Efficient Inference of Haplotypes from Genotypes on a Pedigree

Jing Li* Tao Jiandg

Abstract

We studyhaplotype reconstructiomnder theMendelian lawof inheritance and theninimum re-
combination principleon pedigree dataWe prove that the problem of findingnainimum-recombinant
haplotype configuration (MRHG$ in general NP-hard. This is the first complexity result concerning
the problem to our knowledge. An iterative algorithm based on blocks of consecutive resolved marker
loci (calledblock-extensionis proposed. It is very efficient and can be used for large pedigrees with a
large number of markers, especially for those data sets requiring few recombinants (or recombination
events). A polynomial-time exact algorithm for haplotype reconstruction without recombinants is also
presented. This algorithm first identifies all the necessary constraints based on the Mendelian law and
the zero recombinant assumption, and represents them using a system of linear equations over the cyclic
groupZs. By using a simple method based on Gaussian elimination, we could obtain all possible feasi-
ble haplotype configurations. A C++ implementation of the block-extension algorithm, aitithase
has been tested on both simulated data and real data. The results show that the program performs very
well on both types of data and will be useful for large scale haplotype inference projects.

Keywords: Haplotyping, pedigree analysis, recombination, SNP, algorithm, computational complexity,
Gaussian elimination ovefy

1 Introduction

Genetic fine-mapping for complex diseases (such as cancers, diabetes, osteggtodosgurrently a

great challenge for geneticists and will continue to be so in the near future. With the availabsity- of

gle nucleotide polymorphisms (SNR#prmation, researchers see new potentials of genetic mapping. The
ongoing genetic variation and haplotype map projects at the National Human Genome Research Institute
(NHGRYI) of the USA are focused on the discovery and typing of SNPs and development of high-resolution

“Department of Computer Science, University of California, Riverside,jii@cs.ucr.edu. Research supported by NSF grant
CCR-9988353.

TDepartment of Computer Science, University of California, Riverside, CA, and Shanghai Center for Bioinformatics Tech-
nology. jiang@cs.ucr.edu. Research supported by NSF Grants CCR-9988353, ITR-0085910, DBI-0133265, and National Key
Project for Basic Research (973).

maps of genetic variation and haplotypes for human [10]. While a dense SNP haplotype map is being built,
various new methods [11, 14, 23, 28] have been proposed to use haplotype information in linkage disequi-
librium mapping. Some existing statistical methods for genetic linkage analysis have also shown increased
power by incorporating SNP haplotype information [22, 30]. But, the use of haplotype maps has been lim-
ited due to the fact that the human genome @pdoid and, in practicegenotypedata instead dfiaplotype

data are collected directly, especially in large scale sequencing projects, because of cost considerations.
Although recently developed experimental techniques [6] give the hope of deriving haplotype information
directly with affordable costs, efficient and accurate computational methods for haplotype reconstruction
from genotype data are still highly demanded.

The existing computational methods for haplotyping fit into two categories: statistical methods and
rule-based methods. Both methodologies can be applipddiyreedata andoopulationdata (that has no
pedigree information). Statistical approachegy([7, 12, 15, 25, 27]), such as the EM methods, estimate
haplotype frequencies in addition to the haplotype configuration for each individual, but the algorithms are
usually very time consuming and thus cannot handle large (in many cases, moderately large) data sets.
On the other hand, rule-based approaches are usually very fast, although they normally do not provide
any numerical assessment of the reliability of their resdiltBy utilizing some reasonable biological as-
sumptions, such as thminimum recombination principjeule-based methods have proven to be powerful
and practical [9, 13, 16, 21, 26, 29]. The minimum recombination principle basically says that genetic
recombination is rare and thus haplotypes with fewer recombinants should be preferred in a haplotype re-
construction [9, 16, 21} The principle is well supported by practical data. For example, recently published
experimental results [4, 8, 10] showed that, in the case of human, the number of distinct haplotypes is very
limited. Moreover, the genomic DNA can be partitioned into long blocks such that recombination within
each block is rare or even nonexistent.

We are interested in rule-based haplotype reconstruction methods on pedigrees. In a very recent pa-
per [21], Qian and Beckmann proposed a rule-based algorithm to reconstruct haplotype configurations for
pedigree data, based on the minimum recombination principle. (From now on, we call their algorithm
MRH.) Given a pedigree and the genotype information about each member of the pedigree (with possibly
missing data), the authors are interested in finding the haplotype configurations for each member such that
the total number of recombinants (or recombination events) in the whole pedigree is minimized. We call the
problem theMinimum-Recombinant Haplotype Configuration (MRHC) problgkithough the algorithm
MRH in [21] performs very well for small pedigrees, its effectiveness scales very poorly because it runs ex-
tremely slowly on data of even moderate sizes, especially for data with biallelic markers. This is regrettable
since large SNP data sets on pedigrees are becoming increasingly interesting and SNP markers are biallelic.

In this paper, we first show that the MRHC problem is in general NP-hard and then devise an efficient

10ne can make an analogy between this relationship between statistical methods and rule-based methods and the relationship
between the maximum likelihood methods and parsimony/distance methods in phylogenetic reconstruction.
2This is similar to the parsimony principle in phylogenetic reconstruction.

iterative (heuristic) algorithm (calleblock-extensionfor MRHC. Like the existing rule-based haplotyping
algorithms, our algorithm first attempts to resolve all unambiguous loci using the Mendelian law of inher-
itance. But instead of working on individual unresolved loci separately after the first step, as done in the
algorithm MRH [21], we use some sensible greedy strategy (such as avoiding double recombinants within
a small region of loci) to resolve loci that are adjacent to the previously resolved loci, resultihacks

of consecutive resolved loci. Our algorithm then uses the longest block in the pedigree to resolve more
unresolved loci under the minimum recombination principle. This may extend some blocks into longer
blocks. The process is repeated until no blocks can be extended. The algorithm then fills the remaining
gaps between blocks in each member by considering the haplotype information about the other members of
the same nuclear family. The time complexity of the above algorith@(i&nn), wheren is the size of

the pedigreesn the number of loci, and the largest number of children in a nuclear family. Observe that
MRH runs inO(2¢9m?3n?) time [21]. Our preliminary experimental results demonstrate that the algorithm is
much more efficient than the algorithm MRH because loci can be resolved much more quickly when they
are considered together as blocks than when they are considered separately.

