
Minimum Recombinant Haplotype Configuration
on Tree Pedigrees (Extended Abstract)

Koichiro Doi1, Jing Li2, and Tao Jiang2

1 Department of Computer Science
Graduate School of Information Science and Technology, University of Tokyo

7–3–1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
doi@is.s.u-tokyo.ac.jp

2 Department of Computer Science and Engineering, University of California
Riverside, CA 92521, USA

{jili,jiang }@cs.ucr.edu

Abstract. We study the problem of reconstructing haplotype configurations from
genotypes on pedigree data under the Mendelian law of inheritance and the min-
imum recombination principle, which is very important for the construction of
haplotype maps and genetic linkage/association analysis. Li and Jiang [9, 10] re-
cently proved that theMinimum Recombinant Haplotype Configuration(MRHC)
problem is NP-hard, even if the number of marker loci is 2. However, the proof
uses pedigrees that contain complex mating loop structures that are not common
in practice. The complexity of MRHC in the loopless case was left as an open
problem. In this paper, we show that loopless MRHC is NP-hard. We also present
two dynamic programming algorithms that can be useful for solving loopless
MRHC (and general MRHC) in practice. The first algorithm performs dynamic
programming on the members of the input pedigree and is efficient when the
number of marker loci is bounded by a small constant. It takes advantage of the
tree structure in a loopless pedigree. The second algorithm performs dynamic
programming on the marker loci and is efficient when the number of the mem-
bers of the input pedigree is small. This algorithm also works for the general
MRHC problem. We have implemented both algorithms and applied the first one
to both simulated and real data. Our preliminary experiments demonstrate that
the algorithm is often able to solve MRHC efficiently in practice.

Keywords: haplotype reconstruction, genotype, pedigree, NP-harness, dynamic pro-
gramming algorithm, mating loop.

1 Introduction

In order to understand and study the genetic basis of complex diseases, the modeling
of human variation is very important.Single nucleotide polymorphisms(SNPs), which
are mutations at single nucleotide positions, are typical variations central to ongoing
development of high-resolution maps of genetic variation and haplotypes for human
[8]. While a dense SNP haplotype map is being built, various new methods [11, 14, 19,
23] have been developed to use haplotype information in linkage disequilibrium map-
ping. Some existing statistical methods for gene mapping have also shown increased



2 Koichiro Doi, Jing Li, and Tao Jiang

power by incorporating SNP haplotype information [18, 25]. But, the use of haplotype
maps has been limited due to the fact that the human genome is diploid, and in practice,
genotype data instead of haplotype data are collected directly, especially in large-scale
sequencing projects, because of cost considerations. Although recently developed ex-
perimental techniques [3] give the hope of deriving haplotype information directly with
affordable costs, efficient and accurate computational methods for haplotype recon-
struction from genotype data are still highly demanded.

The existing computational methods for haplotyping can be divided into two cate-
gories: statistical methods and rule-based (i.e. combinatorial) methods. Both methods
can be applied to population data and pedigree data. Statistical methods [4, 12, 15, 20,
22] often estimate the haplotype frequencies in addition to the haplotype configuration
for each individual, but their algorithms are usually very time consuming and not suit-
able for large data sets. On the other hand, rule-based methods are usually very fast
although they normally do not provide any numerical assessment of the reliability of
their results. Nevertheless, by utilizing some reasonable biological assumptions, such
as the minimum recombination principle, rule-based methods have proven to be pow-
erful and practical[7, 13, 16, 17, 21, 24].

The minimum recombination principle states that the genetic recombinants are rare
and thus haplotypes with fewer recombinants should be preferred in a haplotype re-
construction [7, 16, 17]. The principle is well supported by real data from the practice.
For example, recently published experimental results [2, 5, 8] showed that the human
genomic DNA can be partitioned into longblockssuch that recombinants within each
block are rare or even non-existent. Thus, within a single block, the true haplotype
configuration is most likely one of the configurations with the minimum number of
recombinants.

1.1 The minimum recombinant haplotype configuration problem and previous
work

Qian and Beckman [17] formulated the problem of how to reconstruct haplotype con-
figurations from genotype data on a pedigree under the Mendelian law of inheritance
such that the resulting haplotype configurations require the minimum number of re-
combinants (i.e. recombination events). The problem is calledMinimum Recombinant
Haplotype Configuration(MRHC). They proposed a rule-based heuristic algorithm for
MRHC that seems to work well on small pedigrees but is very slow for medium-sized
pedigrees, especially in the case of biallelic genotype data.

Recently, Li and Jiang [9, 10] proved that MRHC is NP-hard, even if the number
of marker loci is 2. They also devised an efficient (iterative) heuristic algorithm for
MRHC, which is more efficient than the algorithm in [17] and can handle pedigrees
of any practical sizes. However, their NP-hardness proof uses pedigrees with complex
mating loop structures that may not ever rise in practice. The complexity of MRHC on
tree pedigrees (i.e. loopless pedigrees, or pedigrees without mating loops) was left as
an open question in [9, 10].



