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Abstract. We study the problem of reconstructing haplotype configurations from
genotypes on pedigree data under the Mendelian law of inheritance and the min-
imum recombination principle, which is very important for the construction of
haplotype maps and genetic linkage/association analysis. Li and Jiang [9, 10] re-
cently proved that th#linimum Recombinant Haplotype ConfiguratidtRHC)
problem is NP-hard, even if the number of marker loci is 2. However, the proof
uses pedigrees that contain complex mating loop structures that are not common
in practice. The complexity of MRHC in the loopless case was left as an open
problem. In this paper, we show that loopless MRHC is NP-hard. We also present
two dynamic programming algorithms that can be useful for solving loopless
MRHC (and general MRHC) in practice. The first algorithm performs dynamic
programming on the members of the input pedigree and is efficient when the
number of marker loci is bounded by a small constant. It takes advantage of the
tree structure in a loopless pedigree. The second algorithm performs dynamic
programming on the marker loci and is efficient when the number of the mem-
bers of the input pedigree is small. This algorithm also works for the general
MRHC problem. We have implemented both algorithms and applied the first one
to both simulated and real data. Our preliminary experiments demonstrate that
the algorithm is often able to solve MRHC efficiently in practice.

Keywords: haplotype reconstruction, genotype, pedigree, NP-harness, dynamic pro-
gramming algorithm, mating loop.

1 Introduction

In order to understand and study the genetic basis of complex diseases, the modeling
of human variation is very importaringle nucleotide polymorphisn@SNPs), which

are mutations at single nucleotide positions, are typical variations central to ongoing
development of high-resolution maps of genetic variation and haplotypes for human
[8]. While a dense SNP haplotype map is being built, various new methods [11, 14, 19,
23] have been developed to use haplotype information in linkage disequilibrium map-
ping. Some existing statistical methods for gene mapping have also shown increased
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power by incorporating SNP haplotype information [18, 25]. But, the use of haplotype
maps has been limited due to the fact that the human genome is diploid, and in practice,
genotype data instead of haplotype data are collected directly, especially in large-scale
sequencing projects, because of cost considerations. Although recently developed ex-
perimental techniques [3] give the hope of deriving haplotype information directly with
affordable costs, efficient and accurate computational methods for haplotype recon-
struction from genotype data are still highly demanded.

The existing computational methods for haplotyping can be divided into two cate-
gories: statistical methods and rule-basegl Ccombinatorid) methods. Both methods
can be applied to population data and pedigree data. Statistical methods [4, 12, 15, 20,
22] often estimate the haplotype frequencies in addition to the haplotype configuration
for each individual, but their algorithms are usually very time consuming and not suit-
able for large data sets. On the other hand, rule-based methods are usually very fast
although they normally do not provide any numerical assessment of the reliability of
their results. Nevertheless, by utilizing some reasonable biological assumptions, such
as the minimum recombination principle, rule-based methods have proven to be pow-
erful and practical[7, 13, 16, 17, 21, 24].

The minimum recombination principle states that the genetic recombinants are rare
and thus haplotypes with fewer recombinants should be preferred in a haplotype re-
construction [7, 16, 17]. The principle is well supported by real data from the practice.
For example, recently published experimental results [2, 5, 8] showed that the human
genomic DNA can be partitioned into lofgockssuch that recombinants within each
block are rare or even non-existent. Thus, within a single block, the true haplotype
configuration is most likely one of the configurations with the minimum number of
recombinants.

1.1 The minimum recombinant haplotype configuration problem and previous
work

Qian and Beckman [17] formulated the problem of how to reconstruct haplotype con-
figurations from genotype data on a pedigree under the Mendelian law of inheritance
such that the resulting haplotype configurations require the minimum number of re-
combinantsi(e. recombination events). The problem is calidthimum Recombinant
Haplotype ConfiguratiofMRHC). They proposed a rule-based heuristic algorithm for
MRHC that seems to work well on small pedigrees but is very slow for medium-sized
pedigrees, especially in the case of biallelic genotype data.