We also consider the special case of haplotype reconstruction where no recombinants are assumed. This
special case is interesting not only because its solution may be useful for solving the general MRHC problem
as a subroutine but also because the frequency of recombinants is expected to belwkerica small
(or moderately large) region of genomic DNA is considered [9, 16]. We present an algorithm to identify all
0-recombinant haplotype configurations consistent with the input data. The running time of the algorithm
is polynomial in the input size and the number of consisfergcombinant haplotypes. Previously, only an
exponential-time algorithm based on exhaustive enumeration was known [16]. Our algorithm first identifies
all necessary (and sufficient) constraints on the haplotype configurations derived from the Mendelian law
and the zero recombinant assumption, represented as a system of linear equations on binary variables over
the cyclic groupZ, (i.e. integer additionrmod 2), and then solves the equations to obtain all consistent
haplotype configurations satisfying the constraints, using a simple method based on Gaussian elimination.
These consistent haplotype configurations are shown to be fe@siet®mbinant solutions.

A C++ implementation of the block-extension algorithm, called PedPhase, has been tested on both
simulated data and real data. The results on simulated data using three pedigree structures demonstrate that
the block-extension algorithm runs very fast. For example, for 100 runs on a pedigree with 29 members
and 50 marker loci, it uses less than 1 minute for both multi-allelic and biallelic data on a Pentium PC. In
contrast, the program MRH (version 0.1) of Qian and Beckmann [21] requires 3 to 4 hours on the same data
sets with multi-allelic genotype information. On the data sets with biallelic genotypes, we observed that
MRH would need more than 20 hours for each run. In fact, the authors have recently told us that [20] MRH

3The zero recombinant assumption has been used in studies on both population data ([9]) and pedigree data (this paper). How-
ever, the assumption concerning a population data requires that there have been no recombination events ever since the single
ancestral haplotype generating the population. Here, we only require that recombination events did not occur among the genera-
tions in a single pedigree. Since a pedigree typically spans a much smaller time period than the evolution of an entire population in
the field of biology, the zero recombinant assumption concerning a pedigree is perhaps more realistic.

in general cannot handle data of such a (moderately large) size, especially when the genotypes are biallelic.
In terms of performance.€. accuracy of the reconstructed haplotype configuration), MRH generally gives
better results than PedPhase whenever it was able to handle the input data, because of its exhaustive search
on individual locus. However, in most cases, the results of PedPhase were comparable. For multi-allelic
genotypes, PedPhase was able to recover correct haplotype configurations in more than 90% of the cases. In
particular, for data requiring zero recombinants, PedPhase could recover the correct solutions in almost all
cases. PedPhase also performed very well on the moderately large biallelic data sets involving small numbers
of recombinants that MRH could not handle. We further compared the performance of PedPhase, MRH and
an EM algorithm on a real dataset that consists of 12 multi-generation pedigrees from [8]. We focused
on a randomly selected human chromosome consisting of 10 blocks that span 618k base pairs (bps). The
results show that both rule-based haplotyping methods (PedPhase and MRH) were able to discover almost
all commonhaplotypes (frequency 5%) that were inferred by the EM algorithm in [8]. The haplotype
frequencies estimated from the haplotype results of PedPhase and MRH (by simple counting) are very close
to the estimations of the EM algorithm. For most of the blockss6%), both PedPhase and MRH were

able to find haplotype configurations with 0 recombinants. The results show that rule-based haplotyping
methods such as PedPhase and MRH could be very useful for large scale haploptying projects on pedigree
data because they obtain resuits.(common haplotypes) similar to those of EM algorithms and run much
faster than EM algorithms.

The rest of this paper is organized as follows. We first introduce the biological significance of the
MRHC problem and some directly related biological concepts and terminology. This is followed by a
formal definition of the problem and the computational complexity result. The two (block-extension and
0-recombinant) algorithms are presented in sections 3 and 4. After showing the experimental results in
section 5, we conclude the paper with some remarks about possible future work in section 6.

2 The MRHC problem and its NP-hardness

In this section, we first give a formal definition of the MRHC problem, including the necessary biological
background, and then prove that the problem is NP-hard even if the input pedigree data contains only two
loci.

Definition 2.1 A pedigree graph is a connected directed acyclic graph (DAGE {V, E}, whereV =

M U F U N, M stands for the male nodeg, stands for the female node¥, stands for the mating nodes,
andE = {e = (u,v): u € MUF andv € Noru € Nandv € MUF}. M UF are called the individual

nodes. The in-degree of each individual node is at nho3the in-degree of a mating node mustdavith

one edge starting from a male node (called father) and the other edge from a female node (called mother),
and the out-degree of a mating node must be larger than zero.

In a pedigree, the individual nodes adjacemft mating nodeife. they have edges from the mating
node) are called thehildren of the two individual nodes adjacefibm the mating nodei. the father and
mother nodes, which have edges to the mating node). The individual nodes that have no parents (in-degree
is zero) are calledounders For each mating node, the induced subgraph containing the father, mother,
mating, and child nodes is callechaclear family A parents-offspring tricconsists of two parents and one
of their children. Amating loopis a cycle in the graph if the directions of edges are ignored. Figure 1
shows an illustration of an example pedigree that highlights mating nodes on top of a conventional drawing
of the pedigree (where the mating nodes are omitted). For convenience, we will use conventional drawings
of pedigrees throughout the paper. Figure 9 shows a pedigree with a mating loop.

Figure 1: An illustration of a pedigree with 15 members. A square represents a male node,
a circle represents a female node, and a solid (round) node represents a mating node. The
children €.g.3-3, 3-5 and 3-7) are placed under their pareatg.@-1 and 3-2).

