
An Exact Solution for Finding Minimum Recombinant
Haplotype Configurations on Pedigrees with Missing Data

by Integer Linear Programming (Extended Abstract)

Jing Li ∗ Tao Jiang †

ABSTRACT
We study the problem of reconstructing haplotype configu-
rations from genotypes on pedigree data with missing alleles
under the Mendelian law of inheritance and the minimum re-
combination principle, which is important for the construc-
tion of haplotype maps and genetic linkage/association anal-
ysis. Our previous results show that the problem of finding
a minimum-recombinant haplotype configuration (MRHC) is
in general NP-hard. The existing algorithms for MRHC ei-
ther are heuristic in nature and cannot guarantee optimality,
or only work under some restrictions (on e.g. the size and
structure of the input pedigree, the number of marker loci,
the number of recombinants in the pedigree, etc.). In addi-
tion, most of them cannot handle data with missing alleles
and, for those that do consider missing data, they usually
do not perform well in terms of minimizing the number of
recombinants when a significant fraction of alleles are miss-
ing. In this paper, we develop an effective integer linear
programming (ILP) formulation of the MRHC problem with
missing data and a branch-and-bound strategy that utilizes
a partial order relationship (and some other special relation-
ships) among variables to decide the branching order. The
partial order relationship is discovered in the preprocessing
of constraints by considering unique properties in our ILP
formulation. A directed graph is built based on the vari-
ables and their partial order relationship. By identifying
and collapsing the strongly connected components in the
graph, we may greatly reduce the size of an ILP instance.
Non-trivial (lower and upper) bounds on the optimal num-
ber of recombinants are introduced at each branching node
to effectively prune the search tree. When multiple solu-

∗Department of Computer Science, University of California -
Riverside. jili@cs.ucr.edu. Research supported by NSF grant
CCR-9988353.
†Department of Computer Science, University of California
- Riverside and Shanghai Center for Bioinformatics Technol-
ogy. jiang@cs.ucr.edu. Research supported by NSF Grants
CCR-9988353, ITR-0085910 and CCR-0309902, and Na-
tional Key Project for Basic Research (973) 2002CB512801.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’04,March 27–31, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-755-9/04/0003 ...$5.00.

tions exist, a best haplotype configuration is selected based
on a maximum likelihood approach. Our results on simu-
lated data show that the algorithm could recover haplotypes
with 50 loci from a pedigree of size 29 in seconds on a stan-
dard PC. Its accuracy is more than 99.8% for data with no
missing alleles and 98.3% for data with 20% missing alleles
in terms of correctly recovered phase information at each
marker locus. As an application of our algorithm to real
data, we present some test results on reconstructing hap-
lotypes from a genome-scale SNP data set consisting of 12
pedigrees that have 0.8% to 14.5% missing alleles.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life & Medical Sciences;
G.1.6 [Mathematics of Computing]: NUMERICAL ANAL-
YSIS—Optimization

General Terms
Algorithms

Keywords
Haplotyping, pedigree analysis, recombination, missing data
imputation, integer linear programming, branch-and-bound
algorithm

1. INTRODUCTION
With the completion of the Human Genome Project [12,

26], an (almost) complete human genomic DNA sequence
has become available, which is essential to the understand-
ing of the functions and characteristics of human genetic
material. An important next step in human genomics is
to determine genetic variations among humans and the cor-
relation between genetic variations and phenotypic varia-
tions (such as disease status, quantitative traits, etc.). To
achieve this goal, an international collaboration, namely,
the international HapMap project, was launched in Octo-
ber, 2002. The main objective of the HapMap project is to
identify the haplotype structure of humans and common hap-
lotypes among populations. However, the human genome
is a diploid and, in practice, haplotype data are not col-
lected directly, especially in large scale sequencing projects
(mainly) due to cost considerations. Instead, genotype data
are collected routinely in large sequencing projects. Hence,
efficient and accurate computational methods and computer
programs for the inference of haplotypes from genotypes are
highly demanded.

The input data for haplotype reconstruction can be di-
vided into three categories: SNP segments from an individ-
ual [15, 17] or pooled samples [20], genotype data with pedi-
gree information, and genotype data without pedigree infor-
mation (also called population data sometimes) [7, 8, 10, 18,
24]. A recent comprehensive review of computational meth-
ods for haplotype inference can be found in [2]. We are only
interested in genotype data with pedigrees. It is generally
believed that haplotypes inferred from pedigrees are more
accurate than those from population data. Moreover, some
family based statistical association tests such as TDT (i.e.
Transmission Disequilibrium Test) and its variants (e.g. [22,
29] among others) require access to haplotype information
of each member in a pedigree. The existing computational
methods for haplotyping pedigree data can be divided into
into two categories: statistical methods and rule-based (i.e.
combinatorial) methods. Statistical approaches (e.g. [16,
23]) estimate haplotype frequencies in addition to the hap-
lotype configuration for each individual, but they are usually
very time consuming and thus cannot handle large (in many
cases, moderately large) data sets. On the other hand, rule-
based approaches are usually very fast, although they do not
normally provide numerical assessments of the reliability of
their results. Nonetheless, by utilizing some reasonable bi-
ological assumptions, such as the minimum recombination
principle, rule-based methods have proven to be powerful
and practical [19, 21, 25, 27]. The minimum recombina-
tion principle basically says that genetic recombination is
rare for closely linked markers and thus haplotypes with
fewer recombinants should be preferred in a haplotype re-
construction [19, 21]. The principle is well supported by
practical data. For example, recently published experimen-
tal results [5, 9, 11] demonstrate that, in the case of human,
the number of distinct haplotypes is very limited. More-
over, the genomic DNAs can probably be partitioned into
long blocks such that recombination within each block is
rare or even nonexistent.

1.1 Previous Work on Rule-Based Haplotype
Reconstruction on Pedigrees

Qian and Beckmann [21] proposed a rule-based algorithm
to reconstruct haplotype configurations for pedigree data,
based on the minimum recombination principle. (From now
on, we refer to their algorithm as MRH.) Given a pedigree
and the genotype information for each member of the pedi-
gree (with possibly missing alleles), MRH attempts to find
a haplotype configuration for each member such that the
total number of recombinants (or recombination events) in
the whole pedigree is minimized. We call the above problem
the minimum-recombinant haplotype configuration (MRHC)
problem. In recent papers [6, 13, 14], we showed that MRHC
is in general NP-hard, even for pedigrees without mating
loops, and developed an iterative heuristic algorithm, called
block-extension, for MRHC that is much more efficient than
MRH. Our preliminary experiments showed that the algo-
rithm block-extension is often able to compute an optimal
solution or nearly optimal solution when the minimum num-
ber of recombinants required is small [13, 14]. However, its
performance deteriorates significantly when the input data
requires more (e.g. 4 or more) recombinants. We have also
devised an efficient exact algorithm based on Gaussian elim-
ination for solving MRHC on pedigree data that requires no
recombinants. In fact, the algorithm can find all haplotype

configurations incurring no recombinants [13, 14]. More re-
cently, two dynamic programming algorithms [6] are devel-
oped for (general) pedigrees of small sizes and loopless pedi-
grees with a small number of marker loci.

