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Abstract. A current high-priority phase of human genomics involves
the development of a full Haplotype Map of the human genome [23]. It
will be used in large-scale screens of populations to associate specific hap-
lotypes with specific complex genetic-influenced diseases. A key, perhaps
bottleneck, problem is to computationally infer haplotype pairs from
genotype data. This paper follows the talk given at the DIMACS Con-
ference on SNPs and Haplotypes held in November of 2002. It reviews
several combinatorial approaches to the haplotype inference problem that
we have investigated over the last several years. In addition, it updates
some of the work presented earlier, and discusses the current state of our
work.

1 Introduction to SNP’s, Genotypes, and Haplotypes

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
of the data from a single copy is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called a genotype. In complex diseases
(those affected by more than a single gene) it is often much more informative to
have haplotype data (identifying a set of gene alleles inherited together) than to
have only genotype data.

The underlying data that forms a haplotype is either the full DNA sequence
in the region, or more commonly the values of single nucleotide polymorphisms
(SNP’s) in that region. A SNP is a single nucleotide site where exactly two (of
four) different nucleotides occur in a large percentage of the population. The
SNP-based approach is the dominant one, and high density SNP maps have
been constructed across the human genome with a density of about one SNP
per thousand nucleotides.

1.1 The Biological Problem

In general, it is not feasible to examine the two copies of a chromosome sep-
arately, and genotype data rather than haplotype data will be obtained, even
though it is the haplotype data that will be of greatest use.
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Data from m sites (SNP’s) in n individuals is collected, where each site can
have one of two states (alleles), which we denote by 0 and 1. For each individ-
ual, we would ideally like to describe the states of the m sites on each of the
two chromosome copies separately, i.e., the haplotype. However, experimentally
determining the haplotype pair is technically difficult or expensive. Instead, the
screen will learn the 2m states (the genotype) possessed by the individual, with-
out learning the two desired haplotypes for that individual. One then uses com-
putation to extract haplotype information from the given genotype information.
Several methods have been explored and some are intensively used for this task
[6,7,12,34,17,31,28,29]. None of these methods are presently fully satisfactory,
although many give impressively accurate results.

1.2 The Computational Problem

Abstractly, input to the haplotyping problem consists of n genotype vectors, each
of length m, where each value in the vector is either 0,1, or 2. Each position in
a vector is associated with a site of interest on the chromosome. The position in
the genotype vector has a value of 0 or 1 if the associated chromosome site has
that state on both copies (it is a homozygous site), and has a value of 2 otherwise
(the chromosome site is heterozygous).

Given an input set of n genotype vectors, a solution to the Haplotype In-
ference (HI) Problem is a set of n pairs of binary vectors, one pair for each
genotype vector. For any genotype vector g, the associated binary vectors v1, v2

must both have value 0 (or 1) at any position where g has value 0 (or 1); but
for any position where g has value 2, exactly one of v1, v2 must have value 0,
while the other has value 1. That is, v1, v2 must be a feasible “explanation” for
the true (but unknown) haplotype pair that gave rise to the observed genotype
g. Hence, for an individual with h heterozygous sites there are 2h−1 haplotype
pairs that could appear in a solution to the HI problem.

For example, if the observed genotype g is 0212, then the pair of vectors 0110,
0011 is one feasible explanation, out of two feasible explanations. Of course, we
want to find the explanation that actually gave rise to g, and a solution for the
HI problem for the genotype data of all the n individuals. However, without
additional biological insight, one cannot know which of the exponential number
of solutions is the “correct one”.

1.3 The Need for a Genetic Model

Algorithm-based haplotype inference would be impossible without the implicit
or explicit use of some genetic model, either to asses the biological fidelity of any
proposed solution, or to guide the algorithm in constructing a solution. Most of
the models use statistical or probabilistic aspects of population genetics. We will
take a more deterministic or combinatorial approach.

In this paper we will review several combinatorial investigations into the
haplotype inference problem, and in each case, discuss the implicit or explicit
genetic model that is involved.
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2 Optimizing Clark’s Method

A. Clark, in [6] was the first to propose an algorithm to solve the haplotype
inference problem. It has been widely used, and is still in use today. We will
explain the method is a somewhat more abstract setting.

