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

While extensive analyses have been conducted to test for, no formal analyses have been conducted

to test against, the importance of candidate genes with random population samples. We develop a

LOD score approach for exclusion analyses of candidate genes with random population samples.

Under this approach, specific genetic effects and inheritance models at candidate genes can be

analysed and if a LOD score is %®2±0, the locus can be excluded from having an effect larger than

that specified. Computer simulations show that, with sample sizes often employed in association

studies, this approach has high power to exclude a gene from having moderate genetic effects. In

contrast to regular association analyses, population admixture will not affect the robustness of our

analyses; in fact, it renders our analyses more conservative and thus any significant exclusion result

is robust. Our exclusion analysis complements association analysis for candidate genes in random

population samples and is parallel to the exclusion mapping analyses that may be conducted in

linkage analyses with pedigrees or relative pairs. The usefulness of the approach is demonstrated by

an application to test the importance of vitamin D receptor and estrogen receptor genes underlying

the differential risk to osteoporotic fractures.



Association studies that depend on linkage disequilibrium between markers and genes underlying

complex traits have helped to decipher some genetic bases of differential susceptibility to complex

diseases (e.g. Chagnon et al. 1998). In association studies, usually, case-control analyses have been

employed by comparing genotype or allele frequencies of candidate genes in unrelated cases and

controls (e.g. Blum et al. 1990, 1991; Holden, 1994). However, despite extensive efforts, the results

of independent association studies often fail to reach consensus and result in controversy. Such

examples are the association between the dopamine D2 receptor gene and alcoholism (Blum et al.

1990, 1991; Holden, 1994; Gelernter et al. 1993; Pato et al. 1993) and the association between vitamin

D receptor (VDR) genotypes and osteoporosis (Eisman, 1995; Peacock, 1995; Gong et al. 1999).

One of the most important causes, that may result in the inconsistent results from association

studies, is population admixture (Chakraborty & Smouse, 1988; Lander & Schork, 1994; Weir, 1996;

Deng & Chen, 2000; Deng et al. 2001). Population admixture causes deviation from Hardy–Weinberg

(HW) equilibrium and may also yield linkage disequilibrium (and thus association) between a marker
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locus and a disease susceptibility locus (DSL) (Weir, 1996). Family based analyses such as the

transmission disequilibrium test (TDT, Spielman et al. 1993) have been developed specifically to

control for population admixture in association studies. However, compared with the case-control

studies that employ random samples of cases and controls, the samples for the family based studies

such as the TDT are generally more difficult to obtain. Therefore, case-control studies that employ

random (unrelated) population samples are still commonly used (e.g. Deng et al. 1999) and advocated

(e.g. Risch & Teng, 1998; Morton & Collins, 1999) for populations in which admixture is not much

of a concern. A robust approach has been developed to test for the importance of candidate genes

with random population samples, even in the presence of population admixture (Pritchard et al.

2000). The focus of all of the early analyses of candidate genes in random population samples is to

test for the importance of candidate genes and little effort has been made to test explicitly against

their importance. Statistically speaking, a simple qualitative measure of lack of significance in

previous association analyses may not be formally employed as the evidence against the importance

of candidate genes.

It is known that in linkage analyses with pedigrees or relative pairs, the information collected for

linkage analyses may also be employed for exclusion analyses (Edwards, 1980; Ott, 1999; Kruglyak

& Lander, 1995). The traditional criteria are that a Logarithm-of-Odds (LOD) score & 3±0 is taken

as evidence for significant linkage, a LOD score %®2±0 is taken as evidence against linkage and a

LOD score between ®2±0 and 3±0 is not conclusive concerning linkage and exclusion for the genomic

region under test. Exclusion mapping analyses have been conducted in practice in conjunction with

linkage analyses (e.g. Hanis, 1996).

In this study, we develop a LOD score method for exclusion analyses of candidate genes in random

population samples. The approach may be employed to test explicitly against the importance of

candidate genes and may be applied as a complement to regular association analyses to test for the

importance of candidate genes. The LOD score exclusion analysis to be developed here is parallel to

the exclusion mapping analyses in linkage studies. By computer simulations, the performance (the

power) of our exclusion analyses is investigated in relation to population parameters and the genetic

effects and models assumed in exclusion analyses. Examples of application of our exclusion analyses

are provided for three published data sets on VDR and estrogen receptor (ER) genotypes, for their

significance to osteoporotic fractures (a complex genetic disease, Deng et al. 2000a).



