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Abstract

We studyhaplotype reconstructionunder theMendelian lawof inheritance and theminimum re-

combination principleon pedigree data. We prove that the problem of finding aminimum-recombinant

haplotype configuration (MRHC)is in general NP-hard. This is the first complexity result concerning

the problem to our knowledge. An iterative algorithm based on blocks of consecutive resolved marker

loci (calledblock-extension) is proposed. It is very efficient and can be used for large pedigrees with a

large number of markers, especially for those data sets requiring few recombinants (or recombination

events). A polynomial-time exact algorithm for haplotype reconstruction without recombinants is also

presented. This algorithm first identifies all the necessary constraints based on the Mendelian law and

the zero recombinant assumption, and represents them using a system of linear equations over the cyclic

groupZ2. By using a simple method based on Gaussian elimination, we could obtain all possible feasi-

ble haplotype configurations. A C++ implementation of the block-extension algorithm, calledPedPhase,

has been tested on both simulated data and real data. The results show that the program performs very

well on both types of data and will be useful for large scale haplotype inference projects.

Keywords: Haplotyping, pedigree analysis, recombination, SNP, algorithm, computational complexity,

Gaussian elimination overZ2

1 Introduction

Genetic fine-mapping for complex diseases (such as cancers, diabetes, osteoporosesetc.) is currently a

great challenge for geneticists and will continue to be so in the near future. With the availability ofsin-

gle nucleotide polymorphisms (SNPs)information, researchers see new potentials of genetic mapping. The

ongoing genetic variation and haplotype map projects at the National Human Genome Research Institute

(NHGRI) of the USA are focused on the discovery and typing of SNPs and development of high-resolution
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maps of genetic variation and haplotypes for human [10]. While a dense SNP haplotype map is being built,

various new methods [11, 14, 23, 28] have been proposed to use haplotype information in linkage disequi-

librium mapping. Some existing statistical methods for genetic linkage analysis have also shown increased

power by incorporating SNP haplotype information [22, 30]. But, the use of haplotype maps has been lim-

ited due to the fact that the human genome is adiploid and, in practice,genotypedata instead ofhaplotype

data are collected directly, especially in large scale sequencing projects, because of cost considerations.

Although recently developed experimental techniques [6] give the hope of deriving haplotype information

directly with affordable costs, efficient and accurate computational methods for haplotype reconstruction

from genotype data are still highly demanded.

The existing computational methods for haplotyping fit into two categories: statistical methods and

rule-based methods. Both methodologies can be applied topedigreedata andpopulationdata (that has no

pedigree information). Statistical approaches (e.g. [7, 12, 15, 25, 27]), such as the EM methods, estimate

haplotype frequencies in addition to the haplotype configuration for each individual, but the algorithms are

usually very time consuming and thus cannot handle large (in many cases, moderately large) data sets.

On the other hand, rule-based approaches are usually very fast, although they normally do not provide

any numerical assessment of the reliability of their results.1 By utilizing some reasonable biological as-

sumptions, such as theminimum recombination principle, rule-based methods have proven to be powerful

and practical [9, 13, 16, 21, 26, 29]. The minimum recombination principle basically says that genetic

recombination is rare and thus haplotypes with fewer recombinants should be preferred in a haplotype re-

construction [9, 16, 21].2 The principle is well supported by practical data. For example, recently published

experimental results [4, 8, 10] showed that, in the case of human, the number of distinct haplotypes is very

limited. Moreover, the genomic DNA can be partitioned into long blocks such that recombination within

each block is rare or even nonexistent.

We are interested in rule-based haplotype reconstruction methods on pedigrees. In a very recent pa-

per [21], Qian and Beckmann proposed a rule-based algorithm to reconstruct haplotype configurations for

pedigree data, based on the minimum recombination principle. (From now on, we call their algorithm

MRH.) Given a pedigree and the genotype information about each member of the pedigree (with possibly

missing data), the authors are interested in finding the haplotype configurations for each member such that

the total number of recombinants (or recombination events) in the whole pedigree is minimized. We call the

problem theMinimum-Recombinant Haplotype Configuration (MRHC) problem. Although the algorithm

MRH in [21] performs very well for small pedigrees, its effectiveness scales very poorly because it runs ex-

tremely slowly on data of even moderate sizes, especially for data with biallelic markers. This is regrettable

since large SNP data sets on pedigrees are becoming increasingly interesting and SNP markers are biallelic.

In this paper, we first show that the MRHC problem is in general NP-hard and then devise an efficient

1One can make an analogy between this relationship between statistical methods and rule-based methods and the relationship

between the maximum likelihood methods and parsimony/distance methods in phylogenetic reconstruction.
2This is similar to the parsimony principle in phylogenetic reconstruction.
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iterative (heuristic) algorithm (calledblock-extension) for MRHC. Like the existing rule-based haplotyping

algorithms, our algorithm first attempts to resolve all unambiguous loci using the Mendelian law of inher-

itance. But instead of working on individual unresolved loci separately after the first step, as done in the

algorithm MRH [21], we use some sensible greedy strategy (such as avoiding double recombinants within

a small region of loci) to resolve loci that are adjacent to the previously resolved loci, resulting inblocks

of consecutive resolved loci. Our algorithm then uses the longest block in the pedigree to resolve more

unresolved loci under the minimum recombination principle. This may extend some blocks into longer

blocks. The process is repeated until no blocks can be extended. The algorithm then fills the remaining

gaps between blocks in each member by considering the haplotype information about the other members of

the same nuclear family. The time complexity of the above algorithm isO(dmn), wheren is the size of

the pedigree,m the number of loci, andd the largest number of children in a nuclear family. Observe that

MRH runs inO(2dm3n2) time [21]. Our preliminary experimental results demonstrate that the algorithm is

much more efficient than the algorithm MRH because loci can be resolved much more quickly when they

are considered together as blocks than when they are considered separately.

We also consider the special case of haplotype reconstruction where no recombinants are assumed. This

special case is interesting not only because its solution may be useful for solving the general MRHC problem

as a subroutine but also because the frequency of recombinants is expected to be close to0 when a small

(or moderately large) region of genomic DNA is considered [9, 16]. We present an algorithm to identify all

0-recombinant haplotype configurations consistent with the input data. The running time of the algorithm

is polynomial in the input size and the number of consistent0-recombinant haplotypes. Previously, only an

exponential-time algorithm based on exhaustive enumeration was known [16]. Our algorithm first identifies

all necessary (and sufficient) constraints on the haplotype configurations derived from the Mendelian law

and the zero recombinant assumption, represented as a system of linear equations on binary variables over

the cyclic groupZ2 (i.e. integer additionmod 2), and then solves the equations to obtain all consistent

haplotype configurations satisfying the constraints, using a simple method based on Gaussian elimination.

These consistent haplotype configurations are shown to be feasible0-recombinant solutions.3

A C++ implementation of the block-extension algorithm, called PedPhase, has been tested on both

simulated data and real data. The results on simulated data using three pedigree structures demonstrate that

the block-extension algorithm runs very fast. For example, for 100 runs on a pedigree with 29 members

and 50 marker loci, it uses less than 1 minute for both multi-allelic and biallelic data on a Pentium PC. In

contrast, the program MRH (version 0.1) of Qian and Beckmann [21] requires 3 to 4 hours on the same data

sets with multi-allelic genotype information. On the data sets with biallelic genotypes, we observed that

MRH would need more than 20 hours for each run. In fact, the authors have recently told us that [20] MRH

3The zero recombinant assumption has been used in studies on both population data ([9]) and pedigree data (this paper). How-

ever, the assumption concerning a population data requires that there have been no recombination events ever since the single

ancestral haplotype generating the population. Here, we only require that recombination events did not occur among the genera-

tions in a single pedigree. Since a pedigree typically spans a much smaller time period than the evolution of an entire population in

the field of biology, the zero recombinant assumption concerning a pedigree is perhaps more realistic.
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in general cannot handle data of such a (moderately large) size, especially when the genotypes are biallelic.