Abstractly, input consists of n vectors, each of length m, where each value
in the vector is either 0,1, or 2. Each position in a vector is associated with a
site of interest on the chromosome. The state of any site on the chromosome is
either 0 and 1. The associated position in the vector has a value of 0 or 1 if the
chromosome site has that state on both copies (it is a homozygous site), and it
has a value of 2 if both states are present (it is a hetrozygous site). A position
is considered “resolved” if it contains 0 or 1, and “ambiguous” if it contains
a 2. A vector with no ambiguous positions is called “resolved”, and otherwise
called “ambiguous”. haplotype pair. Given two non-identical resolved vectors R
and NR, the conflation of R and NR produces the ambiguous genotype vector
A, with entry 0 (respectively 1) at each site where both R and NR have 0
(respectively 1) entries, and with entry 2 at each site where the entries of R and
NR differ.

The method of Clark begins by identifying any vector in the input with zero
or one ambiguous sites, since in the first case the original two haplotypes are
identical to the genotype vector, and in the second case the one ambiguous site
has a forced resolution, producing two forced haplotype vectors. These identified
haplotypes are called the initial resolved vectors (haplotypes). Clark’s method
requires that some initial resolved haplotypes are available in this way.

The main part of Clark’s method resolves remaining ambiguous genotypes
by expanding out from the initial resolved haplotypes. Clark [6] proposed the
following rule that infers a new resolved vector NR (or haplotype) from an am-
biguous vector A and an already resolved vector R. The resolved vector R can
either be one of the input resolved vectors, or a resolved vector inferred by an
earlier application of the Inference Rule.

Inference Rule: Suppose A is an ambiguous vector with h, say, am-
biguous positions, and R is a known resolved vector which equals one of
the 2h potential resolutions of vector A (where each of the ambiguous
positions in A is set to either 0 or 1). Then infer that A is the conflation
of one copy of resolved vector R and another (uniquely determined) re-
solved vector NR. All the resolved positions of A are set the same in NR,
and all of the ambiguous positions in A are set in NR to the opposite of
the entry in R. Once inferred, vector NR is added to the set of known
resolved vectors, and vector A is removed from the vector set.

For example, if A is 0212 and R is 0110, then NR is 0011. The interpretation
is that if the two haplotypes in a screened individual are 0110 and 0011, then the
observed genotype would be 0212. The inference rule resolves the vector 0212
using the belief that 0110 is a haplotype in the population, to infer that 0011 is
also a haplotype in the population.
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When the Inference Rule can be used to infer the vector NR from the vectors
A and R, we say that R can be applied to (resolve) A. It is easy to determine
if a resolved vector R can be applied to resolve an ambiguous vector A: R can
be applied to A if and only if A contains no resolved position s such that the
values of A and R differ at position s. A resolved position s in A whose value
does differ from that in R is said to block the application of R to A. For example,
0110 can not be applied to 2012 because position two (from the left) blocks the
application.

Clark’s entire algorithm for resolving the set of genotypes is to first identify
the initial resolved set, and then repeatedly apply the Inference Rule until either
all the genotypes have been resolved, or no further genotypes can be resolved.

The implicit genetic model (I believe) behind the Inference Rule is that the
genotypes of individuals in the current population resulted from random mating
of the parents of the current population. The sampled individuals are also drawn
randomly from the population, and the sample is small compared to the size of
the whole population, so the initial resolved vectors likely represent common
haplotypes that that appear with high frequency in the population. Hence these
haplotypes are likely to have been used in the creation of currently unresolved
genotypes. So, if an unresolved genotype A can be explained the by conflation of
two initial resolved haplotypes, or by using one of the initial resolved haplotypes,
it is sensible to resolve A in that way, and then to deduce that vector NR is
also in the population. We can define the “distance” of an inferred haplotype
NR from the initial resolved vectors, as the number of inferences used on the
shortest path of inferences from some initial resolved vector, to vector NR. The
above explanation for the correctness of an Inference Rule becomes becomes
weaker as it is used to infer vectors with increasing distance from the initial
resolved vectors. However, Clark’s Inference Rule is “globally” justified in [6] by
an additional empirical observation that will be discussed shortly.

Note that in the application of the Inference Rule, there may be choices
for vectors A and R, and since A is removed once it is resolved, a choice that is
made at one point can constrain future choices. Hence, one series of choices might
resolve all the ambiguous vectors in one way, while another execution, making
different choices, might resolve the vectors in a different way, or leave orphans,
ambiguous vectors that cannot be resolved. For example, consider a problem
instance consisting of two resolved vectors 0000 and 1000, and two ambiguous
vectors 2200 and 1122. Vector 2200 can be resolved by applying 0000, creating
the new resolved vector 1100 which can then be applied to resolve 1122. That
execution resolves both of the ambiguous vectors and ends with the resolved
vector set 0000, 1000, 1100 and 1111. But 2200 can also be resolved by applying
1000, creating 0100. At that point, none of the three resolved vectors, 0000, 1000
or 0100 can be applied to resolve the orphan vector 1122.

