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ABSTRACT
We study haplotype reconstruction under the Mendelian law
of inheritance and the minimum recombination principle on
pedigree data. We prove that the problem of finding a mini-
mum-recombinant haplotype configuration (MRHC) is in gen-
eral NP-hard. This is the first complexity result concern-
ing the problem to our knowledge. An iterative algorithm
based on blocks of consecutive resolved marker loci (called
block-extension) is proposed. It is very efficient and can be
used for large pedigrees with a large number of markers, es-
pecially for those data sets requiring few recombinants (or
recombination events). A polynomial-time exact algorithm
for haplotype reconstruction without recombinants is also
presented. This algorithm first identifies all the necessary
constraints based on the Mendelian law and the zero recom-
binant assumption, and represents them using a system of
linear equations over the cyclic group Z2. By using a simple
method based on Gaussian elimination, we could obtain all
possible feasible haplotype configurations. We have tested
the block-extension algorithm on simulated data generated
on three pedigree structures. The results show that the algo-
rithm performs very well on both multi-allelic and biallelic
data, especially when the number of recombinants is small.
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1. INTRODUCTION
Genetic fine-mapping for complex diseases (such as can-

cer, diabetes, etc.) is currently a great challenge for geneti-
cists and will continue to be so in the near future. With
the availability of single nucleotide polymorphisms (SNPs)
information, researchers see new potentials of genetic map-
ping. The ongoing genetic variation and haplotype map
projects at the National Human Genome Research Institute
(NHGRI) of the USA are focused on the discovery and typ-
ing of SNPs and development of high-resolution maps of ge-
netic variation and haplotypes for human [8]. While a dense
SNP haplotype map is being built, various new methods [9,
12, 21, 26] have been proposed to use haplotype informa-
tion in linkage disequilibrium mapping. Some existing sta-
tistical methods for genetic linkage analysis have also shown
increased power by incorporating SNP haplotype informa-
tion [20, 28]. But, the use of haplotype maps has been lim-
ited due to the fact that the human genome is a diploid and,
in practice, genotype data instead of haplotype data are col-
lected directly, especially in large-scale sequencing projects,
because of cost considerations. Although recently developed
experimental techniques [4] give the hope of deriving haplo-
type information directly with affordable costs, efficient and
accurate computational methods for haplotype reconstruc-
tion from genotype data are still highly demanded.

The existing computational methods for haplotyping fit
into two categories: statistical methods and rule-based meth-
ods. Both methodologies can be applied to population data
and pedigree data. Statistical approaches (e.g. [5, 10, 13, 23,
25]) estimate haplotype frequencies in addition to the hap-
lotype configuration for each individual, but the algorithms
are usually very time consuming and thus cannot handle
large (in many cases, moderately large) data sets. On the
other hand, rule-based approaches are usually very fast, al-
though they normally do not provide any numerical assess-
ment of the reliability of their results. 1 By utilizing some

1One can make an analogy between this relationship be-



reasonable biological assumptions, such as the minimum re-
combination principle, rule-based methods have proven to be
powerful and practical [7, 11, 14, 19, 24, 27]. The minimum
recombination principle basically says that genetic recombi-
nation is rare and thus haplotypes with fewer recombinants
should be preferred in a haplotype reconstruction [7, 14,
19]. 2 The principle is well supported by practical data. For
example, recently published experimental results [2, 6, 8]
showed that, in the case of human, the number of distinct
haplotypes is very limited. Moreover, the genomic DNA
can be partitioned into long blocks such that recombination
within each block is rare or even nonexistent.

We are interested in rule-based haplotype reconstruction
methods on pedigrees. In a very recent paper [19], Qian
and Beckmann proposed a rule-based algorithm to recon-
struct haplotype configurations for pedigree data, based on
the minimum recombination principle. (From now on, we
call their algorithm MRH.) Given a pedigree and the geno-
type information about each member of the pedigree (with
possibly missing data), the authors are interested in finding
the haplotype configurations for each member such that the
total number of recombinants (or recombination events) in
the whole pedigree is minimized. We call the problem the
Minimum-Recombinant Haplotype Configuration (MRHC)
problem. Although the algorithm MRH in [19] performs very
well for small pedigrees, its effectiveness scales very poorly
because it runs extremely slowly on data of even moderate
sizes, especially for data with biallelic markers. This is re-
grettable since large SNP data sets on pedigrees are becom-
ing increasingly interesting and SNP markers are biallelic.

In this paper, we first show that the MRHC problem is
in general NP-hard and then devise an efficient iterative
(heuristic) algorithm (called block-extension) for MRHC. Like
the existing rule-based haplotyping algorithms, our algo-
rithm first attempts to resolve all unambiguous loci using
the Mendelian law of inheritance. But instead of work-
ing on individual unresolved loci separately after the first
step, as done in the algorithm MRH [19], we use some sen-
sible greedy strategy (such as avoiding double recombinants
within a small region of loci) to resolve loci that are adjacent
to the previously resolved loci, resulting in blocks of consec-
utive resolved loci. Our algorithm then uses the longest
block in the pedigree to resolve more unresolved loci un-
der the minimum recombination principle. This may extend
some blocks into longer blocks. The process is repeated un-
til no blocks can be extended. The algorithm then fills the
remaining gaps between blocks in each member by consid-
ering the haplotype information about the other members
of the same nuclear family. Our preliminary experimental
results demonstrate that the algorithm is much more effi-
cient than the algorithm MRH in [19] because loci can be
resolved much more quickly when they are considered to-
gether as blocks than when they are considered separately.

