for approximately
solving the constrained elimination problem. Section 3.4
highlights some implementation choices we made.

3.1 Terminology
The following sequence of definitions are needed in order

to formulate the constrained elimination problem.

Definition (graph concepts). A weighted undirected
graph G(V, E, w), w : V → N , is an undirected graph where
each vertex v ∈ V is assigned a weight w(v). Two vertices
u, v ∈ V are said to be adjacent (or neighbors) if (u, v) ∈ E.
We denote by NG(v) = {u ∈ V | (u, v) ∈ E} the
set of vertices which are adjacent to v in G. We denote by
N̄G(v) = NG(v)

⋃{v} the set of vertices which are neighbors
of v, including v itself. A complete subgraph (or clique) G[S]
of G is a graph with vertices S such that all vertices are
neighbors. A maximal clique in a graph G is a clique G[S]
such that there exists no vertex set S′ ⊃ S for which G[S′]
is a clique.

Definition (elimination sequence). The process of
making NG(v) a complete subgraph of G(V, E) and remov-
ing v and its incident edges from G is called eliminating
vertex v ∈ V . Let α denote a permutation on {1, . . . , n}.
Let Gi = (Vi, Ei), i = 2, . . . , n, denote the graphs ob-
tained from G1 = G by eliminating in order the vertices
Xα(1), . . . , Xα(i−1) ∈ V . Note that Gn = (Xα(n), ∅). The
sequence Xα = (Xα(1), . . . , Xα(n)) is called an elimination
sequence of G. The cost of eliminating a vertex v ∈ Vi from
graph Gi is CGi(v) =

∏
u∈N̄Gi

(v) w(u). The elimination

cost of an elimination sequence Xα = (Xα(1), . . . , Xα(n)) is

C(Xα) =

n∑
i=1

CGi(Xα(i)) (5)

Note that CGi(Xα(i)) depends on the permutation α, al-
beit this dependence is suppressed in our notation. The
cost function C(Xα), which is often referred to as the total
state space (e.g., [14]), is a good approximated measure of
the time and space complexity of computations in Bayesian
networks, provided that the heaviest clique created, having
the weight maxiCGi(Xα(i)), fits into the RAM size of the

working environment. An optimal elimination sequence X̂α

is a sequence which satisfies X̂α = arg minα C(Xα). When
the heaviest clique does not fit into memory, as is often the
case in practice, a more elaborated definition is needed.

Definition (constrained elimination sequence). The
process of removing vertex v ∈ V̈ and its incident edges
from G is called conditioning on v. Let β = (β1, . . . , βn)
be a vector where βi ∈ {0, 1}. A constrained elimination
sequence Xα,β =

(
(Xα(1), . . . , Xα(n)), β

)
is a sequence of

vertices along with a binary vector β such that vertex Xα(i)

is eliminated if βi = 0 and conditioned on if βi = 1. Graph

Gi+1 is obtained from graph Gi by eliminating or condition-
ing on vertex Xα(i), depending on the value of βi.
The elimination cost C(Xα,β) of a constrained elimination
sequence Xα,β is given by

n∑
i=1

[
i−1∏
k=1

w(Xα(k))
βk

]
(1− βi)CGi(Xα(i)) (6)

Note that when βi = 0 for each i, this cost function reduces
to the cost function (5).

Definition. The constrained elimination problem is to
find a constrained elimination sequence X̂α,β which sat-

isfies X̂α,β = arg minα,β C(Xα,β), such that for every i,
maxi CGi(Xα(i)) ≤ T .

If for a given weighted undirected graph G and a threshold
T , it is the case that T < minX∈Vi CGi(X) for some i for
each constrained elimination sequence Xα,β , then the con-
strained elimination problem cannot be solved for this input.
On the other hand, if T ≥ ∏n

i=1 w(Xi), then the constrained
elimination problem reduces to the (unconstrained) elimina-
tion problem. This claim holds because the elimination cost
of a vertex is never larger than

∏n
i=1 w(Xi), in which case

all vertices are eliminated, namely, βi = 0 for all i.
The solution of the constrained elimination problem pro-

vides us with a solution to the problem presented in Sec-
tion 2 of combining variable elimination with conditioning
to achieve a desired time-space tradeoff. When we condition
on a variable, we fix its value. If we set T to the memory
limitations of the working environment, then a solution to
the constrained elimination problem will provide us with
the best choice, with regards to time complexity, that meets
memory requirements.