In terms of performance (i.e. accuracy of the reconstructed haplotype configuration), MRH generally gives

better results than PedPhase whenever it was able to handle the input data, because of its exhaustive search

on individual locus. However, in most cases, the results of PedPhase were comparable. For multi-allelic

genotypes, PedPhase was able to recover correct haplotype configurations in more than 90% of the cases. In

particular, for data requiring zero recombinants, PedPhase could recover the correct solutions in almost all

cases. PedPhase also performed very well on the moderately large biallelic data sets involving small numbers

of recombinants that MRH could not handle. We further compared the performance of PedPhase, MRH and

an EM algorithm on a real dataset that consists of 12 multi-generation pedigrees from [8]. We focused

on a randomly selected human chromosome consisting of 10 blocks that span 618k base pairs (bps). The

results show that both rule-based haplotyping methods (PedPhase and MRH) were able to discover almost

all commonhaplotypes (frequency> 5%) that were inferred by the EM algorithm in [8]. The haplotype

frequencies estimated from the haplotype results of PedPhase and MRH (by simple counting) are very close

to the estimations of the EM algorithm. For most of the blocks (> 85%), both PedPhase and MRH were

able to find haplotype configurations with 0 recombinants. The results show that rule-based haplotyping

methods such as PedPhase and MRH could be very useful for large scale haploptying projects on pedigree

data because they obtain results (i.e. common haplotypes) similar to those of EM algorithms and run much

faster than EM algorithms.

The rest of this paper is organized as follows. We first introduce the biological significance of the

MRHC problem and some directly related biological concepts and terminology. This is followed by a

formal definition of the problem and the computational complexity result. The two (block-extension and

0-recombinant) algorithms are presented in sections 3 and 4. After showing the experimental results in

section 5, we conclude the paper with some remarks about possible future work in section 6.

2 The MRHC problem and its NP-hardness

In this section, we first give a formal definition of the MRHC problem, including the necessary biological

background, and then prove that the problem is NP-hard even if the input pedigree data contains only two

loci.

Definition 2.1 A pedigree graph is a connected directed acyclic graph (DAG)G = {V, E}, whereV =
M ∪ F ∪N , M stands for the male nodes,F stands for the female nodes,N stands for the mating nodes,

andE = {e = (u, v): u ∈ M ∪F andv ∈ N or u ∈ N andv ∈ M ∪F}. M ∪F are called the individual

nodes. The in-degree of each individual node is at most1. The in-degree of a mating node must be2, with

one edge starting from a male node (called father) and the other edge from a female node (called mother),

and the out-degree of a mating node must be larger than zero.
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In a pedigree, the individual nodes adjacentto a mating node (i.e. they have edges from the mating

node) are called thechildrenof the two individual nodes adjacentfrom the mating node (i.e. the father and

mother nodes, which have edges to the mating node). The individual nodes that have no parents (in-degree

is zero) are calledfounders. For each mating node, the induced subgraph containing the father, mother,

mating, and child nodes is called anuclear family. A parents-offspring trioconsists of two parents and one

of their children. Amating loopis a cycle in the graph if the directions of edges are ignored. Figure 1

shows an illustration of an example pedigree that highlights mating nodes on top of a conventional drawing

of the pedigree (where the mating nodes are omitted). For convenience, we will use conventional drawings

of pedigrees throughout the paper. Figure 9 shows a pedigree with a mating loop.4

3−2

3−3 3−4 3−5 3−6 3−7 3−8

3−11 3−12 3−13 3−14 3−15 3−9 3−10

3−1

Figure 1: An illustration of a pedigree with 15 members. A square represents a male node,

a circle represents a female node, and a solid (round) node represents a mating node. The

children (e.g.3-3, 3-5 and 3-7) are placed under their parents (e.g.3-1 and 3-2).

The genome of an organism consists ofchromosomesthat are double strand DNA. Locations on a chro-

mosome can be identified usingmarkers, which are small segments of DNA with some specific features. A

position of markers on the chromosome is called amarker locusand a marker state is called anallele. A

set of markers and their positions define agenetic mapof chromosomes. There are many types of mark-

ers. The two most commonly used markers are microsatellite markers and SNP markers. Different sets of

markers have different properties, such as the total number of different allelic states at one locus, frequency

of each allele, distance between two adjacent loci,etc. A microsatellite marker usually has several differ-

ent alleles at a locus (calledmulti-allele) while an SNP marker can be treated as abiallele, which has two

alternative states. The average distance between two SNP marker loci is much smaller than the average dis-

tance between two microsatellite marker loci, thus making SNP markers superior to other markers in gene

fine-mapping.

In diploid organisms, chromosomes come in pairs. The status of two alleles at a particular marker

locus of a pair of chromosomes is called amarker genotype. The genotype information of a locus will be

denoted using a set,e.g. {a, b}. If the two alleles are the same, the genotype ishomozygous. Otherwise it

is heterozygous. A haplotypeconsists of all alleles, one from each locus, that are on the same chromosome.

Figure 2 illustrates the above concepts.

4The pedigree diagrams in this paper were generated using WPEDRAW [3].
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Figure 2: The structure of a pair of chromosomes from a mathematical point of view.

The Mendelian law of inheritance states that the genotype of a child must come from the genotypes of its

parents at each marker locus. In other words, the two alleles at each locus of the child have different origins:

one is from its father (which is called thepaternalallele) and the other from its mother (which is called the

maternalallele). Usually, a child inherits a complete haplotype from each parent. However,recombination

may occur, where the two haplotypes of a parent get shuffled due to a crossover of chromosomes and one of

the shuffled copies is passed on to the child. Such an event is called a recombination event and its result is

called arecombinant. Since markers are usually very short DNA sequences, we assume that recombination

only occurs between markers. Figure 3 illustrates an example where the paternal haplotype of member 3 is

the result of a recombinant.

1|2
3|1

2|2
2|2

1|2
1|2

1|2
3|2

1 2

43

Figure 3: An example recombination event. The notationi|j means that the haplotype

information at the locus has been resolved, and we know that allelei is from the father and

allelej is from the mother.

Alleles are denoted using (identification) numbers, as shown in Figure 2. We usePS (parental source)

to indicate which allele comes from which parent at each locus. The PS value at a heterozygous locus

can be−1, 0 or 1, where−1 means that the parental source is unknown,0 means that the allele with the

smaller identification number is from the father and the allele with the larger identification number is from

the mother, and1 means the opposite. The PS value will always be set as0 for a homozygous locus. A locus

is PS-resolvedif its PS value is0 or 1. For example, both loci of member 4 in Figure 3 are PS-resolved and

their PS values are0 and1, respectively.

For convenience, we will useGS (grand-parental source)to indicate if an allele at a PS-resolved locus

comes from a grand-paternal allele or a grand-maternal allele. Similar to a PS value, a GS value can also

be−1, 0 or 1. The PS and GS information can be used to count the number of recombinants as follows.
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For any two alleles that are at adjacent loci and from the same haplotype, they induce arecombinant(or

recombination event) if their GS values are0 and1. An alleleGS-resolvedif its GS value is0 or 1. A locus

is GS-resolvedif both of its alleles are GS-resolved.

Definition 2.2 A haplotype configuration of a pedigree is an assignment of nonnegative values to the PS of

each locus and the GS of each allele for each member of the pedigree that is consistent with the Mendelian

law.

Hence a haplotype configuration not only fully describes the haplotypes in the members of the pedigree,

it also describes the origin of each allele on the haplotypes. The following problem, called MRHC in the

above, has been studied in [21, 26]:

Definition 2.3 Given a pedigree graph and genotype information for each member of the pedigree, find a

haplotype configuration for the pedigree that requires the minimum number of recombinants.

The following lemma shows that it suffices to compute only the required PS values in MRHC, because

the corresponding GS values can be easily determined to minimize the number of recombinants once the PS

values are given. However, we will need use both PS and GS values in one of our algorithms for convenience.

Lemma 2.4 Given an instance of MRHC and the PS value for each locus of each individual, the GS value

of each allele to achieve the minimum number of recombinants can be computed inO(mn) time, wherem

is the number of loci andn is the number of individuals in the input pedigree.

Proof: We can consider each parent and child relationship, and figure out an optimal assignment of GS

values to the paternal (or maternal) alleles in the child by a simple dynamic programming algorithm.