Haplotyping on Tree Pedigrees 3

Table 1.Computational complexities of MRHC and loopless MRHC on pedigrees withn mem-
bers,m marker loci, and at mostm0 heterozygous loci in each member.

m = 2 m =constant n =constant no restriction
MRHC NP-hard [9, 10]NP-hard [9, 10]O(nm24n) NP-hard [9, 10]

loopless MRHC O(n) O(nm02
3m0) O(nm24n) NP-hard

1.2 Our results

This paper is concerned with the MRHC problem on tree pedigrees (calledloopless
MRHC). First, we show that loopless MRHC is NP-hard, answering an open question
in [9, 10]. Therefore, loopless MRHC does not have a polynomial time (exact) algo-
rithm unless P = NP. The proof is based on a simple reduction from the well-known
MAX CUT problem. Then we observe that the complexity of an instance of MRHC is
defined by two independent parameters, namely, the number of members in the pedi-
gree (i.e. the size of the pedigree) and the number of marker loci in each member, and
we can construct a polynomial time algorithm for MRHC if one of these parameter is
bounded by a constant (which is often the case in practice). This gives rises to two dy-
namic programming algorithms for loopless MRHC. The first algorithm assumes that
the number of marker loci is bounded by a small constant and performs dynamic pro-
gramming on the members of the input pedigree. The algorithm, called thelocus-based
algorithm, takes advantage of the tree structure of the input pedigree and has a running
time linear in the size of the pedigree. Recall that the general MRHC problem is NP-
hard even if the number of marker loci is 2 [9, 10]. This algorithm will be very useful for
solving MRHC in practice because most real pedigrees are loopless and involve a small
number of marker loci in each block. For example, the pedigrees studied in [5] are all
loopless and usually contain four to six marker loci. The second algorithm assumes that
the input pedigree is small and performs dynamic programming on the marker loci in
each member of the pedigree simultaneously. The algorithm, called themember-based
algorithm, works in fact for any input pedigree and has a running time linear in the
number of marker loci. This algorithm will be useful as a subroutine for solving MRHC
on small pedigrees, which could be nuclear families from a large input pedigree (i.e.
components of the pedigree consisting of parents and children) or independent nuclear
families from a (semi-)population data.

Table 1 exhibits the difference between the computational complexities of (general)
MRHC and loopless MRHC. We have implemented both algorithms and applied the
locus-based algorithm to both simulated and real datasets. Our preliminary experiments
demonstrate that the algorithm is often able to solve MRHC efficiently in practice.

The rest of the paper is organized as follows. Some necessary definitions and no-
tations used in MRHC are reviewed in Section 2. Section 3 presents the NP-hardness
proof for loopless MRHC and Section 4 describes the two dynamic programming algo-
rithms. The experimental results are summarized in Section 5.



4 Koichiro Doi, Jing Li, and Tao Jiang

Fig. 1. Example pedigrees without mating loops and with mating loops. Here, a square box rep-
resents a male node, a circle represents female node, and a solid circle represents a mating node.
The pedigree on the left has 15 members and 4 nuclear families.

2 Preliminaries

This section presents some concepts, definitions, and notations required for the MRHC
problem. First, we define pedigrees.

Definition 1. A pedigree is a connected directed acyclic graphG = {V,E}, where
V = M ∪ F ∪ N , M stands for the male nodes,F stands for the female nodes,N
stands for the mating nodes, andE = {e = (u, v) : (u ∈ M ∪ F and v ∈ N ) or
(u ∈ N andv ∈ M ∪ F )}. M ∪ F are called the individual nodes or members of the
pedigree. The in-degree of each individual node is at most 1. The in-degree of a mating
node must be 2, with one edge from a female node (called mother), and the out-degree
of a mating node must be larger than zero.

In a pedigree, the individual nodes adjacentto a mating node are called the children
of the two individual nodes adjacentfrom the mating node (i.e. the father and mother
nodes, which have edges to the mating node). For each mating node, the induced sub-
graph containing the father, mother, mating, and child nodes is called anuclear family.
A parents-offspringtrio consists of two parents and one of their children. The individ-
ual nodes that have no parents are called thefounders. A mating loopis a cycle in the
pedigree graph when the directions of edges are ignored. A loopless pedigree is also
called atree pedigree. Fig. 1 shows two example pedigrees, one without mating loops
and one with mating loops.

The genome of an organism consists of chromosomes that are double strand DNA.
Locations on a chromosome can be identified using markers, which are small segments
of DNA with some specific features. The position of a marker on a chromosome is
called amarker locusand the state of a marker locus is anallele. A set of markers and
their positions define a genetic map of chromosomes. There are many types of markers.
The two most commonly used markers are microsatellite markers and SNP markers.