However, these existing algorithms for MRHC either are
heuristics in nature (e.g. MRH and block-extension) and
cannot guarantee optimality, or only work under some re-
strictions (on e.g. the size and structure of the input pedi-
gree, the number of marker loci, the number of recombinants
in a pedigree, etc.). Furthermore, most of them cannot han-
dle missing data and, for those that consider missing data,
their performance in terms of minimizing the number recom-
binants drops significantly in the presence of a moderately
large amount of missing alleles. In practice, pedigree data
often contains a significant amount of missing alleles. For
example, as much as 14.5% of the alleles belonging to a
block could be missing in the pedigree data studied in [9].
Some of the live-stock pedigree data that we have examined
recently contained an even larger fraction of missing alle-
les. Unfortunately, consistent imputation of missing alleles
is NP-hard even if we do not care about haplotypes and
recombination [1].

1.2 Our Results
In this paper, we develop an effective integer linear pro-

gramming (ILP) formulation of MRHC with missing alle-
les that integrates missing data imputation and haplotype
inference, and a branch-and-bound strategy that utilizes a
partial order relationship (and some other special relation-
ships) among variables to decide the branching order. The
partial order relationship is discovered in the preprocessing
of constraints by taking advantage of some special properties
in our ILP formulation. A directed graph is built based on
the variables and their partial order relationship. By identi-
fying and collapsing strongly connected components in the
graph, we may greatly reduce the size of an ILP instance.
Non-trivial (lower and upper) bounds on the optimal num-
ber of recombinants are estimated at each branching node
to prune the branch-and-bound search tree. When multiple
solutions exist, a best haplotype configuration is selected
based on a maximum likelihood approach.

Our test results on simulated data using three pedigree
structures demonstrate that the above algorithm (which will
be referred to as simply as algorithm ILP from now on) is
very efficient. For example, it could recover haplotypes with
50 loci on a pedigree of size 29 in seconds on a regular PC. It
outruns MRH v0.2 on biallelic data while guaranteeing the
minimum number of recombinants. With respect to perfor-
mance (i.e. accuracy in terms of correctly recovered phase
information at each marker locus), ILP was able to recover
correct phase information at more than 99.8% of the marker
loci for data with no missing alleles and 98.3% of the marker
loci for data with as many as 20% missing alleles.

As an application to real data, we have applied the al-
gorithm ILP to a genome-scale data set that consists of 12
multi-generation human pedigrees studied in a recent pa-
per [9]. We focus on each of the blocks inferred in [9] and
compare the haplotyping results of ILP with those of the
EM algorithm used in [9]. The comparison shows that ILP
outputs haplotype configurations that require a very few re-
combinants and result in roughly the same set of common
haplotypes (i.e. haplotypes that occur with a frequency at
least 5%) as the EM algorithm. We also compare ILP with

the algorithm block-extension on chromosome 3 consisting
of 10 blocks. The results show that ILP often finds solu-
tions that require fewer recombinants than those returned
by block-extension (or MRH, which has a similar perfor-
mance). Out of the solutions for 120 (= 12 · 10) data sets
found by ILP, only 2 requires recombinants while 18 solu-
tions output by block-extension require recombinants. This
difference is mainly due to different methods were used to
impute missing alleles.

1.3 Organization of the Paper
The rest of this paper is organized as follows. We intro-

duce briefly the biological background of the MRHC prob-
lem and some relevant terms in Section 2 and the integer
linear program formulation in Section 3. In Section 4, we
explore some special properties in the constraints of the
ILP formulation and define several useful (partial order and
other) relationships among the variables. Some implemen-
tation issues and statistical assessments on multiple optimal
solutions are presented in Sections 5 and 6. Section 7 shows
the experimental results on simulated data sets and on a
real data set. We conclude the paper with a few remarks
about possible future work in Section 8.

2. PRELIMINARIES
The genome of an organism consists of chromosomes that

are double strand DNAs. Locations on a chromosome can be
identified using markers, which are small segments of DNA
with some specific features. A physical position of mark-
ers on a chromosome is called a marker locus and a marker
state is called an allele. A set of markers and their posi-
tions define a genetic map of chromosomes. There are many
types of markers. The two most commonly used markers
are microsatellite markers and SNP (single nucleotide poly-
morphism) markers. Different sets of markers have different
properties, such as the total number of distinct allelic states
at a locus, frequency of each allele, distance between two ad-
jacent loci, etc. A microsatellite marker usually has several
different alleles at a locus (called multi-allelic) while an SNP
marker can be treated as a biallelic, which has two alterna-
tive states. The average distance between two SNP marker
loci is much smaller than the average distance between two
microsatellite marker loci, thus making SNP markers su-
perior to other markers in gene fine-mapping. In diploid
organisms, chromosomes come in pairs. The status of two
alleles at a particular marker locus of a pair of chromosomes
is called a marker genotype. The genotype information at
a locus will be denoted using a set, e.g. {a, b}. If the two
alleles a and b are the same, the genotype is homozygous.
Otherwise, it is heterozygous. A haplotype consists of all al-
leles, one from each locus, that are on the same chromosome.
Figure 1(A) illustrates the above concepts, where alleles are
represented by their (numerical) IDs.

A pedigree can be defined formally as follows.

Definition 2.1. A pedigree graph is a weakly connected
directed acyclic graph (DAG) G = {V, E}, where V = M ∪
F , M stands for the male nodes, F stands for the female
nodes. The in-degree of each node is 0 (founders) or 2 (non-
founders). If the in-degree of a node is 2, one edge must start
from a male node (called father) and the other edge from a
female node (called mother) and the node itself is a child of
its parents (father and mother).

Genotype
2
1

11

1

1 2

2

H
ap

lo
ty

pe

Paternal Maternal

Locus2

2

A

3-1 3-2

3-3 3-4 3-5 3-6 3-7 3-8

3-11 3-12 3-13 3-14 3-15 3-9 3-10

B

1|2
3|1

2|2
2|2

1|2
1|2

1|2
3|2

1 2

43

C

Figure 1: A. The structure of a pair of chromosomes
from a mathematical point of view. B. An illustra-
tion of a pedigree with 15 members. C. An example
of recombination event.