We also consider the special case of haplotype reconstruc-
tion where no recombinants are assumed. This special case
is interesting not only because its solution may be useful
for solving the general MRHC problem as a subroutine but

tween statistical methods and rule-based methods and the
relationship between the maximum likelihood methods and
parsimony/distance methods in phylogenetic reconstruc-
tion.
2This is similar to the parsimony principle in phylogenetic
reconstruction.

also because the frequency of recombinants is expected to
be close to 0 when a small (or moderately large) region of
genomic DNA is considered [7, 14]. We present an algorithm
to identify all 0-recombinant haplotype configurations con-
sistent with the input data. The running time of the al-
gorithm is polynomial in the input size and the number of
consistent 0-recombinant haplotypes. Previously, only an
exponential-time algorithm based on exhaustive enumera-
tion was known [14]. Our algorithm first identifies all nec-
essary (and sufficient) constraints on the haplotype config-
urations derived from the Mendelian law and the zero re-
combinant assumption, represented as a system of linear
equations on binary variables over the cyclic group Z2 (i.e.
integer addition mod 2), and then solves the equations to
obtain all consistent haplotype configurations satisfying the
constraints, using a simple method based on Gaussian elimi-
nation. These consistent haplotype configurations are shown
to be feasible 0-recombinant solutions. 3

We have tested our algorithm for MRHC on simulated
genotype data using three pedigree structures. The results
demonstrate that the block-extension algorithm runs very
fast. For example, for 100 runs on a pedigree with 29 mem-
bers and 50 marker loci, it uses less than 1 minute for both
multi-allelic and biallelic data. In contrast, the algorithm
MRH of Qian and Beckmann [19] requires 3 to 4 hours on
the same data sets with multi-allelic genotype information.
On the data sets with biallelic genotypes, we observed that
MRH would need more than 20 hours for each run. In fact,
the authors have recently told us that [18] MRH in gen-
eral cannot handle data of such a (moderately large) size,
especially when the genotypes are biallelic. In terms of per-
formance (i.e. accuracy of the reconstructed haplotype con-
figuration), MRH generally gives better results than block-
extension whenever it was able to handle the input data,
because of its exhaustive search on individual locus. How-
ever, in most cases, the results of our block-extension al-
gorithm were comparable. For multi-allelic genotypes, our
algorithm was able to recover correct haplotype configura-
tions in more than 90% of the cases. In particular, for data
requiring zero recombinants, the algorithm could recover the
correct solutions in almost all cases. Our algorithm also per-
formed very well on the moderately large biallelic data sets
involving small numbers of recombinants that MRH could
not handle.

The rest of this paper is organized as follows. We first
introduce the biological significance of the MRHC problem
and some directly related biological concepts and terminol-
ogy. This is followed by a formal definition of the problem
and the computational complexity result. The two (block-
extension and 0-recombinant) algorithms are presented in
sections 3 and 4. After showing the experimental results in
section 5, we conclude the paper with some remarks about
possible future work in section 6.

3Although our zero recombinant assumption here may look
similar to the zero recombinant assumption in [7], it is ac-
tually quite different. The assumption in [7] requests that
there must have been no recombination events ever since the
single ancestral haplotype. However, here we only require
that recombination events did not occur among the genera-
tion of the same pedigree. Such an assumption is much more
realistic. Moreover, recurrent/backward mutations that are
forbidden in [7] are allowed here.



2. THE MRHC PROBLEM AND ITS NP-
HARDNESS

In this section, we first give a formal definition of the
MRHC problem, including the necessary biological back-
ground, and then prove that the problem is NP-hard even
if the input pedigree data contains only two loci.

Definition 1. A pedigree graph is a connected directed
acyclic graph (DAG) G = {V, E}, where V = M ∪F ∪N , M
stands for the male nodes, F stands for the female nodes, N
stands for the mating nodes, and E = {e = (u, v): u ∈ M∪F
and v ∈ N or u ∈ N and v ∈ M ∪ F}. M ∪ F are called
the individual nodes. The in-degree of each individual node
is at most 1. The in-degree of a mating node must be 2,
with one edge starting from a male node (called father) and
the other edge from a female node (called mother), and the
out-degree of a mating node must be larger than zero.

In a pedigree, the individual nodes adjacent to a mat-
ing node (i.e. they have edges from the mating node) are
called the children of the two individual nodes adjacent from
the mating node (i.e. the father and mother nodes, which
have edges to the mating node). The individual nodes that
have no parents (in-degree is zero) are called founders. For
each mating node, the induced subgraph containing the fa-
ther, mother, mating, and child nodes is called a nuclear
family. A parents-offspring trio consists of two parents and
one of their children. Figure 1 shows a conventional illus-
tration of an example pedigree where the mating nodes are
not explicitly shown. The genome of an organism consists

3-1 3-2

3-3 3-4 3-5 3-6 3-7 3-8

3-11 3-12 3-13 3-14 3-15 3-9 3-10

Figure 1: A pedigree with 15 members. A square
represents a male node and a circle represents a
female node. The children (e.g. 3-3, 3-5 and 3-7)
are placed under their parents (e.g. 3-1 and 3-2).

of chromosomes that are double strand DNA. Locations on
a chromosome can be identified using markers, which are
small segments of DNA with some specific features. A posi-
tion of markers on the chromosome is called a marker locus
and a marker state is called an allele. A set of markers
and their positions define a genetic map of chromosomes.
There are many types of markers. The two most commonly
used markers are microsatellite markers and SNP markers.
Different sets of markers have different properties, such as
the total number of different allelic states at one locus, fre-
quency of each allele, distance between two adjacent loci,
etc. A microsatellite marker usually has several different
alleles at a locus (called multi-allele) while an SNP marker
can be treated as a biallele, which has two alternative states.
The average distance between two SNP marker loci is much
smaller than the average distance between two microsatel-
lite marker loci, thus making SNP markers superior to other
markers in gene fine-mapping. In diploid organisms, chro-
mosomes come in pairs. The status of two alleles at a par-
ticular marker locus of a pair of chromosomes is called a

Genotype
2
1

11

1

1 2

2

H
ap

lo
ty

pe

Paternal Maternal

Locus2

2

Figure 2: The structure of a pair of chromosomes
from a mathematical point of view.

marker genotype. The genotype information of a locus will
be denoted using a set, e.g. {a, b}. If the two alleles are the
same, the genotype is homozygous. Otherwise it is heterozy-
gous. A haplotype consists of all alleles, one from each locus,
that are on the same chromosome. Figure 2 illustrates the
above concepts.