The problem of choices is addressed in [6] by using an implementation of
the method where the choices are affected by the ordering of the data. For any
input, the data is reordered several times, the method is rerun for each ordering,
and the “best” solution over those executions is reported. Of course, only a tiny
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fraction of all the possible data orderings can be tried. We will refer to this as
the local inference method.

Without additional biological insight, one cannot know which execution (or
data ordering) gives the solution that is nearest to the truth. However, simu-
lations discussed in [6] show that the inference method tends to produce the
wrong vectors only when the execution also ends with ambiguous vectors that
cannot be resolved. That is, there is some “global” structure to the set of true
haplotypes that underly the observed genotypes, so that if some early choices
in the method incorrectly resolve some of the genotypes, then the method will
later become stuck, unable to resolve the remaining genotypes. The exact na-
ture of this global structure was not made explicit, but simulations reported in
[6] confirmed this expectation. Executions of the method that resolved all the
ambiguous genotypes, more accurately found the original haplotypes than did
executions that got stuck. Clark, therefore recommended that his method should
be run numerous times, randomly reordering the input data each time, and then
the execution that resolved the most genotypes should be the one most trusted.

2.1 The MR Problem

Given what was observed and proposed in [6], the major open algorithmic ques-
tion from [6] is whether efficient rules exist to break choices in the execution of
Clark’s algorithm, so as to maximize the number of genotypes it resolves. This
leads to the problem studied in [16,17]

Maximum Resolution (MR): Given a set of vectors (some ambiguous
and some resolved), what is the maximum number of ambiguous vectors
that can be resolved by successive application of Clark’s Inference Rule?

Stated differently, given a set of vectors, what execution of the inference method
maximizes the number of ambiguous vectors that are resolved? We want to
answer this question, rather than rely on re-running the method many times,
sampling only a miniscule fraction of the possible executions. An algorithm to
solve the MR problem needs to take a more global view of the data, than does
the more local inference method, to see how each possible application of the
Inference Rule influences choices later on.

Unfortunately, in [17], we show that the MR problem is NP-hard, and in
fact, Max-SNP complete. The reduction also shows that two variants of the MR
problem are NP-hard. We next reformulated the MR problem as a problem on
directed graphs, with an exponential time (worst case) reduction. We will detail
this approach below. That graph-theoretic problem can be solved via integer
linear-programming. Experiments with this approach suggest that the reduction
is very efficient in practice, and that linear programming alone (without explicit
reference to integrality) often suffices to solve the maximum resolution problem.
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2.2 A Graph-Theoretic View of the MR Problem

Given the NP-hardness and Max-SNP completeness of the MR problem, we
would like a “heuristic” method that feels likely to perform well in practice.
That algorithm might not always find the optimal solution to the MR problem,
but it should correctly know when it has actually found the optimal and when
it has not. To do this, we need an algorithm that takes a more global view of
the data before deciding on where to apply the Inference Rule. One approach is
to translate the MR problem (via a worst-case exponential-time reduction) to a
graph problem as follows.

We create a directed graph G containing a set of nodes N(A), for each am-
biguous vector A in the input, and a set of nodes, I, containing one node for
each resolved vector in the input. In detail, for each ambiguous vector A, with
say h ambiguous positions, R(A) is the set of the 2h distinct, resolved vectors
created by setting the ambiguous positions in A (to zero or one) in all possible
ways. N(A) is a set of 2h nodes, each labeled by a distinct vector in R(A). Note
that two nodes (in different N() sets) can have the same label, but the nodes
are distinguished by the ambiguous vector they originate from. Then connect
a directed edge from any node v to any node v′ in G if and only v′ is in a set
R(A) for some ambiguous vector A (i.e., v′ is not in I), and the application of
resolved vector labeling v to the ambiguous vector A would create the resolved
vector labeling v′.

The application of a resolved vector to an ambiguous vector (if possible)
uniquely determines the inferred resolved vector. Hence, for any ambiguous vec-
tor A and any node v in G, there is at most one edge from v to the set of nodes
N(A). Therefore, any directed tree in G rooted a node v ∈ I specifies a feasible
history of successive applications of the Inference Rule, starting from node v ∈ I.
The non-root nodes reached in this tree specify the resolved vectors that would
be created from ambiguous vectors by this succession of applications. Therefore,
the MR problem can be recast as the following problem on G.