A subgraph containing the father, mother, and child nodes
is called a nuclear family. A mating loop consists of two dis-
tinct paths from a node x to a node y. For convenience,
we will use conventional drawings of pedigrees throughout
the paper. Figure 1(B) illustrates an example pedigree. 1

Figure 3(B) shows a pedigree with a mating loop. The
Mendelian law of inheritance states that the alleles of a child
must come from the alleles of its parents at each marker lo-
cus (i.e. assuming no mutations within a pedigree). In other
words, the two alleles at each locus of the child have different
origins: one is from its father (which is called the paternal
allele) and the other from its mother (which is called the ma-
ternal allele). Usually, a child inherits a complete haplotype
from each parent. However, recombination may occur, where
the two haplotypes of a parent get shuffled due to a crossover
of chromosomes and one of the shuffled copies is passed on to
the child. Such an event is called a recombination event and
its result is called a recombinant. Since markers are usually
very short DNA sequences, we assume that recombination
only occurs between markers. Figure 1(C) illustrates an
example where the paternal haplotype of member 3 is the
result of a recombinant. (Paternal allele and maternal allele
at each locus is separated by a “|” in this figure.)

We use the term haplotype configuration to describes not
only the paternal and maternal haplotypes of an individ-
ual, but also the (grandpaternal or grandmaternal) origin
of each allele on the haplotypes. Observe that the number
of recombinants required in a pedigree can be easily com-
puted once the haplotype configuration of each member of
the pedigree is given. The following problem, called MRHC
in the above, is known to be NP-hard [13, 14], which trivially
implies MRHC with missing alleles is also NP-hard.

Definition 2.2. (MRHC) Given a pedigree and genotype
information for each member of the pedigree, find a haplo-
type configuration for the pedigree that requires the minimum
number of recombinants.

3. AN ILP FORMULATION OF MRHC WITH
MISSING ALLELES

We first introduce variables needed in the formulation.
Consider an input pedigree with genotype information. Let
n denote the size of the pedigree, and m the total number
of marker loci. For a marker locus j, let tj denote the total
number of distinct alleles that occur at locus j, and Mj =
{mj

1, m
j
2, ..., m

j
tj
} the set of all possible alleles at locus j,

1The pedigree diagrams in this paper were generated using
WPEDRAW [4].

where mj
k ≥ 1. For each member i and locus j, we introduce

2tj indicator (binary) variables f j
i,k and mj

i,k 1 ≤ k ≤ tj ,
denote the paternal allele and maternal allele of member
i at locus j, respectively. Namely, f j

i,k = 1 (mj
i,k = 1) if

and only if the paternal (maternal) allele of member i at
locus j is mj

k. For each non-founder member i and locus

j, we introduce two indicator variables gj
i,1 and gj

i,2. (This
information is unnecessary for the founders.) The variable
gj

i,1 indicates the grandparental origin of i’s paternal allele

at locus j, i.e. gj
i,1 = 0 (or 1) if i’s paternal allele is copied

from its father’s paternal (or maternal, respectively) allele.
The variable gj

i,2 is defined for i’s maternal allele at locus j
in a similar way.

The haplotype (i.e. phase) information and the grand-
parental origin of each allele at non-founders are completely
defined by the above f , m and g variables. Hence, we can
easily formulate an integer program for MRHC with missing
alleles using these variables, the genotype information, and
the Mendelian law of inheritance. However, it is not obvi-
ous how we can represent the total number of recombinants
in the pedigree (i.e. the objective function of MRHC) as a
linear function of these variables. In order to make the ob-
jective function linear, we introduce a variable rj

i,l for each

pair of “adjacent” variables gj
i,l and gj+1

i,l (1 ≤ j ≤ m − 1

and l = 1, 2) to count the number of recombinants. Here,
rj

i,l = 1 if and only if gj
i,l 6= gj+1

i,l . The total number of
recombinants can thus be described as:X

non−founder i

m−1X
j=1

(rj
i,1 + rj

i,2) (3.1)

3.1 The Constraints
For each member i and locus j, the f and m variables

have to satisfy the following constraints:

tjX
k=1

f j
i,k = 1,

tjX
k=1

mj
i,k = 1 (3.2)

Given the genotype information (denoted as {a, b}) of mem-
ber i at locus j, we have the following constraints:

{mj
r, m

j
s} ⇒ {f j

i,r + f j
i,s = mj

i,r + mj
i,s = 1,

f j
i,r + mj

i,r = f j
i,s + mj

i,s = 1} (3.3)

{mj
r, m

j
r} ⇒ {f j

i,r = 1, mj
i,r = 1} (3.4)

{mj
r, 0} ⇒ {f j

i,r + mj
i,r ≥ 1} (3.5)

where mj
r, m

j
s ∈ Mj , m

j
r 6= mj

s, and 0 stands for a missing
allele. If both alleles are missing at the locus, no further
constraints (other than constraint 3.2) are provided.

Following the Mendelian law of inheritance, the f , m and
g variables must satisfy constraints:

f j
i,k − f j

f,k − gj
i,1 ≤ 0 (3.6)

f j
i,k −mj

f,k + gj
i,1 ≤ 1 (3.7)

where 1 ≤ k ≤ tj and f (in the subscript) denotes i’s father.
Constraint 3.6 ensures that if i’s paternal allele is supposed
to originate from its father’s paternal allele (i.e. when gj

i,1 =
0), then the two alleles must be the same. In other words,
constraint 3.6 implies that if f j

i,k = 1, f j
f,k must be 1 when

gj
i,1 = 0. Constraint 3.7 deals with the case gj

i,1 = 1 in a

similar way. The constraints relating i to its mother can
be defined in the same way. Recall that variable rj

i,k is the

exclusive-or of variables gj
i,k and gj+1

i,k . The following four
constraints will ensure this relationship.

rj
i,k − gj

i,k − gj+1
i,k ≤ 0 (3.8)

rj
i,k + gj

i,k + gj+1
i,k ≤ 2 (3.9)

−rj
i,k + gj

i,k − gj+1
i,k ≤ 0 (3.10)

−rj
i,k − gj

i,k + gj+1
i,k ≤ 0 (3.11)

Finally, since all the variables are binary integers, we have
constraint

f j
i,k, mj

i,k, gj
i′,l, r

j′
i′,l ∈ {0, 1},

1 ≤ j ≤ m, 1 ≤ i ≤ n, 1 ≤ k ≤ tj ,

1 ≤ j′ ≤ m− 1, non− founder i′, 1 ≤ l ≤ 2 (3.12)

The above (binary) integer linear program defines exactly
the MRHC problem with missing alleles. Observe that it
implicitly contains the problem of checking Mendelian con-
sistency of genotype data with missing alleles on a pedigree,
which is known an NP-hard problem [1]. The total num-
bers of variables and constraints are linear in the input size.
Since it uses binary representation, the actual number of
variables could be quite large for multiallelic data. In the
next subsection, we will try to simplify the formulation a
bit.