The genome of an organism consistcbfomosomethat are double strand DNA. Locations on a chro-
mosome can be identified usingarkers which are small segments of DNA with some specific features. A
position of markers on the chromosome is calletiarker locusand a marker state is called aliele. A
set of markers and their positions defingenetic mapf chromosomes. There are many types of mark-
ers. The two most commonly used markers are microsatellite markers and SNP markers. Different sets of
markers have different properties, such as the total number of different allelic states at one locus, frequency
of each allele, distance between two adjacent letd, A microsatellite marker usually has several differ-
ent alleles at a locus (calledulti-allele) while an SNP marker can be treated dsallele, which has two
alternative states. The average distance between two SNP marker loci is much smaller than the average dis-
tance between two microsatellite marker loci, thus making SNP markers superior to other markers in gene
fine-mapping.

In diploid organisms, chromosomes come in pairs. The status of two alleles at a particular marker
locus of a pair of chromosomes is callednarker genotypeThe genotype information of a locus will be
denoted using a set,g. {a, b}. If the two alleles are the same, the genotypedmozygousOtherwise it
is heterozygousA haplotypeconsists of all alleles, one from each locus, that are on the same chromosome.
Figure 2 illustrates the above concepts.

“The pedigree diagrams in this paper were generated using WPEDRAW [3].

/_/\ﬁﬁ)type

Locus

= X
Paternal Maternal

Figure 2: The structure of a pair of chromosomes from a mathematical point of view.

The Mendelian law of inheritance states that the genotype of a child must come from the genotypes of its
parents at each marker locus. In other words, the two alleles at each locus of the child have different origins:
one is from its father (which is called tipaternalallele) and the other from its mother (which is called the
maternalallele). Usually, a child inherits a complete haplotype from each parent. Howegembination
may occur, where the two haplotypes of a parent get shuffled due to a crossover of chromosomes and one of
the shuffled copies is passed on to the child. Such an event is called a recombination event and its result is
called arecombinant Since markers are usually very short DNA sequences, we assume that recombination
only occurs between markers. Figure 3 illustrates an example where the paternal haplotype of member 3 is
the result of a recombinant.

@
112 22
31 212
©
112 12
112 3l

Figure 3: An example recombination event. The notatignmeans that the haplotype
information at the locus has been resolved, and we know that alefeom the father and
allele j is from the mother.

Alleles are denoted using (identification) numbers, as shown in Figure 2. WeSufearental source)
to indicate which allele comes from which parent at each locus. The PS value at a heterozygous locus
can be—1,0 or 1, where—1 means that the parental source is unknowmeans that the allele with the
smaller identification number is from the father and the allele with the larger identification number is from
the mother, and means the opposite. The PS value will always be sefasa homozygous locus. A locus
is PS-resolvedf its PS value i9) or 1. For example, both loci of member 4 in Figure 3 are PS-resolved and
their PS values are@ and1, respectively.

For convenience, we will us8S (grand-parental sourced indicate if an allele at a PS-resolved locus
comes from a grand-paternal allele or a grand-maternal allele. Similar to a PS value, a GS value can also
be -1, 0 or 1. The PS and GS information can be used to count the number of recombinants as follows.

For any two alleles that are at adjacent loci and from the same haplotype, they incRamrdinant(or
recombination eveif their GS values ar@ and1. An alleleGS-resolvedf its GS value i) or 1. A locus
is GS-resolvedf both of its alleles are GS-resolved.

Definition 2.2 A haplotype configuration of a pedigree is an assignment of nonnegative values to the PS of
each locus and the GS of each allele for each member of the pedigree that is consistent with the Mendelian
law.

Hence a haplotype configuration not only fully describes the haplotypes in the members of the pedigree,
it also describes the origin of each allele on the haplotypes. The following problem, called MRHC in the
above, has been studied in [21, 26]:

Definition 2.3 Given a pedigree graph and genotype information for each member of the pedigree, find a
haplotype configuration for the pedigree that requires the minimum number of recombinants.

The following lemma shows that it suffices to compute only the required PS values in MRHC, because
the corresponding GS values can be easily determined to minimize the number of recombinants once the PS
values are given. However, we will need use both PS and GS values in one of our algorithms for convenience.

Lemma 2.4 Given an instance of MRHC and the PS value for each locus of each individual, the GS value
of each allele to achieve the minimum number of recombinants can be compéabir) time, wheremn
is the number of loci and is the number of individuals in the input pedigree.

Proof: We can consider each parent and child relationship, and figure out an optimal assignment of GS
values to the paternal (or maternal) alleles in the child by a simple dynamic programming algillithm.

Unfortunately, we can prove that MRHC is NP-hard and thus does not have a polynomial-time algorithm,
unless P = NP. We note in passing that NP-hardness results were recently shown for several formulations of
pedigree analysis in [1, 19].

Theorem 2.1 MRHC is NP-hard.

We prove the theorem by two lemmas. First, recall that the probleexadt coveby 3-sets where no
element of the universe occurs in more than 3 input subsets (denoted as 3XC3, als@-dihexhsional
matching is NP-hard [2]. Here we need consider a stronger version of 3XC3, denoted as 3XCX3, where
each element of the universe occurs in exactly 3 input subsets. Lemma 2.5 shows that the 3XCX3 problem
is NP-hard by a reduction from 3XC3. We then show in Lemma 2.6 that even with two loci, MRHC is
NP-hard by a reduction from 3XCX3.

Lemma 2.5 3XCX3 is NP-hard.

Proof: The reduction is from 3XC3, which is known NP-hard [2]. Recall that for an instance of 3XC3,

we have a seK of 3¢ elements and a collectiah of n 3-element subsets of where each element of

occurs in at most 3 subsets. We want to construct an instance of 3XCX3 such that each element occurs in
exactly 3 subsets. Without loss of generality, let us assume that each elemémdcurs in at least two
subsets. Let denote the number of elements occurring in exactly 3 subsets dedote the number of
elements only occurring in 2 subsets. We havet 2t = 3n. Thus,t must be a multiple of 3 and we

can group the elements occurring in 2 subsets so that each group has 3 such elements. For a group of three
elementsu, b andc, construct four new 3-subsefs, x, y}, {b, vy, 2}, {c, z,2} and{x,y, z}, wherex, y, z

are new elements. This guarantees each elemeiit appears in exactly three subsets. It is easy to see

the one-to-one correspondence between a solution of the 3XC3 instance and a solution of the constructed
3XCX3 instancell

The next lemma shows that MRHC on pedigrees with 2 loci (denoted as MRHC?2) is NP-hard.
Lemma 2.6 MRHC2 is NP-hard.