For a random population sample with each subject ascertained for the disease status and genotype

at the candidate gene under test, we will first construct maximum likelihood functions under the null

hypothesis (H
o
) and under the alternative hypothesis (H

"
). The H

o
is that the locus under test is not

a DSL and the H
"
is that the locus under test is a DSL. At a DSL, the penetrances of the genotypes

are not all equal. A LOD score for exclusion analysis will subsequently be constructed by the H
o
and

H
"
. Then, we will derive the maximum likelihood estimates (MLEs) of the penetrances of the

candidate gene genotypes under the following four typical inheritance models : dominant, recessive,

additive and multiplicative.

LOD Score Construction

n random individuals are sampled from a population and are diagnosed for their disease status and

genotyped at a candidate gene under test. Let n
D

and n
C

be the numbers of affected and nonaffected

individuals in the sample, respectively. Assume that the candidate gene is biallelic with alleles A and

a. If the candidate gene is a DSL, let A denote the disease susceptible allele and a denote the normal
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allele. Let n
AA

, n
Aa

, and n
aa

be the numbers of individuals with genotypes AA, Aa and aa,

respectively in the sample. For each genotype in the sample, we can also count the numbers of

affected and nonaffected persons. Hence we have the numbers n
AA,D

, n
Aa,D

, n
aa,D

, n
AA,C

, n
Aa,C

, and

n
aa,C

that denote the sample sizes of individuals of different genotypes and disease status.

Apparently,

n
AA,D

­n
AA,C

¯n
AA

, n
Aa,D

­n
Aa,C

¯ n
Aa

, n
aa,D

­n
aa,C

¯n
aa,

n
AA

­n
Aa

­n
aa

¯n

and

n
AA,D

­n
Aa,D

­n
aa,D

¯n
D
, n

AA,C
­n

Aa,C
­n

aa,C
¯n

C
, n

D
­n

C
¯n.

Let ψ denote the population prevalence of the disease. Let ψ
g
denote the penetrance of the genotype

g, where g can be AA, Aa or aa, respectively. Let y be a variable denoting a person’s disease status,

and let y¯ 1 when the person is affected and y¯ 0 when he}she is not affected. The probability

function for diseases status of an individual with genotype g can be written as:

l(y r g)¯ (ψ
g
)y(1®ψ

g
)"−y.

The likelihood L of the n random individuals’ disease status given their genotypes at the candidate

gene is

L¯ 0
n

i="

l
i
(y r g).

Under the H
o
that the candidate gene is not a DSL, the penetrances of the three genotypes are the

same and equal to ψ, the likelihood L is :

L
!
¯ψnD(1®ψ)nc.

Under the H
"

that the candidate gene is a DSL, the likelihood L is :

L
"
¯ψnAA,D

AA
(1®ψ

AA
)nAA,C ψnAa,D

Aa
(1®ψ

Aa
)nAa,Cψnaa,D

aa
(1®ψ

aa
)naa,C

Therefore, we can construct a LOD score as follows:

Lod¯ log
"! 9L

W
"

LW
!

: ,
where

LW
"
¯ψW nAA,D

AA
(1®ψW

AA
)nAA,C ψW nAa,D ψW naa,D

aa
(1®ψW

aa
)naa,C

and

LW
!
¯ψW nD(1®ψW )nc.

The ψW , ψW
AA

, ψW
Aa

, and ψW
aa

are the MLEs of ψ, ψ
AA

, ψ
Aa

and ψ
aa

, , respectively. Let (¥ log
"!

L
!
)}(¥ψ)

¯ 0, it is straightforward to obtain the MLE of ψ as ψW ¯ (n
D
)}n. It is noted that in the construction

of the above likelihood functions, no assumption is involved about the experimental designs of

population association studies to be analysed, except that individuals are assumed to be randomly

ascertained so that they are not related. Study subjects may be ascertained randomly with regard

to their genotypes at the candidate genes to be tested but with their phenotypes considered, a

situation in case-control study designs. Random samples that can be analysed in association studies

and for this exclusion analyses refer to samples of unrelated individuals. In the following text, we will

derive ψW
AA

, ψW
Aa

and ψW
aa

under the four typical inheritance models with the maximum likelihood

function L
"
.
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MLE of Penetrances under Four Inheritance Models

Dominant model

Under the dominant model for the disease susceptible allele, we have ψ
AA

¯ψ
Aa

. Let t¯
ψ

AA

ψ
Aa

. We

term t the genetic effect at the DSL. t is equivalent to the measure of relative risk (Khoury et al., 1993)

if allele A is regarded as a risk factor. If t" 1, the test locus is a DSL. If t¯ 1, the test locus is not

a DSL. t quantifies the magnitude of genetic effects under specified genetic models and it is an

important parameter to be tested in our exclusion analyses. L
"

can be rewritten as:

L
"
¯ (tψ

aa
)nAA,D+nAa,D(1®tψ

aa
)nAA,C+nAa,Cψnaa,D

aa
(1®ψ

aa
)naa,C.