The Mendelian law of inheritance states that the genotype
of a child must come from the genotypes of its parents at
each marker locus. In other words, the two alleles at each
locus of the child have different origins: one is from its father
(which is called the paternal allele) and the other from its
mother (which is called the maternal allele). Usually, a child
inherits a complete haplotype from each parent. However,
recombination may occur, where the two haplotypes of a
parent get shuffled due to a crossover of chromosomes and
one of the shuffled copies is passed on to the child. Such
an event is called a recombination event and its result is
called a recombinant. Since markers are usually very short
DNA sequences, we assume that recombination only occurs
between markers.

Alleles are denoted using (identification) numbers, as shown
in Figure 2. We use PS (parental source) to indicate which
allele comes from which parent at each locus. The PS value
at a heterozygous locus can be −1, 0 or 1, where −1 means
that the parental source is unknown, 0 means that the al-
lele with the smaller identification number is from the father
and the allele with the larger identification number is from
the mother, and 1 means the opposite. The PS value will
always be set as 0 for a homozygous locus. A locus is PS-
resolved if its PS value is 0 or 1. For convenience, we will
use GS (grand-parental source) to indicate if an allele at
a PS-resolved locus comes from a grand-paternal allele or a
grand-maternal allele. Similar to a PS value, a GS value can
also be −1, 0 or 1. The PS and GS information can be used
to count the number of recombinants as follows. For any
two alleles that are at adjacent loci and from the same hap-
lotype, they induce a recombinant (or recombination event)
if their GS values are 0 and 1. An allele GS-resolved if its GS
value is 0 or 1. A locus is GS-resolved if both of its alleles
are GS-resolved.

Definition 2. A haplotype configuration of a pedigree is
an assignment of nonnegative values to the PS of each locus
and the GS of each allele for each member of the pedigree
that is consistent with the Mendelian law.

Hence a haplotype configuration not only fully describes
the haplotypes in the members of the pedigree, it also de-
scribes the origin of each allele on the haplotypes. The fol-
lowing problem, called MRHC in the above, has been stud-
ied in [19, 24]:



Definition 3. Given a pedigree graph and genotype infor-
mation for each member of the pedigree, find a haplotype
configuration for the pedigree that requires the minimum
number of recombinants.

The following lemma shows that it suffices to compute
only the required PS values in MRHC, because the corre-
sponding GS values can be easily determined to minimize
the number of recombinants once the PS values are given.
However, we will need use both PS and GS values in one of
our algorithms for convenience.

Lemma 1. Given an instance of MRHC and the PS value
for each locus of each individual, the GS value of each al-
lele to achieve the minimum number of recombinants can be
computed in O(mn) time, where m is the number of loci and
n is the number of individuals in the input pedigree.

Proof. We can consider each parent and child relation-
ship, and figure out an optimal assignment of GS values to
the paternal (or maternal) alleles in the child by a simple
dynamic programming algorithm.

Unfortunately, we can prove that MRHC is NP-hard and
thus does not have a polynomial-time algorithm, unless P
= NP. We note in passing that an NP-hardness result was
recently shown for a probabilistic formulation of pedigree
analysis in [17].

Theorem 1. MRHC is NP-hard.

We prove the theorem by two lemmas. First, recall that
the problem of exact cover by 3-sets where no element of
the universe occurs in more than 3 input subsets (denoted
as 3XC3, also called 3-dimensional matching) is NP-hard [1].
Here we need consider a stronger version of 3XC3, denoted
as 3XCX3, where each element of the universe occurs in
exactly 3 input subsets. Lemma 2 shows that the 3XCX3
problem is NP-hard by a reduction from 3XC3. We then
show in Lemma 3 that even with two loci, MRHC is NP-
hard by a reduction from 3XCX3. 4

Lemma 2. 3XCX3 is NP-hard.

Proof. The reduction is from 3XC3, which is known NP-
hard [1]. Recall that for an instance of 3XC3, we have a set
X of 3q elements and a collection C of n 3-element subsets
of X where each element of X occurs in at most 3 subsets.
We want to construct an instance of 3XCX3 such that each
element occurs in exactly 3 subsets. Without loss of gener-
ality, let us assume that each element in X occurs in at least
two subsets. Let s denote the number of elements occurring
in exactly 3 subsets and t denote the number of elements
only occurring in 2 subsets. We have 3s + 2t = 3n. Thus,
t must be a multiple of 3 and we can group the elements
occurring in 2 subsets so that each group has 3 such ele-
ments. For a group of three elements a, b and c, construct
four new 3-subsets {a, x, y}, {b, y, z}, {c, z, x} and {x, y, z},
where x, y, z are new elements. This guarantees each ele-
ment of X appears in exactly three subsets. It is easy to
see the one-to-one correspondence between a solution of the
3XC3 instance and a solution of the constructed 3XCX3 in-
stance.

4More recently, K. Doi found a more direct reduction from
MAX CUT [3].

The next lemma shows that MRHC on pedigrees with 2
loci (denoted as MRHC2) is NP-hard.

Lemma 3. MRHC2 is NP-hard.

Proof. We reduce 3XCX3 to MRHC2. Let S1, S2, ..., Sn

be the n 3-element subsets and X (|X| = n = 3q) the uni-
verse of a 3XCX3 instance. We construct a pedigree with
genotype information at both loci. Both loci are biallelic and
we denote the alleles as {1, 2}. For convenience, let us first
ignore the gender of each individual node in the construc-
tion. For each subset Si, we construct an (individual) node,
still denoted by Si. All such nodes have the same genotypes
{1,2} at both loci. Suppose that an element a of X is con-
tained in subsets S1, S2 and S3. We include a small pedigree
that consists of the nodes created from S1, S2 and S3 (which
we call the S-nodes) and some other nodes (which we will
call A, B, C, D-nodes) as their relatives. Some of the A, B,
C, D-nodes will be forced to have certain haplotype config-
urations by setting their and their relatives’ (more precisely,
mates’ and children’s) genotypes carefully (more details will
be discussed below). Here, a forced haplotype configuration
is the unique configuration that would minimize the number
of recombinants required for the small gadget pedigree as

well as for the whole pedigree. Let
h

a1 b1
a2 b2

i
mean that alleles

a1 and a2 form a haplotype and b1 and b2 form the other
haplotype of some individual. Call such a configuration a
haplotype grouping. 5

The purpose of the gadget pedigree shown in Figure 3 is to
force exactly one of the S-nodes to have haplotype groupingh

1 2
2 1

i
(via a recombination from its parents) and the other

two to have haplotype groupings
h

1 2
1 2

i
. The one with haplo-

type
h

1 2
2 1

i
will correspond to the subset Si that is included in

the solution of 3XCX3 covering a. In the small pedigree, S1

and S2 mate and have four child nodes C1, C2, C3 and C4.