We now present two algorithms that attempt to find close
to optimal constrained elimination sequences.

3.2 A Greedy Algorithm
Our deterministic greedy algorithm receives as input a

weighted undirected graph, G(V, E, w) and a threshold T ,
and outputs a constrained elimination sequence Xα,β such
that the elimination cost of each vertex is at most T . In
iteration i, the greedy algorithm chooses a vertex Xi which
satisfies Xi = arg minX∈Vi CGi(X). The algorithm termi-
nates when every vertex has been removed from the graph.
If in iteration i the elimination cost CGi(X) of every vertex
is above the given threshold T, then a vertex Xi is chosen
to be conditioned on (rather than eliminated). The vertex
Xi to be conditioned on can be chosen in various ways, one
of which is via

Xi = arg max
X∈Vi

√
|NGi(X)|CGi(X),

where NGi(X) is the set of vertices which are neighbors of
X in Gi. The algorithm is shown in Figure 1. See Sec-
tion 3.4 for an alternative way of choosing the vertex to be
conditioned on.

3.3 Stochastic-Greedy Algorithm
The deterministic greedy algorithm can be vastly improved

on large problems by introducing randomized selection of
vertices to be eliminated, and running the algorithm suffi-
ciently many times.

116

Algorithm Deterministic-Greedy(G,T)

Input: A weighted undirected graph G(V, E, w), and
a threshold T.

Output: A constrained elimination sequence Xα,β

such that the elimination cost of each vertex ≤ T.

1. Initialize vector β of size n with zeroes.
2. i← 1
3. G← Gi

4. While Gi is not the empty graph do
• forall X ∈ Vi compute CGi(X)
• Pick Xk = arg minX∈Vi CGi(X)
• If CGi(Xk) > T then {conditioning on Xk}

forall X ∈ Vi compute
√|NGi(X)|CGi(X)

Pick Xk = arg maxX∈Vi

√|NGi(X)|CGi(X)
βi ← 1

Else {eliminating Xk}
Ei ← Ei

⋃ {(u, v)|u, v ∈ NGi(Xk)}
• Remove Xk and its incident edges from Gi

• α(i)← k
• i← i + 1

5. Return Xα,β = ((Xα(1), . . . , Xα(n)), β)

Figure 1: Algorithm Deterministic-Greedy

Our stochastic greedy algorithm first applies the deter-
ministic greedy algorithm to determine the complexity of
the problem at hand, which is estimated according to the
cost of the elimination sequence found. Only if this cost is
above a predetermined cost Cmin, stochastic greedy itera-
tions are applied. The time spent trying to find a better
elimination sequence is also determined according to this
cost. The algorithm is shown in Figure 2.

The stochastic greedy algorithm uses a procedure sg(G, T)
which is called in each iteration. This procedure finds a con-
strained elimination sequence using randomized selection of
vertices. If the cost of the elimination sequence found is
smaller than the cost of the best previously found sequence,
the new sequence and cost are recorded. The only difference
between procedure sg(G, T) and algorithm Deterministic-
Greedy(G,T), described in the previous section, is in the way
the vertex to be eliminated is chosen. Procedure sg(G, T)
finds in each iteration m vertices with the smallest elimina-
tion cost and flips a coin to choose between them. The coin
is biased according to the elimination costs of the m vertices
considered for elimination. If we denote the m vertices cho-
sen in iteration i by Xi1, . . . , Xim, then the probability of
vertex Xij to be chosen is:

Pr(Xij) =
[CGi(Xij)]

γ∑m
k=1 [CGi(Xik)]γ

,

where γ = 1
2
. Note that γ → 0 implies a random choice

among m candidates and γ → ∞ implies that with prob-
ability 1 the stochastic run chooses a vertex of lowest cost
like the deterministic run, regardless of m. The choice of
the parameters γ = 1

2
and m = 3 has been tested experi-

mentally.
Setting I, the limit on the number of iterations, in line 3

of Algorithm Stochastic-Greedy is determined so that the
optimization time would not be larger than a fraction of the

Algorithm Stochastic-Greedy(G,T,Cmin)

Input: A weighted undirected graph G(V, E, w), a
threshold T, and a minimum cost Cmin.