3.2 A Simplified Formulation
The main idea of our simplification is to explicitly explore

the dependency relationship between variables in the system
and try to remove as much redundancy as possible without
complicating the constraints too much. Observe that con-
straints 3.3 and 3.4 supersede constraint 3.2. So, we only
need to keep constraint 3.2 when some alleles are missing.
We can thus replace constraints 3.2 and 3.5 by:

{0, 0} ⇒ {
tjX

k=1

f j
i,k = 1,

tjX
k=1

mj
i,k = 1} (3.13)

{mj
r, 0} ⇒ {−f j

i,r −mj
i,r ≤ −1,

tjX
k=1

f j
i,k = 1,

tjX
k=1

mj
i,k = 1} (3.14)

Furthermore, since there are only two variables in each equal-
ity of constraint 3.3, fixing the value of any variable would
determine the other three variables. We arbitrarily select
one of the four variables as the representative, and substitute
appropriately the representative for the other three variables
in the system. Constraint 3.3 can then be removed. Con-
straint 3.4 can be removed if we replace its variables by con-
stant values in the system. Constraints 3.6 and 3.7 will be
kept only if they remain non-trivial after constant variables
are replaced. Constraints 3.13 and 3.14 may also contain
equality constraints with only two variables after constant
variables are replaced. Those equality constraints with two
variables can be treated similarly as constraint 3.3.

4. EXPLORING THE CONSTRAINTS
Because of the NP-hardness of MRHC, it is unlikely to

find an efficient polynomial-time algorithm to solve the above
ILP formulation. We adopt a widely used strategy, branch-
and-bound, to search for an optimal solution. A compre-
hensive treatment of integer linear programming techniques
based on branch-and-bound can be found in [28]. Basically,
the branch-and-bound method solves an ILP instance by
dropping the integer constraint (i.e. linear relaxation) to
obtain a lower bound of the instance. The procedure ter-
minates when the optimal solution (of the relaxed instance)
is integral or larger than some estimated upper bound, or
no feasible solutions exist. Otherwise, it branches on some
selected variables and creates some sub-instances. The pro-
cess iterates until all sub-instances have been considered or
pruned. Clearly, different branching orders may have a large
impact on the size of the search tree. In this section, we con-
sider some special properties of the above ILP formulation
and use them to guide the branching process. We will also
use additional lower bounds derived from nuclear families
and upper bounds derived by the block-extension heuristic
to prune the search tree.

4.1 A Partial Order Relationship
The replacement of constant variables in inequality con-

straints may result in many inequality constraints with two
variables, which define a partial order relationship among
the involved variables as given below. For convenience, let
us drop the subscript of a variable in the following and de-
note

yγ =

�
y if γ = 1
1− y if γ = 0

Each inequality constraint involving two variables can be
expressed in the form

yα
i ≤ yβ

j (4.1)

We define a directed graph G on variables involved in the
above inequality constraints as follows. For each variable
yγ , G contains a vertex v(yγ). There is an edge from v(yα

i)

to v(yβ
j) if inequality 4.1 holds. It is easy to see that for all

the vertices in a strongly connected component (SCC) of G,
their corresponding variables must have the same value in a
feasible solution. By identifying and collapsing the SCCs of
G, we can remove many variables and simplify their asso-
ciated inequality constraints as we did for the two-variable
equality constraints before. The SCCs can be constructed
by using a standard depth-first search (DFS) [3].

Furthermore, the following rules can be used to detect
inconsistency and variables with “forced” constant values.
Rule 1 states that a variable and its complement cannot oc-
cur in the same SCC S. Rule 2 states that if a variable is
smaller (or larger) than another variable and the comple-
ment of this variable, it must be 0 (or 1, respectively). Rule
3 states if a variable is smaller than its complement, it must
be 0.
Rule 1:

v(y0), v(y1) ∈ S ⇒ Inconsistency

Rule 2:

yα
i ≤ yβ

j

V
yα

i ≤ y1−β
j ⇒ yα

i = 0

yα
i ≤ yβ

j

V
y1−α

i ≤ yβ
j ⇒ yβ

j = 1

Rule 3:

yα
i ≤ y1−α

i ⇒ yα
i = 0

The above simplifications may result in new equality con-
straints with two variables and constant variables. We can
repeat the steps in Section 3.2 to further reduce these vari-
ables and constraints.

Not only does the directed graph provide a way to reduce
variables and constraints, the partial order obtained on the
variables after shrinking each SCC can also guide the se-
lection of branching variables. Observe that, if yα

i ≤ yβ
j ,

then yα
i = 1 implies yβ

j = 1. So, we perform a topolog-
ical sort on the shrunk graph (which is a directed acyclic
graph, or DAG). For each vertex v, we define the weight of
v as the number of successors of v in the topological sort.
When branching, we consider the variables in the topologi-
cal sorted order and always take the 1-branch first for each
variable.

4.2 Equality Constraints with Three or More
Variables

The procedure in Section 3.2 removes all equality con-
straints from constraints 3.3, 3.13 and 3.14 with two vari-
ables. This leaves some equality constraints with more than
two variables as given in constraints 3.13 and 3.14. These
equality constraints could be modified in the above simplifi-
cation process (i.e. some variables can be replaced and con-
stants substituted in), but we may assume without loss of
generality that each of them still has the form of

Pp
k=q f j

i,k =

1 (or
Pp

k=q mj
i,k = 1) because the variables are binary inte-

gers. 2 Observe that, in such an equality constraint, fixing
a variable to one would make all other variables zero. So,
we say that the variables in each equality constraint form an
exclusion set (for lack of better terms). We can take advan-
tage of this information when selecting branching variables
by considering the variables from an exclusion set consecu-
tively and taking the 1-branch first for each variable. We
define the weight of a variable in such an exclusion set as
the size of the set minus one.

4.3 Lower Bounds from Nuclear Families
When dealing with data sets that require a large num-

ber of recombinants (e.g. data in linkage analysis involving
markers separated by large genetic distances), the linear re-
laxation usually does not give a tight lower bound on the
number of minimum of recombinants. Observe that an ef-
fective lower bound must involve variables from more than
1 locus and MRHC is already NP-hard for data with 2 loci.
Hence, we have to work with substructures of the input pedi-
gree. A natural substructure in a pedigree is a nuclear fam-
ily. A nuclear family constitutes a small instance of MRHC
and can usually be solved in a much shorter time. The so-
lution for a nuclear family gives a valid lower bound (i.e.
or cut) concerning the r variables from the family and the
sum of these lower bounds forms a lower bound for the whole
pedigree. The lower bound/cut can be computed in advance
for the root node of the branch-and-bound search tree and

2If it is necessary, we could introduce some complementary
variables to replace expressions of the form 1−x in an equal-
ity constraint. If a variable and its complement both ap-
pear in (different) equality constraints, we could derive new
equalities without such a variable or its complement by sum-
ming up appropriate equalities.

updated at each branching node, but the latter might incur
big time overhead. A sensible strategy is to keep track of
the difference between the current upper bound and lower
bound, and update the lower bound only when the difference
is larger than a predefined threshold.