Let (¥Log
"!

L
"
)}(¥ψ

aa
)¯ 0 and after some algebraic simplification, we have:

ntψ#
aa

®[n
D
(t­1)­(n

AA,C
­n

Aa,C
)t­n

aa,C
]ψ

aa
­n

D
¯ 0.

Let a¯nt,b¯®[n
D
(t­1)­(n

AAC
­n

AaC
)t­n

aaC
], c¯n

D
, we can obtain the MLEs as follows:

ψW
aa

¯
®b³ob#®4ac

2a
.

ψW
AA

¯ψW
aa

¯ tψW
aa

By definition that A is a potential disease susceptibility allele under H
"
, we have t& 1; therefore,

b#®4ac¯ [n
D
(t­1)­(n

AAC
­n

AaC
)t­n

aaC
]#®4ntn

D

" (n
D
t­n

D
­n

AAC
­n

AaC
­n

aaC
)#®4ntn

D
.

¯ (n
D
t­n)#®4ntn

D
¯ (n

D
t®n)#& 0

Hence we will have two real roots of ψW
aa

. If both of these roots satisfy the conditions that 0!ψ
AA

,

ψ
Aa

, ψ
aa

! 1, we will compare the likelihoods corresponding to these two roots. The root

corresponding to a larger likelihood is the MLE of ψW
aa

. Therefore, under the dominant inheritance

model, the LOD score can be computed as:

LOD¯ log
"! 9L

W
"

LW
!

:¯ (n
AA,D

­n
Aa,D

) log
"!

(tψW
aa

)­(n
AA,C

­n
Aa,C

) log
"!

(1®tψW
aa

)

­n
aa,D

log
"!

(ψW αα)­n
aa,C

log
"!

(1®ψW
aa

)®n
D

log
"!0nD

n 1®n
C

log
"! 0nC

n 1 .
Recessive model

Under the recessive model, we have ψ
Aa

¯ψ
aa

. Let t¯ (ψ
AA

)}(ψ
aa

), we have:

L
"
¯ tnAA,DψnD

aa
(1®tψ

aa
)nAA,C(1®ψ

aa
)naa,C+naa,C.

Let (¥Log
"!

L
"
)}(¥ψ

aa
)¯ 0 and after some algebraic simplification, we have:

ntψ#
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®[n
D
(t­1)­(n
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­n

Aa,C
)­n

AA,C
t]ψ

aa
­n

D
¯ 0.

Let a¯nt, b¯®[n
D
(t­1)­(n

aaC
­n

AaC
)­n

AAC
t], c¯n

D
, the MLEs are as follows:

ψW
Aa

¯ψW
aa

¯
®b³ob#®4ac

2a

ψW
AA

¯ tψW
aa

.



Exclusion analyses of candidate genes 317

As earlier, by noting that t& 1, we can show that b#®4ac& 0. One of the two real roots to be

obtained will be chosen as the ψW
aa

as earlier. The LOD score is :

LOD¯ log
"! 9L

W
"

LW
!

:¯n
AA,D

log
"!

(tψW
aa

)­n
AA,C

log
"!

(1®tψW
aa

)­(n
aa,D

­n
aa,D

) log
"!

(ψW
aa

)

­(n
aa,C

­n
Aa,C

) log
"!

(1®ψW
aa

)®n
D

log
"! 0nD

n 1®n
C

log
"! 0nC

n 1
Additive model

Under the additive model, we have ψ
AA

­ψ
aa

¯ 2ψ
Aa

. Let t¯ (ψ
Aa

)}(ψ
aa

). We have ψ
AA

¯
2ψ

Aa
®ψ

aa
¯ (2t®1)ψ

aa
; therefore,

L
"
¯ (2t®1)nAA,DtnAa,DψnD

aa
(1®(2t®1)ψ

aa
)nAA,C(1®tψ

aa
)nAa,C(1®ψ

aa
)naa,C .

Let (¥Log
"!

L
"
)}(¥ψ

aa
)¯ 0, we have:

n
D

ψ
aa

®(2t®1)
n
AA,C

1®(2t®1)ψ
aa

®t
n
Aa,C

1®tψ
aa

®
n
aa,C

1®ψ
aa

¯ 0

This is a cubic equation of ψ
aa

. With the aid of Mathematica (Wolfram, 1996), we can calculate the

roots of this equation. The root corresponding to the largest likelihood is the MLE of ψ
aa

. The LOD

score can be computed easily as earlier.