We force C1 to have haplotype grouping
h

1 2
1 2

i
, and C2 and

C3 to have haplotype groupings
h

1 2
2 2

i
. To force C1 to have

the desired haplotype grouping, we could construct some
new individuals as relatives (mate and children) of C1 so
that the desired haplotype grouping will benefit the whole
pedigree. For example, we can create a mate of C1 (not
shown in the figure) that has genotypes {1,1} on both loci.
We also create some constant number of children of C1 (all
of them are represented by the polygon connected with C1

in Figure 3), all with genotypes {1,2} on both loci. This will
force C1 to have the desired haplotype grouping in order not
to incur any recombinants in its sub-pedigree. Each Si has
two parents Ai and Bi with genotypes {1,2} on both loci.

Their haplotype groupings are forced to be
h

1 2
1 2

i
(by includ-

ing some constant number children with genotypes {1,1} on
both loci, not shown in the figure). The A- and B-nodes
are introduced to minimize the number of S-nodes that are
assigned the haplotype grouping

h
1 2
2 1

i
. Let us assume that

5Note that, this notation only shows the two haplotypes in-
stead of the actual haplotype configuration. However, based
on the minimum recombinant principle, we can easily com-
pute an optimal haplotype configuration from such a group-
ing in the reduction. Thus, for convenience, we will treath

a1 b1
a2 b2

i
as a haplotype configuration in this proof.
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B1A1 B2A2
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Figure 3: The gadget pedigree for an element of
X and the three subsets containing the element.
A • indicates an individual node. A ◦ indicates a
mating node. A × indicates a recombination event.
A / between two alleles indicates the haplotype
grouping without specifying the PS value.

C4 has genotypes {1,2} on both loci, and produces a child
D1 with S3. We force D1 to have the haplotype groupingh

1 2
2 2

i
(D1’s mate and children are not shown in Figure 3).

Without considering the order, there are three haplotype

groupings for S1 and S2, namely,
h

1 2
1 2

i
×
h

1 2
1 2

i
,
h

1 2
1 2

i
×
h

1 2
2 1

i
and

h
1 2
2 1

i
×
h

1 2
2 1

i
. There are two possible haplotype group-

ings for S3, i.e.
h

1 2
2 1

i
or
h

1 2
1 2

i
. By examining the six combi-

nations of the above assignments, we know that if only one

of the three S-nodes has haplotype grouping
h

1 2
2 1

i
and the

other two have haplotype groupings
h

1 2
1 2

i
, the above little

gadget pedigree can be resolved with just two recombinants
on the C-nodes and one recombinant on the S-nodes. The
latter recombinant may also be “shared” by two other gad-
get pedigrees corresponding to two elements of X. Figure 3
illustrates such a possible haplotype (grouping) assignment
with two recombinants on the C-nodes. (The actual PS
and GS values are not shown in the figure, although they
can be easily determined.) Otherwise, the gadget pedigree
would require at least three recombinants on the C-nodes.
The above construction does not take into account the gen-
der of each individual, especially that of an S-node. To
solve the gender problem, we duplicate every gadget pedi-
gree constructed above. (Actually, we need only duplicate
the S-nodes, although there is no harm to duplicate the C-
nodes and D-nodes.) So, there are two nodes for each Si.
We make one male and the other one female. Thus we could
arrange any two S-nodes to be of opposite genders whenever
they have a mating relation. The only thing left is that we
need make sure that the two nodes for each Si must always
have the same haplotype assignments. For this, we can con-
struct another small gadget pedigree for each such pairs of
S-nodes. Let these two nodes mate and have two children
E1 and E2. Both E1 and E2 have the same genotypes {1,2}
at both loci. We can see that only if the two parent nodes
have the same pair of haplotypes (not necessarily with the
same PS values), the small pedigree can be realized with zero
recombinants. Otherwise, at least two recombinants would
be needed. This constraint is also illustrated in Figure 5
(picture on the right).

The above construction can be completed in polynomial

time. It is easy to prove that an exact cover of X corresponds
to a haplotype configuration of the above pedigree with (3q ·
2+q) ·2 = 14q recombinants, and vice versa. Hence, 3XCX3
reduces to MRHC2, and MRHC2 is NP-hard.

3. AN EFFICIENT ITERATIVE
ALGORITHMS FOR MRHC

Because of the NP-hardness of MRHC, it is unlikely to
find an efficient algorithm to solve MRHC exactly. We thus
propose an iterative heuristic algorithm for MRHC, called
the block-extension algorithm. Here, a block means a consec-
utive sequence of resolved loci of some individual. The basic
idea of the algorithm is to partition the loci in each member
of the pedigree into blocks after applying the Mendelian law
and some simple greedy strategy (such as avoiding double re-
combinants within a small region of loci). It then repeatedly
uses the longest haplotype block in the pedigree to extend
other blocks (in other members) by resolving unresolved loci
based on the minimum recombination principle. This ap-
proach may potentially be more efficient than the algorithm
MRH, especially when the number of required recombinants
is small, because multiple loci are resolved simultaneously
instead of separately. More precisely, the block-extension
algorithm is based on the following observations:

Observation 1: Long haplotype blocks are common in hu-
man genomes [2, 6, 8]. Few or zero recombinants are ex-
pected within these blocks. In our simulation study, we
have also observed a lot of long blocks in each member of
the pedigree after applying the Mendelian law.

Observation 2: Shared haplotype blocks among siblings
are strong evidence that no recombination should occur on
those siblings based on the assumption that recombinants
are rare in a pedigree. Thus, these haplotype blocks shared
by siblings should also exist in their parents. It is therefore
reasonable to use a blocks in children to resolve the corre-
sponding loci in their parents.