In adiploid organism such as human, the status of two alleles at a particular marker
locus of a pair ofhomologouschromosomes is called a markergenotype. The genotype
information of a locus will be denoted using a set,e.g.{a, b}. If the two alleles are the



Haplotyping on Tree Pedigrees 5

same, the genotype ishomozygous. Otherwise it isheterozygous. A haplotypeconsists
of all alleles, one in each locus, that are on the same chromosome.

The Mendelian law of inheritance states that the genotype of a child must come
from the genotypes of its parents at each maker locus. In other words, the two alleles
at each locus of the child have different origins: one is from its father (which is called
thepaternalallele) and the other from its mother (which is called thematernalallele).
Usually, a child inherits a complete haplotype from each parent. However, recombina-
tion may occur, where the two haplotypes of a parent get shuffled due to crossover of
chromosomes and one of the shuffled copies is passed on to the child. Such an event is
called arecombination eventand its result is called arecombinant. Since markers are
usually very short DNA sequences, we assume that recombination only occurs between
markers.

Following [9, 10], we use PS (parental source) to indicate which allele comes from
which parent at each locus. The PS value at a heterozygous locus can be−1, 0, 1, where
−1 means that the parental source is unknown,0 means that the allele with the smaller
identification number is from the father and the allele with the larger identification
number is from the mother, and1 means the opposite. The PS value will always be
set as0 for homozygous locus. A locus isPS-resolvedif its PS value is0 or 1. For
convenience, we will use GS (grand-parental source) to indicate if an allele at a PS-
resolved locus comes from a grand parental allele or a grand-material allele. Similar to
a PS value, a GS value can also be−1, 0, or 1. An allele GS-resolved if its value is
0 or 1. A locus is GS-resolved if both of its alleles are GS-resolved. The PS and GS
information can be used to count the number of recombinants as follows. For any two
alleles that are at adjacent loci and from the same haplotype, they induce a recombinant
if their GS values are0 and1.

Definition 2. A haplotype configuration of a pedigree is an assignment of nonnegative
values to the PS of each locus and the GS of each allele for each member of the pedigree
that is consistent with the Mendelian law of inheritance.

Now, the MRHC problem [9, 10, 17, 21] can be defined precisely as follows:

Definition 3 (Minimum Recombinant Haplotype Configuration (MRHC)). Given
a pedigree and genotype information for each member of the pedigree, find a haplotype
configuration for the pedigree that requires the minimum number of the recombinants.

It is known that MRHC is NP-hard even when the number of loci is2 [9, 10]. In this
paper, we are interested in the restricted case of MRHC on tree pedigrees like the left
one in Fig. 1.

Definition 4. The loopless MRHC problem is MRHC on pedigrees without mating loops.

3 Loopless MRHC is NP-hard

In this section, we show the NP-hardness of the loopless MRHC problem, thus answer-
ing an open question in [9, 10]. The proof is via a reduction from the well-known MAX
CUT problem.



6 Koichiro Doi, Jing Li, and Tao Jiang

Fig. 2. An example reduction from MAX CUT to loopless MRHC.

Theorem 1. Loopless MRHC problem is NP-hard.

Proof. We give a polynomial time reduction from MAX CUT, which is known NP-
hard [6]. Recall that an instance of MAX CUT is a graphG = (V, E) and the objective
is to partitionV into two disjoint subsetsV1 andV2 such that the number of edges ofE
that have one endpoint inV1 and other endpoint inV2 is maximized.

Assume thatV = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}, and the value of an opti-
mal solution of MAX CUT onG is OPT . We construct a pedigree withn loci. First, we
introduce an individual nodeM0. The memberM0 hasn loci. Each locus corresponds
to a vertexvi with a heterozygous genotype{1, 2}. Observe that an assignment of PS
values to the loci (inM0) naturally divide the loci into two groups, which also biparti-
tions the corresponding vertices ofG. Therefore, the PS values of the loci inM0 encode
a solution of the MAX CUT problem. We construct a nuclear family with motherM0,
fatherFj , and childCj for each edgeej = (vj1, vj2), as shown in Fig. 2. The loci in
Fj andCj corresponding tovj1 are set to have a homozygous genotype{1, 1}, and the
loci in Fj andCj corresponding tovj2 are set to have a homozygous genotype{2, 2}.
Other loci inFj andCj are all of heterozygous genotype{1, 2}.

Consider an assignment of PS values to the loci inM0, which specifies a solution to
the MAX CUT problem onG. Recall that the assignment partitionsV into two groups.
If vj1 andvj2 are in the same group (i.e. the loci inM0 corresponding tovj1 andvj2

have the same PS value), the parents-child trio consisting ofM0, Fj , andCj requires
at least 1 recombinant, no matter how the PS values at other loci inM0 and the PS
values at the loci inFj andCj are assigned. Moreover, the parents-child trio can be
made to require exactly 1 recombinant if the PS values at the loci inFj andCj are
assigned appropriately On the other hand, ifvj1 andvj2 are in different groups, the
parents-child trio ofM0, Fj , andCj requires no recombinants, no matter how the PS
values at other loci inM0 are assigned and if the PS values at the loci inFj andCj are
assigned appropriately. Therefore, the number of the minimum recombinants required
for the above instance of loopless MRHC is equal tom − OPT . Hence, MAX CUT
reduces to loopless MRHC and loopless MRHC is NP-hard. ut



Haplotyping on Tree Pedigrees 7

Fig. 3.An example reduction from MAX CUT to restricted loopless MRHC where each member
of the pedigree has at most one mating partner.