Unfortunately, we can prove that MRHC is NP-hard and thus does not have a polynomial-time algorithm,

unless P = NP. We note in passing that NP-hardness results were recently shown for several formulations of

pedigree analysis in [1, 19].

Theorem 2.1 MRHC is NP-hard.

We prove the theorem by two lemmas. First, recall that the problem ofexact coverby 3-sets where no

element of the universe occurs in more than 3 input subsets (denoted as 3XC3, also called3-dimensional

matching) is NP-hard [2]. Here we need consider a stronger version of 3XC3, denoted as 3XCX3, where

each element of the universe occurs in exactly 3 input subsets. Lemma 2.5 shows that the 3XCX3 problem

is NP-hard by a reduction from 3XC3. We then show in Lemma 2.6 that even with two loci, MRHC is

NP-hard by a reduction from 3XCX3.

Lemma 2.5 3XCX3 is NP-hard.
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Proof: The reduction is from 3XC3, which is known NP-hard [2]. Recall that for an instance of 3XC3,

we have a setX of 3q elements and a collectionC of n 3-element subsets ofX where each element ofX

occurs in at most 3 subsets. We want to construct an instance of 3XCX3 such that each element occurs in

exactly 3 subsets. Without loss of generality, let us assume that each element inX occurs in at least two

subsets. Lets denote the number of elements occurring in exactly 3 subsets andt denote the number of

elements only occurring in 2 subsets. We have3s + 2t = 3n. Thus,t must be a multiple of 3 and we

can group the elements occurring in 2 subsets so that each group has 3 such elements. For a group of three

elementsa, b andc, construct four new 3-subsets{a, x, y}, {b, y, z}, {c, z, x} and{x, y, z}, wherex, y, z

are new elements. This guarantees each element ofX appears in exactly three subsets. It is easy to see

the one-to-one correspondence between a solution of the 3XC3 instance and a solution of the constructed

3XCX3 instance.

The next lemma shows that MRHC on pedigrees with 2 loci (denoted as MRHC2) is NP-hard.

Lemma 2.6 MRHC2 is NP-hard.

Proof: We reduce 3XCX3 to MRHC2. LetS1, S2, ..., Sn be then 3-element subsets andX (|X| = n = 3q)

the universe of a 3XCX3 instance. We construct a pedigree with genotype information at both loci. Both

loci are biallelic and we denote the alleles as{1, 2}. For convenience, let us first ignore the gender of each

individual node in the construction. For each subsetSi, we construct an (individual) node, still denoted by

Si. All such nodes have the same genotypes{1,2} at both loci. Suppose that an elementa of X is contained

in subsetsS1, S2 andS3. We include a small pedigree that consists of the nodes created fromS1, S2 andS3

(which we call theS-nodes) and some other nodes (which we will callA, B, C, D-nodes) as their relatives.

Some of theA, B, C, D-nodes will be forced to have certain haplotype configurations by setting their and

their relatives’ (more precisely, mates’ and children’s) genotypes carefully (more details will be discussed

below). Here, a forced haplotype configuration is theuniqueconfiguration that would minimize the number

of recombinants required for the small gadget pedigree as well as for the whole pedigree. Let
[

a1 b1
a2 b2

]
mean

that allelesa1 anda2 form a haplotype andb1 andb2 form the other haplotype of some individual. Call such

a configuration ahaplotype grouping. 5

The purpose of the gadget pedigree shown in Figure 4 is to force exactly one of theS-nodes to have

haplotype grouping
[

1 2

2 1

]
(via a recombination from its parents) and the other two to have haplotype group-

ings
[

1 2

1 2

]
. The one with haplotype

[
1 2

2 1

]
will correspond to the subsetSi that is included in the solution of

3XCX3 coveringa. In the small pedigree,S1 andS2 mate and have four child nodesC1, C2, C3 andC4.

We forceC1 to have haplotype grouping
[

1 2

1 2

]
, andC2 andC3 to have haplotype groupings

[
1 2

2 2

]
. To force

C1 to have the desired haplotype grouping, we could construct some new individuals as relatives (mate and

children) ofC1 so that the desired haplotype grouping will benefit the whole pedigree. For example, we can

5Note that, this notation only shows the two haplotypes instead of the actual haplotype configuration. However, based on the

minimum recombinant principle, we can easily compute an optimal haplotype configuration from such a grouping in the reduction.

Thus, for convenience, we will treat
[

a1 b1
a2 b2

]
as a haplotype configuration in this proof.

8



create a mate ofC1 (not shown in the figure) that has genotypes{1,1} on both loci. We also create some

constant number of children ofC1 (all of them are represented by the polygon connected withC1 in Fig-

ure 4), all with genotypes{1,2} on both loci. This will forceC1 to have the desired haplotype grouping in

order not to incur any recombinants in its sub-pedigree. EachSi has two parentsAi andBi with genotypes

{1,2} on both loci. Their haplotype groupings are forced to be
[

1 2

1 2

]
(by including some constant number

children with genotypes{1,1} on both loci, not shown in the figure). TheA- andB-nodes are introduced to

minimize the number ofS-nodes that are assigned the haplotype grouping
[

1 2

2 1

]
.

1/2
2/1

1/2
1/2

1/2
2/2

1/2
2/2

1/2
2/1

1/2
2/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

C1 C2 C3 C4 S3

D1

S2S1

B1A1 B2A2

A3 B3

Figure 4: The gadget pedigree for an element ofX and the three subsets containing the

element. A• indicates an individual node. A◦ indicates a mating node. A× indicates

a recombination event. A / between two alleles indicates the haplotype grouping without

specifying the PS value.

Let us assume thatC4 has genotypes{1,2} on both loci, and produces a childD1 with S3. We forceD1

to have the haplotype grouping
[

1 2

2 2

]
(D1’s mate and children are not shown in Figure 4). Without consider-

ing the order, there are three haplotype groupings forS1 andS2, namely,
[

1 2

1 2

]
×

[
1 2

1 2

]
,
[

1 2

1 2

]
×

[
1 2

2 1

]
and

[
1 2

2 1

]

×
[

1 2

2 1

]
. There are two possible haplotype groupings forS3, i.e.

[
1 2

2 1

]
or

[
1 2

1 2

]
. By examining the six com-

binations of the above assignments, we know that if only one of the threeS-nodes has haplotype grouping[
1 2

2 1

]
and the other two have haplotype groupings

[
1 2

1 2

]
, the above little gadget pedigree can be resolved with

just two recombinants on theC-nodes and one recombinant on theS-nodes. The latter recombinant may

also be “shared” by two other gadget pedigrees corresponding to two elements ofX. Figure 4 illustrates

such a possible haplotype (grouping) assignment with two recombinants on theC-nodes. (The actual PS

and GS values are not shown in the figure, although they can be easily determined.) Otherwise, the gadget

pedigree would require at least three recombinants on theC-nodes. The above construction does not take

into account the gender of each individual, especially that of anS-node. To solve the gender problem, we

duplicate every gadget pedigree constructed above. (Actually, we need only duplicate theS-nodes, although
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there is no harm to duplicate theC-nodes andD-nodes.) So, there are two nodes for eachSi. We make one

male and the other one female. Thus we could arrange any twoS-nodes to be of opposite genders whenever

they have a mating relation. The only thing left is that we need make sure that the two nodes for eachSi

must always have the same haplotype assignments. For this, we can construct another small gadget pedigree

for each such pairs ofS-nodes. Let these two nodes mate and have two childrenE1 andE2. BothE1 and

E2 have the same genotypes{1,2} at both loci. We can see that only if the two parent nodes have the same

pair of haplotypes (not necessarily with the same PS values), the small pedigree can be realized with zero

recombinants. Otherwise, at least two recombinants would be needed. This constraint is also illustrated

in Figure 6 (picture on the right).

The above construction can be completed in polynomial time. It is easy to prove that an exact cover of

X corresponds to a haplotype configuration of the above pedigree with(3q · 2 + q) · 2 = 14q recombinants,

and vice versa. Hence, 3XCX3 reduces to MRHC2, and MRHC2 is NP-hard.