4.4 An Upper Bound
When the input data require a small number of recombi-

nants (e.g. in the case of SNP data), a tight upper bound
could be more effective than the above lower bound because
many nuclear families could be realized with 0 recombinants.
In this case, the block-extension algorithm [13, 14] can be
used to estimate an upper bound because it is very efficient
and accurate when the number of recombinants is small.

5. IMPLEMENTATION ISSUES
In our implementation of the ILP algorithm, we solve the

linear relaxations of the ILP instances by using the IBM Op-
timization and Solution Library (OSL). A complete pseudo-
code of the branch-and-bound algorithm that summarizes
the discussions in sections 3 and 4 is given in Figure 2.

Algorithm ILP
Input: Genotype data of a pedigree with possible missing alleles
Output: Haplotypes for all the members in the pedigree
Data structure: Constant variable set C, the set of representa-
tives (R) of some variables, constraints S, global upper bound gub
and lower bound glb, exclusion sets I, partial order relationship O,
partial order graph G and topological sorted order L, instance list
P , current instance p, and local lower bound lb by linear relaxation.

1. //Init:
2. Collect C, R and S, and calculate gub by BE and glb from
nuclear families.

3. //Preprocessing
4. Iterate until no new updates exist:

- Update R and S by removing constant variables;

- Update O and build G;

- Find the SCCs of G and update R;

- Detect variables forced into constants and put them in C;

5. Prepare I and L, set the current instance as p, run steps 6–10
until P is empty.

6. //Branch-and-bound
7. Solve p by linear relaxation to obtain a local lower bound lb.

- If p is infeasible or lb ≥ gub, mark it as processed;

- If the solution is integral, update gub;

- Otherwise, continue to branch.

8. //Branching and selection
9. If I 6= φ or L 6= φ, select a variable with the largest weight to

branch, select the instance that results from the 1-branch as p,
and put the outcome of the 0-branch into P ;

10. Otherwise select a variable from the objective function, select
the outcome of the 0-branch as p, and put the outcome of the
1-branch into P .

11. Output the optimal solutions or report that the instance is
infeasible.

Figure 2: A pseudo-code of the ILP algorithm.

6. STATISTICAL ASSESSMENT OF MUL-
TIPLE SOLUTIONS

Our algorithm in fact finds all solutions with the minimum
number of recombinants. We can further choose the “best”
one from these optimal solutions using a maximum likeli-
hood approach if the genetic distances between markers are
given. An alternative treatment is to output all solutions to-
gether with their associated probabilities. Both approaches
require the calculation of the likelihood of a haplotype so-
lution given the genotype information. Because the number
of optimal haplotype solutions is usually very small, this
calculation is much easier than calculating the maximum
likelihoods for all feasible solutions [16]. Let H denote a
haplotype solution and G the input genotypes. Let f(i) and
m(i) denote the father and mother of an individual i, and
hi and gi the haplotypes and genotype of i. The likelihood
of the haplotype configuration H given the genotypes G is

P (H|G) =
Y

founder i

P (hi|gi)
Y

non−founder i

P (hi|hf(i), hm(i)),

(6.1)
where the term P (hi|gi) can be obtained under Hardy-Weinberg
equilibrium assumption, if prior knowledge about haplotype
frequencies is known. The term P (hi|hf(i), hm(i)) (trans-
mission probability) can be calculated under the assumption
that recombination events are independent (no interference)
and uniformly distributed.

If our input is actually a population of pedigrees (as in the
case of [9]), we can further estimate the population haplo-
type frequencies and the probability of observing the geno-
types in each pedigree given the estimated haplotype fre-
quencies by an expectation-maximization (EM) algorithm,
under the assumption that all the founders are independent.
The EM algorithm works by summing over all possible opti-
mal solutions for each pedigree, weighted according to their
relative likelihoods. More specifically, an arbitrary optimal
solution is selected from each pedigree and the haplotype
frequencies are estimated according to Equation 6.2. Based
on the estimated frequencies, a haplotype solution with the
maximum probability (Equation 6.3) is then chosen for each
pedigree, which will serve the input of the next iteration. Let
h1

i and h2
i denote the two haplotypes of a founder i for any

given optimal solution, and N the total number of founders.
Let π(h1

i) denote the number of haplotypes h1
i occurring in

all founders. Then the expected frequency of haplotype h1
i

is simply

f̂(h1
i) =

π(h1
i)

2N
. (6.2)

The probability of observing genotypes G and a haplotype
solution H in a pedigree is

P (G, H|f̂) =
Y

founder i

f̂(h1
i)f̂(h2

i)
Y

non−founder i

P (hi|hf(i), hm(i)).

(6.3)

7. PRELIMINARY EXPERIMENTAL RESULTS
We have implemented the above algorithm ILP as a mod-

ule of our PedPhase program, which is available at website
http://www.cs.ucr.edu/~jili/haplotyping.html. To eval-
uate the efficiency of ILP, we first compared ILP, block-
extension (BE, also in PedPhase) and MRH v0.2 [21] on
simulated genotype data in terms of efficiency on three dif-
ferent pedigree structures. The results show that, as an

exact solution, our ILP is in fact faster than MRH v0.2 on
SNP data. We also evaluated how the number of marker
loci, the size of a pedigree, the number of recombinants,
and the amount of missing alleles affect the efficiency. An
advantage of using simulated data here is that we know the
true haplotype configurations and the number of recombi-
nants. Hence, we can evaluate the accuracy of ILP in terms
of the percentage of markers with haplotypes correctly in-
ferred. As an application to real data, we tested ILP on a
genome-scale data set that consists of 12 multi-generation
human pedigrees studied in a recent paper [9]. We focused
on each of the inferred blocks and compare the results of ILP
with those of the EM algorithm used in [9]. The compar-
ison shows that ILP outputs haplotype configurations that
require a very few recombinants and result in roughly the
same set of common haplotypes as the EM algorithm. We
also compared ILP with block-extension on chromosome 3
consisting of 10 blocks. The results show that ILP often
finds solutions that require fewer recombinants than those
returned by block-extension. The details of the test results
are given in the following subsections.