Recently, Li and Jiang [9, 10] proved that MRHC is NP-hard, even if the number
of marker loci is 2. They also devised an efficient (iterative) heuristic algorithm for
MRHC, which is more efficient than the algorithm in [17] and can handle pedigrees
of any practical sizes. However, their NP-hardness proof uses pedigrees with complex
mating loop structures that may not ever rise in practice. The complexity of MRHC on
tree pedigrees.€. loopless pedigrees, or pedigrees without mating loops) was left as
an open question in [9, 10].
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Table 1. Computational complexities of MRHC and loopless MRHC on pedigreesmwittem-
bers,m marker loci, and at most,, heterozygous loci in each member.

m=2 [ m =constant|n =constant no restriction
MRHC  [NP-hard [9, 10JNP-hard [9, 10] O (nm2*™) [NP-hard [9, 10]
loopless MRHC  O(n) O(nmo23™) | O(nm2*™)|  NP-hard

1.2 Our results

This paper is concerned with the MRHC problem on tree pedigrees (dalbptess
MRHQC). First, we show that loopless MRHC is NP-hard, answering an open question
in [9, 10]. Therefore, loopless MRHC does not have a polynomial time (exact) algo-
rithm unless P = NP. The proof is based on a simple reduction from the well-known
MAX CUT problem. Then we observe that the complexity of an instance of MRHC is
defined by two independent parameters, namely, the number of members in the pedi-
gree {.e.the size of the pedigree) and the number of marker loci in each member, and
we can construct a polynomial time algorithm for MRHC if one of these parameter is
bounded by a constant (which is often the case in practice). This gives rises to two dy-
namic programming algorithms for loopless MRHC. The first algorithm assumes that
the number of marker loci is bounded by a small constant and performs dynamic pro-
gramming on the members of the input pedigree. The algorithm, callddahs-based
algorithm, takes advantage of the tree structure of the input pedigree and has a running
time linear in the size of the pedigree. Recall that the general MRHC problem is NP-
hard even if the number of marker lociis 2 [9, 10]. This algorithm will be very useful for
solving MRHC in practice because most real pedigrees are loopless and involve a small
number of marker loci in each block. For example, the pedigrees studied in [5] are all
loopless and usually contain four to six marker loci. The second algorithm assumes that
the input pedigree is small and performs dynamic programming on the marker loci in
each member of the pedigree simultaneously. The algorithm, callede¢h#ber-based
algorithm, works in fact for any input pedigree and has a running time linear in the
number of marker loci. This algorithm will be useful as a subroutine for solving MRHC
on small pedigrees, which could be nuclear families from a large input pedigeee (
components of the pedigree consisting of parents and children) or independent nuclear
families from a (semi-)population data.

Table 1 exhibits the difference between the computational complexities of (general)
MRHC and loopless MRHC. We have implemented both algorithms and applied the
locus-based algorithm to both simulated and real datasets. Our preliminary experiments
demonstrate that the algorithm is often able to solve MRHC efficiently in practice.

The rest of the paper is organized as follows. Some necessary definitions and no-
tations used in MRHC are reviewed in Section 2. Section 3 presents the NP-hardness
proof for loopless MRHC and Section 4 describes the two dynamic programming algo-
rithms. The experimental results are summarized in Section 5.
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Fig. 1. Example pedigrees without mating loops and with mating loops. Here, a square box rep-
resents a male node, a circle represents female node, and a solid circle represents a mating node.
The pedigree on the left has 15 members and 4 nuclear families.

loopless | oop

2 Preliminaries

This section presents some concepts, definitions, and notations required for the MRHC
problem. First, we define pedigrees.

Definition 1. A pedigree is a connected directed acyclic gragh= {V, E}, where

V = MU F UN, M stands for the male nodes; stands for the female nodey,

stands for the mating nodes, adtd = {¢ = (u,v) : (v € M U F andv € N) or

(ve Nandv € MU F)}. M U F are called the individual nodes or members of the
pedigree. The in-degree of each individual node is at most 1. The in-degree of a mating
node must be 2, with one edge from a female node (called mother), and the out-degree
of a mating node must be larger than zero.