The above reduction uses pedigrees with mating loops (which are formed when the gadget pedigrees in

Figure 4 are “glued” together through theS-nodes). Very recently, K. Doi proved that MRHC is NP-hard

even if the input pedigree structure has no mating loops, by a reduction from MAX CUT [5]. However, the

reduction requires pedigrees with unbounded degrees and numbers of loci.

3 An efficient iterative algorithm for MRHC

Because of the NP-hardness of MRHC, it is unlikely to find an efficient algorithm to solve MRHC exactly.

We thus propose an iterative heuristic algorithm for MRHC, called theblock-extensionalgorithm. Here, a

block means a consecutive sequence of resolved loci of some individual. The basic idea of the algorithm

is to partition the loci in each member of the pedigree into blocks after applying the Mendelian law and

some simple greedy strategy (such as avoiding double recombinants within a small region of loci). It then

repeatedly uses the longest haplotype block in the pedigree to extend other blocks (in other members) by

resolving unresolved loci based on the minimum recombination principle. This approach may potentially

be more efficient than the algorithm MRH from [21], especially when the number of required recombinants

is small, because multiple loci are resolved simultaneously instead of separately. More precisely, the block-

extension algorithm is based on the following observations:

Observation 1:Long haplotype blocks are common in human genomes [4, 8, 10]. Few or zero recombi-

nants are expected within these blocks. In our simulation study, we have also observed a lot of long blocks

in each member of the pedigree after applying the Mendelian law.

Observation 2:Shared haplotype blocks among siblings are strong evidence that no recombination

should occur on those siblings based on the assumption that recombinants are rare in a pedigree. Thus, these

haplotype blocks shared by siblings should also exist in their parents. It is therefore reasonable to use blocks

in children to resolve the corresponding loci in their parents.
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Observation 3:Double recombinants are very rare within a small region. Once we know that two

nonadjacent alleles on a haplotype block have the same GS value, the alleles of the block sandwiched by the

two alleles should have the same GS value. Otherwise, double recombinants would occur.

Observation 4:It is sometimes possible to determine that some individuals must involve recombinants.

We may be better off to leave these individuals until the last.

We now describe the block-extension algorithm in more detail. The main steps of the algorithm are also

illustrated by an example. The algorithm has 5 steps. Assume that the input genotype data is consistent

with Mendelian law. (One can use the genotype-elimination algorithm of O’Connell’s [17, 18] to check

Mendelian consistency, although Acetoet al. [1] recently showed that consistency checking in general is

NP-complete.) Note that, although it suffices to focus on the PS values by Lemma 2.4, we will use both PS

and GS in the algorithm for the convenience of presentation.

Step 1:Missing genotype imputing by the Mendelian law. We scan the whole pedigree bottom-up and

consider the nuclear families one by one. For each parent that has missing data, we check if there is an allele

in any of its children that does not appear in its mate whose genotype is known. We may also impute some

missing alleles in a child/parent when the alleles of a parent/child at some homozygous locus do not appear

in the child/parent’s genotype. But, only part of the missing data may be imputed by this method. More

missing data in founders can be imputed by first counting the allele frequency and then randomly sampling

according to the allele distribution. Missing data in children are then determined by randomly sampling

from their parents.

Step 2:PS and GS assignments by the Mendelian law. By a top-down scan, we try to resolve all loci

that have unambiguous PS and/or GS values under the Mendelian law. For the founders of the pedigree, we

can resolve all their homozygous loci and one arbitrary heterozygous locus by setting the PS and GS values

of all these loci to be 0. To resolve a locus in a non-founder, let us consider each parents-offspring trio.

There are two rules we can use to resolve loci in the child: 1) if there is at least one parent of the trio that is

homozygous at this locus, we can resolve PS value of the locus in the child, and 2) if there is an allele in the

child that differs from both alleles in one parent, it must come from the other parent. Here, we may also be

able to determine the GS values of some alleles in the child using the PS information at the parents.

By running these two steps, we should get similar results as running the first two steps of MRH. But our

method is much simpler than MRH. There are more than 40 (detailed) rules [21] used in MRH for missing

data imputing and PS and GS assignments.

Step 3:Greedy assignment of GS values. The greedy step to assign GS works in a bottom-up fashion.

We begin with a lowest nuclear family in the pedigree. For each child of the family, we check if the child

has one or more loci whose alleles have known GS and if all the known GS values of alleles on the same

haplotype are the same (which means that at least by now, there is no evidence that recombinants exist in

this child). Otherwise, just mark this child as processed and continue on with other children until we find

such a child. Based on the known GS information, the GS values of nearby alleles in the child will be

assigned according to the following rules. Assume that we know the GS of one (e.g. paternal) allele at the
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ith locus of the child, and we want to set the GS of its paternal allele at the(i + 1)th locus. We check if any

of the child’s or the father’s(i + 1)th loci have been PS-resolved. If neither of them are PS-resolved, we

cannot assign the GS. If the child is PS-resolved and the father is homozygous, we set the GS of the paternal

allele of the child at the(i + 1)th locus equal to the GS of the paternal allele at theith locus. If the child

is PS-resolved but the father is PS-unresolved (and thus heterozygous), we will try the two alternative GS

assignments for the paternal allele of the child at locusi + 1. Each assignment would force the PS value

of the father at locusi + 1 thus resolve its PS. Then we count the numbers of recombinants between locii

andi + 1 within the nuclear family for these two choices, and select the one with fewer recombinants. If

the child is not PS-resolved at locusi + 1, but the parent is PS-resolved, we consider the two alternative PS

(and thus GS) assignments for the child at locusi + 1, and select the one with fewer recombinants. If the

numbers of recombinants for the two alternative assignments are equal, we do nothing. After each known

GS value has been processed, we mark the child as processed and continue on with other children in this

nuclear family. During the process, if we see that two non-adjacent alleles on the paternal (or maternal)

haplotype have the same GS, we will assign alleles from the same haplotype sandwiched by the two alleles

the same GS value as mentioned in observation 3. Once this nuclear family is finished, we continue the GS

assignment in another nuclear family by a bottom-up scan.

Step 4:Block-extension. Find a longest haplotype block in some member of the pedigree consisting of

alleles with the same GS value. We use this haplotype block to resolve the corresponding loci in the first

degree relatives (children and parents) of the member. Each decision on a locus will be made by counting the

numbers of recombinants in the nuclear family resulted by the two alternative PS assignments of the locus.

The assignment with the smaller number of recombinants will be selected. Recently resolved members will

be used to resolve their first degree relatives again, and this is continued so that every member in the pedigree

will be processed with respect to this block. During this process, the haplotype block in some members may

overlap with other blocks thus the longest block may get extended to result in longer blocks. We repeat the

above process with the current longest block that has not be considered yet, until no blocks can be extended.

Step 5:Finishing the remaining gaps. After step 4, it is still possible that there are some gaps of PS-

unresolved loci between blocks. Such gaps may exist only when the input data contain special patterns. For

example, at some locus, all the members of the pedigree are heterozygous or contain missing data. Another

possible scenario is that for some three adjacent loci, no members of the pedigree have two adjacent PS-

resolved loci. If we assume that alleles occur with the same frequency at a locus, it is not difficult to see

that the probability that we have the above scenarios is very small. (These situations never happened in

our simulation study.) When a gap does occur, the algorithm would pick an unresolved locus, compare two

alternative PS-assignments within a nuclear family at the locus and select the one that gives the smaller

number of recombinants. Hopefully this assignment will extend some blocks, and we will repeat steps 3-5

again until all gaps are filled.

Figure 5 illustrates the main steps of the above algorithm using a simple example. Since the input

pedigree and genotype information, as given in (A), have no missing data, we skip step 1. (B) shows the
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result of step 2. In step 3, since we know the GS values of the alleles at the first locus of member 3-3, we

assign the adjacent alleles (at loci 2 to 4) the same GS value. This forces locus 2 at both parents of member

3-3 to be PS-resolved. The result of step 3 is shown in (C). In step 4, we use the longest block (loci 1 to

4 in member 3-1) to help resolve the same region in member 3-4 (by consulting the corresponding region

in member 3-2). This results in a longer block in member 3-4 as shown in (D). We then use the longest

block in member 3-4 to help resolve loci 5 and 6 in members 3-1 and 3-2 and the blocks in members 3-1

and 3-2 to help resolve locus 5 in member 3-3, as shown in (E). In step 5, we consider the two alternative

PS assignments for locus 7 in member 3-1. For each such assignment, we calculate the best PS assignments

for locus 7 in the other members of the same nuclear family (i.e. members 3-2, 3-3, and 3-4) in order to

minimize the number of recombinants required. The assignment shown in (F) turns out to be the best choice,

and the final haplotype configuration is shown in (G), which happens to require one recombinant.