Observation 3: Double recombinants are very rare within
a small region. Once we know that two nonadjacent alleles
on a haplotype block have the same GS value, the alleles of
the block sandwiched by the two alleles should have the same
GS value. Otherwise, double recombinants would occur.

Observation 4: It is sometimes possible to determine that
some individuals must involve recombinants. We may be
better off to leave these individuals until the last.

We now describe the block-extension algorithm in more
detail. The main steps of the algorithm are also illustrated
by an example. The algorithm has 5 steps. Assume that the
input genotype data is Mendelian error-free. (One can use
the genotype-elimination algorithm of O’Connell’s [15, 16]
to detect this type of errors.) Note that, although it suffices
to focus on the PS values by Lemma 1, we will use both PS
and GS in the algorithm for the convenience of presentation.

Step 1: Missing genotype imputing by the Mendelian law.
We scan the whole pedigree bottom-up and consider the
nuclear families one by one. For each parent that has missing
data, we check if there is an allele in any of its children that
does not appear in its mate whose genotype is known. We
may also impute some missing alleles in a child when the
alleles of a parent at some homozygous locus do not appear
in the child’s genotype. More missing data can be imputed
by the use of the minimum recombination principle in the
following steps.



Step 2: PS and GS assignments by the Mendelian law.
By a top-down scan, we try to resolve all loci that have
unambiguous PS and/or GS values under the Mendelian law.
For the founders of the pedigree, we can resolve all their
homozygous loci and one arbitrary heterozygous locus by
setting the PS and GS values of all these loci to be 0. To
resolve a locus in a non-founder, let us consider each parents-
offspring trio. There are two rules we can use to resolve loci
in the child: 1) if there is at least one parent of the trio
that is homozygous at this locus, we can resolve PS value
of the locus in the child, and 2) if there is an allele in the
child that differs from both alleles in one parent, it must
come from the other parent. Here, we may also be able to
determine the GS values of some alleles in the child using
the PS information at the parents.

By running these two steps, we should get similar results
as running the first two steps of MRH. But our method is
much simpler than MRH. There are more than 40 (detailed)
rules [19] used in MRH for missing data imputing and PS
and GS assignments.

Step 3: Greedy assignment of GS values. The greedy step
to assign GS works in a bottom-up fashion. We begin with
a lowest nuclear family in the pedigree. For each child of the
family, we check if the child has one or more loci whose alle-
les have known GS and if all the known GS values of alleles
on the same haplotype are the same (which means that at
least by now, there is no evidence that recombinants exist
in this child). Otherwise, just mark this child as processed
and continue on with other children until we find such a
child. Based on the known GS information, the GS values
of nearby alleles in the child will be assigned according to
the following rules. Assume that we know the GS of one
(e.g. paternal) allele at the ith locus of the child, and we
want to set the GS of its paternal allele at the (i+1)th locus.
We check if any of the child’s or the father’s (i + 1)th loci
have been PS-resolved. If neither of them are PS-resolved,
we cannot assign the GS. If the child is PS-resolved and the
father is homozygous, we set the GS of the paternal allele of
the child at the (i + 1)th locus equal to the GS of the pater-
nal allele at the ith locus. If the child is PS-resolved but the
father is PS-unresolved (and thus heterozygous), we will try
the two alternative GS assignments for the paternal allele of
the child at locus i+1. Each assignment would force the PS
value of the father at locus i + 1 thus resolve its PS. Then
we count the numbers of recombinants between loci i and
i + 1 within the nuclear family for these two choices, and
select the one with fewer recombinants. If the child is not
PS-resolved at locus i + 1, but the parent is PS-resolved,
we consider the two alternative PS (and thus GS) assign-
ments for the child at locus i + 1, and select the one with
fewer recombinants. If the numbers of recombinants for the
two alternative assignments are equal, we do nothing. Af-
ter each known GS value has been processed, we mark the
child as processed and continue on with other children in
this nuclear family. During the process, if we see that two
non-adjacent alleles on the paternal (or maternal) haplo-
type have the same GS, we will assign alleles from the same
haplotype sandwiched by the two alleles the same GS value
as mentioned in observation 3. Once this nuclear family is
finished, we continue the GS assignment in another nuclear
family by a bottom-up scan.

Step 4: Block-extension. Find a longest haplotype block
in some member of the pedigree consisting of alleles with the

same GS value. We use this haplotype block to resolve the
corresponding loci in the first degree relatives (children and
parents) of the member. Each decision on a locus will be
made by counting the numbers of recombinants in the nu-
clear family resulted by the two alternative PS assignments
of the locus. The assignment with the smaller number of
recombinants will be selected. Recently resolved members
will be used to resolve their first degree relatives again, and
this is continued so that every member in the pedigree will
be processed with respect to this block. During this pro-
cess, the haplotype block in some members may overlap with
other blocks thus the longest block may get extended to re-
sult in longer blocks. We repeat the above process with the
current longest block that has not be considered yet, until
no blocks can be extended.

Step 5: Finishing the remaining gaps. After step 4, it is
still possible that there are some gaps of PS-unresolved loci
between blocks. Such gaps may exist only when the input
data contain special patterns. For example, at some locus,
all the members of the pedigree are heterozygous or contain
missing data. Another possible scenario is that for some
three adjacent loci, no members of the pedigree have two
adjacent PS-resolved loci. If we assume that alleles occur
with the same frequency at a locus, it is not difficult to see
that the probability that we have the above scenarios is very
small. (These situations never happened in our simulation
study.) When a gap does occur, the algorithm would pick an
unresolved locus, compare two alternative PS-assignments
within a nuclear family at the locus and select the one that
gives the smaller number of recombinants. Hopefully this
assignment will extend some blocks, and we will repeat steps
3-5 again until all gaps are filled.