In a pedigree, the individual nodes adjacters mating node are called the children
of the two individual nodes adjacefrtom the mating nodei . the father and mother
nodes, which have edges to the mating node). For each mating node, the induced sub-
graph containing the father, mother, mating, and child nodes is caltedlaar family
A parents-offsprindrio consists of two parents and one of their children. The individ-
ual nodes that have no parents are calledd@ders A mating loopis a cycle in the
pedigree graph when the directions of edges are ignored. A loopless pedigree is also
called atree pedigreeFig. 1 shows two example pedigrees, one without mating loops
and one with mating loops.

The genome of an organism consists of chromosomes that are double strand DNA.
Locations on a chromosome can be identified using markers, which are small segments
of DNA with some specific features. The position of a marker on a chromosome is
called amarker locusand the state of a marker locus isaltele. A set of markers and
their positions define a genetic map of chromosomes. There are many types of markers.
The two most commonly used markers are microsatellite markers and SNP markers.

In adiploid organism such as human, the status of two alleles at a particular marker
locus of a pair ohomologoushromosomes is called a marlggnotypeThe genotype
information of a locus will be denoted using a s4.{a, b}. If the two alleles are the
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same, the genotype i®mozygousOtherwise it isheterozygousA haplotypeconsists
of all alleles, one in each locus, that are on the same chromosome.

The Mendelian law of inheritance states that the genotype of a child must come
from the genotypes of its parents at each maker locus. In other words, the two alleles
at each locus of the child have different origins: one is from its father (which is called
the paternalallele) and the other from its mother (which is called thaternalallele).
Usually, a child inherits a complete haplotype from each parent. However, recombina-
tion may occur, where the two haplotypes of a parent get shuffled due to crossover of
chromosomes and one of the shuffled copies is passed on to the child. Such an event is
called arecombination everand its result is called eecombinant Since markers are
usually very short DNA sequences, we assume that recombination only occurs between
markers.

Following [9, 10], we use P3frental sourckto indicate which allele comes from
which parent at each locus. The PS value at a heterozygous locus €dn(hé, where
—1 means that the parental source is unknadvmeans that the allele with the smaller
identification number is from the father and the allele with the larger identification
number is from the mother, andmeans the opposite. The PS value will always be
set as0 for homozygous locus. A locus BS-resolvedf its PS value is0 or 1. For
convenience, we will use GSjand-parental sourceto indicate if an allele at a PS-
resolved locus comes from a grand parental allele or a grand-material allele. Similar to
a PS value, a GS value can also-bg, 0, or 1. An allele GS-resolved if its value is
0 or 1. A locus is GS-resolved if both of its alleles are GS-resolved. The PS and GS
information can be used to count the number of recombinants as follows. For any two
alleles that are at adjacent loci and from the same haplotype, they induce a recombinant
if their GS values aré and1.

Definition 2. A haplotype configuration of a pedigree is an assignment of honnegative
values to the PS of each locus and the GS of each allele for each member of the pedigree
that is consistent with the Mendelian law of inheritance.

Now, the MRHC problem [9, 10, 17, 21] can be defined precisely as follows:

Definition 3 (Minimum Recombinant Haplotype Configuration (MRHC)). Given
a pedigree and genotype information for each member of the pedigree, find a haplotype
configuration for the pedigree that requires the minimum number of the recombinants.

Itis known that MRHC is NP-hard even when the number of 10€i[[@, 10]. In this
paper, we are interested in the restricted case of MRHC on tree pedigrees like the left
onein Fig. 1.

Definition 4. The loopless MRHC problem is MRHC on pedigrees without mating loops.

3 Loopless MRHC is NP-hard

In this section, we show the NP-hardness of the loopless MRHC problem, thus answer-
ing an open question in [9, 10]. The proofis via a reduction from the well-known MAX
CUT problem.
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Fig. 2. An example reduction from MAX CUT to loopless MRHC.