Multiplicative model

Under the multiplicative model, we have the equation ψ
AA

nψ
aa

¯ψ#
Aa

. Let t¯ (ψ
Aa

)}(ψ
aa

), then

ψ
AA

¯ t#ψ
aa

. L
"

can be rewritten as:

L
"
¯ t#nAA,D+nAa,DψnD

aa
(1®t#ψ

aa
)nAA,C(1®tψ

aa
)nAa,C(1®ψ

aa
)naa,C

Let (¥Log
"!

L
"
)}(¥ψ

aa
)¯ 0, we have,

n
D

ψ
aa

®t#
n
AA,C

1®t#ψ
aa

®t
n
Aa,C

1®tψ
aa

®
n
aa,C

1®ψ
aa

¯ 0.

Similar to the additive model, the above cubic equation can be solved for the MLE of ψ
aa

to obtain

the LOD score.

Although we only examined the four typical inheritance models at the candidate gene for the

demonstration of our exclusion analyses, other inheritance models (such as partial dominant, partial

recessive) may also be investigated in a similar manner. For example, let t¯ (ψ
AA

)}(ψ
aa

) (t" 1±0),

under a partial dominant or partial recessive genetic model, we have ψ
Aa

¯Ωψ
aa

, where Ω is a

parameter for specific genetic models. The value of Ω is fixed once a genetic model is specified (or

inferred from the data) for testing. The values of Ω¯ t and Ω¯ 1 represent the dominant and

recessive genetic models investigated earlier. A specified value of Ω with t"Ω" (t­1)}2 represents

partial dominant models and a specified value of Ω with 1!Ω! (t­1)}2 represents models for

partial recessive.

The MLEs of the prevalence ψ# and the penetrances, ψW
AA

, ψW
Aa

and ψW
aa

, and thus the LOD scores

are functions of n
AA,D

, n
Aa,D

, n
aa,D

, n
AA,C

, n
Aa,C

, and n
aa,C

, and the genetic effect t that needs to be

assumed under a specific genetic model for exclusion analyses. The above n’s can be ascertained from

the population sample. The hypothesis to be tested in exclusion analysis is that the candidate gene

is a DSL with a genetic effect t under a specific genetic model. With the traditional criteria (Ott, 1999)

for exclusion in linkage analyses, a LOD score %®2±0 is taken as evidence to exclude a candidate

gene as being a DSL with a genetic effect t under a specified inheritance model. The choice of a LOD
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score of ®2±0 is a reasonable, though somewhat arbitrary, criterion. A LOD score of ®2±0
corresponds to a likelihood ratio of 1:00, i.e., 100:1 odds against linkage, which is a very stringent

criteria for exclusion analyses even in whole genome-wide analyses (Ott, 1999).

Computer simulations

To investigate the performance of our exclusion analyses of candidate gene(s) with random

population samples, we perform computer simulations. The simulated population may not be

randomly mating and thus may not be in Hardy-Weinberg equilibrium. Let f
A

be the frequency of

allele A, P
AA

be the frequency of the genotype AA, δ be the Hardy–Weinberg disequilibrium (HWD)

coefficient. By definition (Weir, 1996), we have:

P
AA

¯ f #
A
­δ.

For a biallelic marker, we have (Weir, 1996):

P
Aa

¯ 2f
A
(1®f

A
)®2δ

P
aa

¯ (1®f
A
)#­δ,

where P
Aa

and P
aa

are the frequencies of the genotypes Aa and aa, respectively. Considering all the

possible values of genotype frequencies, the range of δ is (Weir, 1996):

δ
min

¯max [®f #
A
,®(1®f

A
)#]% δ% f

A
(1®f

A
)¯ δ

max
,

since δ
min

! 0 and δ
max

" 0, δ could be either negative or positive. With admixture of randomly

mating sub-populations, a scenario that is found in genetic analyses for candidate genes, δ is negative

due to the well-known Walnut effect (Hartl & Clark, 1989). However, it is not unusual for δ estimated

from humans and animal populations to be positive for genetic loci examined (Nei, 1987; Lynch &

Spitze, 1994). Therefore, while we will mainly test the situations when δ is negative, the situations

when δ is positive and 0 (for unstructured and randomly mating populations) will also be

investigated.

In simulations when the candidate gene is not a DSL, for a given allele frequency f
A
, δ may be

0±5 δ
min

, 0 or 0±5 δ
max

, respectively. The expected genotype frequencies in the whole population can

be obtained based on f
A

and δ. For the simulations in which the candidate gene is not a DSL, under

a specified population prevalence ψ, n random individuals can be easily simulated for their genotypes

and disease status and n
AA,D

, n
Aa,D

, n
aa,D

, n
AA,C

, n
Aa,C

, and n
aa,C

in the sample can be obtained. For

a particular inheritance model and a specified genetic effect t under test, we can calculate the MLEs,

ψW , ψW
AA

, ψW
Aa

and ψW
aa

, and thus the LOD score as detailed earlier for the random population sample

simulated. For each parameter set (such as n, f
A

and δ), we perform 10000 repeated simulations. In

the 10000 repeated simulations, the proportion of the times that the LOD score is %®2±0 is a

measure of our approach for its ability to exclude the candidate gene as a DSL under the specified

inheritance model and genetic effect t. We term this proportion as the exclusion power. We

investigate how the parameters δ, f
A
, ψ, n, t and the inheritance models assumed in analyses will

influence the exclusion power.