Theorem 3.1 Let n denote the size of the pedigree,m the number of loci, andd the largest number of

children in a nuclear family. The block-extension algorithm runs inO(dmn) time.

Proof: The worst-case time complexity of the algorithm can be analyzed as follows. The first step only

involves a bottom-up scan and thus runs inO(dmn) time, because each nuclear family is visited exactly

once and for each nuclear family, we may spend at mostO(dm) time to impute missing data in the nuclear

family. Similarly, steps 2 and 3 run inO(dmn) time each. In step 4, each locus is involved in at most one

block extension operation. Since there are totallymn loci and the time for setting the PS value at a locus is

at mostO(d), this step also takesO(dmn) time. In step 5, every time we fix the PS value of an unresolved

locus, we spendO(d) time and then call steps 3 and 4 to see if more loci can be resolved. Hence, it takes at

mostO(d) time to resolve a locus in this step, and step 5 takes at mostO(dmn) time totally. In summary,

the block-extension algorithm runs inO(dmn) time.

4 A constraint-based algorithm for 0-recombinant data

As a heuristic, the above block-extension algorithm does not always compute an optimal solution for MRHC,

especially when the number of required recombinants increases. One of our ultimate objectives is to design

an algorithm that runs fast enough on real data and always gives an optimal or almost optimal haplotype

configuration, even if its running time is exponential in the worst case. Our first attempt is an efficient

(polynomial-time) algorithm to compute all possible haplotype assignments involving no recombinants.

Not only will the algorithm be useful for solving 0-recombinant data (i.e. data that can be interpreted with

zero recombinants, which are common for organisms like human as mentioned in the introduction), it may

also serve as a subroutine in a general algorithm for MRHC.

We consider only data that has no missing genotypes.6 Observe that finding a haplotype configuration

6The Mendelian consistency can be easily checked in this case and thus we present the algorithm assuming the input data are

Mendelian consistent.
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3-1
1 2         
1 2         
2 2         
1 1         
2 1         
1 1         
2 1         
1 1         

3-2
1 2         
1 2         
2 2         
2 2         
1 2         
1 2         
2 1         
1 1         

3-3
1 1         
1 1         
2 2         
2 1         
2 1         
1 1         
2 1         
1 1         

3-4
2 1         
1 2         
2 2         
1 2         
2 2         
2 1         
2 1         
1 1         

A

3-1
1|2(0,0)    
1 2         
2|2(0,0)    
1|1(0,0)    
2 1         
1|1(0,0)    
2 1         
1|1(0,0)    

3-2
1|2(0,0)    
1 2         
2|2(0,0)    
2|2(0,0)    
1 2         
1 2         
2 1         
1|1(0,0)    

3-3
1|1(0,0)    
1|1(-1,-1)  
2|2(-1,-1)  
1|2(-1,-1)  
2 1         
1|1(-1,-1)  
2 1         
1|1(-1,-1)  

3-4
2 1         
1 2         
2|2(-1,-1)  
1|2(-1,-1)  
2|2(-1,-1)  
1|2(-1,-1)  
2 1         
1|1(-1,-1)  

B

3-1
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
1|1(0,0)    
2 1         
1|1(0,0)    
2 1         
1|1(0,0)    

3-2
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
2|2(0,0)    
1 2         
1 2         
2 1         
1|1(0,0)    

3-3
1|1(0,0)    
1|1(0,0)    
2|2(0,0)    
1|2(0,0)    
2 1         
1|1(-1,-1)  
2 1         
1|1(-1,-1)  

3-4
2 1         
1 2         
2|2(-1,-1)  
1|2(-1,-1)  
2|2(-1,-1)  
1|2(-1,-1)  
2 1         
1|1(-1,-1)  

C

3-1
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
1|1(0,0)    
2 1         
1|1(0,0)    
2 1         
1|1(0,0)    

3-2
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
2|2(0,0)    
1 2         
1 2         
2 1         
1|1(0,0)    

3-3
1|1(0,0)    
1|1(0,0)    
2|2(0,0)    
1|2(0,0)    
2 1         
1|1(-1,-1)  
2 1         
1|1(-1,-1)  

3-4
1|2(0,1)    
1|2(0,1)    
2|2(-1,-1)  
1|2(-1,-1)  
2|2(-1,-1)  
1|2(-1,-1)  
2 1         
1|1(-1,-1)  

D

3-1
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    
2 1         
1|1(0,0)    

3-2
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
2|2(0,0)    
1|2(0,0)    
1|2(0,0)    
2 1         
1|1(0,0)    

3-3
1|1(0,0)    
1|1(0,0)    
2|2(0,0)    
1|2(0,0)    
2|1(0,0)    
1|1(0,0)    
2 1         
1|1(-1,-1)  

3-4
1|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2 1         
1|1(-1,-1)  

E

3-1
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    

3-2
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
2|2(0,0)    
1|2(0,0)    
1|2(0,0)    
2 1         
1|1(0,0)    

3-3
1|1(0,0)    
1|1(0,0)    
2|2(0,0)    
1|2(0,0)    
2|1(0,0)    
1|1(0,0)    
2 1         
1|1(-1,-1)  

3-4
1|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2 1         
1|1(-1,-1)  

F

3-1
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    

3-2
1|2(0,0)    
1|2(0,0)    
2|2(0,0)    
2|2(0,0)    
1|2(0,0)    
1|2(0,0)    
1|2(0,0)    
1|1(0,0)    

3-3
1|1(0,0)    
1|1(0,0)    
2|2(0,0)    
1|2(0,0)    
2|1(0,0)    
1|1(0,0)    
2|1(0,0)    
1|1(0,0)    

3-4
1|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2|2(0,1)    
1|2(0,1)    
2|1(0,0)    
1|1(0,0)    

G

Figure 5: An illustration of the block-extension algorithm. The blank between two alleles

at a locus indicates that the locus is PS-unresolved. Again, a| indicates that the locus is

PS-resolved. For a PS-resolved locus, we use two numbers in parentheses to indicate the

GS values of the paternal and maternal alleles.
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is equivalent to reducing the degree of freedom in the PS/GS assignment for each locus/allele in every

individual. We may thus find all necessaryconstraintson the PS/GS assignments first so that the freedom

left is reallyfree(i.e. the choices will always lead to0-recombinant haplotype configurations). Then we can

simply enumerate all haplotype configurations satisfying the constraints.

We define four levels of constraints. The first level of constraints are the strongest and specify specific

nonnegative values for the involvedalleles (i.e. these alleles are GS-resolved). The second level of con-

straints specify specific nonnegative values for the involvedloci (i.e. these loci are PS-resolved). The last

two levels of constraints are concerned withtwo loci. The third level of constraints describe what alleles

should be on the same haplotype inone memberwithout specifying the actual PS values. For example, in

Figure 6 (left), the PS-resolved loci in member 3 forces the parents have the same haplotype grouping in

order to obtain a solution without recombinants, although we do not know the actual PS of the two haplo-

types in the grouping. The forth level constraint are the weakest. Each level 4 constraint is concerned with

the relationship between the haplotype groupings in somedifferent individuals(i.e. parent-child or mates)

at two loci, although it does not specify the actual haplotype grouping. For example, in Figure 6 (right), the

three members of the parents-offspring trio should either all have the haplotype grouping
[

1 2

1 2

]
or all have the

haplotype groupings
[

1 2

2 1

]
, in order not to incur any recombinant in the trio. But, we do not have information

to determine which case must hold. All possible types of level 3 and level 4 constraints will be listed below.