Proof: We reduce 3XCX3 to MRHC2. Léf;, 5o, ..., S, be then 3-element subsets add (| X| = n = 3¢)

the universe of a 3XCX3 instance. We construct a pedigree with genotype information at both loci. Both
loci are biallelic and we denote the alleles{ds2}. For convenience, let us first ignore the gender of each
individual node in the construction. For each sulisetve construct an (individual) node, still denoted by

S;. All such nodes have the same genotype} at both loci. Suppose that an elemerdf X is contained

in subsetsS:, So andS3. We include a small pedigree that consists of the nodes createdSfrofh andSs

(which we call theS-nodes) and some other nodes (which we will egllB, C', D-nodes) as their relatives.
Some of thed, B, C, D-nodes will be forced to have certain haplotype configurations by setting their and
their relatives’ (more precisely, mates’ and children’s) genotypes carefully (more details will be discussed
below). Here, a forced haplotype configuration isdinéqueconfiguration that would minimize the number

of recombinants required for the small gadget pedigree as well as for the whole pedigr%gj;qemean

that alleles:; andas form a haplotype ané;, andb, form the other haplotype of some individual. Call such

a configuration &aplotype grouping®

The purpose of the gadget pedigree shown in Figure 4 is to force exactly one $frihées to have
haplotype grouping{éﬂ (via a recombination from its parents) and the other two to have haplotype group-

ings B;] The one with haplotyp(%;ﬂ will correspond to the subsé; that is included in the solution of
3XCX3 coveringa. In the small pedigree§; and.S; mate and have four child nodés, C,, C3 andCy.

We forceC’; to have haplotype groupinbﬂ, andCy andCs to have haplotype grouping{éi]. To force

(1 to have the desired haplotype grouping, we could construct some new individuals as relatives (mate and
children) ofC; so that the desired haplotype grouping will benefit the whole pedigree. For example, we can

SNote that, this notation only shows the two haplotypes instead of the actual haplotype configuration. However, based on the
minimum recombinant principle, we can easily compute an optimal haplotype configuration from such a grouping in the reduction.
Thus, for convenience, we will tre%ﬁl :j as a haplotype configuration in this proof.

8

create a mate af’; (not shown in the figure) that has genotydésl} on both loci. We also create some
constant number of children @f; (all of them are represented by the polygon connected @jtin Fig-
ure 4), all with genotype$1,2} on both loci. This will forceC; to have the desired haplotype grouping in
order not to incur any recombinants in its sub-pedigree. Badtas two parentgl; and B; with genotypes
{1,2} on both loci. Their haplotype groupings are forced to[bé} (by including some constant number
children with genotype$1,1} on both loci, not shown in the figure). The and B-nodes are introduced to
minimize the number of-nodes that are assigned the haplotype grou@@.

AL Bl w2

12 12 e 12

12 1%2/ 2 12
st 2 A3 B3
[] @

Figure 4. The gadget pedigree for an elemenXofnd the three subsets containing the
element. Ae indicates an individual node. A indicates a mating node. A indicates

a recombination event. A / between two alleles indicates the haplotype grouping without
specifying the PS value.

Let us assume th&t, has genotype§l,2} on both loci, and produces a child with Ss. We forceD;
to have the haplotype groupir{gﬂ (D1's mate and children are not shown in Figure 4). Without consider-
ing the order, there are three haplotype groupingsfandSs, namely,[ij} X [13} [12} X [;f} and[;ﬂ
X {;ﬂ There are two possible haplotype groupingsSeri.e. {;ﬂ or Ei} By examining the six com-
binations of the above assignments, we know that if only one of the Bwemdes has haplotype grouping
[;f] and the other two have haplotype groupirﬁg% , the above little gadget pedigree can be resolved with
just two recombinants on th@-nodes and one recombinant on thinodes. The latter recombinant may
also be “shared” by two other gadget pedigrees corresponding to two elemeXitsrafure 4 illustrates
such a possible haplotype (grouping) assignment with two recombinants @irtbdes. (The actual PS
and GS values are not shown in the figure, although they can be easily determined.) Otherwise, the gadget
pedigree would require at least three recombinants oitnedes. The above construction does not take
into account the gender of each individual, especially that of-simode. To solve the gender problem, we
duplicate every gadget pedigree constructed above. (Actually, we need only duplicgtedbes, although

there is no harm to duplicate tli&nodes and>-nodes.) So, there are two nodes for e&ghWe make one

male and the other one female. Thus we could arrange anytmades to be of opposite genders whenever

they have a mating relation. The only thing left is that we need make sure that the two nodes 8y each
must always have the same haplotype assignments. For this, we can construct another small gadget pedigree
for each such pairs df-nodes. Let these two nodes mate and have two chil@keand F». Both E; and

E, have the same genotypé€s,2} at both loci. We can see that only if the two parent nodes have the same
pair of haplotypes (not necessarily with the same PS values), the small pedigree can be realized with zero
recombinants. Otherwise, at least two recombinants would be needed. This constraint is also illustrated
in Figure 6 (picture on the right).

The above construction can be completed in polynomial time. It is easy to prove that an exact cover of
X corresponds to a haplotype configuration of the above pedigred3witl2 + ¢) - 2 = 14¢ recombinants,
and vice versa. Hence, 3XCX3 reduces to MRHC2, and MRHC?2 is NP-lihrd.

The above reduction uses pedigrees with mating loops (which are formed when the gadget pedigrees in
Figure 4 are “glued” together through ti$enodes). Very recently, K. Doi proved that MRHC is NP-hard
even if the input pedigree structure has no mating loops, by a reduction from MAX CUT [5]. However, the
reduction requires pedigrees with unbounded degrees and numbers of loci.