In simulations, we also examine the performance of our exclusion analyses when the candidate

gene is indeed a DSL with the genotype penetrances not all being equal and the true genetic effect

being t
"
. In this situation, the proportion of the times that the LOD score is %®2±0 with assumed

t (" t
"
) is also a measure of our exclusion analyses on how powerfully it may exclude the candidate

gene as a DSL with an assumed genetic effect t(" t
"
). In simulations, with the genotype frequencies

and y specified, we can calculate the genotype penetrances by the following equation:

P
AA

nx
"
(t
"
)nψ

aa
­P

Aa
nx

#
(t
"
)nψ

aa
­P

aa
nψ

aa
¯ψ,
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Table 1. Distribution of candidate gene genotypes according to history of osteoporotic fracture

ER gene
PvuII genotypes

(Vandevyver et al. 1999)

VDR gene
FokI genotypes

(Gennari et al. (1999)

VDR gene BsmI genotypes
(Houston et al. 1996 and

Gomez et al. 1999)

Genotype No fracture Fracture Genotype No fracture Fracture Genotype No fracture Fracture

PP 23 31 FF 138 21 BB 47 21
Pp 84 60 Ff 156 30 Bb 128 57
pp 59 51 ff 38 17 bb 105 42

where

ψ
AA

¯ x
"
(t
"
)nψ

aa
,ψ

Aa
¯ x

#
(t
"
)nψ

aa
,

x
"
and x

#
are functions of t

"
, which are decided by the inheritance models we assume in simulations.

For example,

x
"
(t
"
)¯

1

2
3

4

t
"

Dominant

t
"

Recessive

2t
"
®1 Additive

t#
"

Multipicative

and x
#
(t
"
)¯

1

2
3

4

t
"

Dominant

1 Recessive

t
"

Additive

t
"

Multipicative

Then, with the genotype frequencies, genetic effect t
"

and ψ, we can simulate a population sample

of n individuals and to ascertain n
AA,D

, n
Aa,D

, n
aa,D

, n
AA,C

, n
Aa,C

, n
aa,C

in the sample. Then we can

apply our LOD score method for exclusion analyses with an assumed genetic effect t. In simulation

analyses for this case, the inheritance models assumed in exclusion analyses are the same as those

simulated. This may be justified, since in practice some clues can be obtained about the inheritance

modes of a candidate locus (if it is a DSL) by data of the genotypes and diseases status of a random

population sample. In fact, based on the data, a most likely model may also be chosen by comparing

the LOD scores computed under different models for the same t. The model with the largest LOD

score best fits the data and thus may be chosen in analyses.

The exclusion power is equivalent to the statistical power when the candidate gene is not a DSL

and t assumed in analyses is larger than 1±0, or when the candidate gene is a DSL with a true effect

t
"
but an effect t (t" t

"
) is assumed in analyses. The exclusion power is equivalent to type one error

rate when t assumed in analyses is the true effect t
"
at the candidate gene (t

"
¯ 1 when the locus is

not a DSL and t
"
" 1 when it is a DSL).

Exclusion analyses of VDR and ER genes for osteoporotic fractures

We collected genotype data for the polymorphisms at the FokI and BsmI restriction sites in the

VDR gene and at the PvuII restriction site in the ER gene, together with the phenotype data for

osteoporotic fractures (Table 1). We perform exclusion analyses against the importance of these two

genes for osteoporotic fractures with our LOD score method described above. For the FokI

polymorphism in the VDR gene, the data employed are from Gennari et al. (1999). For the BsmI

polymorphism in the VDR gene, the data are from Houston et al. (1996) and Gomez et al. (1999). For

the PvuII polymorphisms in the ER gene, the data are from Vandevyver et al. (1999). The analyses

are performed under the four typical inheritance models.
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Dominant Recessive

Genetic Effect tGenetic Effect t

Genetic Effect t Genetic Effect t

MultiplicativeAdditive

Fig. 1. The effect of population penetrance on exclusion analysis power. Populations with HWD coefficient
δ¯ 0±5 δ

min
are simulated. 200 individuals are sampled in each simulation. The allele frequency f

A
is 0±3. The

population prevalence ψ of 0±1, 0±2, 0±3 and 0±4 are simulated respectively as indicated on each plot. X-axis
is the genetic effect t assumed in exclusion analyses. In Figs 1–4, the candidate gene is not a DSL.