In the above construction, the memberM0 has many mating partners. This does not
happen very often in real datasets. We can convert the above construction to one where
each member of the input pedigree has exactly one mating partner. This shows that
loopless MRHC is still NP-hard if we further require that each member of the pedigree
to have at most one mating partner.

Corollary 1. Loopless MRHC is still NP-hard even if each member of the pedigree has
at most one mating partner.

Proof. This corollary can be proved by a simple modification of the proof of Theo-
rem 1 as follows. We replace memberM0 by a nuclear family consisting fatherFR,
motherMR, and female childrenM1, . . . , Mm, whose loci are of heterozygous geno-
type{1, 2}. We construct a nuclear family with motherMj , fatherFj , and childCj for
each edgeej = (vj1, vj2). The loci inFj andCj are defined in the same way as in the
proof of Theorem 1. Fig. 3 illustrates the new complete construction.

We would like to show that the minimum number of recombinants required for the
above constructed instance of MRHC is also equal tom− OPT , and the PS values of
the loci inMR define an optimal solution of the MAX CUT problem. If the PS values
at each locus inMR, FR, andM1, . . . , Mm are the same, this would follow from the
above proof. To show that the PS values at each locus inMR, FR, andM1, . . . ,Mm are
the same, we first observe that we can always fix the PS value at the one of the loci (e.g.
the first locus) inFR to be the same as the PS value at the corresponding locus inMR,
becauseFR is a founder. Moreover, we claim that the PS values at each of the remaining
loci in MR andFR must be the same. Otherwise, there would be recombinants in each
parents-offspring trio consisting ofMR, FR, andMj no matter how the PS values in
Mj are assigned, for allj, and the total number of recombinants would be at leastm.
Similarly, we can assume, without loss of generality, that the PS value at the first locus
in Mj is the same as the PS value at the first locus inMR (because both parentsMR and
FR of Mj have the identical haplotype configurations), and claim that the PS value at



8 Koichiro Doi, Jing Li, and Tao Jiang

each of the remaining loci inMj must be the same as the PS value at the corresponding
locus inMR, in any optimal solution for the MRHC problem. Otherwise, an additional
recombinant would occur in the trioMR, FR, andMj . Hence, the PS values at each
locus inMR, FR, andM1, . . . , Mn are all identical, and the same arguments in the
proof of Theorem 1 apply. ut

4 Two dynamic programming algorithms for loopless MRHC

Observe that the complexity of a loopless MRHC instance is defined by two indepen-
dent parameters, namely, the number of loci and the number of members in the input
pedigree. Although the problem of loopless MRHC is NP-hard, it is possible to solve it
in polynomial time if we assume that one of the parameters is bounded from above by
a constant. Here, we present two such dynamic programming algorithms. One assumes
that the number of loci is bounded and is called thelocus-basedalgorithm and the
other assumes that the number of members is bounded and is called themember-based
algorithm. As mentioned in Section 1, both algorithms are useful in practice.

4.1 The locus-based dynamic programming algorithm

The algorithm starts by converting the input tree pedigree into a rooted tree (at an ar-
bitrary member). An example conversion is shown in Fig. 4. Then we traverse the tree
in postorder and solve MRHC for the subtree rooted at each member when the member
is required to have a certain haplotype configuration (i.e. PS assignment). A key step
in the computation is the processing of a nuclear family. First, observe that if the PS
values of all members in a nuclear family are known, we can easily compute the GS
values of the children in the family to minimize the number of recombinants required
in the nuclear family. Our second observation is that, once the PS values of the parents
are fixed, the PS values for each child can be assigned independently. In other words,
we can think of a nuclear family as a collection of (independent) parents-offspring trios
and process the trios accordingly.

A more detailed description of the algorithm is given below. Letnumtrio(p, q, c)
denote the minimum number of recombinants required for a parents-offspring trio con-
sisting of a father, a mother, and a child with PS assignmentsp, q, andc, respectively.

Step 1: Root the pedigree at an arbitrary memberR.
Step 2: Traverse the tree in postorder. For each individual node (i.e. a member)r and

each PS assignments atr, compute the minimum number of recombinants required
in the subtree rooted atr. If r has more than2 children (i.e. mating nodes), we do
the above computation for each child mating node separately. Each child mating
node ofr defines a unique nuclear family, which may containr as a parent or a
child. Suppose that the nuclear family consists of fatherF , motherM , and chil-
drenC1, . . . , Cl. We construct an arraynum[node][ps], wherenode denotes an
individual node andps denotes a PS assignment at the node.