3 An efficient iterative algorithm for MRHC

Because of the NP-hardness of MRHC, it is unlikely to find an efficient algorithm to solve MRHC exactly.
We thus propose an iterative heuristic algorithm for MRHC, calledbtbek-extensiomlgorithm. Here, a

block means a consecutive sequence of resolved loci of some individual. The basic idea of the algorithm
is to partition the loci in each member of the pedigree into blocks after applying the Mendelian law and
some simple greedy strategy (such as avoiding double recombinants within a small region of loci). It then
repeatedly uses the longest haplotype block in the pedigree to extend other blocks (in other members) by
resolving unresolved loci based on the minimum recombination principle. This approach may potentially
be more efficient than the algorithm MRH from [21], especially when the number of required recombinants
is small, because multiple loci are resolved simultaneously instead of separately. More precisely, the block-
extension algorithm is based on the following observations:

Observation 11 ong haplotype blocks are common in human genomes [4, 8, 10]. Few or zero recombi-
nants are expected within these blocks. In our simulation study, we have also observed a lot of long blocks
in each member of the pedigree after applying the Mendelian law.

Observation 2: Shared haplotype blocks among siblings are strong evidence that no recombination
should occur on those siblings based on the assumption that recombinants are rare in a pedigree. Thus, these
haplotype blocks shared by siblings should also exist in their parents. Itis therefore reasonable to use blocks
in children to resolve the corresponding loci in their parents.

10

Observation 3: Double recombinants are very rare within a small region. Once we know that two
nonadjacent alleles on a haplotype block have the same GS value, the alleles of the block sandwiched by the
two alleles should have the same GS value. Otherwise, double recombinants would occur.

Observation 4t is sometimes possible to determine that some individuals must involve recombinants.
We may be better off to leave these individuals until the last.

We now describe the block-extension algorithm in more detail. The main steps of the algorithm are also
illustrated by an example. The algorithm has 5 steps. Assume that the input genotype data is consistent
with Mendelian law. (One can use the genotype-elimination algorithm of O’Connell’s [17, 18] to check
Mendelian consistency, although Acegbal. [1] recently showed that consistency checking in general is
NP-complete.) Note that, although it suffices to focus on the PS values by Lemma 2.4, we will use both PS
and GS in the algorithm for the convenience of presentation.

Step 1:Missing genotype imputing by the Mendelian law. We scan the whole pedigree bottom-up and
consider the nuclear families one by one. For each parent that has missing data, we check if there is an allele
in any of its children that does not appear in its mate whose genotype is known. We may also impute some
missing alleles in a child/parent when the alleles of a parent/child at some homozygous locus do not appear
in the child/parent’s genotype. But, only part of the missing data may be imputed by this method. More
missing data in founders can be imputed by first counting the allele frequency and then randomly sampling
according to the allele distribution. Missing data in children are then determined by randomly sampling
from their parents.

Step 2:PS and GS assignments by the Mendelian law. By a top-down scan, we try to resolve all loci
that have unambiguous PS and/or GS values under the Mendelian law. For the founders of the pedigree, we
can resolve all their homozygous loci and one arbitrary heterozygous locus by setting the PS and GS values
of all these loci to be 0. To resolve a locus in a non-founder, let us consider each parents-offspring trio.
There are two rules we can use to resolve loci in the child: 1) if there is at least one parent of the trio that is
homozygous at this locus, we can resolve PS value of the locus in the child, and 2) if there is an allele in the
child that differs from both alleles in one parent, it must come from the other parent. Here, we may also be
able to determine the GS values of some alleles in the child using the PS information at the parents.

By running these two steps, we should get similar results as running the first two steps of MRH. But our
method is much simpler than MRH. There are more than 40 (detailed) rules [21] used in MRH for missing
data imputing and PS and GS assignments.

Step 3:Greedy assignment of GS values. The greedy step to assign GS works in a bottom-up fashion.
We begin with a lowest nuclear family in the pedigree. For each child of the family, we check if the child
has one or more loci whose alleles have known GS and if all the known GS values of alleles on the same
haplotype are the same (which means that at least by now, there is no evidence that recombinants exist in
this child). Otherwise, just mark this child as processed and continue on with other children until we find
such a child. Based on the known GS information, the GS values of nearby alleles in the child will be
assigned according to the following rules. Assume that we know the GS okaneéternal) allele at the

11

i" locus of the child, and we want to set the GS of its paternal allele &t the)*" locus. We check if any

of the child’s or the father'si + 1)*" loci have been PS-resolved. If neither of them are PS-resolved, we
cannot assign the GS. If the child is PS-resolved and the father is homozygous, we set the GS of the paternal
allele of the child at théi + 1) locus equal to the GS of the paternal allele at#fidocus. If the child

is PS-resolved but the father is PS-unresolved (and thus heterozygous), we will try the two alternative GS
assignments for the paternal allele of the child at locusl. Each assignment would force the PS value

of the father at locus + 1 thus resolve its PS. Then we count the numbers of recombinants betweén loci
andi + 1 within the nuclear family for these two choices, and select the one with fewer recombinants. If
the child is not PS-resolved at locus- 1, but the parent is PS-resolved, we consider the two alternative PS
(and thus GS) assignments for the child at lotys1, and select the one with fewer recombinants. If the
numbers of recombinants for the two alternative assignments are equal, we do nothing. After each known
GS value has been processed, we mark the child as processed and continue on with other children in this
nuclear family. During the process, if we see that two non-adjacent alleles on the paternal (or maternal)
haplotype have the same GS, we will assign alleles from the same haplotype sandwiched by the two alleles
the same GS value as mentioned in observation 3. Once this nuclear family is finished, we continue the GS
assignment in another nuclear family by a bottom-up scan.

Step 4:Block-extension. Find a longest haplotype block in some member of the pedigree consisting of
alleles with the same GS value. We use this haplotype block to resolve the corresponding loci in the first
degree relatives (children and parents) of the member. Each decision on a locus will be made by counting the
numbers of recombinants in the nuclear family resulted by the two alternative PS assignments of the locus.
The assignment with the smaller number of recombinants will be selected. Recently resolved members will
be used to resolve their first degree relatives again, and this is continued so that every member in the pedigree
will be processed with respect to this block. During this process, the haplotype block in some members may
overlap with other blocks thus the longest block may get extended to result in longer blocks. We repeat the
above process with the current longest block that has not be considered yet, until no blocks can be extended.