Output: A constrained elimination sequence Xα,β

such that the elimination cost of each vertex ≤ T.

1. Xα,β ← deterministic-greedy(G,T)
2. If C(Xα,β) < Cmin then return Xα,β

3. Set I according to C(Xα,β)
For i← 1 to I do
• Xtemp

α,β ← sg(G,T)

• If C(Xtemp
α,β) < C(Xα,β) then

Xα,β ← Xtemp
α,β

4. Return Xα,β

Figure 2: Algorithm Stochastic-Greedy

total running time of the subsequent likelihood computation
which can be approximated roughly from C(Xα,β). Details
are given in the next section.

3.4 Implementation
We now present several implementation choices we made

in order to speed up the computations and improve memory
utilization.

The first choice concerns the elimination cost of a vertex.
If the set of neighbors of some vertex v already form a clique
(such a vertex is often referred to as simplicial, e.g. [14]),
then we set the cost of the variable to 0 and hence make it
a preferred vertex to be eliminated.

The second choice affects the process of searching for a
vertex (or 3 vertices) with the minimum elimination cost.
Since this search can be time consuming, if the algorithm en-
counters a vertex having a cost below a threshold Tmin, then
the search for the minimum is discontinued and this vertex
is chosen. In the current implementation we use Tmin = 15,
which is a very small cost.

The third choice determines the amount of time spent on
trying to improve the elimination sequence. Based on exten-
sive experiments, we constructed a table with 10 complexity
classes determined by the cost of the elimination sequence
found. The first class is for problems with cost < 107, and
the last class is for problems with cost ≥ 1015. The intervals
10i < cost < 10i+1, i = 7, . . . , 14 determine the eight inter-
mediate complexity classes. This cost function serves as a
rough estimate of the run time needed for the subsequent
likelihood computation, and according to it the maximum
amount of optimization time that is allocated for each class
is set to a fraction of the overall run time of the likelihood
computation. Problems in the first complexity class, namely
with a cost lower than 107, are not allocated any time for
optimization.

The complexity class and the maximum number of itera-
tions are set initially according to the cost of the elimina-
tion sequence found by the deterministic greedy algorithm.
These numbers are then updated whenever an elimination
sequence with lower cost is found. If an elimination sequence
with a cost below 107 is found, then the optimization is
stopped and this sequence is used. Every 200 iterations the
improvement rate, per iteration, in the elimination cost of

117

sequences is checked, and if it is below a prescribed thresh-
old of 0.0001, then optimization is terminated. As men-
tioned above, the cost of the elimination sequence is a rough
estimate of the run time needed for the likelihood compu-
tation, with some variance. Improving this time estimate
and adapting it to a specific computer at hand could lead
to further improvement in total run time.

The fourth choice relates to the way we choose a vertex
to condition on. The input to the problem presented in
Section 2 is in fact a Bayesian network. Each variable of
the Bayesian network corresponds to a vertex in the graph
and appears in several factors, each of which is a probabil-
ity function. During the computation, some of the original
factors are deleted and new factors are created. The vertex
Xi that superlink chooses to condition on satisfies

Xi = arg max
X∈Vi

√
|fGi(X)|CGi(X), (7)

where fGi(X) are the factors in Gi that include X. The ob-
jective is to condition on a vertex whose elimination reduces
memory requirements as much as possible in as many fac-
tors as possible. The idea behind the condition that appears
in Section 3.2 is that if we condition on a vertex with many
neighbors, we reduce the number of neighbors for many ver-
tices. Experimentally, the condition expressed by Eq. (7)
has been found to be slightly better.