Theorem 1. Loopless MRHC problem is NP-hard.

Proof. We give a polynomial time reduction from MAX CUT, which is known NP-
hard [6]. Recall that an instance of MAX CUT is a gra@h= (V, E') and the objective
is to partitionV” into two disjoint subset®; andV; such that the number of edgesiof
that have one endpoint i, and other endpoint i, is maximized.

Assume thal/ = {vy,vq,...,0,}, E = {e1, ea,..., e}, and the value of an opti-
mal solution of MAX CUT onG is O PT'. We construct a pedigree withloci. First, we
introduce an individual nodé&/,. The membelt/, hasn loci. Each locus corresponds
to a vertexv; with a heterozygous genotyde, 2}. Observe that an assignment of PS
values to the loci (inV/y) naturally divide the loci into two groups, which also biparti-
tions the corresponding vertices@f Therefore, the PS values of the locii, encode
a solution of the MAX CUT problem. We construct a nuclear family with mothg,
father F;, and childC; for each edge; = (v;1,v;2), as shown in Fig. 2. The loci in
F; andC; corresponding te;; are set to have a homozygous genotypgl }, and the
loci in F; andC; corresponding t@;, are set to have a homozygous genotype2}.
Other loci inF; andC; are all of heterozygous genotype, 2}.

Consider an assignment of PS values to the lodifij which specifies a solution to
the MAX CUT problem onZ. Recall that the assignment partitiovisnto two groups.

If v;; andv;, are in the same group.€. the loci in M, corresponding t@;; andv;
have the same PS value), the parents-child trio consistilgd©fF};, andC; requires

at least 1 recombinant, no matter how the PS values at other lddyiand the PS
values at the loci inF; andC; are assigned. Moreover, the parents-child trio can be
made to require exactly 1 recombinant if the PS values at the loEj iand C; are
assigned appropriately On the other handy;if andv;, are in different groups, the
parents-child trio ofM,, F;, andC; requires no recombinants, no matter how the PS
values at other loci i, are assigned and if the PS values at the lodijmndC; are
assigned appropriately. Therefore, the number of the minimum recombinants required
for the above instance of loopless MRHC is equahto- O PT. Hence, MAX CUT
reduces to loopless MRHC and loopless MRHC is NP-hard. d
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Fig. 3. An example reduction from MAX CUT to restricted loopless MRHC where each member
of the pedigree has at most one mating partner.

NN:I\:

In the above construction, the membdy has many mating partners. This does not
happen very often in real datasets. We can convert the above construction to one where
each member of the input pedigree has exactly one mating partner. This shows that
loopless MRHC is still NP-hard if we further require that each member of the pedigree
to have at most one mating partner.

Corollary 1. Loopless MRHC is still NP-hard even if each member of the pedigree has
at most one mating partner.

Proof. This corollary can be proved by a simple modification of the proof of Theo-
rem 1 as follows. We replace memhef, by a nuclear family consisting fathéfy,
motherMpg, and female childred, ..., M,,, whose loci are of heterozygous geno-
type{1,2}. We construct a nuclear family with moth&f;, father#;, and childC; for
each edge; = (v;1,v;2). The loci inF; andC; are defined in the same way as in the
proof of Theorem 1. Fig. 3 illustrates the new complete construction.

We would like to show that the minimum number of recombinants required for the
above constructed instance of MRHC is also equahkte OPT, and the PS values of
the loci in My define an optimal solution of the MAX CUT problem. If the PS values
at each locus ilM g, Fr, andM, ..., M,, are the same, this would follow from the
above proof. To show that the PS values at each loct$gn Fr, andM,, ..., M,, are
the same, we first observe that we can always fix the PS value at the one of tleegoci (
the first locus) inF's to be the same as the PS value at the corresponding loddgjn
becausd' is a founder. Moreover, we claim that the PS values at each of the remaining
lociin M andF'r must be the same. Otherwise, there would be recombinants in each
parents-offspring trio consisting @i/, 'z, and M; no matter how the PS values in
M; are assigned, for ajl, and the total number of recombinants would be at Ieast
Similarly, we can assume, without loss of generality, that the PS value at the first locus
in M; is the same as the PS value at the first locut/in (because both parenigr and
Fr of M; have the identical haplotype configurations), and claim that the PS value at
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each of the remaining loci in/; must be the same as the PS value at the corresponding
locus inMg, in any optimal solution for the MRHC problem. Otherwise, an additional
recombinant would occur in the trid/r, Fr, andM;. Hence, the PS values at each
locus in Mg, Fr, and My, ..., M, are all identical, and the same arguments in the
proof of Theorem 1 apply. a