Step 5:Finishing the remaining gaps. After step 4, it is still possible that there are some gaps of PS-
unresolved loci between blocks. Such gaps may exist only when the input data contain special patterns. For
example, at some locus, all the members of the pedigree are heterozygous or contain missing data. Another
possible scenario is that for some three adjacent loci, no members of the pedigree have two adjacent PS-
resolved loci. If we assume that alleles occur with the same frequency at a locus, it is not difficult to see
that the probability that we have the above scenarios is very small. (These situations never happened in
our simulation study.) When a gap does occur, the algorithm would pick an unresolved locus, compare two
alternative PS-assignments within a nuclear family at the locus and select the one that gives the smaller
number of recombinants. Hopefully this assignment will extend some blocks, and we will repeat steps 3-5
again until all gaps are filled.

Figure 5 illustrates the main steps of the above algorithm using a simple example. Since the input
pedigree and genotype information, as given in (A), have no missing data, we skip step 1. (B) shows the

12

result of step 2. In step 3, since we know the GS values of the alleles at the first locus of member 3-3, we
assign the adjacent alleles (at loci 2 to 4) the same GS value. This forces locus 2 at both parents of member
3-3 to be PS-resolved. The result of step 3 is shown in (C). In step 4, we use the longest block (loci 1 to
4 in member 3-1) to help resolve the same region in member 3-4 (by consulting the corresponding region
in member 3-2). This results in a longer block in member 3-4 as shown in (D). We then use the longest
block in member 3-4 to help resolve loci 5 and 6 in members 3-1 and 3-2 and the blocks in members 3-1
and 3-2 to help resolve locus 5 in member 3-3, as shown in (E). In step 5, we consider the two alternative
PS assignments for locus 7 in member 3-1. For each such assignment, we calculate the best PS assignments
for locus 7 in the other members of the same nuclear fam#y (hembers 3-2, 3-3, and 3-4) in order to
minimize the number of recombinants required. The assignment shown in (F) turns out to be the best choice,
and the final haplotype configuration is shown in (G), which happens to require one recombinant.

Theorem 3.1 Let n denote the size of the pedigree, the number of loci, and the largest number of
children in a nuclear family. The block-extension algorithm run®i@mn) time.

Proof: The worst-case time complexity of the algorithm can be analyzed as follows. The first step only
involves a bottom-up scan and thus rungifdmn) time, because each nuclear family is visited exactly
once and for each nuclear family, we may spend at rgdin) time to impute missing data in the nuclear
family. Similarly, steps 2 and 3 run i@(dmn) time each. In step 4, each locus is involved in at most one
block extension operation. Since there are totally loci and the time for setting the PS value at a locus is

at mostO(d), this step also taked(dmn) time. In step 5, every time we fix the PS value of an unresolved
locus, we spend(d) time and then call steps 3 and 4 to see if more loci can be resolved. Hence, it takes at
mostO(d) time to resolve a locus in this step, and step 5 takes at @@stin) time totally. In summary,

the block-extension algorithm runs @(dmn) time.

4 A constraint-based algorithm for O-recombinant data

As a heuristic, the above block-extension algorithm does not always compute an optimal solution for MRHC,
especially when the number of required recombinants increases. One of our ultimate objectives is to design
an algorithm that runs fast enough on real data and always gives an optimal or almost optimal haplotype
configuration, even if its running time is exponential in the worst case. Our first attempt is an efficient
(polynomial-time) algorithm to compute all possible haplotype assignments involving no recombinants.
Not only will the algorithm be useful for solving 0-recombinant date. data that can be interpreted with

zero recombinants, which are common for organisms like human as mentioned in the introduction), it may
also serve as a subroutine in a general algorithm for MRHC.

We consider only data that has no missing genotyp&@bserve that finding a haplotype configuration

5The Mendelian consistency can be easily checked in this case and thus we present the algorithm assuming the input data are
Mendelian consistent.

13

31 3-2
12 12
12 12
22 22
11 22
21 12
11 12
21 21
11 11
1 O
33 34
11 21
11 12
22 22
21 12
21 22
11 21
21 21
11 11

A
31 3-2
1j2(0,0) 1]2(0,0)
1J2(0,0) 1J2(0,0)
2[2(0,0) 2[2(0,0)
1/1(0,0) 2[2(0,0)
21 12
1/1(0,0) 12
21 21
1/1(0,0) 1/1(0,0)
1 O
33 34
1/1(0,0) 1/2(0,1)
1/1(0,0) 1/2(0,1)
22(0,0) 22(-1,-1)
1j2(0,0) 102(-1,-1)
21 22(-1,-1)
11(-1,-1) 102(-1,-1)
21 21
11(-1,-1) 11(-1,-1)

D

I:'_

3-1

1]2(0,0)
1|2(0,0)
2[2(0,0)
1/2(0,0)
2[1(0,0)
1/2(0,0)
21

1/2(0,0)

—

[]

33
1]2(0,0)
1]2(0,0)
2[2(0,0)
1j2(0,0)
2/1(0,0)
1/2(0,0)
21

11(-1,-1)

E

31 3-2
1]2(0,0) 1]2(0,0)
12 12
2[2(0,0) 2[2(0,0)
1]2(0,0) 2|2(0,0)
21 12
1]2(0,0) 12
21 21
1]2(0,0) 1]2(0,0)
1 O
33 34
1]2(0,0) 21
1[1(-1,-1) 12
22(-1,-1) 22(-1,-1)
1)2(-1,-1) 1)2(-1,-1)
21 22(-1,-1)
1[1(-1,-1) 1j2(-1,-1)
21 21
1[1(-1,-1) 1/1(-1,-1)
B

3-2
1]2(0,0)
1|2(0,0)
2[2(0,0)
2[2(0,0)
1]2(0,0)
1|2(0,0)
21
1/1(0,0)
O

34
1/2(0,1)
1/2(0,1)
22(0,2)
1/2(0,2)
22(0,1)
1/2(0,1)
21
11(-1,-1)

I:'_

31
1]2(0,0)
1]2(0,0)
2]2(0,0)
1]2(0,0)
2]1(0,0)
1]2(0,0)
2]1(0,0)
1]2(0,0)

—

[]