Figure 4 illustrates the main steps of the above algorithm
using a simple example. Since the input pedigree and geno-
type information, as given in (A), have no missing data, we
skip step 1. (B) shows the result of step 2. In step 3, since we
know the GS values of the alleles at the first locus of member
3-3, we assign the adjacent alleles (at loci 2 to 4) the same
GS value. This forces locus 2 at both parents of member 3-3
to be PS-resolved. The result of step 3 is shown in (C). In
step 4, we use the longest block (loci 1 to 4 in member 3-1)
to help resolve the same region in member 3-4 (by consulting
the corresponding region in member 3-2). This results in a
longer block in member 3-4 as shown in (D). We then use
the longest block in member 3-4 to help resolve loci 5 and 6
in members 3-1 and 3-2 and the blocks in members 3-1 and
3-2 to help resolve locus 5 in member 3-3, as shown in (E).
In step 5, we consider the two alternative PS assignments
for locus 7 in member 3-1. For each such assignment, we
calculate the best PS assignments for locus 7 in the other
members of the same nuclear family (i.e. members 3-2, 3-3,
and 3-4) in order to minimize the number of recombinants
required. The assignment shown in (F) turns out to be the
best choice, and the final haplotype configuration is shown
in (G), which happens to require one recombinant.

Theorem 2. Let n denote the size of the pedigree, m the
number of loci, and d the largest number of children in a nu-
clear family. The block-extension algorithm runs in O(dmn)
time.

Proof. The worst-case time complexity of the algorithm
can be analyzed as follows. The first step only involves a
bottom-up scan and thus runs in O(dmn) time, because each



nuclear family is visited exactly once and for each nuclear
family, we may spend at most O(dm) time to impute missing
data in the nuclear family. Similarly, steps 2 and 3 run in
O(dmn) time each. In step 4, each locus is involved in at
most one block extension operation. Since there are totally
mn loci and the time for setting the PS value at a locus is
at most O(d), this step also takes O(dmn) time. In step 5,
every time we fix the PS value of an unresolved locus, we
spend O(d) time and then call steps 3 and 4 to see if more
loci can be resolved. Hence, it takes at most O(d) time to
resolve a locus in this step, and step 5 takes at most O(dmn)
time totally. In summary, the block-extension algorithm
runs in O(dmn) time.
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Figure 4: An illustration of the block-extension al-
gorithm. The blank between two alleles at a locus
indicates that the locus is PS-unresolved. | indi-
cates that the locus is PS-resolved, where the left
allele is from the father and the right one is from
the mother. For a PS-resolved locus, we use two
numbers in parentheses to indicate the GS values
of the paternal and maternal alleles.

4. A CONSTRAINT-BASED ALGORITHM
FOR 0-RECOMBINANT DATA

As a heuristic, the above block-extension algorithm does
not always compute an optimal solution for MRHC, espe-
cially when the number of required recombinants increases.
One of our ultimate objectives is to design an algorithm that
runs fast enough on real data and always gives an optimal or
almost optimal haplotype configuration, even if its running
time is exponential in the worst case. Our first attempt is an
efficient (polynomial-time) algorithm to compute all possible
haplotype assignments involving no recombinants. Not only
will the algorithm be useful for solving 0-recombinant data
(i.e. data that can be interpreted with zero recombinants,

which are common for organisms like human as mentioned
in the introduction), it may also serve as a subroutine in a
general algorithm for MRHC.

We consider only data that has no missing genotypes. 6

Observe that finding a haplotype configuration is equivalent
to reducing the degree of freedom in the PS/GS assignment
for each locus/allele in every individual. We may thus find
all necessary constraints on the PS/GS assignments first so
that the freedom left is really free (i.e. the choices will al-
ways lead to 0-recombinant haplotype configurations). Then
we can simply enumerate all haplotype configurations satis-
fying the constraints.

We define four levels of constraints. The first level of
constraints are the strongest and specify specific nonneg-
ative values for the involved alleles (i.e. these alleles are
GS-resolved). The second level of constraints specify spe-
cific nonnegative values for the involved loci (i.e. these loci
are PS-resolved). The last two levels of constraints are con-
cerned with two loci. The third level of constraints describe
what alleles should be on the same haplotype in one mem-
ber without specifying the actual PS values. For example,
in Figure 5 (left), the PS-resolved loci in member 3 forces
the parents have the same haplotype grouping in order to
obtain a solution without recombinants, although we do not
know the actual PS of the two haplotypes in the grouping.
The forth level constraint are the weakest. Each level 4 con-
straint is concerned with the relationship between the hap-
lotype groupings in some different individuals (i.e. parent-
child or mates) at two loci, although it does not specify the
actual haplotype grouping. For example, in Figure 5 (right),
the three members of the parents-offspring trio should either

all have the haplotype grouping
h

1 2
1 2

i
or all have the haplo-

type groupings
h

1 2
2 1

i
, in order not to incur any recombinant

in the trio. But, we do not have information to determine
which case must hold. All possible types of level 3 and level
4 constraints will be listed below. Although the first level of

1/2

1/2

1|1

1|1

1 2

3

1/2
1/2

1/2
2/1

1/2
2/1

4 5

6

1/2
2/11/2

1/2

1/2
1/2

4 5

6

1/2
1/2

1 2

1 2

4 5

1 2

6
1 2
1 2

1 2

3
1|1

2|2

Level 3 Level 4

21

2/1
1/2
2/1

1/2

Figure 5: An illustration of level 3 and level 4 con-
straints.

constraints are useful in detecting recombinants, Lemma 1
suggests that only the last three levels of constraints are
really necessary for computing feasible (0-recombinant) so-
lutions. For each locus i in member j, we define a binary
variable xi,j to represent the PS value of the locus. The basic
idea of our algorithm is to identify all all the level 2-4 con-
straints based on the Mendelian law and the 0-recombinant
assumption by examining every parents-offspring trio, and

6The Mendelian consistency can be easily checked in this
case and thus we present the algorithm assuming the input
data are Mendelian consistent.



x y z Constraint equations

1
h
1 2
1 2

i h
1 ∗
1 ∗

i h
1 1
1 1

i
x1 = x2

2
h
1 2
2 1

i h
1 ∗
2 ∗

i h
1 1
2 2

i
x1 + x2 = 1

3
h
1 2
2 1

i h
1 ∗
1 1

i h
1 1
2 1

i
x1 + x2 = 1

4
h
1 2
1 2

i h
1 1
1 1

i h
2 1
2 1

i
x1 = x2

Table 1: The possible level 3 constraints.

x y z Constraint equations

1
h
1 2
1 2

i h
1 2
1 2

i h
1 2
1 2

i
x1 + x2 = y1 + y2 = z1 + z2

2
h
1 2
1 2

i h
1 2
2 1

i h
1 2
1 1

i
x1 + x2 = z1, y1 + y2 + z1 = 1

3
h
1 2
1 2

i h
1 2
1 1

i h
2 1
2 1

i
x1 + x2 = z1 + z2

Table 2: The possible level 4 constraints.

represent the constraints as linear equations on xi,j ’s over
the cyclic group Z2. It then finds all feasible 0-recombinant
solutions by solving the equations.