In Figs 1–5, we present some representative data of our extensive simulation results for a range

of parameter values with different inheritance models. It can be seen that, the larger the genetic

effect t assumed in analyses, the higher the power in our exclusion analyses when the candidate gene

is not a DSL (Figs 1, 2, 4). This result is straightforward since the candidate gene we simulate is not

a DSL, the larger the genetic effect t that we assume this locus has, the less likely it is that the

hypothesis is compatible with the simulated data and the more likely we can exclude the locus as a

DSL. When t is assumed to be 1, the exclusion power (equivalent to the type one error rate) is very

small (! 0±005). This result is consistent with our expectation. This is because when t is assumed to

be 1 in analyses, we assume that the locus is not a DSL, which is consistent with the simulated fact.
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Fig. 2. The effect of HWD coefficient on exclusion analysis power. Populations with δ¯ 0±5 δ
min

, 0, 0±5δ
max

are simulated, respectively as indicated on each plot. n¯ 200, f
A
¯ 0±3, ψ¯ 0±1. X-axis is the t assumed in

exclusion analyses.

Therefore, the exclusion power for it not to be a DSL (i.e., t¯ 1) should be nearly 0. When the

simulated locus is indeed a DSL (Fig. 5) with a true effect t
"
, if we assume t¯ t

"
in analyses, the

exclusion power is also very small (! 0±005), again consistent with expectation, since the locus is

indeed a DSL with an effect t
"
. However, if we assume t" t

"
in analyses, we can exclude the locus

as having a larger effect t than its true effect t
"
, the larger the effect t we assume in analyses, the higher

is our exclusion power. This result demonstrates that even if the candidate gene is a DSL with an

effect t
"
, our exclusion approach is still useful for excluding this locus as having a genetic effect

exceeding a specified value t (t" t
"
). This feature is useful, since generally those DSLs with certain

effects may be useful in practical and clinical settings and thus we can exclude a locus that is not a

DSL or is a DSL but with only a minor effect. There may be cases in which a DSL is of small effects

in terms of relative risk but of significance in terms of population attributable risk due to a high

frequency (" 0±5) of the disease allele (Altshuler et al. 2000). However, such cases are rare since
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Dominant Recessive

MultiplicativeAdditive

Number Number

Number Number

Fig. 3. The number (sample size) needed to achieve certain powers. Populations with f
A
¯ 0±3, δ¯ 0 and ψ

¯ 0±30 are simulated. The t assumed in the exclusion analyses is indicated on each plot. X-axis is the number
of individuals needed to achieve the power for the exclusion of the assumed genetic effect t.

disease alleles do not generally achieve a high frequency, especially when the disease is important for

an individual’s fitness (Hartl & Clark, 1989). In these rare cases, the DSL may be of epidemiological

significance; however, its clinical importance may be relatively minor, since it does not contribute

much to individuals’ differences in their susceptibilities to the disease.

In addition to the t assumed in analyses, the exclusion power is also affected by population disease

prevalence ψ (Fig. 1), population HWD coefficient δ (Fig. 2), sample size n (Fig. 3), frequency f
A

(!
0±5) of the disease allele (Fig. 4), and the inheritance model assumed in analyses (Figs 1–5). Generally

speaking, other things being equal, the exclusion power increases with ψ, and the increase is more

significant when t assumed in analyses is small (Fig. 1). The exclusion power also increases with δ,

and the increase is more significant when t assumed in analyses is large (Fig. 2). Therefore, under

population admixture when δ is smaller than 0, the exclusion power is smaller than unstructured and

randomly mating populations. This will lead to conservative conclusions from exclusion analyses, as
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MultiplicativeAdditive

Dominant Recessive

Effect t Effect t

Effect t Effect t

Fig. 4. The effect of the frequency of allele A on exclusion analyses. Populations are simulated with δ¯
0±5 δ

min
, n¯ 300, and ψ¯ 0±1. f

A
¯ 0±1, 0±2 or 0±3, respectively as indicated on each plot. X-axis is the t

assumed in exclusion analyses and is the genetic effect we wish to exclude.

opposed to the potentially liberal conclusions from usual association analyses (due to the inflated

power under population admixture). The exclusion power increases with larger n and the increase is

more dramatic for larger t’s assumed in analyses (Fig. 3). The larger the f
A

(when it is ! 0±5), the

higher the exclusion power and difference is more significant with relatively small t’s assumed in

analyses (such as t¯C 2) (Fig. 4). The dependency of our exclusion power on the genetic model

assumed in analyses is apparent (Figs 1–5); however, no clear pattern seems to exist although the

exclusion power under the multiplicative model is usually higher than under the other three

inheritance models.