7.1 Efficiency and Accuracy of ILP on Simu-
lated Data

We used a method similar to those in [6, 13, 14] to gener-
ate simulated data sets. Three different pedigree structures
were considered. One is a small pedigree with 15 members
as shown in Figure 1. The second is a medium-sized pedi-
gree with 29 members as shown in Figure 3 (left) and the
third is a pedigree of 17 members with a mating loop as
shown in Figure 3 (right). Both multi-allelic (with 6 alle-
les per locus) and biallelic data were considered. The alleles
were generated following a uniform frequency distribution in
order to maximize the chance of heterozygosity (to test the
worst-case performance of the algorithms). Three different
numbers of loci, namely 10, 25 and 50 were considered. The
number of recombinants used in generating each pedigree
ranged from 0 to 4. In addition, we considered the rate of
missing alleles as 5%, 10%, 15%, and 20%. For each data set,
100 copies of random genotype data were generated. The to-
tal number of data sets used is 45000 (= 3 · 2 · 3 · 5 · 5 · 100).

2-1 2-2

2-3 2-8 2-4 2-5 2-9 2-6 2-10 2-7 2-11

2-100 2-199 2-102 2-103 2-111 2-104 2-113 2-114 2-115 2-116 2-117

2-9097 2-9098 2-9099 2-9003 2-9004 2-9005 2-9006

A

1-1 1-2

1-3 1-4 1-5 1-6

1-9

1-7 1-8

1-13 1-14 1-15

1-10 1-11 1-12

1-16 1-17

B

Figure 3: A. A pedigree with 29 members. B. A
pedigree with 17 members and a mating loop.

The test results demonstrate that ILP is slower than block-
extension, but faster than MRH v0.2 on biallelic data (al-
though it is a little bit slower than MRH v0.2 on multi-allelic
data), as described in Table 1. In the table, the first col-
umn indicates the combination of parameters: the size of
the pedigree, the number of loci in each member, the num-
ber of distinct alleles allowed at each locus, and the number
of recombinants used to generate the genotype data, respec-

Table 1: Speeds of BE, MRH and ILP on multi-
allelic and biallelic markers.

Parameters BE MRH ILP
(17,10,6,0) 2.1s 7s 34s
(17,10,6,4) 2.1s 11s 37s
(15,25,6,0) 2.7s 18s 2m34s
(15,25,6,4) 2.9s 33s 3m9s
(29,10,6,0) 3.2s 10s 1m49s
(29,10,6,4) 3.1s 15s 1m57s
(29,25,6,0) 15s 4m 15m2s
(29,25,6,4) 10s 2m6s 15m10s
(17,10,2,0) 1.9s 15s 20s
(17,10,2,4) 2.3s 1m11s 23s
(15,25,2,0) 4.7s 10m50s 1m6s
(15,25,2,4) 4.8s 13m49s 1m18s
(29,10,2,0) 2.8s 6m26s 44s
(29,10,2,4) 2.7s 3m46s 50s
(29,25,2,0) 2.3s 2h7m 3m41s
(29,50,2,0) 16s 45h 15m21s

tively. The time used by each program in this section is
the total time for 100 random runs for each parameter com-
bination on a Pentium IV with 1.7GHz CPU and 516MB
RAM.

Figure 4(A) uses a bar diagram to show how the speed
of ILP is affected by the input size (i.e. number of marker
loci and size of a pedigree) on biallelic data, when the num-
ber of recombinant is fixed as 1. For example, ILP requires
a total of 20 minutes for 100 runs on a pedigree with 29
members and 50 loci. This suggests that ILP is efficient for
MRHC instances of practical sizes. To consider the effect of
the number of recombinants and the rate of missing data,
Figure 4(B) indicates that the running time will increase
with these two parameters, mainly because the number of
free variables in the system will increase. But unlike pa-
rameters such as the pedigree size and the number of loci,
for which the time increases exponentially as expected, the
growth rates in Figure 4(B) are more like linear functions.
In this figure, the number of marker loci is 50 and the size
of the pedigree is 29.

Not only does ILP solve MRHC with missing data opti-
mally, the results in Figure 4(C) demonstrate that the algo-
rithm is very good at recovering true haplotypes. Its overall
accuracy is better than 98% in terms of the number of miss-
ing alleles correctly recovered and the number of loci with
haplotypes correctly inferred, for missing rate as many as
20%. Its accuracy on data with no missing alleles is even
better; More than 99.8% of the loci were correctly phased.
The few errors were mainly due to existence of multiple opti-
mal solutions. These results also show that, when the num-
ber of recombinants are few and the recombination events
are randomly distributed, the true haplotype configuration
is often a minimum recombinant haplotype configuration. In
contrast, similar simulations in [13, 14] show that the perfor-
mance of block-extension could fall below 80% on pedigrees
with mating loops or data that require a moderately large
number (i.e. ≥ 4) of recombinants.

7.2 A Genome-Scale Haplotype Reconstruc-
tion

We have also tested ILP on a real data set from White-
head/MIT Center for Genome Research. Gabriel et al. [9]
recently reported results on a genome-scale SNP haplotype
block partition and haplotype frequency estimation project.
Their original data set consists of 4 populations and 54 au-
tosomal regions, each with an average size of 250K bps,

0

5

10

15

20

15 17 29

Size of pedigree

Ti
m

e
(m

)

10 Loci
25 Loci
50 Loci

A

15

16

17

18

19

0 5% 10% 15% 20%

Rate of missing alleles

Ti
m

e
(m

)

0 recombinants
1
2
3
4

B

0.98

0.985

0.99

0.995

1

0 5% 10% 15% 20%
Rate of missing alleles

A
cc

ur
ac

y

0 recombinants
1
2
3
4

C

Figure 4: Some simulation results on ILP. A. Effect
of problem size on speed. B. Effect of number of
recombinants and rate of missing alleles on speed.
C. Effect of number of recombinants and rate of
missing alleles on accuracy.

spanning 13.4M bps (about 0.4%) of the human genome.
Haplotype blocks were defined using the normalized link-
age disequilibrium parameter D′. Blocks with fewer than
four markers are omitted from further consideration. Within
each block, haplotypes and their frequencies were calculated
via an EM algorithm from [8]. One of the populations (Eu-
ropean) has pedigree information and was used in our study.
There are totally 93 members in the European population,
separated into 12 multi-generation pedigrees (each with 7-8
members). The genotyped regions are distributed among
all the 22 autosomes and each autosome contains 1 to 10
regions. The overall allele missing rate in a block is between
0.8% and 14.5%. We downloaded the SNP genotype data
and pedigree structures from Whitehead/MIT Center for
Genome Research website (http://www-genome.wi.mit.edu
/mpg/hapmap/hapstruc.html), and obtained the results of
the EM algorithm concerning common haplotypes and their
frequencies in the population from the authors of [9]. 3 ILP
was able to reconstruct the haplotypes for all regions and
pedigrees accurately, by taking advantage of the available
haplotype block structure. A comparison of the EM algo-
rithm and ILP in terms of the common haplotypes that they
output is given in Table 2. The first column of the table is
the chromosome number and the second column is the num-
ber of blocks with more than four markers (no blocks with
length larger than four in chromosome 19). Columns 3 and
4 are the average numbers of common haplotypes per block
found by EM and ILP, respectively. Column 5 is the average
number of different common haplotypes output by the two
methods, which is usually about 10% of the common haplo-
types output by each method. Column 6 is the average num-
ber of recombinants in each pedigree and each block as found
by ILP, which is close to zero. A detailed description of the
haplotypes found by ILP for the data set will be available at
website http://www.cs.ucr.edu/~jili/haplotyping.html.