4. APPLICATION IN GENETICS
Genetic linkage analysis is a challenging application of

Bayesian networks since it requires the use of networks con-
sisting of thousands of vertices. Consequently, likelihood
computations in such networks calls for extremely efficient
order of summation and conditioning operations. To vali-
date our algorithms with realistic data we incorporated them
in the newest version of the genetic linkage program super-
link.

In superlink, pedigrees are represented in a detailed man-
ner using Bayesian networks. A pedigree, which is the input
to a genetic linkage problem, defines a joint distribution,
parameterized by the recombination fraction θ, of the geno-
types and phenotypes of the individuals in the pedigree. The
goal of genetic linkage analysis is to estimate the recom-
bination fraction θ between a disease gene and known loci
on the chromosome. The approximate physical location of
the disease gene on the chromosome can be inferred from
the estimated recombination fraction. For more details on
the exact structure of the Bayesian networks constructed by
superlink, we refer the reader to [11, 12].

Using Bayesian networks as the representation of linkage
analysis problems allows us to give a unified treatment to
the entire spectrum of linkage problems and combine the
two extreme approaches for computing pedigree likelihood
exactly, the Elston-Stewart approach and the Lander-Green
approach. These two approaches are both variants of vari-
able elimination methods that use different elimination or-
ders.

Whenever feasible, superlink uses variable elimination
alone to compute the likelihood of pedigree data. Other-
wise, variable elimination is combined with conditioning to
achieve the best time-space tradeoff given the memory avail-
able for the linkage analysis problem. The choice of variable

elimination order, including the choice of variables for con-
ditioning, is determined by the greedy algorithms presented
in Section 3.

5. EXPERIMENTAL RESULTS
We performed four experiments. The first experiment

compared the performance of the stochastic greedy algo-
rithm versus the deterministic greedy algorithm on a variety
of large realistic simulated pedigree data sets. We compared
both run times and costs of the elimination sequences found
by each algorithm. The experiment shows the superiority
of the stochastic greedy algorithm over the deterministic
greedy algorithm in almost all cases. We can see an or-
der of magnitude improvement in run times of likelihood
computations.

The second experiment evaluated the performance of the
stochastic greedy algorithm for finding an (unconstrained)
elimination sequence such that the size of the largest clique
created during the elimination process is as small as pos-
sible and assuming an unweighted graph as input, namely,
the weights of all vertices are fixed to the same value, say
c ≥ 2. This quantity (minus one) is called the treewidth
of the graph. It is an important quantity for many applica-
tions, such as constraint satisfaction, independent set, domi-
nating set, graph K-colorability and Hamiltonian circuit [2].

The third and fourth experiments were performed in or-
der to determine the optimal values for the parameters γ
and m used in the stochastic greedy algorithm. The run-
ning environment for experiments A,C and D was a Sun OS
version 5.8 (sun4u) with 2624 MB RAM. Experiment B was
performed by Arie Koster on a 4 processor Pentium, 1700
MHz, with 1GB RAM.

Experiment A. The first experiment compared between
the performance of the deterministic greedy algorithm and
the stochastic greedy algorithm (Table 1). We can see that
using the stochastic greedy algorithm of superlink v1.1
enables us to process data sets which could not be processed
using the deterministic greedy algorithm of superlink v1,
and that the run time improvement is often over an order
of magnitude. Note that other leading linkage programs,
such as fastlink v4.1 [5, 7, 26] and genehunter v2.1 [17]
cannot run any of these data sets. vitesse v2.0 [21, 22] can
only run the first data set.

All the data sets used in this experiment are based on a
single growing pedigree, in terms of the number of loci and
the number of people. For each data set we show its param-
eters in terms of the number of people in the pedigree and
the number of loci. The number of vertices in the Bayesian
network constructed for the specific problem is also shown;
This number does not include variables that have been de-
termined to be constant due to phenotypic data.