If r is M (or F ), then for each PS assignments at r, we do the following.



Haplotyping on Tree Pedigrees 9

Fig. 4. A rooted tree for the tree pedigree in Fig. 1, where node5 is selected as the root.

1. For each PS assignmentp (or q) atF (or M , respectively), compute

num[r][s] = min
p

∑

1≤i≤l

min
c

(num[F ][p] + num[Ci][c] + numtrio(p, s, c))

(or = min
q

∑

1≤i≤l

min
c

(num[M ][m] + num[Ci][c] + numtrio(s, q, c)))

2. Keep pointers to the corresponding PS assignments atF (or M ) andCi (1 ≤
i ≤ l) in an optimal solution.

On the other hand, ifr is Cj for somej, then for each PS assignments at r, we do
the following.
1. For each PS assignmentsp andq atF andM , respectively, compute

num[r][s] = min
p,q

(numtrio(p, q, s) +
∑

1≤i≤l,i 6=j

min
c

(num[F ][p]

+num[M ][q] + num[Ci][c] + numtrio(p, q, c)))

2. Keep pointers to the corresponding PS assignments atF , M , andCi (1 ≤ i ≤
l) in an optimal solution.

Step 3: At root R, we compute the minimum number of recombinants required for the
whole tree for any PS assignment atR, and the corresponding PS assignments at
all members by backtracing the pointers.

The time and space complexities of this algorithm are given below.

Theorem 2. Letn denote the number of members andm0 the maximum number of het-
erozygous loci in any member. The above locus-based dynamic programming algorithm
runs inO(nm023m0) time andO(n2m0) space.

Proof. The rooted tree can be constructed inO(n) time. InStep 2, we have to consider
all combinations of PS assignments at the members of a parents-offspring trio, which is
at most23m0 . The computation ofnumtrio is O(m0) for each trio and combination of
PS assignments. Therefore, we can process each trio inO(m023m0) time. The number



10 Koichiro Doi, Jing Li, and Tao Jiang

of parents-offspring trios is at mostn. The running time ofStep 3is O(n). Therefore,
the total time complexity of this algorithm isO(nm023m0).

For this computation, we need maintain the arraynum and pointers for backtracing.
The size ofnum is clearly O(n2m0), which is also the number of pointer needed.
Therefore, the total space complexity of this algorithm isO(n2m0). ut

This result shows an interesting contrast to the general MRHC problem, which is
still NP-hard whenm = 2. The algorithm would be reasonably fast on a PC form0 ≤ 8
(which meansm ≤ 15 in real datasets because many loci are often homozygous). In
practice, the algorithm can be sped up by preprocessing the pedigree and fixing as
many PS values as possible using the Mendelian law of inheritance. This could reduce
the number of “free” heterozygous loci significantly. Moreover, if each nuclear family
in the input pedigree has only one child, the algorithm can be made much faster.

Theorem 3. If each nuclear family in the input pedigree has only one child, we can
solve loopless MRHC inO(nm022m0) time andO(n2m0) space.

Proof. We need only modifyStep 2in the above algorithm. For parents-offspring trio,
instead of considering all combinations of PS assignments at both the father and mother
for each PS assignment at the child, we can consider each parent independently and op-
timize the number of recombinants required from the parent to the child. More precisely,
if r is M (or F ), we compute the minimum number of recombinants fromF (or M ) to
C1 for all PS assignments atF (or M ) andC1 and memorize the minimum number of
recombinants for each PS assignment atC1. Next, we compute the minimum number
of recombinants in the parents-offspring trio for all PS assignments atM (or F ) and
C1. Similarly, if r is C1, we compute the minimum number of recombinants fromM
to C1 for all PS assignments atM andC1 and the minimum number of recombinants
from F andC1 for all PS assignments atF andC1, separately. Then, we add up the
corresponding numbers for each PS assignment atC1. The running time of the modi-
fied algorithm isO(m022m0) for each parents-offspring trio andO(nm022m0) for the
whole pedigree. ut

4.2 The member-based dynamic programming algorithm

Many real pedigrees in practice are often of small or moderate sizes. For example, the
dataset studied in [2] consists of a collection of parents-offspring trios and the dataset in
[5] consists of pedigrees of sizes between7 and8. Here, we present an algorithm that is
efficient when the size of the input pedigree is bounded from above by a small constant.
The algorithm considers the PS and GS values at each locus across all members of the
pedigree, and performs dynamic programming along the loci. A detailed description
of the algorithm is given below. The algorithm in fact works for MRHC on general
pedigrees.