Table 2: Comparison of the EM and ILP algorithms
on a human genome SNP data.

Chr # of blocks EM ILP Mismatch Recombs(ILP)
1 22 3.82 4.00 0.45 0.034
2 6 3.33 4.00 0.67 0.000
3 10 3.9 4.00 0.50 0.033
4 7 3.57 3.29 0.14 0.048
5 7 3.86 4.12 0.43 0.024
6 11 3.55 3.54 0.67 0.008
7 9 2.67 3.33 0.22 0.037
8 8 3.63 3.38 0.25 0.000
9 3 3.67 4.33 1.33 0.333
10 7 4.14 3.57 0.71 0.095
11 5 3.40 3.60 0.40 0.083
12 6 3.00 2.83 0.17 0.00
13 6 3.67 3.83 0.50 0.042
14 4 3.50 3.50 0.00 0.000
15 3 3.33 4.33 1.00 0.028
16 4 3.50 3.75 0.25 0.125
17 2 2.5 2.00 0.50 0.000
18 4 3.25 3.25 0.25 0.125
20 2 4.00 4.00 0.00 0.000
21 1 2.00 3.00 1.00 0.167
22 8 4.12 3.88 0.50 0.021

We further compared the results of ILP with our previ-
ous experiment on the block-extension and EM algorithms

3Here, the pedigree information was used first to resolve the
phases of some heterozygous loci using the Mendelian law of
inheritance before the EM algorithm was run on founders.

Table 3: The regions and blocks on chromosome 3.
Name Length SNPs Blocks SNPs/block Missing rate
16a 40 14 1 5 7.96%
16b 106 53 1 6 3.76%

2 4 2.69%
17a 186 70 1 6 4.70%

2 5 1.50%
3 4 7.80%
4 6 6.27%

18a 286 74 1 16 3.70%
2 6 5.73%
3 4 2.15%

Table 4: Common haplotypes and their frequen-
cies obtained by block-extension, ILP and the EM
method. In haplotypes, the alleles are encoded as
1=A, 2=C, 3=G, and 4=T.

Block Common haplotypes EM BE ILP
16a-1 4 2 2 2 2 0.4232 0.3817 0.3750

3 4 3 4 4 0.2187 0.1720 0.2187
4 2 2 2 4 0.2018 0.1935 0.1979
3 4 2 2 4 0.1432 0.1613 0.1458

sum 0.9869 0.9085 0.9374
16b-1 3 2 4 1 1 2 0.8014 0.7634 0.7813

1 3 2 3 3 4 0.0833 0.0753 0.0833
sum 0.8847 0.8387 0.8646
16b-2 4 1 2 2 0.5410 0.4892 0.5104

2 3 3 4 0.2812 0.2581 0.2500
2 3 3 2 0.1562 0.1344 0.1562

sum 0.9784 0.8788 0.9166
17a-1 3 1 3 4 4 4 0.3403 0.3172 0.2917

1 3 3 2 4 2 0.3021 0.2419 0.2500
3 3 2 4 2 4 0.1354 0.0914 0.0938
3 3 3 4 4 4 0.1021 0.1183 0.1354
3 3 2 4 4 4 0.0681 0.0806 0.0729
1 3 3 2 4 4 0.0521

sum 1.0000 0.8494 0.8438
17a-2 2 3 2 4 2 0.3542 0.2903 0.3229

3 3 4 2 4 0.3333 0.2957 0.3125
3 3 4 4 2 0.1458 0.1344 0.1563
3 4 4 4 4 0.1250 0.1452 0.1250

sum 0.9583 0.8656 0.9167
17a-3 4 4 3 1 0.4129 0.4355 0.4167

3 1 1 2 0.2813 0.2258 0.2292
4 1 3 1 0.2363 0.1935 0.2188
4 1 3 2 0.0696 0.0753 0.0729

sum 1.0000 0.9301 0.9376
17a-4 3 4 4 1 2 4 0.3854 0.3710 0.3436

2 3 2 4 3 2 0.3333 0.2903 0.3021
3 4 2 4 2 4 0.2500 0.1881 0.2188

sum 0.9687 0.8494 0.8645
18a-1 1444231214144132 0.2697 0.2473 0.2396

1444111214144132 0.2396 0.2151 0.2083
1444131214144132 0.1887 0.2204 0.1979
4222133313412211 0.1250
1444231234144132 0.0833 0.0699 0.0729
4444133214144132 0.0521

sum 0.9063 0.7527 0.7708
18a-2 3 1 2 4 4 2 0.4967 0.4892 0.4271

1 3 2 4 3 4 0.2604 0.1935 0.1667
3 1 2 2 4 2 0.1271 0.0753 0.0938
1 3 4 4 4 4 0.0938 0.0806 0.0729
1 3 2 4 3 2 0.0538 0.0625
3 1 2 4 4 4 0.0521

sum 0.9780 0.8924 0.8751
18a-3 2 2 1 1 0.4186 0.4032 0.3854

4 3 3 3 0.2188 0.1935 0.2188
2 3 1 1 0.2064 0.2204 0.2396
4 3 1 3 0.1250 0.1559 0.1146

sum 0.9688 0.9730 0.9584

on chromosome 3 reported in [13]. (The results of the EM
algorithm was obtained from the authors of [9].) There are
4 regions in the chromosome 3 data and each region is parti-
tioned into 1 to 4 blocks. The region name, physical length
(kbps), number of blocks, SNPs in each block and percentage
of missing alleles of each block are summarized in Table 3.
In the experiment, the algorithm block-extension imputed
missing alleles by sampling the alleles according to their esti-
mated frequencies. On the other hand, ILP inferred missing
alleles so that the number of required recombinants is mini-
mized in the final haplotype solution. In other words, both
missing data imputation and the reconstruction of haplo-
type configurations were combined in one framework. After
haplotypes were inferred for the members of all pedigrees,
population haplotype frequencies were estimated by count-
ing the founders’ haplotypes. Such frequency information
can be used to estimate the likelihood of the haplotypes in
a pedigree as described in Section 6. The common haplo-
types, their frequencies and their total frequency in each
block of chromosome 3 estimated by block-extension, ILP
and the EM algorithm are summarized in Table 4. The ma-
jority of the common haplotypes identified by the three algo-
rithms are the same. The small number of differences mainly
concern haplotypes with frequencies close to 5%. Similar
patterns were also observed in the tests on other chromo-
somes. Furthermore, for common haplotypes shared by the
three algorithms, all three algorithms gave frequencies close
to each other, although the frequencies given by ILP and
block-extension are in general smaller than those found by
the EM algorithm. This is perhaps mainly due to different
strategies used for imputing missing alleles and the fact that
the EM algorithm only used the founders of the pedigrees
in its computation.