Note that the times reported include the optimization
time and the subsequent likelihood computation time. For
the deterministic algorithm, we report the cost of the elim-
ination sequence found and the run time. We also show the
improvement ratios in cost and time of the stochastic algo-
rithm versus the deterministic algorithm. For the stochastic
algorithm, the results are reported over 10 runs. The differ-
ences between the improvement ratio in run time and the
improvement ratio in cost are due to the optimization time
included in the run time and the fact that the cost does not
fully predict the run time. There is a significant variance in
the results.

118

�People/�Loci/�Nodes Run Time - sec Improvement Cost Improvement
deterministic stochastic greedy (SG) Ratio (DG) Ratio
greedy (DG) min avg max (Run Time) (Cost)

100 / 10 / 1676 5.8 5.8 5.8 5.8 1 2.0E6 1
100 / 15 / 2449 17 12.3 16 17.9 0.95 - 1.4 1.3E7 1 - 1.9
100 / 20 / 3224 84 29.1 52 84.9 0.99 - 2.89 6.1E7 1 - 4.7
200 / 10 / 3254 38.8 8.2 16.2 23.8 1.63 - 4.73 1.7E8 12.1 - 34
200 / 15 / 4720 219.4 89.2 140.4 182.7 1.2 - 2.5 3.8E9 17.3 - 38.4
200 / 20 / 6242 * 358.8 1703 4446.3 ∞ 1.3E14 7411.8 -114545.5
300 / 10 / 4859 554.7 12.1 27.2 46.8 11.9 - 45.9 4.6E10 478.9 - 9100
300 / 15 / 7040 2273.8 139.5 367.2 966.5 2.4 - 16.3 2.6E11 71.4 - 419
300 / 20 / 9276 * 6352.7 19940 36932.3 ∞ 4.4E15 6753.8 - 51647.1
400 / 10 / 6372 283.6 20.6 50.7 94 3 - 13.8 3.7E10 442.2 - 3336.4
400 / 15 / 9292 9701.8 385.5 1163.9 3517 2.8 - 25.2 1.1E12 144.3 - 475
400 / 20 / 12278 * 32336.9 69914.5 164708.7 ∞ 1.6E17 14909.1 -298181.8

Table 1: Stochastic Greedy versus Deterministic Greedy. The bold column shows the ratio of run time of SG,
over 10 runs, versus DG. The last 2 columns show the cost of the elimination sequences found by DG and
the ratio of cost found by SG versus DG. The symbol * means over 100 hrs.

Experiment B. The second experiment compared the per-
formance of our algorithms with three known heuristic algo-
rithms for finding treewidth: MCS+, LEX P+ and LEX M+

[15]. Our stochastic algorithm (SG) is found to be superior
as can be seen from Table 2.

The three algorithms consist of two steps. First a pre-
processing step in which the graph is contracted by a series
of graph reductions is applied [6]. In the MCS+ algorithm
a Maximum Cardinality Search [29] is executed at the sec-
ond step. The other two algorithms are variants of a lex-
icographic breadth first search algorithm [25] with graph
reductions as a preprocessing step.

Note that the run time of MCS+ is about 10 fold the
run time of SG with 100 iterations, as can be seen from
Table 2. This is because MCS+ is run |V | iterations; in each
iteration a different vertex serves as a starting point. Also
note that occasionally there is a vast reduction in the size of
the largest clique produced by MCS+, but usually SG gives
smaller largest clique. The other two algorithms (LEX P+,
LEX M+) are inferior to MCS+ on these data sets, as can
be seen from Table 2.

In all graphs, the stochastic greedy algorithm (using 100
iterations) reduced the size of the largest clique created com-
pared to the deterministic greedy algorithm; On the aver-
age, the size of the largest clique created in these examples
reduced by 29%. Recall that an improvement of ∆ in the
largest clique size suggests an improvement of c∆ in run
time. Further note that although the larger graphs have
clique sizes up to 40 vertices, they can still be used as in-
puts to superlink due to the conditioning operation which
sufficiently reduces the larger cliques.