We construct an arraynum[i][t] that denotes the minimum number of recombinants
required in the pedigree from locus1 to locusi, if the PS/GS assignment at locusi
in all members ist. Let num1(s, t) denote the number of recombinants between any
two adjacent loci with PS/GS assignments andt in the whole pedigree. The algorithm
works as follows. Fori = 1 to m− 1,



Haplotyping on Tree Pedigrees 11

1. Compute the minimum number of recombinants required in the pedigree from locus
1 to i + 1 for every possible PS/GS assignmentt at locusi + 1, by considering all
possible PS/GS assignments at locusi, using the recurrence

num[i + 1][t] = min
s

(num[i][s] + num1(s, t))

2. Keep track of the PS/GS assignments achieving the minimum in the above.

Finally, we find the minimum number of the recombinants from locus1 to m and
the corresponding PS/GS assignments at all loci by a standard backtracing procedure.

Fig. 5. An example pedigree with genotype information. The figure shows that the PS/GS as-
signments at locus3 can be computed by considering all possible PS/GS assignments at locus2
(independently from the PS/GS assignments at locus1).

Theorem 4. Letn denote the number of members in the pedigree andm the number of
loci. The time complexity of the above member-based dynamic programming algorithm
is O(nm24n). Its space complexity isO(m22n).

Proof. The number of all possible PS/GS assignments at a single locus is trivially
bounded23n. However, this number includes many impossible assignments,i.e. as-
signments inconsistent with the Mendelian law of inheritance. It is easy to prove that
the number of all possible PS/GS assignments at a locus is maximized if all genotypes
at this locus are homozygous, such as locus2 in Fig. 5. Therefore, the number of all
possible (feasible) PS/GS assignments at a locus isO(22n), and the running time of the
above algorithm isO(mn24n). The space for keeping the pointers used in backtracing
is clearlyO(m22n). ut

In practice, the member-based algorithm runs reasonably fast whenn ≤ 6.

5 Experimental results

We have implemented the above two algorithms in C++. To evaluate the performance
of our program, we compare the locus-based algorithm with PedPhase [10] and MRH
v0.1 [17] on simulated genotype data. Two different tree pedigree structures (Fig. 1 and



12 Koichiro Doi, Jing Li, and Tao Jiang

Table 2. Running times of the locus-based algorithm, MRH and PedPhase on biallelic markers.
The parameters in the first column are the number of members, number of marker loci, and
number of recombinants.

Parameterslocus-based algorithmMRH PedPhase
(15,10,0) 6.4s 16s 1.3s
(15,10,4) 3.4s 3m13s 1.7s
(29,10,0) 13.6s 16m49s 1.8s
(29,10,4) 5.1s 14m2s 1.4s
(15,15,0) 35m15s 14m29s 1.3s
(15,15,4) 8m7s 10m9s 1.8s
(29,15,0) 15m10s 1h11m 1.9s
(29,15,4) 23m12s 1h15m 2.1s

Fig. 8 in [10]) were used in the simulation, one with 15 members and the other with
29 members. For each pedigree, genotypes with10 and15 biallelic marker loci were
considered. The two alleles at each locus in a founder (i.e. a member that has no par-
ents) were independently sampled with a fixed frequency of0.5 in order to maximize
the chance of heterozygosity (to test the worst-case performance of the locus-based al-
gorithm), resulting in an average of5 and7.5 heterozygous loci, respectively, in each
member of the pedigree. The number of recombinants used in generating each pedigree
ranged from0 to 4. For each combination of the above parameters,100 sets of ran-
dom genotype data were generated and the average performance of the programs was
recorded, as shown in Table 2. The experiments were done on a Pentium IV PC with
1.7GHz CPU and 512MB RAM. In terms of the quality of solutions, the locus-based
algorithm always output a haplotyping solution with the minimum number of recom-
binants, while PedPhase and MRH do not guarantee optimal solutions. When the data
was generated with zero or few recombinants, the optimal solution was often unique
and both PedPhase and MRH could recover it. However, the performance of PedPhase
and MRH decreases when the number of recombinants increases. In terms of efficiency,
PedPhase was the fastest among the three programs in all cases. But, surprisingly, the
locus-based algorithm outperformed MRH in many cases.

We further compared the performance of the locus-based algorithm, PedPhase, MRH,
and the EM algorithm used in [5] on a real dataset consisting of 12 multi-generation tree
pedigrees, each with 7-8 members, from [5]. The comparison was based on the infer-
ence ofcommonhaplotypes (i.e. haplotypes with frequencies> 5%). We focused on a
randomly selected autosome (i.e.chromosome 3). There are 10 blocks (i.e. regions with
few recombinants) in the chromosome 3 data, of which one block consists of 16 marker
loci and all the others have only 4-6 marker loci each. The test results of the locus-based
algorithm, MRH and the EM algorithm are summarized in Table 3. (We obtained the
results of the EM algorithm directly form the authors [5]. The results of PedPhase are
very similar to those of MRH’s [10], and are thus not shown here due to space limit.)
The results show that both rule-based haplotyping methods could discover almost all
the common haplotypes that were inferred by the EM algorithm [5]. The haplotype fre-
quencies estimated from the haplotype configuration results by simple counting are also
similar to the estimations by the EM algorithm. Most of the blocks (> 85%) were found



Haplotyping on Tree Pedigrees 13

Table 3.Common haplotypes and their frequencies obtained by the locus-based algorithm, MRH
and the EM method. In the haplotypes, the alleles are encoded as 1=A, 2=C, 3=G, and 4=T.