1/2

1/2

1|1

1|1

1 2

3

1/2
1/2

1/2
2/1

1/2
2/1

4 5

6

1/2
2/11/2

1/2

1/2
1/2

4 5

6

1/2
1/2

1 2

1 2

4 5

1 2

6
1 2
1 2

1 2

3
1|1

2|2

Level 3 Level 4

21

2/1
1/2
2/1

1/2

Figure 6: An illustration of level 3 and level 4 constraints.

Although the first level of constraints are useful in detecting recombinants, Lemma 2.4 suggests that only

the last three levels of constraints are really necessary for computing feasible (0-recombinant) solutions. For

each locusi in memberj, we define a binary variablexi,j to represent the PS value of the locus. The basic

idea of our algorithm is to identify all the level 2-4 constraints based on the Mendelian law and the0-

recombinant assumption by examining every parents-offspring trio, and represent the constraints as linear

equations onxi,j ’s over the cyclic groupZ2. It then finds all feasible0-recombinant solutions by solving

the equations.
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x y z Constraint equations

1
[

1 2

1 2

] [
1 ∗
1 ∗

] [
1 1

1 1

]
x1 = x2

2
[

1 2

2 1

] [
1 ∗
2 ∗

] [
1 1

2 2

]
x1 + x2 = 1

3
[

1 2

2 1

] [
1 ∗
1 1

] [
1 1

2 1

]
x1 + x2 = 1

4
[

1 2

1 2

] [
1 1

1 1

] [
2 1

2 1

]
x1 = x2

Table 1: The possible level 3 constraints.

x y z Constraint equations

1
[

1 2

1 2

] [
1 2

1 2

] [
1 2

1 2

]
x1 + x2 = y1 + y2 = z1 + z2

2
[

1 2

1 2

] [
1 2

2 1

] [
1 2

1 1

]
x1 + x2 = z1, y1 + y2 + z1 = 1

3
[

1 2

1 2

] [
1 2

1 1

] [
2 1

2 1

]
x1 + x2 = z1 + z2

Table 2: The possible level 4 constraints.

More specifically, the level 2 constraints are collected locus by locus by examining every parents-

offspring trio, which is the same as step 2 of the block-extension algorithm. In order to collect level 3

and level 4 constraints in the form of linear equations on the binary PS variables, we need to consider pairs

of loci for each parents-offspring trio. Without distinguishing the two parents in a parents-offspring trio,

there are essentially four types of level 3 constraints and three types of level 4 constraints as summarized in

Tables 1 and 2. In the tables,x, y are the parents andz is the child. An * indicates any allele.x1 represents

the binary PS variable for locus 1 in memberx. These constraints are collected trio by trio.

Definition 4.1 Given the level 2-4 constraints defined above, a consistent solution is an assignment of bi-

nary values to all the PS variables that satisfies every constraint.

Clearly, every feasible0-recombinant solution is consistent. The following theorem shows that the

converse is also true.

Theorem 4.1 Every consistent solution is a feasible0-recombinant solution.

Proof: Consider a haplotype configuration that is consistent with all constraints. By Lemma 2.4, we can find

a GS assignment for each allele so that the pedigree has the minimum number of recombinants. Suppose

that the number of recombinants is not zero. Let memberB involve a recombinant between locii andi + 1
andA the corresponding parent (i.e. father) ofB. Find the largestj that j ≤ i and the smallestk that

k ≥ i + 1 such thatA is heterozygous at both locij andk. Suchj andk must exist, because otherwise we

could remove the recombinant by modifying the GS values of relevant paternal alleles inB. SinceA andB

are involved in some level 4 (or level 3 or level 2) constraint at locij andk, the consistency of the solution
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means that the PS assignments ofA andB at locij andk does not involve any recombinant between the two

loci. Hence, there must be recombinants in the paternal haplotype ofB between locij andi or between loci

i + 1 andk. We could easily modify the GS values of the paternal alleles ofB in the involved segment(s)

to reduce the number of recombinants without affecting the PS assignments, since one of the involved loci

must be homozygous. This contradicts the the assumption that the GS values were optimized.

The above constraints form a system of (sparse) linear equations over the groupZ2, which could be

solved by the classical Gaussian elimination method running in cubic time (seee.g. [24]). Since we are

dealing withZ2, a much simpler algorithm (adapted from Gaussian elimination) is presented below for the

completeness of the paper. Before we describe the algorithm, let us reduce the number of level 3 and level

4 constraints (equations) required since many of them are easily seen as redundant. For any given parents-

offspring trio, we introduce a level 3 (or level 4) constraint for a pair of locii andj if and only if at least

one of the parents is heterozygous at bothi andj and is homozygous at every locus betweeni andj. These

constraints are sufficient to guarantee a feasible solution by the proof of Theorem 4.1. Hence, each parents-

offspring trio may give rise to at most2m− 2 level 3 (or level 4) constraints, wherem is the number of loci.

If the number of individuals isn in the input pedigree, then we have at most2(m− 1)n level 3 and level 4

constraints.

Suppose that the PS variables are denoted asx1, x2, . . . , xmn. Our algorithm first removes all equations

that contain only one variable (i.e. level 2 constraints), and replaces the involved variables by their constant

PS values in other equations. This may result in more single-variable equations, and we iterate the process

until all equations contain two or more variables. We then process two-variable equations by substituting

variables with lower indices for variables with higher indices that are supposed to have equal values. The

remaining equations now have three or more variables, and we perform the general Gaussian elimination

overZ2. Suppose thatxj has the highest index among the remaining variables, and it is defined by equations:

xj = xa1 + xa2 + . . . + xap ,

xj = xb1 + xb2 + . . . + xbq ,

. . .

xj = xc1 + xc2 + . . . + xcr ,

xj = xd1 + xd2 + . . . + xds ,

wherea1, a2, . . . , ap, b1, b2, . . . , bq, c1, c2, . . . , cr, d1, d2, . . . , ds < j. We can transform the equations as

follows:

xj = xa1 + xa2 + . . . + xap ,

0 = xa1 + xa2 + . . . + xap + xb1 + xb2 + . . . + xbq ,

. . .

0 = xc1 + xc2 + . . . + xcr + xd1 + xd2 + . . . + xds .
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This leaves only one equation that definesxj in terms of other variables. We can continue this process to

remove all but one constraint equation for each of the variables in the system. If we detect any conflicts in

the process, we know that there are no feasible solutions. Any variable that is not defined by any equation

is free and can be given any PS value in a feasible solution. Thus, if there arep free variables at the end, the

total number of feasible0-recombinant solutions is2p.

The running time of the above algorithm isO(m3n3), since the above elimination process takes at most

mn iterations and each iteration takes at mostO(m2n2) time because the number of equations never grows

and the size of each equation is at mostmn.

1  
1 2         
1 2         
1 2         

2  
1 2         
1 2         
1 2         

3  
1 2         
1 2         
1 2         

4  
1 2         
1 2         
1 2         

5  
1 1         
1 2         
1 2         

6  
1 2         
1 2         
1 2         

7  
1 2         
1 2         
2 2         

Figure 7: An example to illustrate the constraint-based algorithm.

We use an example to illustrate how the above constraint-based algorithm works. The input pedigree

and genotypes are shown in Figure 7. There are 3 loci, 7 individuals and 3 parents-offspring trios. For the

first trio (1, 2, 4), we derive constraints

x1,1 + x2,1 = x1,4 + x2,4

x2,1 + x3,1 = x2,4 + x3,4

x1,2 + x2,2 = x1,4 + x2,4

x2,2 + x3,2 = x2,4 + x3,4.

For the second trio(2, 3, 5), we derive constraints

x1,2 + x2,2 = x2,5

x2,2 + x3,2 = x2,5 + x3,5

x1,3 + x2,3 = x2,5 + 1

x2,3 + x3,3 = x2,5 + x3,5.

For the third trio(5, 6, 7), we derive constraints

x1,5 = 0
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x1,7 = 0

x2,5 + x3,5 = x2,7 + 1

x1,6 + x2,6 = x1,7 + x2,7

x2,6 + x3,6 = x2,7

x3,7 = 0.

By performing the above adapted Gaussian elimination, we end up with a system of equations that define

all but7 (free) variables.