The Maximum Resolution on G (MRG) Problem Find the largest
number of nodes in G that can be reached by a set of node-disjoint,
directed trees, where each tree is rooted at a node in I, and where for
every ambiguous vector A, at most one node in N(A) is reached.

Despite the exponential worst-case blowup, this formulation of the MR prob-
lem is appealing because the construction of G in practice is likely to be efficient,
and because without the last constraint, the MRG problem is trivial. The con-
struction is efficient because it can be implemented to avoid enumerating isolated
nodes of G, and the expected number of ambiguous positions in any vector is
generally small. Let G denote graph derived from G where every node that can’t
be reached from I has been removed, along with any incident edges. The im-
plementation given in [17] constructs G in time proportional to mn2 plus the
number of edges in G, which in practice is a very small fraction of the number
of edges in G.
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2.3 An Exact Integer Programming Formulation for the MRG
Problem

The MRG problem can first be formulated by adding simple non-linear con-
straints to a network flow formulation. First, let all the edges in G be given a
huge capacity (larger than the number of genotype in the input). Then, add a
source node and sink node to G; direct an edge of infinite capacity from the
source node to each node in I; direct an edge with capacity one from each node
not in I to the sink node. Clearly, a feasible solution to the MRG problem that
reaches q nodes (and hence resolves q ambiguous vectors) defines a source-sink
flow of value q exactly. However, the converse does not yet hold, since we have
not excluded the possibility of reaching more than one node in any set N(A).
For that, consider a linear programming formulation (for background see [27,32])
of the above network flow problem, and let xe denote the variable for the flow
on edge e. Then for every pair of edges e, e′ that enter nodes in some set N(A),
add in the non-linear constraint xexe′ = 0 to the network flow formulation. An
integer solution to this mathematical program exactly solves the MRG problem.
But since this formulation involves non-linear constraints, it is not clear how we
would solve it in practice.

In [17], we explored a different integer programming formulation, that is not
exact, but that found the exact solution most of the time. However, recently
R. Ravi [33] suggested how to reformulate the non-linear constraints as linear,
integer constraints, which results in making the above formulation an exact
integer, linear-programming formulation for the MRG problem.

Let ce and ce′ denote the capacities on edges e and e′ respectively. Ravi
suggested replacing the constraint xexe′ = 0, with xe ≤ de, xe′ ≤ cede′ and
de +ce′de′ ≤ 1, where de and de′ are 0,1 variables. Since ce and ce′ are constants,
these three inequalities are linear, and their effect is to limit the flow to at most
one of the edges e or e′.

2.4 Results

The maximum-resolution hypothesis in [6] is that the most accurate solutions
tend to come from the executions of the inference method that resolve the most
ambiguous vectors. In the simulations done in [17] we verify the basic maximum-
resolution hypothesis. We consistently observed that the executions with the
most correct resolutions were the ones with the most resolutions. More informa-
tively, the ratio of correct resolutions to total resolutions increases as the total
number of resolutions increases, and the distribution of the number of correct
resolutions tends to be more skewed to the right, as the number of resolutions
increases. These simulations are consistent with the basic maximum-resolution
hypothesis. However, maximum-resolution alone is not a sufficient guide to find-
ing the largest number of correct resolutions, because the distribution of the
number of correct resolutions have high variance, even among those executions
that resolve the maximum number of vectors.



16 D. Gusfield

So, in order to maximize the number of correct resolutions, it is indeed best
to select from those executions that maximize the total number of resolutions
(as the maximum-resolution hypothesis states), but in order to decide which
of those execution(s) to use, one still needs some additional criteria. The most
effective secondary criteria to use, in order to find solutions with a large number
of correct resolutions, is to minimize the number of distinct haplotypes used
in the solution. That is, if we first restrict attention to those executions that
maximize the number of resolutions, and then within that group of executions,
restrict attention to the ones that use the smallest number of distinct haplotypes,
the quality of the solution greatly improves. This will be further discussed in the
next section.

3 Supercharging Clark’s Method

The observations reported above suggest that maximum resolution is not enough
in order to find the most accurate solution when using Clark’s method. Certainly,
Clark’s method should be run many times, as Clark suggested, but it is not clear
how to use the full set of results obtained from these executions. (Interestingly,
most published evaluations of Clark’s method only run it once, ignoring the
intuition that Clark had, that the stochastic behavior of his algorithm was an
important factor.)