Block EM locus-based MRH
Common haplotypesFrequenciesCommon haplotypesFrequenciesCommon haplotypesFrequencies

16a-1 4 2 2 2 2 0.4232 4 2 2 2 2 0.3817 4 2 2 2 2 0.3779
3 4 3 4 4 0.2187 3 4 3 4 4 0.1720 3 4 3 4 4 0.1744
4 2 2 2 4 0.2018 4 2 2 2 4 0.1989 4 2 2 2 4 0.1802
3 4 2 2 4 0.1432 3 4 2 2 4 0.1667 3 4 2 2 4 0.1802

16b-1 3 2 4 1 1 2 0.8014 3 2 4 1 1 2 0.7634 3 2 4 1 1 2 0.7849
1 3 2 3 3 4 0.0833 1 3 2 3 3 4 0.0753 1 3 2 3 3 4 0.0753

16b-2 4 1 2 2 0.5410 4 1 1 2 0.5000 4 1 1 2 0.4826
2 3 3 4 0.2812 2 3 3 4 0.2634 2 3 3 4 0.2616
2 3 3 2 0.1562 2 3 3 2 0.1398 2 3 3 2 0.1512

17a-1 3 1 3 4 4 4 0.3403 3 1 3 4 4 4 0.3172 3 1 3 4 4 4 0.3226
1 3 3 2 4 2 0.3021 1 3 3 2 4 2 0.2527 1 3 3 2 4 2 0.2473
3 3 2 4 2 4 0.1354 3 3 2 4 2 4 0.0968 3 3 2 4 2 4 0.0914
3 3 3 4 4 4 0.1021 3 3 3 4 4 4 0.1129 3 3 3 4 4 4 0.1183
3 3 2 4 4 4 0.0681 3 3 2 4 4 4 0.0806 3 3 2 4 4 4 0.0806
1 3 3 2 4 4 0.0521

17a-2 2 3 2 4 2 0.3542 2 3 2 4 2 0.3065 2 3 2 4 2 0.2903
3 3 4 2 4 0.3333 3 3 4 2 4 0.3118 3 3 4 2 4 0.3118
3 3 4 4 2 0.1458 3 3 4 4 2 0.1505 3 3 4 4 2 0.1237
3 4 4 4 4 0.1250 3 4 4 4 4 0.1452 3 4 4 4 4 0.1452

17a-3 4 4 3 1 0.4129 4 4 3 1 0.4408 4 4 3 1 0.4167
3 1 1 2 0.2813 3 1 1 2 0.2312 3 1 1 2 0.2051
4 1 3 1 0.2363 4 1 3 1 0.1935 4 1 3 1 0.2115
4 1 3 2 0.0696 4 1 3 2 0.0753 4 1 3 2 0.0705

17a-4 3 4 4 1 2 4 0.3854 3 4 4 1 2 4 0.3656 3 4 4 1 2 4 0.4429
2 3 2 4 3 2 0.3333 2 3 2 4 3 2 0.3065 2 3 2 4 3 2 0.2357
3 4 2 4 2 4 0.2500 3 4 2 4 2 4 0.1935 3 4 2 4 2 4 0.1857

18a-1 1444231214144132 0.2697 1444231214144132 0.2688 1444231214144132 0.1706
1444111214144132 0.2396 1444111214144132 0.2097 1444111214144132 0.2357
1444131214144132 0.1887 1444131214144132 0.1989 1444131214144132 0.2176
4222133313412211 0.1250
1444231234144132 0.0833 1444231234144132 0.0699 1444231234144132 0.0764

18a-2 3 1 2 4 4 2 0.4967 3 1 2 4 4 2 0.4839 3 1 2 4 4 2 0.4765
1 3 2 4 3 4 0.2604 1 3 2 4 3 4 0.1989 1 3 2 4 3 4 0.1765
3 1 2 2 4 2 0.1271 3 1 2 2 4 2 0.0806 3 1 2 2 4 2 0.0765
1 3 4 4 4 4 0.0938 1 3 4 4 4 4 0.0860 1 3 4 4 4 4 0.0941

1 3 2 4 3 2 0.0538 1 3 2 4 3 2 0.0588
18a-3 2 2 1 1 0.4186 2 2 1 1 0.4140 2 2 1 1 0.4214

4 3 3 3 0.2188 4 3 3 3 0.1935 4 3 3 3 0.1714
2 3 1 1 0.2064 2 3 1 1 0.2097 2 3 1 1 0.1928
4 3 1 3 0.1250 4 3 1 3 0.1613 4 3 1 3 0.1857

by the locus-based algorithm and MRH to have involved 0 recombinants. The speeds of
all three programs on this real dataset were very fast (less 1 minute), even though one
of the blocks has 16 marker loci.