Experiment C. The third experiment compared the class
of functions [CGi(X)]γ for the biased coin for the optimal
value of γ. We found that on the average, if we set γ to a
fixed value shared by the entire run of our algorithm, then
the best results are achieved by setting γ = 1

2
. Coinci-

dentally, this value was the natural choice made before any
experimentation took place. We ran 127 random graphs
of sizes ranging from 4000 vertices up to 20000 with vari-
ous treewidths. The graphs were obtained from simulated

pedigree data. Each graph was run on the following values
of γ: 0.25, 0.33, 0.5, 0.75, 1, and the results were compared
with regards to the cost of the elimination sequence found.
The variance of performance was very high. The distribu-
tion of the most successful runs with regards to the cost of
the elimination sequence found, as a function of γ, is given
below showing the superiority of γ = 1

2
:

γ 0.25 0.33 0.5 0.75 1
#runs 18 21 51 21 16

Experiment D. The fourth experiment tested the optimal
value for m ranging from 3 to 15 using similar graphs to
those used in Experiment 3. There is no clear indication
that a specific fixed choice of m is significantly better than
others. The value m = 3 for superlink has been chosen
quite arbitrarily.

6. RELATED WORK
In [14], a survey and evaluation of several triangulation

algorithms, which are analogous to algorithms for finding
unconstrained elimination sequences, is reported. Also pre-
sented are several simple heuristic methods. The experimen-
tal results in [14] show that the minimum weight heuristic,
which corresponds to the deterministic-greedy algorithm de-
scribed herein, gives overall the best results in most cases;
results which we improve with our stochastic algorithm. In
some cases, simulated annealing produces considerably bet-
ter results than this heuristic, and in other cases, there is
only a slight improvement. Kjærulff concludes with the fol-
lowing:

119

�Nodes �Edges Treewidth Time (sec)
SG MCS+ LEX P+ LEX M+ SG MCS+ LEX P+ LEX M+

3915 6813 40 26 33 33 15.03 210.63 342.09 467.05
3979 6941 21 24 32 31 14.15 224.43 246.51 355.89
4637 8184 18 15 15 16 21.78 173.89 195.5 353.58
4720 8211 22 26 31 31 22.71 233.73 299.42 476.3
4733 8246 23 32 32 31 23.34 254.89 366.57 554.46
6158 10822 17 19 18 18 41 375.43 377.41 669.73
6166 10695 37 22 33 33 47.4 359.98 537.6 886.51
6242 10814 27 30 42 42 45.61 495.24 607.17 928.6
6253 10755 19 19 26 27 47.04 416.32 457.38 813.79
6309 10829 19 22 29 27 38.63 323.52 438.42 712.15
6372 11198 21 24 31 31 45.06 426.14 500.13 834.41
6393 10891 22 23 26 26 43.27 403.67 402.29 724.6
9135 15550 23 23 32 32 99.52 802 1098.87 1755.69
9223 15579 22 26 33 33 92.56 781.33 1056.06 1799.59
9276 15926 30 34 45 46 104.74 949.2 1642.84 2464.48
9292 16096 24 33 43 42 100.07 1131.35 1330.88 2191.66
11800 20073 26 25 33 33 162.41 1450.43 2022.12 3606.19
12058 20270 23 26 34 36 166.4 1382.61 2055.31 3630.71
12278 21215 32 40 51 62 183.93 2211.95 3249.85 5325.91
12606 21440 24 32 39 39 171.55 1764.04 2038.08 3697.2

Table 2: Treewidth Experiments. The bold letters show which algorithm(s) achieved the best result for a
given instance. Note that SG achieves the best result on 16/20 instances.

The lesson to be learnt from this comparison is: If
time is not a crucial parameter it might be recom-
mendable to use annealing.
...
On the other hand, if triangulation has to be fast
we can by no means recommend the annealing al-
gorithm which is orders of magnitude slower than
the heuristic algorithms.

Our stochastic greedy algorithm minimizes the total run
time of likelihood computations which includes the time for
finding a good elimination order and the time for performing
the elimination. Simulated annealing may occasionally pro-
duce better elimination orders but we expect that the time
for finding an improvement would usually be larger than the
time gained due to the improved elimination order.