4 Two dynamic programming algorithms for loopless MRHC

Observe that the complexity of a loopless MRHC instance is defined by two indepen-
dent parameters, namely, the number of loci and the number of members in the input
pedigree. Although the problem of loopless MRHC is NP-hard, it is possible to solve it

in polynomial time if we assume that one of the parameters is bounded from above by
a constant. Here, we present two such dynamic programming algorithms. One assumes
that the number of loci is bounded and is called kheus-basedalgorithm and the

other assumes that the number of members is bounded and is caltedrfitger-based
algorithm. As mentioned in Section 1, both algorithms are useful in practice.

4.1 The locus-based dynamic programming algorithm

The algorithm starts by converting the input tree pedigree into a rooted tree (at an ar-
bitrary member). An example conversion is shown in Fig. 4. Then we traverse the tree
in postorder and solve MRHC for the subtree rooted at each member when the member
is required to have a certain haplotype configuraticen PS assignment). A key step
in the computation is the processing of a nuclear family. First, observe that if the PS
values of all members in a nuclear family are known, we can easily compute the GS
values of the children in the family to minimize the number of recombinants required
in the nuclear family. Our second observation is that, once the PS values of the parents
are fixed, the PS values for each child can be assigned independently. In other words,
we can think of a nuclear family as a collection of (independent) parents-offspring trios
and process the trios accordingly.

A more detailed description of the algorithm is given below. keintrio(p, g, c)
denote the minimum number of recombinants required for a parents-offspring trio con-
sisting of a father, a mother, and a child with PS assignmentsandc, respectively.

Step 1: Root the pedigree at an arbitrary memlber

Step 2: Traverse the tree in postorder. For each individual nadeg member)- and
each PS assignmenatr, compute the minimum number of recombinants required
in the subtree rooted at If » has more thag children {.e. mating nodes), we do
the above computation for each child mating node separately. Each child mating
node ofr defines a unique nuclear family, which may contaias a parent or a
child. Suppose that the nuclear family consists of fathemotherM, and chil-
drenCh,...,C;. We construct an arrayum/ node][ps], wherenode denotes an
individual node anghs denotes a PS assignment at the node.

If ris M (or F), then for each PS assignmeratr, we do the following.
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Fig. 4. A rooted tree for the tree pedigree in Fig. 1, where ndéeselected as the root.

1. For each PS assignmemfor ¢) at F' (or M, respectively), compute

num|r|[s] = min Z mcin(num[F] [p] + num[Ci][c] + numtrio(p, s, c))
1<i<l

(or = min Z mcin(num[M] [m] + num[C;][c] + numtrio(s, g, c)))
1<i<l

2. Keep pointers to the corresponding PS assignmenfs(at M) andC; (1 <
i <) in an optimal solution.

On the other hand, if is C; for somej, then for each PS assignmeystr, we do
the following.
1. For each PS assignmentandgq at F' and M, respectively, compute

num|r][s] = %ﬁgl(numtrio(p, q,8) + Z mcin(num[F] [p]
i 1<i<l,i#j
+num[M][q] + num|[C;][c] + numtrio(p, ¢, c)))

2. Keep pointers to the corresponding PS assignmerifs a1, andC; (1 < i <
1) in an optimal solution.
Step 3: At root R, we compute the minimum number of recombinants required for the
whole tree for any PS assignment/atand the corresponding PS assignments at
all members by backtracing the pointers.