To exclude a candidate gene with a moderate effect t (" 1±4), the sample size required by our

approach is reasonable and moderate; it is within the range of the sample sizes employed in many

association studies (Fig. 3). Generally, depending on the inheritance model of the locus, for a t

assumed between 1±4 to 2±0, a sample size of 200–1000 may achieve an exclusion power of more than

80% (Fig. 3) when the disease is relatively prevalent (ψ¯ 0±3).
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Fig. 5. The exclusion analysis when the candidate gene is a DSL. Populations are simulated with δ¯ 0, n
¯ 300, and ψ¯ 0±2. f

A
¯ 0±1, 0±2 or 0±3, respectively as indicated in each plot. The genetic effect t

"
simulated

for the DSL is 1±5. The X-axis is the genetic effect we would like to exclude and we assume in exclusion
amylases.

The results of the exclusion analyses for the ER and VDR genes are summarized in Fig. 6. For all

three analyses, it can be seen that the LOD score for the recessive inheritance model is higher than

the corresponding LOD scores for the other three typical inheritance models. Therefore, recessive

inheritance is the most likely inheritance model among the four inheritance models typically

analysed in genetics. The genetic effect t’s under various inheritance models that can be excluded are

those with LOD scores below ®2±0, which is clearly indicated on each exclusion plot. For example,

under the recessive inheritance model, a genetic effect t greater than 2±04 can be excluded at the ER

locus. Equivalently, under the recessive model, the genotype penetrance of PP individuals is no more

than 2±04 times larger than that of Pp and pp individuals at the ER locus. Under the recessive

inheritance model, a genetic effect t greater than 1±81 can be excluded at the VDR BsmI locus. Under

the recessive inheritance model, a genetic effect t greater than 5±21 can be excluded at the VDR FokI
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Fig. 6. Exclusion analyses of VDR and ER genes as DSLs osteoporotic fractures. X-axis is the genetic effect
t assumed in exclusion analyses. In each plot, ‘D’, ‘R’, ‘A’, ‘M’ denotes respectively for dominant,
recessive, additive and multiplicative inheritance models at the candidates under test. The allele for which
the homozygote has higher disease incidence than the other allele (reflected in Table 1) is designated as the
disease allele A. For the ER gene, it is the P allele ; for the VDR FokI site, it is the f allele ; for the VDR BsmI
site, it is the B allele.
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locus. Under the other inheritance models, much smaller genetic effects may be excluded.

Interestingly, under the recessive inheritance model, a maximum LOD score of 1±65 is achieved for

the genetic effect t of about 2±2 at the VDR FokI locus. A LOD score of 1±65 corresponds roughly to

a p-value of 0±0058 (Lander & Kruglyak, 1995) and suggests the potential association of the VDR

FokI genotypes with the risk to osteoporotic fracture.



Random population samples have been widely employed to test association of candidate genes and

complex diseases. It is well know that such studies are prone to false positive findings due to

population admixture and the results are usually inconsistent and controversial. While extensive

analyses have been conducted to test for, no formal analyses have been conducted to test against, the

importance of candidate genes within random population samples. Statistically speaking,

nonsignificance of the usual association analyses for candidate genes cannot be taken as formal

evidence to unambiguously exclude their importance.

In this study, we develop a LOD score approach for exclusion analyses of candidate genes with

random population samples. Under this approach, specific genetic effects and inheritance models at

candidate genes can be analysed. If a LOD score is %®2±0, the locus can be excluded from having

an effect larger than that specified under the specified inheritance model. The most likely inheritance

model at the candidate gene locus may be inferred by our LOD score approach as demonstrated by

our analyses for the three published data sets for the two candidate genes for osteoporotic fractures.

Computer simulations show that, if a candidate gene is not a DSL, with sample sizes commonly

employed, this approach has high power to exclude a gene from having moderate genetic effects.

Even if the candidate gene is a DSL, our analyses may still be applied to exclude it from having an

effect different from its true effect. In contrast to regular association analyses for the importance of

candidate genes, population admixture will not affect the robustness of our analyses; in fact, it

usually renders our exclusion analyses more conservative. Under population admixture, the LOD

score is higher than when population admixture is absent, which yields lower exclusion power (Fig.