Several hybrid algorithms combining variable elimination
with conditioning to achieve a space-time tradeoff have been
proposed in the context of constraint satisfaction. The al-
gorithms proposed in [19, 24] interleave variable elimina-
tion with conditioning. Both algorithms are controlled by
a parameter which determines in each step whether vari-
able elimination will be performed or a variable to condi-
tion on will be chosen. Consequently, our stochastic greedy
algorithm can also optimize these algorithms for constraint
satisfaction.

7. DISCUSSION
In this paper we defined the constrained elimination prob-

lem which is to find an optimal elimination sequence of a
graph under the constraint that the weight of the heaviest
clique created is below a certain threshold. We presented a
stochastic greedy algorithm for approximately solving this

problem and implemented it in the genetic linkage program
superlink.

We have demonstrated the significance of using the stochas-
tic greedy algorithm in genetic linkage analysis. Our opti-
mization algorithm can also be utilized in a variety of differ-
ent applications, such as: constraint satisfaction, indepen-
dent set, dominating set, graph K-colorability and Hamilto-
nian circuit [2, 9] as well as in other applications of Bayesian
networks.

The heuristic algorithm we presented is indeed simple and
yet is new and the most effective algorithm to date for min-
imizing the total time of optimization and likelihood com-
putation. The success of this algorithm stems from the fact
that it is an any time algorithm; after each iteration, which
is very fast, there is a valid elimination order and a good
estimate of the total run time. The history of improvements
and the estimated total run time provide a mechanism to
determine when to stop the optimization phase and move
on to computing the likelihood. Currently, we use the cost
of the elimination sequence as a rough estimate of the total
run time. We plan to develop a cost function which would
serve as a more accurate estimate of the total run time.

Recall that if summation in the cost function (5) is re-
placed with maximization and the weight of every vertex
in the graph is constant and T = ∞, then the problem is
reduced to finding the treewidth of a graph, which is known
to be NP-complete [3]. Table 2 shows that our stochastic
greedy algorithm is closer to finding treewidth than several
known algorithms.

Due to the small amount of time it took for the reduc-
tion rules due to [6] to run (times not shown) we conclude
that reduction rules have a potential for further optimiza-
tion as a preprocessing step before SG is applied. We plan
to adapt a weighted version of these reduction rules and test

120

it thoroughly within superlink to determine whether the
additional running time needed for optimization still yields
a gain on the total run time. We also plan to compare our al-
gorithm to other alternatives for computing treewidth such
as those in [4, 28] and the algorithm implemented in the
hugin 6.1 system [1, 13].

Acknowledgments
We thank Arie Koster for performing Experiment B and to
Uffe Kjærulff for pointing us to hugin 6.1. We also thank
Natalia Graiz and Marina Shteinberg for implementing an
earlier version of our stochastic algorithm and running ini-
tial experiments. This research was supported by the Israel
Science Foundation.

8. REFERENCES
[1] S. K. Andersen, K. G. Olesen, F. V. Jensen, and

F. Jensen. HUGIN - a shell for building Bayesian
belief universes for expert systems. In Proc. of the
11th International Joint Conference on Artificial
Intelligence (IJCAI), volume 2, pages 1080–1085,
1989.

[2] S. Arnborg. Efficient algorithms for combinatorial
problems on graphs with bounded decomposibility.
BIT, 25:2–23, 1985.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski.
Complexity of finding embeddings in a k-tree. SIAM
J. Alg. Disc. Meth., 8:277–284, 1987.

[4] A. Becker and D. Geiger. A sufficiently fast algorithm
for finding close to optimal clique trees. Artificial
Intelligence, 125(1-2):3–17, 2001.

[5] A. Becker, D. Geiger, and A. A. Schäffer. Automatic
selection of loop breakers for genetic linkage analysis.
Hum. Hered., 48(1):4960, 1998.

[6] H. Bodlaender, A. Koster, F. Eijkhof, and L. Gaag.
Pre-processing for triangulation of probabilistic
networks. In Proc. 17th Conf. on Uncertainty in
Artificial Intelligence (UAI), pages 32–39, 2001.