The time and space complexities of this algorithm are given below.

Theorem 2. Letn denote the number of members anglthe maximum number of het-
erozygous loci in any member. The above locus-based dynamic programming algorithm
runs inO(nm23™°) time andO(n2™°) space.

Proof. The rooted tree can be constructedifr) time. In Step 2 we have to consider
all combinations of PS assignments at the members of a parents-offspring trio, which is
at most2®™. The computation ofumtrio is O(my) for each trio and combination of
PS assignments. Therefore, we can process each ifi¢rin23™°) time. The number
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of parents-offspring trios is at most The running time of5tep 3is O(n). Therefore,
the total time complexity of this algorithm @ (nmg23™).

For this computation, we need maintain the artayn and pointers for backtracing.
The size ofnum is clearly O(n2™°), which is also the number of pointer needed.
Therefore, the total space complexity of this algorithr{s2"°). ad

This result shows an interesting contrast to the general MRHC problem, which is
still NP-hard whenn = 2. The algorithm would be reasonably fast on a PCrifigr< 8
(which meansn < 15 in real datasets because many loci are often homozygous). In
practice, the algorithm can be sped up by preprocessing the pedigree and fixing as
many PS values as possible using the Mendelian law of inheritance. This could reduce
the number of “free” heterozygous loci significantly. Moreover, if each nuclear family
in the input pedigree has only one child, the algorithm can be made much faster.

Theorem 3. If each nuclear family in the input pedigree has only one child, we can
solve loopless MRHC i®(nmg2%™°) time andO(n2™°) space.

Proof. We need only modifyGtep 2in the above algorithm. For parents-offspring trio,
instead of considering all combinations of PS assignments at both the father and mother
for each PS assignment at the child, we can consider each parent independently and op-
timize the number of recombinants required from the parent to the child. More precisely,
if ris M (or F), we compute the minimum number of recombinants ftBrtor M) to

C1 for all PS assignments &t (or M) andC; and memorize the minimum number of
recombinants for each PS assignmenf’at Next, we compute the minimum number

of recombinants in the parents-offspring trio for all PS assignmenig &br F) and

C4. Similarly, if r is Cq, we compute the minimum number of recombinants friom

to C; for all PS assignments &t andC; and the minimum number of recombinants
from F andC, for all PS assignments & andC4, separately. Then, we add up the
corresponding numbers for each PS assignme@t arhe running time of the modi-

fied algorithm isO(m(22™0) for each parents-offspring trio ar@(nmy22m°) for the

whole pedigree. O

4.2 The member-based dynamic programming algorithm

Many real pedigrees in practice are often of small or moderate sizes. For example, the
dataset studied in [2] consists of a collection of parents-offspring trios and the dataset in
[5] consists of pedigrees of sizes betw&eands. Here, we present an algorithm that is
efficient when the size of the input pedigree is bounded from above by a small constant.
The algorithm considers the PS and GS values at each locus across all members of the
pedigree, and performs dynamic programming along the loci. A detailed description
of the algorithm is given below. The algorithm in fact works for MRHC on general
pedigrees.

We construct an arrayum/[i][t] that denotes the minimum number of recombinants
required in the pedigree from locdsto locusi, if the PS/GS assignment at locus
in all members ig. Let numl(s,t) denote the number of recombinants between any
two adjacent loci with PS/GS assignmerdandt in the whole pedigree. The algorithm
works as follows. Fof = 1tom — 1,
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1. Compute the minimum number of recombinants required in the pedigree from locus
1toi + 1 for every possible PS/GS assignmeat locusi + 1, by considering all
possible PS/GS assignmenat locusi, using the recurrence

num[i + 1][t] = min(numli][s] + numl(s,t))
2. Keep track of the PS/GS assignmaerachieving the minimum in the above.

Finally, we find the minimum number of the recombinants from lotis m and
the corresponding PS/GS assignments at all loci by a standard backtracing procedure.