33
1]2(0,0)
1]2(0,0)
2|2(0,0)
1j2(0,0)
2]1(0,0)
1]2(0,0)
21
1/1(-1,-1)

F

3-2

1]2(0,0)
1]2(0,0)
2[2(0,0)
2[2(0,0)
1]2(0,0)
1]2(0,0)
21

1/1(0,0)

O

3-4

1j2(0,1)
1j2(0,1)
22(0,1)
1j2(0,1)
22(0,1)
1j2(0,1)
21

101(-1,-1)

31 3-2
1/2(0,0) 1/2(0,0)
1/2(0,0) 1/2(0,0)
2[2(0,0) 2[2(0,0)
1/2(0,0) 2[2(0,0)
21 12
1/1(0,0) 12
21 21
1/2(0,0) 1/2(0,0)
1 O
3-3 3-4
1/2(0,0) 21
1/2(0,0) 12
2[2(0,0) 22(-1,-1)
1/2(0,0) 102(-1,-1)
21 22(-1,-1)
11(-1,-1) 102(-1,-1)
21 21
11(-1,-1) 11(-1,-1)
C
31 3-2
1]2(0,0) 1]2(0,0)
1]2(0,0) 1]2(0,0)
2/2(0,0) 2[2(0,0)
1]2(0,0) 2|2(0,0)
2/1(0,0) 1]2(0,0)
1]2(0,0) 1]2(0,0)
2/1(0,0) 1]2(0,0)
1]2(0,0) 1]2(0,0)
1 O
3-3 3-4
1]1(0,0) 1j2(0,1)
1]2(0,0) 1j2(0,1)
2[2(0,0) 22(0,2)
1]2(0,0) 1j2(0,1)
2/1(0,0) 22(0,2)
1]2(0,0) 1j2(0,1)
2/1(0,0) 2/1(0,0)
1]2(0,0) 1]2(0,0)
G

Figure 5: An illustration of the block-extension algorithm. The blank between two alleles

at a locus indicates that the locus is PS-unresolved. Agdimdicates that the locus is
PS-resolved. For a PS-resolved locus, we use two numbers in parentheses to indicate the
GS values of the paternal and maternal alleles.

14

is equivalent to reducing the degree of freedom in the PS/GS assignment for each locus/allele in every
individual. We may thus find all necessargnstraintson the PS/GS assignments first so that the freedom

left is reallyfree(i.e. the choices will always lead @recombinant haplotype configurations). Then we can
simply enumerate all haplotype configurations satisfying the constraints.

We define four levels of constraints. The first level of constraints are the strongest and specify specific
nonnegative values for the involvedleles(i.e. these alleles are GS-resolved). The second level of con-
straints specify specific nonnegative values for the involeed(i.e. these loci are PS-resolved). The last
two levels of constraints are concerned witvo loci. The third level of constraints describe what alleles
should be on the same haplotypeoime membewithout specifying the actual PS values. For example, in
Figure 6 (left), the PS-resolved loci in member 3 forces the parents have the same haplotype grouping in
order to obtain a solution without recombinants, although we do not know the actual PS of the two haplo-
types in the grouping. The forth level constraint are the weakest. Each level 4 constraint is concerned with
the relationship between the haplotype groupings in sdiffierent individualg(i.e. parent-child or mates)
at two loci, although it does not specify the actual haplotype grouping. For example, in Figure 6 (right), the
three members of the parents-offspring trio should either all have the haplotype gr@lﬂim all have the

haplotype grouping%;f] , in order not to incur any recombinant in the trio. But, we do not have information
to determine which case must hold. All possible types of level 3 and level 4 constraints will be listed below.

172 172 12
n n)

n 112 112 (4] B (4] (B

22 12 vz 2 12 21 12

1/2 172 12 211
| ©, ®
11
Level 3 2 ledd 2

Figure 6: An illustration of level 3 and level 4 constraints.

Although the first level of constraints are useful in detecting recombinants, Lemma 2.4 suggests that only
the last three levels of constraints are really necessary for computing fe@siblEofnbinant) solutions. For
each locus in memberj, we define a binary variable; ; to represent the PS value of the locus. The basic
idea of our algorithm is to identify all the level 2-4 constraints based on the Mendelian law afd the
recombinant assumption by examining every parents-offspring trio, and represent the constraints as linear
equations omx; ;'s over the cyclic grougZ,. It then finds all feasibl®-recombinant solutions by solving
the equations.

15

x Y z Constraint equations
12 1% 11
12 1% 11
12 1% 11
21 2% 22
12 1% 11
21 11 21
12 11 21
12 11 21

X1 = T2

£C1+(L'2:1

T1+a9 =1

Al W[N] P

X1 = T2

Table 1: The possible level 3 constraints.

x Y z Constraint equations
L) e | e | e
2| |ia) | |on] | |ia
3| Jia] | [ai] | |2

T+ T2=y1+Y2 =21+ 22

T1+To=21,y1 +y2+21 =1

T1+To =21+ 29

Table 2: The possible level 4 constraints.

More specifically, the level 2 constraints are collected locus by locus by examining every parents-
offspring trio, which is the same as step 2 of the block-extension algorithm. In order to collect level 3
and level 4 constraints in the form of linear equations on the binary PS variables, we need to consider pairs
of loci for each parents-offspring trio. Without distinguishing the two parents in a parents-offspring trio,
there are essentially four types of level 3 constraints and three types of level 4 constraints as summarized in
Tables 1 and 2. In the tables,y are the parents andis the child. An * indicates any allele:; represents
the binary PS variable for locus 1 in memberThese constraints are collected trio by trio.

Definition 4.1 Given the level 2-4 constraints defined above, a consistent solution is an assignment of bi-
nary values to all the PS variables that satisfies every constraint.

Clearly, every feasibl®-recombinant solution is consistent. The following theorem shows that the
converse is also true.

Theorem 4.1 Every consistent solution is a feasiltleecombinant solution.