2) and thus more conservative conclusions. The conservative and robust conclusions from our

exclusion analyses against the importance of candidate genes is also consistent with the well know

fact that population admixture increases false positive associations for the importance of candidate

genes which may lead to liberal conclusions. When samples are recruited with regard to the source

sub-populations in an admixed population, situations can be deliberately constructed so that even

when a factor is associated with a disease in sub-populations, no association is shown in an admixed

population (Armitage & Berry, 1987). This will lead to exclusion of a true DSL when applying our

analyses. However, it is extremely rarely (if ever) the case that one can actually identify the source

sub-populations for individuals in admixed populations. Therefore, as long as unrelated individuals

are recruited randomly without regard to the sources of the sub-populations, our exclusion mapping

analyses should be robust. The robustness of our exclusion analyses is also reflected by the very small

type-one-error rate (! 0±005) as revealed in simulations. This is largely because of the stringent

criterion of LOD score of ®2±0 adopted for exclusion.

Our exclusion analysis is powerful in that the sample size required by our approach is moderate

and is within the range of the sample sizes employed in many association studies, particularly for

common diseases. Our exclusion approach should also be useful for testing the importance of

candidate genes under specific genetic effects and models. Usually, for a candidate gene to be of

significant interest from the perspective of clinical and basic research, it should have a certain
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magnitude of effect on the differential susceptibilities to a disease. Thus, exclusion analyses against

candidate genes are significant not only when a candidate gene is not a DSL but also when it is a DSL

but with a minor effect. Our exclusion analysis complements association analysis for candidate genes

in random population samples and is parallel to the exclusion mapping analyses that may be

conducted in linkage analyses with pedigrees or relative pairs. Thus, the exclusion analyses

developed here should be of significant practical value and the significance is demonstrated by an

application to test the importance of the VDR and ER genes for osteoporotic fractures. The VDR and

ER genes have been extensively studied in osteoporosis research (Eisman, 1995; Peacock, 1995;

Deng et al. 1999; Gong et al. 1999) and their importance is under debate. Our LOD score analyses

exclude that, under the recessive model that is most compatible with the data, the genetic effect t

cannot be greater than, respectively, 2±04 at the ER gene (PvuII polymorphisms), 1±81 at the VDR

gene (BsmI polymorphisms), and 5±21 at the VDR gene (FokI polymorphisms).

It is known that the LOD score approach may be used for both linkage and exclusion analyses

(Edwards, 1980; Ott, 1999; Kruglyak & Lander, 1995) for human pedigrees or relative pairs. Our

LOD score analyses may also be employed for association as well as exclusion analyses for random

population samples. However, association analysis is not a focus here, since there have already been

many other association analyses methods. The utility of our LOD score analyses for association

studies is demonstrated for the analyses of the VDR gene (FokI polymorphisms). Under the recessive

inheritance model that is identified by our LOD score analyses to be most compatible with the data,

a maximum LOD score of 1±65 is achieved for the genetic effect t of about 2±2 at the VDR FokI locus.

This magnitude of genetic effect is in agreement with the result for a significant relative risk of 2±5
revealed for the genotypes at this locus (Gennari et al., 1999). The more important effect identified

for the VDR FokI polymorphisms relative to the BsmI polymorphisms is compatible with our

knowledge of the locations of these two polymorphisms inside the VDR gene. The VDR gene is a gene

of a relatively long DNA sequence and has 10 exons (Audi et al. 1999). The FokI polymorphism site

is at the transcription initiation site of the VDR gene and thus may be of important biological

significance (Audi et al. 1999). On the other had, the BsmI polymorphism site is at the intron VIII

with no apparent biological significance.

It should be noted that, in general and from the above practical example of the application to the

VDR gene, what are tested in our exclusion analyses are the specific markers genotyped inside

candidate genes. This is also true for association analyses. A marker inside a candidate gene may be

excluded (likewise, a marker may also not be significant in association analyses) even if there may

be a functional mutation elsewhere inside the candidate gene. This may occur if the candidate gene

is large and if the marker is relatively far away from the functional mutation and is not in (or is in

weak) linkage disequilibrium with the functional mutation. Therefore, in both association and

exclusion analyses, only after thorough examination of polymorphisms densely located throughout

the candidate gene (or even outside of the gene, in its transcription regulation regions) may we

conclude on the importance or lack of importance of the candidate gene per se.

In summary, the exclusion analyses developed here should be of practical value. Our exclusion

analysis complements association analysis for the importance of candidate genes in random

population samples and is parallel to the exclusion mapping analyses that may be conducted in

linkage analyses with pedigrees or relative pairs. Its usefulness, high power and robustness may

warrant it being implemented with random population samples to rule out candidate genes with no,

or minor, effects. Although the current exclusion analysis approach is developed for testing candidate

genes as DSL for dichotomous disease traits, like many other analyses for DSL, the approach

developed here may also be directly applied for exclusion analyses of candidate genes as QTL for

quantities traits (Deng et al. 2000b).
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