2y py o 22 ftar g 22
{1,1} (1.1 {1.1} {1.1} {1 {113 {11} (1.1 {1,1}
2y p 02 2y p2 02

Fig. 5. An example pedigree with genotype information. The figure shows that the PS/GS as-
signments at locu8 can be computed by considering all possible PS/GS assignments alocus
(independently from the PS/GS assignments at lagus

Theorem 4. Letn denote the number of members in the pedigreeraride number of
loci. The time complexity of the above member-based dynamic programming algorithm
is O(nm2%"). Its space complexity i9(m22").

Proof. The number of all possible PS/GS assignments at a single locus is trivially
bounded23”. However, this number includes many impossible assignmeatsas-
signments inconsistent with the Mendelian law of inheritance. It is easy to prove that
the number of all possible PS/GS assignments at a locus is maximized if all genotypes
at this locus are homozygous, such as lo2uis Fig. 5. Therefore, the number of all
possible (feasible) PS/GS assignments at a loc@$18"), and the running time of the
above algorithm i$)(mn2"). The space for keeping the pointers used in backtracing

is clearlyO(m22"). 0

In practice, the member-based algorithm runs reasonably fast wke6.

5 Experimental results

We have implemented the above two algorithms in C++. To evaluate the performance
of our program, we compare the locus-based algorithm with PedPhase [10] and MRH
v0.1 [17] on simulated genotype data. Two different tree pedigree structures (Fig. 1 and
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Table 2. Running times of the locus-based algorithm, MRH and PedPhase on biallelic markers.
The parameters in the first column are the number of members, number of marker loci, and
number of recombinants.

Parametentocus-based algorithmMRH |PedPhage
(15,10,0) 6.4s 16s 1.3s
(15,10,4) 3.4s 3ml13s| 1.7s
(29,10,0) 13.6s 16m49s 1.8s
(29,10,4) 5.1s 14m2s| 1.4s
(15,15,0) 35m15s 14m29s 1.3s
(15,15,4) 8m7s 10m9s| 1.8s
(29,15,0) 15m10s 1hllm| 1.9s
(29,15,4) 23m12s 1h15m| 2.1s

Fig. 8 in [10]) were used in the simulation, one with 15 members and the other with
29 members. For each pedigree, genotypes WitAnd 15 biallelic marker loci were
considered. The two alleles at each locus in a founidergl member that has no par-

ents) were independently sampled with a fixed frequendy.®fn order to maximize

the chance of heterozygosity (to test the worst-case performance of the locus-based al-
gorithm), resulting in an average dfand7.5 heterozygous loci, respectively, in each
member of the pedigree. The number of recombinants used in generating each pedigree
ranged from0 to 4. For each combination of the above paramet&d$, sets of ran-

dom genotype data were generated and the average performance of the programs was
recorded, as shown in Table 2. The experiments were done on a Pentium IV PC with
1.7GHz CPU and 512MB RAM. In terms of the quality of solutions, the locus-based
algorithm always output a haplotyping solution with the minimum number of recom-
binants, while PedPhase and MRH do not guarantee optimal solutions. When the data
was generated with zero or few recombinants, the optimal solution was often unique
and both PedPhase and MRH could recover it. However, the performance of PedPhase
and MRH decreases when the number of recombinants increases. In terms of efficiency,
PedPhase was the fastest among the three programs in all cases. But, surprisingly, the
locus-based algorithm outperformed MRH in many cases.

We further compared the performance of the locus-based algorithm, PedPhase, MRH,
and the EM algorithm used in [5] on a real dataset consisting of 12 multi-generation tree
pedigrees, each with 7-8 members, from [5]. The comparison was based on the infer-
ence ofcommorhaplotypesi(e. haplotypes with frequencies 5%). We focused on a
randomly selected autosonmiee(chromosome 3). There are 10 blocks.(regions with
few recombinants) in the chromosome 3 data, of which one block consists of 16 marker
loci and all the others have only 4-6 marker loci each. The test results of the locus-based
algorithm, MRH and the EM algorithm are summarized in Table 3. (We obtained the
results of the EM algorithm directly form the authors [5]. The results of PedPhase are
very similar to those of MRH'’s [10], and are thus not shown here due to space limit.)
The results show that both rule-based haplotyping methods could discover almost all
the common haplotypes that were inferred by the EM algorithm [5]. The haplotype fre-
quencies estimated from the haplotype configuration results by simple counting are also
similar to the estimations by the EM algorithm. Most of the blocks36%) were found
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Table 3.Common haplotypes and their frequencies obtained by the locus-based algorithm, MRH
and the EM method. In the haplotypes, the alleles are encoded as 1=A, 2=C, 3=G, and 4=T.