5 Preliminary experimental results

We have implemented the above block-extension algorithm as a C++ program,PedPhase, which is available

to the public upon request to either of the authors. To evaluate the performance of PedPhase, we compared

PedPhase and MRH on simulated genotype data in terms of accuracy and efficiency using three different

pedigree structures. The results show that PedPhase is comparable with MRH in terms of accuracy when the

number of recombination events is small and is much faster than MRH on large dataset (large pedigree/large

number of loci). We further compared the performance of PedPhase, MRH and an EM algorithm on a real

data set that consists of 12 multi-generation pedigrees from a recent paper [8]. The results show that both

rule-based haplotyping methods (PedPhase and MRH) could discover almost allcommonhaplotypes (i.e.

haplotypes with frequencies> 5%) that were inferred by the EM algorithm [8]. The haplotype frequencies

estimated from the haplotype results of PedPhase and MRH (by simple counting) are also similar to the

estimations by the EM algorithm. Most of the blocks (> 85%) were found by PedPhase and MRH to

have involved 0 recombinants. The assumptions and observations made in Section 3 and the minimum

recombination principle are well supported by this real dataset.

5.1 PedPhase and MRH on a simulated dataset

We compared the two programs in terms of accuracy and efficiency. For both programs, a solution is

regarded as correct if its number of recombinants is smaller or equal to the actual number of recombinants

used to generate the data.7 Three different pedigree structures were considered. One is a small pedigree

with 15 members as shown in Figure 1. The second is a middle sized pedigree with 29 members as shown in

Figure 8 and the third is a pedigree of 17 members but with a mating loop as shown in Figure 9. Both multi-

allelic (with 6 alleles per locus) and biallelic data were considered. The alleles were generated following a

uniform frequency distribution. Three different numbers of loci, namely 10, 25 and 50 were considered. The

number of recombinants used in generating each pedigree ranged from 0 to 4. For each data set, 100 copies

7Because we consider small numbers of recombinants in the simulation, the true haplotype configurations are usually optimal

solutions for MRHC. In fact, in most cases they are the unique optimal solutions.
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of random genotype data were generated. The total number of data sets used is 9000 (= 3 · 2 · 3 · 5 · 100).

However, we were not able to run MRH on all these data sets because of its speed, especially for biallelic

genotypes.

2-1 2-2

2-3 2-8 2-4 2-5 2-9 2-6 2-10 2-7 2-11

2-100 2-199 2-102 2-103 2-111 2-104 2-113 2-114 2-115 2-116 2-117

2-9097 2-9098 2-9099 2-9003 2-9004 2-9005 2-9006

Figure 8: A pedigree with 29 members.

1-1 1-2

1-3 1-4 1-5 1-6

1-9

1-7 1-8

1-13 1-14 1-15

1-10 1-11 1-12

1-16 1-17

Figure 9: A pedigree with 17 members and a mating loop.

The experimental results demonstrate that our block-extension algorithm is much faster than MRH on

both multi-allelic and biallelic data (Table 3 and Table 4). The first column of the tables shows the combina-

tion of parameters: the number of members in the pedigree, the number of loci in each member, the number

of distinct alleles allowed at each locus, and the number of recombinants used to generate the genotype

data, respectively. The time used by each program is the total time for 100 random runs for each parameter

combination, on a Pentium III with 500MHz CPU and 218MB RAM. The gap between the speeds of the

two programs is drastic, especially on biallelic data. In all cases, our program could finish 100 runs within

one minute. MRH, on the other hand, scaled very poorly. For small pedigree size or a small number of

loci, its running time was acceptable although it was much slower than our program. When the pedigree

size and the number of loci increase, MRH’s speed decreased drastically, especially on biallelic markers

that are becoming more and more popular because of SNPs. This is also true for zero-recombinant data. In
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fact, MRH cannot handle pedigrees of size 29 in general [20], although such pedigrees are only considered

moderately large in practice. On the other hand, Qian and Beckmann [21] showed that MRH is faster on

average than the genetic algorithm of Tapadaret al. [26].

Parameters Time used by the block-extension algorithmTime used by MRH

(17,10,6,0) 2.1s 1m16s

(17,10,6,4) 2.1s 2m14s

(15,25,6,0) 2.7s 28m

(15,25,6,4) 2.9s 30m

(29,10,6,0) 3.2s 6m17s

(29,10,6,4) 3.1s 8m47s

(29,25,6,0) 15s 2h58m

(29,25,6,4) 10s 3h9m

Table 3: Speeds of the block-extension algorithm and MRH on multi-allelic markers.

Parameters Time used by the block-extension algorithmTime used by MRH

(17,10,2,0) 1.9s 6m17

(17,10,2,4) 2.3s 16m16s

(15,25,2,0) 4.7s 3h43m

(15,25,2,4) 4.8s 4h44m

(29,10,2,0) 2.8s 1h3m

(29,10,2,4) 2.7s 57m

(29,25,2,0) 2.3s 28h

(29,50,2,0) 16s ≥ 20h/run

Table 4: Speeds of the block-extension algorithm and MRH on biallelic markers.

In terms of accuracy, MRH is very good (> 96% overall) whenever it is able to finish the computation,

because of its exhaustive search within a nuclear family. However, the performance of the block-extension

algorithm is comparable to that of MRH in most cases. For example, on multi-allelic data, the block-

extension algorithm could recover most haplotype configurations correctly, even when the input involves

a big pedigrees and a large number of marker loci (Table 5). For biallelic data, the performance of the

algorithm is very good when the number of required recombinants is small but becomes worse when the

number of recombinants increases (Tables 6 and 7).

5.2 PedPhase, MRH and the EM algorithm on a real dataset

We have also tested PedPhase and MRH on a public dataset from Whitehead/MIT Center for Genome Re-

search. Recently, Gabrielet al. [8] reported results on a large scale SNP haplotype block partition and

haplotype frequency estimation project. Their original dataset consists of 4 populations and 54 autosomal

regions, each with an average size of 250K bps, spanning 13.4M bps (about 0.4%) of the human genome.

Haplotype blocks were defined using the normalized linkage disequilibrium parameterD′. Within each

block, haplotypes and their frequencies were calculated via an EM algorithm. One of the populations (Eu-

ropean) has pedigree information and is of interest to us. There are totally 93 members in the European
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Parameters Percentage correctly recovered out of 100 runs

(15,50,6,0) 100

(15,50,6,4) 91

(17,50,6,0) 100

(17,50,6,4) 91

(29,10,6,0) 100

(29,10,6,4) 99

(29,25,6,0) 100

(29,25,6,4) 95

(29,50,6,0) 100

(29,50,6,1) 96

(29,50,6,2) 93

(29,50,6,3) 95

(29,50,6,4) 91

Table 5: Accuracy of the block-extension algorithm on multi-allelic markers.

Parameters Percentage correctly recovered out of 100 runs

(15,10,2,0) 100

(15,10,2,4) 96

(15,25,2,0) 98

(15,25,2,4) 78

(15,50,2,0) 100

(15,50,2,1) 82

(17,10,2,0) 97

(17,10,2,4) 92

(17,25,2,0) 100

(17,25,2,1) 84

(17,50,2,0) 100

(17,50,2,1) 72

(29,10,2,0) 95

(29,10,2,4) 93

(29,25,2,0) 100

(29,25,2,1) 91

(29,25,2,2) 87

(29,50,2,0) 100

(29,50,2,1) 88

Table 6: Accuracy of the block-extension algorithm on biallelic markers.

population, separated into 12 multi-generation pedigrees (each with 7-8 members). The genotyped regions

are distributed among all the 22 autosomes and each autosome contains 1-10 regions. We obtained the results

concerning common haplotypes and their frequencies in the European population, as given by the EM algo-

rithm, from the authors of [8]. In this paper, we focus on a randomly selected autosome (i.e. chromosome

Number of recombinants in the pedigree 0 1 2 3 4

Number of correct reconstructions out of 100 runs100 88 72 64 54

Table 7: Accuracy decreases when the number of recombination events increases for the

pedigree in Figure 8 with 50 biallelic marker loci.
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3). There are 4 regions in the chromosome 3 data and each region is partitioned into 1-4 blocks according

to [8]. The physical location and partitioned block information of each region from [8] are summarized in

Table 8. We take the genotypes of each of the 10 blocks as our initial input dataset.