In [30], we examine several variants of Clark’s method, using a set of 80
genotypes, of which 47 were ambiguous; the others were either homozygous at
each site or only had a single hetrozygous site. Each genotype contained nine SNP
sites in the human APOE gene. Independently, the correct underlying haplotypes
were laboratory-determined in order to calibrate the accuracy of each variation
of Clarks’s method (accuracy measured by how many of the haplotype pairs
reported by the algorithm were actually the original haplotype pairs for that
genotype). We observed that most variations of Clark’s method produce a large
number of different solutions, each of which resolved all of the 47 ambiguous
genotypes. The solutions had a high accuracy variance, and choosing a solution
at random from among the 10,000 solutions would give a poor solution with high
probability. Hence, an important issue in using Clark’s method is how to make
sense, or exploit, the many different solutions that it can produce, and that each
resolve all of the ambiguous genotypes.

The main result is that the following strategy works to greatly improve the
accuracy of Clark’s method. First, for the input genotype data, run Clark’s
method many times (we used 10,000 times), each time randomizing decisions that
the method makes. Second, over all the runs, select those runs which produce a
solution using the fewest or close to the fewest number of distinct haplotypes.
The number of such runs was typically in the tens. In those tens of runs, for
each genotype g in the input, record the most used haplotype pair that was
produced to explain g. The set of such explaining haplotype pairs is called the
“consensus solution”. We observed that the consensus solution had dramatically
higher accuracy than the average accuracy of the 10,000 solutions. For example,
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in the APOE data, in one of the variants, out of the 10,000 executions, there were
24 executions that used 20 or 21 distinct haplotypes, and twenty was the smallest
observed number. The average accuracy of the 10,000 executions was 29 correct
haplotype pairs out of the 47 ambiguous genotypes, and the execution with the
highest accuracy in the 10,000 had 39 correct pairs. However, the average of the
24 selected executions was 36. The consensus solution of those 24 executions had
39 correct pairs. Hence, this simple rule allowed us to home in on a single solution
that was as good as the most accurate solution over all the 10,000 solutions. In
another variant of Clark’s method, the consensus solution had 42 correct pairs,
while the average of all the 10,000 solutions had 19 correct. For comparison, the
program PHASE always got 42 correct solutions, and the program Haplotyper
produced a range of solutions with most getting either 43 or 42 correct, with one
solution getting 44 correct, and three solutions getting only 37 correct.

We also observed that among the tens of solutions that use few haplotypes,
any haplotype pair that is used with high frequency, say above 85% of the time,
was almost always correct. This allows one to home in on those pairs that can
be used with high confidence.

4 Perfect Phylogeny Haplotyping

As mentioned earlier, the haplotype inference problem would be impossible with-
out some implicit or explicit genetic model guiding the method or selecting
the most promising solutions. The most powerful such genetic model is the
population-genetic concept of a coalescent, i.e., a rooted tree that describes the
evolutionary history of a set of haplotypes in sampled individuals [35,25]. The
key observation is that “In the absence of recombination, each sequence has a
single ancestor in the previous generation.” [25].

That is, if we follow backwards in time the history of a single haplotype H
from a given individual I, when there is no recombination, that haplotype H is
a copy of one of the haplotypes in one of the parents of individual I. It doesn’t
matter that I had two parents, or that each parent had two haplotypes. The
backwards history of a single haplotype in a single individual is a simple path, if
there is no recombination. That means that the history of a set of 2n individuals,
if we look at one haplotype per individual, forms a tree. The histories of two
sampled haplotypes (looking backwards in time) from two individuals merge at
the most recent common ancestor of those two individuals. (The reason for using
2n instead of n will be clarified shortly.)

There is one additional element of the basic coalescent model: the infinite-
sites assumption. That is, the m sites in the sequence (SNP sites in our case)
are so sparse relative to the mutation rate, that in the time frame of interest at
most one mutation (change of state) will have occurred at any site.

Hence the coalescent model of haplotype evolution says that without recom-
bination, the true evolutionary history of 2n haplotypes, one from each of 2n
individuals, can be displayed as a tree with 2n leaves, and where each of the
m sites labels exactly one edge of the tree, i.e., at a point in history where a
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mutation occurred at that site. This is the underlying genetic model that we
assume from here on. Note that we may not know the ancestral haplotype at the
root of the tree, although the algorithms can be somewhat simplified when we
do know it. See [35] for another explanation of the relationship between sequence
evolution and coalescents.