Block EM locus-based MRH
Common haplotypd&requenciegCommon haplotypd&requenciegCommon haplotypd&requencies
16a-1] 42222 0.4232 42222 0.3817 42222 0.3779
34344 0.2187 34344 0.1720 34344 0.1744
42224 0.2018 42224 0.1989 42224 0.1802
34224 0.1432 34224 0.1667 34224 0.1802
16b-1 324112 0.8014 324112 0.7634 324112 0.7849
132334 0.0833 132334 0.0753 132334 0.0753
16b-2 4122 0.5410 4112 0.5000 4112 0.4826
2334 0.2812 2334 0.2634 2334 0.2616
2332 0.1562 2332 0.1398 2332 0.1512
17a-1 313444 0.3403 313444 0.3172 313444 0.3226
133242 0.3021 133242 0.2527 133242 0.2473
332424 0.1354 332424 0.0968 332424 0.0914
333444 0.1021 333444 0.1129 333444 0.1183
332444 0.0681 332444 0.0806 332444 0.0806
133244 0.0521
17a-2 23242 0.3542 23242 0.3065 23242 0.2903
33424 0.3333 33424 0.3118 33424 0.3118
33442 0.1458 33442 0.1505 33442 0.1237
34444 0.1250 34444 0.1452 34444 0.1452
17a-3 4431 0.4129 4431 0.4408 4431 0.4167
3112 0.2813 3112 0.2312 3112 0.2051
4131 0.2363 4131 0.1935 4131 0.2115
4132 0.0696 4132 0.0753 4132 0.0705
17a-4 344124 0.3854 344124 0.3656 344124 0.4429
232432 0.3333 232432 0.3065 232432 0.2357
342424 0.2500 342424 0.1935 342424 0.1857
18a-1] 1444231214144132 0.2697 |1444231214144132 0.2688 |1444231214144132 0.1706
1444111214144132 0.2396 |1444111214144132 0.2097 |1444111214144132 0.2357
1444131214144132 0.1887 |1444131214144132 0.1989 |1444131214144132 0.2176
4222133313412211 0.1250
1444231234144132 0.0833 |1444231234144132 0.0699 |144423123414413P 0.0764
18a-2 312442 0.4967 312442 0.4839 312442 0.4765
132434 0.2604 132434 0.1989 132434 0.1765
312242 0.1271 312242 0.0806 312242 0.0765
134444 0.0938 134444 0.0860 134444 0.0941
132432 0.0538 132432 0.0588
18a-3 2211 0.4186 2211 0.4140 2211 0.4214
4333 0.2188 4333 0.1935 4333 0.1714
2311 0.2064 2311 0.2097 2311 0.1928
4313 0.1250 4313 0.1613 4313 0.1857

by the locus-based algorithm and MRH to have involved 0 recombinants. The speeds of
all three programs on this real dataset were very fast (less 1 minute), even though one
of the blocks has 16 marker loci.

6 Concluding remarks

Missing data usually occur in real data set due to many reasons. Unfortunately, Aceto
et al. [1] recently showed that checking consistency (thus imputing missing data) for
pedigree is in general NP-hard. The two algorithms above take data with no missing
values as input. In our experiment on the real data set, we had to impute the missing
values first before feeding the data to the locus-based algorithm. Our current imputation
algorithm simply uses the Mendelian law and allele frequencies. It would be desirable
to combine missing data imputation and haplotype inference in a unified framework.
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