More specifically, the level 2 constraints are collected locus
by locus by examining every parents-offspring trio, which is
the same as step 2 of the block-extension algorithm. In or-
der to collect level 3 and level 4 constraints in the form of
linear equations on the binary PS variables, we need to con-
sider every possible pair of loci for each parents-offspring
trio. Without distinguishing the two parents in a parents-
offspring trio, there are essentially four types of level 3 con-
straints and three types of level 4 constraints as summarized
in Tables 1 and 2. In the tables, x, y are the parents and z is
the child. An * indicates any allele. x1 represents the binary
PS variable for locus 1 in member x. These constraints are
collected trio by trio.

Definition 4. Given the level 2-4 constraints defined above,
a consistent solution is an assignment of binary values to all
the PS variables that satisfies every constraint.

Clearly, every feasible 0-recombinant solution is consis-
tent. The following theorem shows that the converse is also
true.

Theorem 3. Every consistent solution is a feasible 0-
recombinant solution.

Proof. Consider a haplotype configuration that is con-
sistent with all constraints. By Lemma 1, we can find a GS
assignment for each allele so that the pedigree has the min-
imum number of recombinants. Suppose that the number
of recombinants is not zero. Let member B involve a re-
combinant between loci i and i+1 and A the corresponding
parent (i.e. father) of B. Find the largest j that j ≤ i and
the smallest k that k ≥ i + 1 such that A is heterozygous at
both loci j and k. Such j and k must exist, because other-
wise we could remove the recombinant by modifying the GS
values of relevant paternal alleles in B. Since A and B are
involved in some level 4 (or level 3 or level 2) constraint at
loci j and k, the consistency of the solution means that the
PS assignments of A and B at loci j and k does not involve
any recombinant between the two loci. Hence, there must
be recombinants in the paternal haplotype of B between loci
j and i or between loci i + 1 and k. We could easily modify
the GS values of the paternal alleles of B in the involved
segment(s) to reduce the number of recombinants without
affecting the PS assignments, since one of the involved loci

must be homozygous. This contradicts the the assumption
that the GS values were optimized.

The above constraints form a system of (sparse) linear
equations over the group Z2, which could be solved by the
classical Gaussian elimination method running in cubic time
(see e.g. [22]). Since we are dealing with Z2, a much simpler
algorithm (adapted from Gaussian elimination) is presented
below for the completeness of the paper. Before we describe
the algorithm, let us reduce the number of level 3 and level
4 constraints (equations) required since many of them are
easily seen as redundant. For any given parents-offspring
trio, we introduce a level 3 (or level 4) constraint for a pair
of loci i and j if and only if at least one of the parents is het-
erozygous at both i and j and is homozygous at every locus
between i and j. These constraints are sufficient to guaran-
tee a feasible solution by the proof of Theorem 3. Hence,
each parents-offspring trio may give rise to at most 2m− 2
level 3 (or level 4) constraints, where m is the number of loci.
If the number of individuals is n in the input pedigree, then
we have at most 2(m− 1)n level 3 and level 4 constraints.

Suppose that the PS variables are denoted as x1, x2, . . . , xmn.
Our algorithm first removes all equations that contain only
one variable (i.e. level 2 constraints), and replaces the in-
volved variables by their constant PS values in other equa-
tions. This may result in more single-variable equations,
and we iterate the process until all equations contain two or
more variables. We then process two-variable equations by
substituting variables with lower indices for variables with
higher indices that are supposed to have equal values. The
remaining equations now have three or more variables, and
we perform the general Gaussian elimination over Z2. Sup-
pose that xj has the highest index among the remaining
variables, and it is defined by equations:

xj = xa1 + xa2 + . . . + xap ,

xj = xb1 + xb2 + . . . + xbq ,

. . .

xj = xc1 + xc2 + . . . + xcr ,

xj = xd1 + xd2 + . . . + xds ,

where a1, a2, . . . , ap, b1, b2, . . . , bq, c1, c2, . . . , cr, d1, d2, . . . , ds <
j. We can transform the equations as follows:

xj = xa1 + xa2 + . . . + xap ,

0 = xa1 + xa2 + . . . + xap + xb1 + xb2 + . . . + xbq ,

. . .

0 = xc1 + xc2 + . . . + xcr + xd1 + xd2 + . . . + xds .

This leaves only one equation that defines xj in terms of
other variables. We can continue this process to remove all
but one constraint equation for each of the variables in the
system. If we detect any conflicts in the process, we know
that there are no feasible solutions. Any variable that is not
defined by any equation is free and can be given any PS value
in a feasible solution. Thus, if there are p free variables at
the end, the total number of feasible 0-recombinant solutions
is 2p.

The running time of the above algorithm is O(m3n3),
since the above elimination process takes at most mn it-
erations and each iteration takes at most O(m2n2) time be-
cause the number of equations never grows and the size of
each equation is at most mn.