In more computer science terminology, the no-recombination and infinite-
sites model says that the 2n haplotype (binary) sequences can be explained by
a perfect phylogeny [14,15] which is defined next.

Definition Let M be an 2n by m 0-1 (binary) matrix. Let V be an m-length
binary vector, called the ancestor vector.

A perfect phylogeny for M and V is a rooted tree T with exactly 2n leaves
that obeys the following properties:

1) Each of the 2n rows labels exactly one leaf of T , and each leaf is labeled
by one row.

2) Each of the m columns labels exactly one edge of T .
3) Every interior edge (one not touching a leaf) of T is labeled by at least

one column.
4) For any row i, the value M(i, j) is unequal to V (j) if and only if j labels

an edge on the unique path from the root to the leaf labeled i. Hence, that path
is a compact representation of row i.

The biological interpretation is that an edge label j indicates the point in
time where a mutation at site j occurred, and so the state of site j changes
from its ancestral value to the opposite value. The motivation for the perfect
phylogeny model is based on recent observations of little or no recombination in
long segments of Human DNA, and the standard infinite-sites assumption.

In the rooted version of perfect phylogeny, V is given as input. There is also
an unrooted version of perfect phylogeny, where V is not specified. In that case,
a binary matrix M is said to have a perfect phylogeny if there exists a V such
that there is a (rooted) perfect phylogeny for M and V .

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is: Given
a set of genotypes, M , find a set of explaining haplotypes, M ′, which defines an
unrooted perfect phylogeny.

What Happened to the Genotype Data?

How does the perfect phylogeny view of haplotypes relate to the problem of
deducing the haplotypes when only the n genotype vectors are given as input?

The answer is that each genotype vector (from a single individual in a sample
of n individuals) was obtained from the mating of two of 2n haplotype vectors
in an (unknown) coalescent (or perfect phylogeny). That is, the coalescent with
2n leaves is the history of haplotypes in the parents of the n individuals whose
genotypes have been collected. Those 2n haplotypes are partitioned into pairs,
each of which gives rise to one of the n observed genotypes.

So, given a set S of n genotype vectors, we want to find a perfect phylogeny
T , and a pairing of the 2n leaves of T which explains S. In addition to efficiently
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finding one solution to the PPH problem, we would like to determine if that is
the unique solution, and if not, we want to efficiently represent the set of all
solutions, so that each one can be generated efficiently.

4.1 Algorithm and Program GPPH

The PPH problem was introduced and first solved in [18]. The algorithm given
in [18] is based on reducing the PPH problem to a well-studied problem in graph
theory, called the graph realization problem. The theoretical running time of this
approach is O(nmα(nm)), where α is the inverse Ackerman function, usually
taken to be a constant in practice. Hence, the worst case time for the method
is nearly linear in the size of the input, nm. The reduction in [18] has a small
error, and a corrected, simplified reduction is detailed at:

wwwcsif.cs.ucdavis.edu/~gusfield/recomberrata.pdf.
The time for the reduction is O(nm), and the graph realization problem can

be solved by several published methods. The method in [3] is based on a general
algorithm due to Lofgren, and runs in O(nmα(nm)) time. That algorithm is the
basis for the worst-case time bound established in [18], but we found it to be
too complex to implement. In [18] it was explained that after one PPH solution
is obtained, by whatever method, one can get an implicit representation of the
set of all PPH solutions in O(m) time.

Using a different solution to the graph realization problem [13], this approach
yields a time bound of O(nm2), and that approach has been implemented in a
program now called GPPH [5]. GPPH contains within it a fully general solution
to the graph realization problem, even for instances that do not arise from any
PPH problem instance.

4.2 Algorithm and Program DPPH

The second method to solve the PPH problem is called the DPPH method.
The method in DPPH [1,2] is not based (explicitly or implicitly) on a graph
realization algorithm, but is based on deeper insights into the combinatorial
structure of the PPH problem and its solution. The running time for the method
is also O(nm2), and the algorithm produces a graph that represents the set of
all solutions in a simple way. That approach has been implemented and is called
DPPH.