[7] R. W. J. Cottingham, R. M. Idury, and A. A.
Schäffer. Faster sequential genetic linkage
computations. Am. J. Hum. Genet., 53:252–263, 1993.

[8] R. Dechter. Topological parameters for time-space
tradeoff. In Proc. Twelfth Conference on Uncertainty
in Artificial Intelligence (UAI), pages 220–227, 1996.

[9] R. Dechter. Bucket elimination: A unifying framework
for probabilistic inference. In J. M. I. (Ed.), editor,
Learning in Graphical Models, pages 75–104. Kluwer
Academic Press., 1998.

[10] R. C. Elston and J. Stewart. A general model for the
analysis of pedigree data. Hum. Hered., 21:523–542,
1971.

[11] M. Fishelson and D. Geiger. Exact genetic linkage
computations for general pedigrees. Bioinformatics,
18(Suppl. 1):S189–S198, 2002.

[12] N. Friedman, D. Geiger, and N. Lotner. Likelihood
computation with value abstraction. In Proc. Sixteenth
Conf. on Uncertainty in Artificial Intelligence (UAI),
pages 192–200, 2000.

[13] Hugin. The API reference manual version 5.4.
February 2002.

[14] U. Kjærulff. Triangulation of graph - algorithms
giving small total state space. Technical Report
R90-09, Department of Computer Science, Aalborg
University, Denmark, March 1990.

[15] A. Koster, H. Bodlaender, and S. Hoesel. Treewidth:
Computational experiments. Technical Report ZIB
01-38, December 2001.

[16] L. Kruglyak, M. J. Daly, and E. S. Lander. Rapid
multipoint linkage analysis of recessive traits in
nuclear families including homozygosity mapping. Am.
J. Hum. Genet., 56:519–527, 1995.

[17] L. Kruglyak, M. J. Daly, M. P. Reeve-Daly, and E. S.
Lander. Parametric and nonparametric linkage
analysis: A unified multipoint approach. Am. J. Hum.
Genet., 58(6):1347–1363, 1996.

[18] E. S. Lander and P. Green. Construction of multilocus
genetic maps in humans. In Proc. Natl. Acad. Sci.,
volume 84, pages 2363–2367, 1987.

[19] J. Larrosa. Boosting search with variable elimination.
In Proc. 6th International Conf. on Principles and
Practice of Constraint Programming (CP2000), pages
291–305, September 2000.

[20] S. L. Lauritzen. Graphical Models. Oxford University
Press., 1996.

[21] J. R. O’Connell. Rapid multipoint linkage analysis via
inheritance vectors in the Elston-Stewart algorithm.
Hum. Hered., 51(4):226–240, 2001.

[22] J. R. O’connell and D. E. Weeks. The VITESSE
algorithm for rapid exact multilocus linkage analysis
via genotype set-recoding and fuzzy inheritance. Nat.
Genet., 11:402–408, 1995.

[23] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, San Francisco, CA, 1988.

[24] I. Rish and R. Dechter. Resolution versus search: Two
strategies for SAT. Journal of Automated Reasoning,
24(1-2):225–275, January 2000.

[25] D. Rose, E. Tarjan, and G. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM Journal
on Computing, 5:266–283, 1976.

[26] A. A. Schäffer, S. K. Gupta, K. Shriram, and R. W. J.
Cottingham. Avoiding recomputation in linkage
analysis. Hum. Hered., 44:225–237, 1994.

[27] R. D. Shachter, S. K. Andersen, and P. Szolovits.
Global conditioning for probabilistic inference in belief
networks. In Proc. Tenth Conf. on Uncertainty in
Artificial Intelligence (UAI), pages 514–522, 1994.

[28] K. Shoikhet and D. Geiger. A practical algorithm for
finding optimal triangulations. In Proc. 14th National
Conf. on Artificial Intelligence (AAAI), pages
185–190, July 1997.

[29] R. Tarjan and M. Yannakakis. Simple linear-time
algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic
hypergraphs. SIAM Journal on Computing,
13(3):566–579, 1984.

121