5. PRELIMINARY EXPERIMENTAL
RESULTS

The block-extension algorithm has been implemented in
C++. To evaluate the performance of the algorithm, we
compared the algorithm with the program MRH from [19]
on simulated genotype data in terms of accuracy and effi-
ciency. For both programs, a solution is regarded as correct
if its number of recombinants is smaller or equal to the actual
number of recombinants used to generate the data. 7 Three
different pedigree structures were considered. One is a small
pedigree with 15 members as shown in Figure 1. The sec-
ond is a middle sized pedigree with 29 members as shown in
Figure 6 and the third is a pedigree of 17 members but with
a mating loop as shown in Figure 7. Both multi-allelic (with
6 alleles per locus) and biallelic data were considered. The
alleles were generated following a uniform frequency distri-
bution. Three different numbers of loci, namely 10, 25 and
50 were considered. The number of recombinants used in
generating each pedigree ranged from 0 to 4. For each data
set, 100 copies of random genotype data were generated.
The total number of data sets used is 9000 (= 3 ·2 ·3 ·5 ·100).
However, we were not able to run MRH on all these data sets
because of its speed, especially for biallelic genotypes. The

2-1 2-2

2-3 2-8 2-4 2-5 2-9 2-6 2-10 2-7 2-11

2-100 2-199 2-102 2-103 2-111 2-104 2-113 2-114 2-115 2-116 2-117

2-9097 2-9098 2-9099 2-9003 2-9004 2-9005 2-9006

Figure 6: A pedigree with 29 members.

1-1 1-2

1-3 1-4 1-5 1-6

1-9

1-7 1-8

1-13 1-14 1-15

1-10 1-11 1-12

1-16 1-17

Figure 7: A pedigree with 17 members and a mat-
ing loop.

experimental results demonstrate that our block-extension
algorithm is much faster than MRH on both multi-allelic and
biallelic data (Table 3 and Table 4). The first column of the
tables shows the combination of parameters: the number of
members in the pedigree, the number of loci in each mem-
ber, the number of distinct alleles allowed at each locus, and
the number of recombinants used to generate the genotype
data, respectively. The time used by each program is the

7Because we consider small numbers of recombinants in the
simulation, the true haplotype configurations are usually op-
timal solutions for MRHC. In fact, in most cases they are
the unique optimal solutions.

total time for 100 random runs for each parameter combi-
nation, on a Pentium III with 500MHz CPU and 218MB
RAM. The gap between the speeds of the two programs is
drastic, especially on biallelic data. In all cases, our program
could finish 100 runs within one minute. MRH, on the other
hand, scaled very poorly. For small pedigree size or a small
number of loci, its running time was acceptable although
it was much slower than our program. When the pedigree
size and the number of loci increase, MRH’s speed decreased
drastically, especially on biallelic markers that are becom-
ing more and more popular because of SNPs. This is also
true for zero-recombinant data. In fact, MRH cannot handle
pedigrees of size 29 in general [18], although such pedigrees
are only considered moderately large in practice. On the
other hand, Qian and Beckmann [19] showed that MRH is
faster on average than the genetic algorithm of Tapadar et
al. [24].

Parameters Time used by the Time used by MRH
block-extension algorithm

(17,10,6,0) 2.1s 1m16s
(17,10,6,4) 2.1s 2m14s
(15,25,6,0) 2.7s 28m
(15,25,6,4) 2.9s 30m
(29,10,6,0) 3.2s 6m17s
(29,10,6,4) 3.1s 8m47s
(29,25,6,0) 15s 2h58m
(29,25,6,4) 10s 3h9m

Table 3: Speeds of the block-extension algorithm
and MRH on multi-allelic markers.

Parameters Time used by the Timeused by MRH
block-extension algorithm

(17,10,2,0) 1.9s 6m17
(17,10,2,4) 2.3s 16m16s
(15,25,2,0) 4.7s 3h43m
(15,25,2,4) 4.8s 4h44m
(29,10,2,0) 2.8s 1h3m
(29,10,2,4) 2.7s 57m
(29,25,2,0) 2.3s 28h
(29,50,2,0) 16s ≥20h/run

Table 4: Speeds of the block-extension algorithm
and MRH on biallelic markers.

In terms of accuracy, MRH is very good whenever it is able
to finish the computation, because of its exhaustive search
within a nuclear family. However, the performance of the
block-extension algorithm is comparable to that of MRH in
most cases. For example, on multi-allelic data, the block-
extension algorithm could recover most haplotype configura-
tions correctly, even when the input involves a big pedigrees
and a large number of marker loci (Table 5). For biallelic
data, the performance of the algorithm is very good when
the number of required recombinants is small but becomes
worse when the number of recombinants increases (Table 6).

6. CONCLUDING REMARKS
Pedigrees with mating loops are not a big problem for

both rule-based algorithms block-extension and MRH, al-
though they usually cause troubles for statistical methods.
But, we have observed in the experiments that for both of
rule-based algorithms, the results on the pedigree structure
with a loop (in Figure 7) are slightly worse than the re-
sults on the other two pedigree structures without loops.
More investigation is needed on this issue. Notice that the
pedigree structure used in the proof of NP-hardness of the
MRHC problem is very complicated and has mating loops.
An interesting question is if there an efficient algorithm for



solving MRHC on pedigrees without loops. Most real data
sets, especially the ones from human, contain no loops or
a very small number of loops. Another interesting question
is how to extend the constraint-based algorithm to process
data that require a small number of recombinants efficiently.

Parameters Results
(15,50,6,0) 100
(15,50,6,4) 91
(17,50,6,0) 100
(17,50,6,4) 91
(29,10,6,0) 100
(29,10,6,4) 99
(29,25,6,0) 100
(29,25,6,4) 95
(29,50,6,0) 100
(29,50,6,1) 96
(29,50,6,2) 93
(29,50,6,3) 95
(29,50,6,4) 91

Parameters Results
(15,50,2,0) 100
(15,50,2,1) 82
(17,25,2,0) 100
(17,25,2,1) 84
(17,50,2,0) 100
(17,50,2,1) 72
(29,10,2,0) 95
(29,10,2,4) 93
(29,25,2,0) 100
(29,25,2,1) 91
(29,25,2,2) 87
(29,50,2,0) 100
(29,50,2,1) 88

Table 5: Percentages correctly recovered out of 100
runs by the block-extension algorithm on multi-
allelic (left) and biallelic (right) markers.

Number of recombinants 0 1 2 3 4
in the pedigree

Number of correct 100 88 72 64 54
reconstructions out of 100 runs

Table 6: Accuracy decreases when the number of
recombination events increases for the pedigree in
Figure 6 with 50 biallelic marker loci.
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