6 Concluding remarks

Missing data usually occur in real data set due to many reasons. Unfortunately, Aceto
et al. [1] recently showed that checking consistency (thus imputing missing data) for
pedigree is in general NP-hard. The two algorithms above take data with no missing
values as input. In our experiment on the real data set, we had to impute the missing
values first before feeding the data to the locus-based algorithm. Our current imputation
algorithm simply uses the Mendelian law and allele frequencies. It would be desirable
to combine missing data imputation and haplotype inference in a unified framework.



14 Koichiro Doi, Jing Li, and Tao Jiang

Acknowledgements

KD’s work was partially supported by a Grant-in-Aid for Scientific Research on Priority
Areas (C) for “Genome Information Science” from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. JL is supported by NSF grant CCR-9988353. TJ
is supported by NSF Grants CCR-9988353, ITR-0085910, DBI-0133265, and National
Key Project for Basic Research (973).

References

1. L. Aceto, J. A. Hansen, A. Inǵolfsdóttir, J. Johnsen, and J. Knudsen. The complexity of
checking consistency of pedigree information and related problems.Manuscript, 2003.

2. M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Lander. High-resolution haplotype struc-
ture in the human genome.Nat Genet, 29(2):229–232, 2001.

3. J. A. Douglas, M. Boehnke, E. Gillanders, J. Trent, and S. Gruber. Experimentally-derived
haplotypes substantially increase the efficiency of linkage disequilibrium studies.Nat Genet,
28(4):361–364, 2001.

4. L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype fre-
quencies in a diploid population.Mol Biol Evol, 12:921–927, 1995.

5. S. B. Gabriel,et al. The structure of haplotype blocks in the human genome.Science,
296(5576):2225–29, 2002.

6. M. R. Gary, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems.Theor. Comput. Sci., 1, 237–267, 1976.

7. D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and efficient solu-
tions.Proc. RECOMB, 166–175, 2002.

8. L. Helmuth. Genome research: Map of the human genome 3.0Science, 293(5530):583–585,
2001.

9. J. Li and T. Jiang, Efficient rule-based haplotyping algorithms for pedigree data.Proc. RE-
COMB’03, pages 197–206, 2003.

10. J. Li and T. Jiang, Efficient inference of haplotypes from genotypes on a pedigree.J. Bioinfo.
and Comp. Biol.1(1):41-69, 2003.

11. J. C. Lam, K. Roeder, and B. Devlin. Haplotype fine mapping by evolutionary trees.Am J
Hum Genet, 66(2):659–673, 2000.

12. S. Lin and T. P. Speed. An algorithm for haplotype analysis. J Comput Biol, 4(4):535–546,
1997.

13. R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies for the single nu-
cleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics, 3(1):23–
31, 2002.

14. J. S. Liu, C. Sabatti, J. Teng, B. J. Keats, and N. Risch. Bayesian analysis of haplotypes for
linkage disequilibrium mapping.Genome Res, 11(10):1716–24, 2001.

15. T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian haplotyping interface for multiple linked
single-nucleotide polymorphisms.Am J Hum Genet, 70(1):157–169, 2002.

16. J. R. O’Connell. Zero-recombinant haplotyping: applications to fine mapping using snps.
Genet Epidemiol, 19 Suppl 1:S64–70, 2000.

17. D. Qian and L. Beckman. Minimum-recombinant haplotyping in pedigrees.Am J Hum
Genet, 70(6):1434–1445, 2002.

18. H. Seltman, K. Roeder, and B. Delvin. Transmission/disequilibrium test meets measured
haplotype analysis: family-based association analysis guided by evolution of haplotypes.Am
J Hum Genet, 68(5):1250–1263, 2001.



Haplotyping on Tree Pedigrees 15

19. S. K. Service, D. W. Lang, N. B. Freimer, and L. A. Sandkuijl. Linkage-disequilibrium map-
ping of disease genes by reconstruction of ancestral haplotypes in founder populations.Am
J Hum Genet, 64(6):1728-1738, 1999.

20. M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype recon-
struction from population data.Am J Hum Genet, 68(4):978-989, 2001.

21. P. Tapadar, S. Ghosh, and P. P. Majumder. Haplotyping in pedigrees via a genetic algorithm.
Hum Hered, 50(1):43–56, 2000.

22. A. Thomas, A. Gutin, V. Abkevich, and A. Bansal. Multilocus linkage analysis by blocked
gibbs sampling.Stat Comput, 259–269, 2000.

23. H. T. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, M. Herr, and J.
Kere. Data mining applied to linkage disequilibrium mapping.Am J Hum genet, 67(1):133–
145, 2000.

24. E. M. Wijsman. A deductive method of haplotype analysis in pedigrees.Am J Hum genet,
41(3):356–373, 1987.

25. S. Zhang, K. Zhang, J. Li and H. Zhao. On a family-based haplotype pattern mining method
for linkage disequilibrium mapping.Pac Symp Biocomput, 100–111, 2002.