4.3 Algorithm and Program HPPH

A third method to solve the PPH problem was developed in [11]. It also has
worst-case running time of O(nm2), and it can be used to find and represent
all the solutions. This approach has been implemented and is called HPPH. Al-
though developed independently of GPPH, one can view the method in HPPH as
a specialization of graph realization method used in GPPH to the PPH problem,
simplifying the general purpose graph realization method to problem instances
coming from the PPH problem.
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4.4 Comparing the Execution of the Programs

All three of the programs GPPH, DPPH and HPPH are available at
http://wwwcsif.cs.ucdavis.edu/~gusfield/.
The three programs have been extensively tested on the same datasets. Before

the methods were tested against one another, we expected that DPPH would
be the fastest, and that HPPH would be faster than GPPH. The reason is the
DPPH exploits the deepest insights into the special combinatorial structure of
the PPH problem, GPPH is the most general, and HPPH can be viewed as a
simplification of GPPH obtained by exploiting some structural properties of the
PPH problem.

The empirical testing of the programs exactly matched our expectations, and
details can be found in [4]. The empirical testing also uncovered two interesting
phenomena that we discuss next.

Uniqueness of the Solution: a Strong Phase Transition

For any given input of genotypes, it is possible that there will be more than one
PPH solution. When designing a population screen and interpreting the results,
a unique PPH solution is very important. So the question arises: for a given
number of sites, how many individuals should be in the sample (screen) so that
the solution is very likely to be unique? This is a question that was raised in [18].
Therefore, we did several experiments which determine the frequency of a unique
PPH solution when the number of sites and genotypes changes. Intuitively, as
the ratio of genotypes to sites increases, the probability of uniqueness increases.
We studied precisely this issue, and the striking observation is that there is a
strong phase transition in the frequency of unique solutions as the number of
individuals grows. That is, the frequency of unique solutions is close to zero for
a given number of individuals, and then jumps to over 90% with the addition of
just a few more individuals.

Handling Haplotypes Generated by Some Recombinations

The PPH problem is motivated by the coalescent model without recombina-
tion. However, the programs can be useful for solving the HI problem when the
underlying haplotypes were generated by a history involving some amount of
recombination. In that case, it is not expected that the entire data will have a
PPH solution, but some intervals in the data might have one. We can use one
of the PPH programs to find maximal intervals in the input genotype sequences
which have unique PPH solutions. Starting from position 1, we find the longest
interval in the genotype data which has a unique PPH solution. We do this using
binary search, running a PPH program on each interval specified by the binary
search. Let us say that the first maximal interval extends from position 1 to
position i. We output that interval, and then move to position 2 to determine if
there is an interval that extends past i containing a unique PPH solution. If so,
we find the maximal interval starting at position 2, and output it. Otherwise,
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we move to position 3, etc. We continue in this way to output a set of maximal
intervals, each of which contains a unique PPH solution. This also implicitly
finds, for each starting position, the longest interval starting at that position
that contains a unique PPH solution.

In principle, the intervals that are output could overlap in irregular, messy
ways. However, we have observed that this is rarely the case. Generally, the
output intervals do not overlap, or two intervals overlap at one site, i.e., the
right end of one interval may overlap in one position with the left end of the
next interval. This provides a clean decomposition of the data into a few intervals
where in each, the data has a unique PPH solution.

The most striking thing is that when the recombination rate is moderate,
the accuracy of the PPH solutions inside each interval, compared to the original
haplotypes, is very high. There are many ways that such a decomposition can
be used. The most obvious is to reduce the amount of laboratory work that is
needed to fully determine the correct haplotypes. For example, in a problem
with 100 sites and 10 intervals, we can form new shorter genotype vectors based
on one site per interval, hence 10 sites. If the correct haplotype pairs for these
shorter genotype sequences are determined, we can combine that information
with the (assumed correct) haplotype pairs determined in each interval by a
PPH program. The lab effort is reduced to one tenth of what it would be to
determine the haplotypes from 100 sites. That is a huge reduction in laboratory
effort.

5 Pure Parsimony

One natural approach to the HI problem that is often mentioned in the literature
is called the Pure-Parsimony approach1: Find a solution to the HI problem that
minimizes the total number of distinct haplotypes used.

For example, consider the set of genotypes: 02120, 22110, and 20120. There
are HI solutions for this example that use six distinct haplotypes, but the so-
lution 00100, 01110; 01110, 10110; 00100, 10110, for the three genotype vectors
respectively, uses only the three distinct haplotypes 00100, 01110, and 10110.