We have also looked at the number of recombinations re-
quired in the solutions found by ILP. Out of the 120 data
sets derived from the 10 blocks in chromosome 3 and the 12
pedigrees, only 2 data sets had solutions that require recom-
binants. In contrast, 18 data sets had recombinants in the
solutions found by block-extension [13]. The difference could
be due to different methods for missing data imputation and
the fact that block-extension is a heuristic algorithm.

8. CONCLUDING REMARKS
Our simulation results show that the minimum recombi-

nation principle is valid when the number of recombinants
is small and the recombination events are randomly dis-
tributed, because most of the minimum recombinant solu-
tions correctly recovered the missing alleles and the phase
information. The results on the real data set show that in
terms of estimating common haplotypes and their frequen-
cies, the solutions from ILP and the EM algorithm in general
agree with each other. In order to assess the accuracies of
rule-based algorithms and statistical algorithms and their ef-
ficiency systematically on data with and without pedigrees,
more sophisticated models to generate data are needed.

It is possible to extend the ILP formulation by incorpo-
rating coefficients that represent the likelihoods of recombi-
nation (such as genetic distances between markers) into the
objective function.

9. ACKNOWLEDGEMENT
We thank the two anonymous referees for many helpful

suggestions, especially on Section 6. We are grateful to
Drs. David Altshuler, Mark Daly, Stacey Gabriel, Stephen
Schaffner, and their entire group at Whitehead/MIT Center
for Genome Research for sharing their haplotype block and
frequency results analyzed in [9] with us and for answering
many of our inquiries.

10. REFERENCES
[1] L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen,

and J. Knudsen. The complexity of checking
consistency of pedigree information and related
problems. Manuscript, 2003.

[2] P. Bonizzoni, G. Della Vedova, R. Dondi, and J. Li.
The haplotyping problem: an overview of
computational models and solutions. J Comp Sci
Tech, 18(6):675-688, 2003.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press,
Massachusetts, 2001.

[4] D. Curtis. A program to draw pedigrees using
LINKAGE or LINKSYS data files. Ann Hum Genet,
54:365–367, 1990.

[5] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson,
and E. S. Lander. High-resolution haplotype structure
in the human genome. Nat Genet, 29(2):229–32, 2001.

[6] K. Doi, J. Li, and T. Jiang. Minimum recombinant
haplotype configuration on tree pedigrees. In Proc.
WABI’03, pages 339-353, 2003.

[7] E. Eskin, E. Halperin, and R. M. Karp. Large scale
reconstruction of haplotypes from genotype data. In
Proc. RECOMB’03, pages 104–113, 2003.

[8] L. Excoffier and M. Slatkin. Maximum-likelihood
estimation of molecular haplotype frequencies in a
diploid population. Mol Biol Evol, 12:921–927, 1995.

[9] S. B. Gabriel et al. The structure of haplotype blocks
in the human genome. Science, 296(5576):2225–9,
2002.

[10] D. Gusfield. Haplotyping as perfect phylogeny:
conceptual framework and efficient solutions. In Proc.
RECOMB’02, pages 166–175, 2002.

[11] L. Helmuth. Genome research: Map of the human
genome 3.0. Science, 293(5530):583–585, 2001.

[12] International Human Genome Sequencing Consortium.
Initial sequencing and analysis of the human genome.
Nature, 409(6822):860–921, 2001.

[13] J. Li and T. Jiang. Efficient inference of haplotypes
from genotypes on a pedigree. J Bioinfo Comp Biol,
1(1):41–69, 2003.

[14] J. Li and T. Jiang. Efficient rule-based haplotyping
algorithms for pedigree data. In Proc. RECOMB’03,
pages 197–206, 2003.

[15] L. Li, J. H. Kim, and M. S. Waterman. Haplotype
reconstruction from SNP alignment. In Proc.
RECOMB’03, pages 207–216, 2003.

[16] S. Lin and T. P. Speed. An algorithm for haplotype
analysis. J Comput Biol, 4(4):535–46, 1997.

[17] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail.
Algorithmic strategies for the single nucleotide
polymorphism haplotype assembly problem. Briefings
in Bioinformatics, 3(1):23–31, 2002.

[18] T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian
haplotype inference for multiple linked
single-nucleotide polymorphisms. Am J Hum Genet,
70(1):157–169, 2002.

[19] J. R. O’Connell. Zero-recombinant haplotyping:
applications to fine mapping using SNPs. Genet
Epidemiol, 19 Suppl 1:S64–70, 2000.

[20] I. Pe’er and J. S. Beckmann. Resolution of haplotypes
and haplotype frequencies from SNP genotypes of
pooled samples. In Proc. RECOMB’03, pages
237–246, 2003.

[21] D. Qian and L. Beckmann. Minimum-recombinant
haplotyping in pedigrees. Am J Hum Genet,
70(6):1434–1445, 2002.

[22] H. Seltman, K. Roeder, and B.D. Devlin.
Transmission/disequilibrium test meets measured
haplotype analysis: family-based association analysis
guided by evolution of haplotypes. Am J Hum Genet,
68(5):1250–1263, 2001.

[23] E. Sobel, K. Lange, J. O’Connell, and D. Weeks.
Haplotyping algorithms. T. Speed and M. Waterman,
eds., Genetic Mapping and DNA Sequencing, IMA Vol
in Math and its App, 81:89–110, 1996.

[24] M. Stephens, N. J. Smith, and P. Donnelly. A new
statistical method for haplotype reconstruction from
population data. Am J Hum Genet, 68(4):978–89,
2001.

[25] P. Tapadar, S. Ghosh, and P. P. Majumder.
Haplotyping in pedigrees via a genetic algorithm. Hum
Hered, 50(1):43–56, 2000.

[26] J. C. Venter et al. The sequence of the human
genome. Science, 291(5507):1304–1351, 2001.

[27] E. M. Wijsman. A deductive method of haplotype
analysis in pedigrees. Am J Hum Genet, 41(3):356–73,
1987.

[28] L. Wolsey. Integer programming. John Wiley & Sons
Inc, 1998.

[29] S. Zhang et al. Transmission/Disequilibrium test
based on haplotype sharing for tightly linked markers.
Am J Hum Genet, 73(3):566–579, 2003.