Region name Physical length (kbps) Genotyped SNPs Block SNPs in each block

16a 40 14 1 5

16b 106 53 1 6

2 4

17a 186 70 1 6

2 5

3 4

4 6

18a 286 74 1 16

2 6

3 4

Table 8: The regions and blocks on chromosome 3.

We downloaded the SNP genotype data and pedigree structures from Whitehead/MIT Center for Genome

Research website (http://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.html ). The geno-

types have been preprocessed and are consistent with Mendelian law. However, as much as25% of the alleles

could be missing at a particular locus. Since the current version (version 0.1) of MRH cannot handle miss-

ing data, PedPhase is used first to impute missing alleles according to the first step in the block-extension

algorithm. Completed genotype data are then fed to MRH. Once haplotypes are inferred for the members all

pedigrees, haplotype frequencies (in the population) are estimated by simple counting. The common hap-

lotypes and their frequencies in each block, estimated by PedPhase, MRH and the EM algorithm (obtained

from the authors of [8]), are summarized in Table 9. The majority (36 out of 39) of the common haplotypes

identified by PedPhase and MRH for all blocks are the same as those of the EM algorithm. Furthermore,

for the common haplotypes shared by the three programs, all three programs gave frequencies very close to

each other. In two of the three cases where PedPhase and MRH obtained slightly different common haplo-

types (in blocks 17a-1 and 18a-2), the involved haplotypes have frequencies very close to the threshold (i.e.

5%) of common haplotypes. Only one haplotype in block 18a-1 was identified by the EM algorithm with a

frequency of 12.5% but missed by both PedPhase and MRH.

Since the pedigrees were very small, both PedPhase and MRH were very fast on this dataset. The com-

mon haplotypes given by PedPhase and MRH are always identical. PedPhase successfully reconstructed

haplotypes in all 120 (12 pedigree on 10 blocks) cases but MRH failed in 12 cases (no results were given)

for some unknown reason. Note that, PedPhase only gives one haplotype configuration for each input,

while MRH may produce multiple configurations. In this study, MRH found multiple solutions for 21 cases

and we randomly selected one for the calculation of haplotype frequencies. With regard to recombina-

tion, most pedigrees (> 85%) can be realized with 0 recombinants. PedPhase and MRH agreed with each

other on the number of recombinants in all but three cases. In one case, PedPhase found a solution with

2 recombinants and MRH gave a solution with 4 recombinants. In the other two cases, PedPhase reported
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Block EM PedPhase MRH

Common haplotypes Frequencies Common haplotypes Frequencies Common haplotypes Frequencies

16a-1 4 2 2 2 2 0.4232 4 2 2 2 2 0.3817 4 2 2 2 2 0.3779

3 4 3 4 4 0.2187 3 4 3 4 4 0.1720 3 4 3 4 4 0.1744

4 2 2 2 4 0.2018 4 2 2 2 4 0.1935 4 2 2 2 4 0.1802

3 4 2 2 4 0.1432 3 4 2 2 4 0.1613 3 4 2 2 4 0.1802

16b-1 3 2 4 1 1 2 0.8014 3 2 4 1 1 2 0.7634 3 2 4 1 1 2 0.7849

1 3 2 3 3 4 0.0833 1 3 2 3 3 4 0.0753 1 3 2 3 3 4 0.0753

16b-2 4 1 2 2 0.5410 4 1 1 2 0.4892 4 1 1 2 0.4826

2 3 3 4 0.2812 2 3 3 4 0.2581 2 3 3 4 0.2616

2 3 3 2 0.1562 2 3 3 2 0.1344 2 3 3 2 0.1512

17a-1 3 1 3 4 4 4 0.3403 3 1 3 4 4 4 0.3172 3 1 3 4 4 4 0.3226

1 3 3 2 4 2 0.3021 1 3 3 2 4 2 0.2419 1 3 3 2 4 2 0.2473

3 3 2 4 2 4 0.1354 3 3 2 4 2 4 0.0914 3 3 2 4 2 4 0.0914

3 3 3 4 4 4 0.1021 3 3 3 4 4 4 0.1183 3 3 3 4 4 4 0.1183

3 3 2 4 4 4 0.0681 3 3 2 4 4 4 0.0806 3 3 2 4 4 4 0.0806

1 3 3 2 4 4 0.0521

17a-2 2 3 2 4 2 0.3542 2 3 2 4 2 0.2903 2 3 2 4 2 0.2903

3 3 4 2 4 0.3333 3 3 4 2 4 0.2957 3 3 4 2 4 0.3118

3 3 4 4 2 0.1458 3 3 4 4 2 0.1344 3 3 4 4 2 0.1237

3 4 4 4 4 0.1250 3 4 4 4 4 0.1452 3 4 4 4 4 0.1452

17a-3 4 4 3 1 0.4129 4 4 3 1 0.4355 4 4 3 1 0.4167

3 1 1 2 0.2813 3 1 1 2 0.2258 3 1 1 2 0.2051

4 1 3 1 0.2363 4 1 3 1 0.1935 4 1 3 1 0.2115

4 1 3 2 0.0696 4 1 3 2 0.0753 4 1 3 2 0.0705

17a-4 3 4 4 1 2 4 0.3854 3 4 4 1 2 4 0.3710 3 4 4 1 2 4 0.4429

2 3 2 4 3 2 0.3333 2 3 2 4 3 2 0.2903 2 3 2 4 3 2 0.2357

3 4 2 4 2 4 0.2500 3 4 2 4 2 4 0.1881 3 4 2 4 2 4 0.1857

18a-1 1444231214144132 0.2697 1444231214144132 0.2473 1444231214144132 0.1706

1444111214144132 0.2396 1444111214144132 0.2151 1444111214144132 0.2357

1444131214144132 0.1887 1444131214144132 0.2204 1444131214144132 0.2176

4222133313412211 0.1250

1444231234144132 0.0833 1444231234144132 0.0699 1444231234144132 0.0764

18a-2 3 1 2 4 4 2 0.4967 3 1 2 4 4 2 0.4892 3 1 2 4 4 2 0.4765

1 3 2 4 3 4 0.2604 1 3 2 4 3 4 0.1935 1 3 2 4 3 4 0.1765

3 1 2 2 4 2 0.1271 3 1 2 2 4 2 0.0753 3 1 2 2 4 2 0.0765

1 3 4 4 4 4 0.0938 1 3 4 4 4 4 0.0806 1 3 4 4 4 4 0.0941

1 3 2 4 3 2 0.0538 1 3 2 4 3 2 0.0588

18a-3 2 2 1 1 0.4186 2 2 1 1 0.4032 2 2 1 1 0.4214

4 3 3 3 0.2188 4 3 3 3 0.1935 4 3 3 3 0.1714

2 3 1 1 0.2064 2 3 1 1 0.2204 2 3 1 1 0.1928

4 3 1 3 0.1250 4 3 1 3 0.1559 4 3 1 3 0.1857

Table 9: Common haplotypes and their frequencies obtained by PedPhase, MRH and the

EM method. In haplotypes, the alleles are encoded as 1=A, 2=C, 3=G, and 4=T.

solutions with 1 recombinant each and MRH found solutions with 0 recombinants. The complete results

of PedPhase on this real dataset (and more datasets to be studied in the future) will be available at website

http://www.cs.ucr.edu/˜jili/haplotyping.html .
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6 Concluding remarks

Pedigrees with mating loops are not a big problem for both rule-based algorithms block-extension and MRH,

although they usually cause troubles for statistical methods. But, we have observed in the experiments that

for both of the rule-based algorithms, the results on the pedigree structure with a loop (in Figure 9) are

slightly worse than the results on the other two pedigree structures without loops. More investigation is

needed on this issue. Notice that the pedigree structure used in the proof of the NP-hardness of the MRHC

problem is very complicated and requires a large number of recombinants. An interesting question is if there

is an efficient algorithm for solving MRHC (exactly) on pedigrees that require only a small (fixed) number

of recombinants.
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