The Pure parsimony criteria reflects the fact that in natural populations,
the number of observed distinct haplotypes is vastly smaller than the number of
combinatorially possible haplotypes, and this is also expected from population
genetics theory. We also saw this in the experiments reported in [17]. More-
over, the parsimony criteria is to some extent involved in existing computational
methods for haplotype inference. For example, some papers have tried to explain
Clark’s method [6] in terms of parsimony [29], although the role of parsimony is
not explicit in the method, and the haplotyping program PHASE [34] has been
explained in terms of the parsimony criteria [9]. However, the indirect role of
the parsimony criteria in those methods, and the complex details of the com-
putations, makes it hard to see explicitly how the parsimony criteria influences
1 This approach was suggested to us Earl Hubbell, who also proved that the problem

of finding such solutions is NP-hard [24].
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the computation. This makes it difficult to use those methods to evaluate the
effectiveness of the parsimony criteria as a genetic model.

In [19] we detail how to compute, via integer-linear-programming, an HI
solution that minimizes the number of distinct haplotypes, i.e., is guaranteed
to solve the Pure-Parsimony problem. However, the worst-case running time
increases exponentially with the problem size, so the empirical issue is whether
this approach is practical for problem instances of current interest in population-
scale genomics. The paper shows wasy to improve the practicality of the basic
integer programming formulation in a way that is very effective in practice.
Extensive experimentation was done to show the time and memory practicality
of the method, and to compare its accuracy against existing HI methods that
do not explicitly follow the Pure-parsimony criteria.

Empirically, the end result is that for haplotyping problem instances of cur-
rent interest, Pure-parsimony can be computed efficiently in most cases. How-
ever, it’s accuracy is somewhat inferior to the solutions produced by the program
PHASE, although this depends on the number of sites and the level of recombi-
nation.

In more detail, the practicality and accuracy of our approach depend on the
level of recombination in the data (the more recombination, the more practical
but less accurate is the method). We show here that the Pure-Parsimony ap-
proach is practical for genotype data of up to 30 sites and 50 individuals (which
is large enough for practical use in many current haplotyping projects). Up to
moderate levels of recombination, the haplotype calls are 80 to 95 percent cor-
rect, and the solutions are generally found in several seconds to minutes, except
for the no-recombination case with 30 sites, where some solutions require a few
hours.

These results are a validation of the genetic model implicit in the Pure-
Parsimony objective function, for a Purely randomly picked solution to the HI
problem would correctly resolve only a minuscule fraction of the genotypes.

Recently the paper [36] gave experimental results on a pure parsimony ap-
proach to the haplotype inference problem, solving it by branch and bound
instead of integer programming. Theoretical results on pure parsimony appear
in [26].

6 Adding Recombination into the Model

The perfect phylogeny haplotyping problem is motivated by the assumption that
in some interesting cases (haplotype blocks for example) the evolution of the
underlying haplotypes can be represented on a perfect phylogeny. To increase the
applicability of the model, we want to relax that stringent assumption. This was
done in a heuristic way in [10] where they observed that the haplotypes reported
in [8] cannot generally be derived on a perfect phylogeny, but with the removal
of only a small number of individuals, the remaining sequences can be derived
on a perfect phylogeny. Those observations validate the underlying, ideal perfect
phylogeny model and the utility of having an efficient, clean solution for the
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PPH problem, but they also highlight a need to introduce more robust models of
haplotype evolution into the haplotyping model. Probably, the most important
modification of the perfect phylogeny model would be to allow sequences to
recombine, as is common in the real evolution of sequences in populations. When
recombination is allowed, the history of the sequences no longer fits a tree-like
structure, but rather a network is required to represent the derivation of the
haplotypes.

Once recombination is allowed into the underlying model, we can define the
formal analog of the PPH problem: given a set of genotypes whose underlying
haplotypes were believed to have evolved on a network with recombination,
find a set of explaining haplotypes (for the genotypes) which can be derived
on a phylogenetic network with a small amount of recombination. We call this
the “Phylogenetic Network Haplotyping (PNH) Problem”. By specifying a small
amount of recombination, we limit the number of distinct haplotypes that can be
created on the network. As discussed earlier, the number of haplotypes observed
in real populations tends to be relatively small.

The solutions to the PPH problem exploit basic theorems about when a set
of haplotypes can be derived on a perfect phylogeny. Those theorems are rela-
tively simple to state and crucial to the PPH solutions. The PPH problem has
a clean solution partly because of the simplicity of the necessary and sufficient
condition for a set of haplotypes to be derived on a perfect phylogeny. The PNH
problem is harder, because we have no analogous, simple theorems about phylo-
genetic networks. Hence, we have recently focussed attention on the derivation
of haplotypes on phylogenetic networks, with the ultimate goal of applying what
we have learned to the PNH problem. We have focussed mostly on phylogenetic
networks with constrained recombination. Results to date can be found in in
[21,20,22].
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