Proof: Consider a haplotype configuration that is consistent with all constraints. By Lemma 2.4, we can find

a GS assignment for each allele so that the pedigree has the minimum number of recombinants. Suppose
that the number of recombinants is not zero. Let menthawolve a recombinant between lacandi + 1

and A the corresponding parenitd. father) of B. Find the largesy that; < i and the smallest that

k > i+ 1 such thatd is heterozygous at both logiandk. Suchj andk must exist, because otherwise we

could remove the recombinant by modifying the GS values of relevant paternal allée$inceA and B

are involved in some level 4 (or level 3 or level 2) constraint at jomndk, the consistency of the solution

16

means that the PS assignmentgiaind B at loci j andk does not involve any recombinant between the two

loci. Hence, there must be recombinants in the paternal haplotyBdefween locij and: or between loci

i+ 1 andk. We could easily modify the GS values of the paternal alleleB @f the involved segment(s)

to reduce the number of recombinants without affecting the PS assignments, since one of the involved loci
must be homozygous. This contradicts the the assumption that the GS values were opllinized.

The above constraints form a system of (sparse) linear equations over thefgrowhich could be
solved by the classical Gaussian elimination method running in cubic time=(gg@4]). Since we are
dealing withZ;, a much simpler algorithm (adapted from Gaussian elimination) is presented below for the
completeness of the paper. Before we describe the algorithm, let us reduce the number of level 3 and level
4 constraints (equations) required since many of them are easily seen as redundant. For any given parents-
offspring trio, we introduce a level 3 (or level 4) constraint for a pair of loandj if and only if at least
one of the parents is heterozygous at bictind; and is homozygous at every locus betweéand;. These
constraints are sufficient to guarantee a feasible solution by the proof of Theorem 4.1. Hence, each parents-
offspring trio may give rise to at mo8in — 2 level 3 (or level 4) constraints, whene is the number of loci.
If the number of individuals i& in the input pedigree, then we have at mdgt. — 1)n level 3 and level 4
constraints.

Suppose that the PS variables are denoted as,, . . ., x,,,,,. Our algorithm first removes all equations
that contain only one variabl&€. level 2 constraints), and replaces the involved variables by their constant
PS values in other equations. This may result in more single-variable equations, and we iterate the process
until all equations contain two or more variables. We then process two-variable equations by substituting
variables with lower indices for variables with higher indices that are supposed to have equal values. The
remaining equations now have three or more variables, and we perform the general Gaussian elimination
overZ,. Suppose that; has the highestindex among the remaining variables, and it is defined by equations:

Tj = Tay T Tag T ...+ Tay,
Tj = :Bbl—i-:EbQ—l-...—l—qu,
Tj = Xeg + Xey + ...+ X,
Tj = X4y + T4y + ...+ T4,
whereay, aq,...,ap,b1,ba, ..., by, c1,¢2,...,¢r,d1,d2,...,ds < j. We can transform the equations as
follows:
Tj = Ta T Tayg T ...+ Tay,
0 = Zgy +Tay +...+Tq, +Tpy +Tpy +...+ Tp,,
0 = Te +Tey +...+ T, +Tgy +Tgy + ...+ Tyg,.

17

This leaves only one equation that defingsn terms of other variables. We can continue this process to
remove all but one constraint equation for each of the variables in the system. If we detect any conflicts in
the process, we know that there are no feasible solutions. Any variable that is not defined by any equation
is free and can be given any PS value in a feasible solution. Thus, if thepdragevariables at the end, the

total number of feasibl8-recombinant solutions .

The running time of the above algorithm@¥m?3n3), since the above elimination process takes at most
mn iterations and each iteration takes at mo$tn?n?) time because the number of equations never grows
and the size of each equation is at mast.

O !
L

1 2 3
12 12 12
12 12 12

12 12 12
4
12

12 12 12
12 12 12

Figure 7: An example to illustrate the constraint-based algorithm.

We use an example to illustrate how the above constraint-based algorithm works. The input pedigree
and genotypes are shown in Figure 7. There are 3 loci, 7 individuals and 3 parents-offspring trios. For the
firsttrio (1,2, 4), we derive constraints

T11+T21 = T14+x24

T21+ 31 = T4+ 234

Ti2+ T2 = Ti14+2T24

T2+ T32 = T4+ T34
For the second trig2, 3, 5), we derive constraints

Ti2+Ta2 = T2s

T2+ T332 = Tas+ T35

T13+T23 = T25+1

T23+ X33 = T25+ T35
For the third trio(5, 6, 7), we derive constraints

15 = 0

18

17 = 0

Tos+x35 = wor+1
T16 T T2 = T17+ T2y
To6 + T36 = T27

xr37 = 0.

By performing the above adapted Gaussian elimination, we end up with a system of equations that define
all but7 (free) variables.

5 Preliminary experimental results

We have implemented the above block-extension algorithm as a C++ prdgedPhasgwhich is available

to the public upon request to either of the authors. To evaluate the performance of PedPhase, we compared
PedPhase and MRH on simulated genotype data in terms of accuracy and efficiency using three different
pedigree structures. The results show that PedPhase is comparable with MRH in terms of accuracy when the
number of recombination events is small and is much faster than MRH on large dataset (large pedigree/large
number of loci). We further compared the performance of PedPhase, MRH and an EM algorithm on a real
data set that consists of 12 multi-generation pedigrees from a recent paper [8]. The results show that both
rule-based haplotyping methods (PedPhase and MRH) could discover almushationhaplotypesi(e.
haplotypes with frequencies 5%) that were inferred by the EM algorithm [8]. The haplotype frequencies
estimated from the haplotype results of PedPhase and MRH (by simple counting) are also similar to the
estimations by the EM algorithm. Most of the blocks 85%) were found by PedPhase and MRH to

have involved 0 recombinants. The assumptions and observations made in Section 3 and the minimum
recombination principle are well supported by this real dataset.

5.1 PedPhase and MRH on a simulated dataset

We compared the two programs in terms of accuracy and efficiency. For both programs, a solution is
regarded as correct if its number of recombinants is smaller or equal to the actual number of recombinants
used to generate the dafaThree different pedigree structures were considered. One is a small pedigree
with 15 members as shown in Figure 1. The second is a middle sized pedigree with 29 members as shown in
Figure 8 and the third is a pedigree of 17 members but with a mating loop as shown in Figure 9. Both multi-
allelic (with 6 alleles per locus) and biallelic data were considered. The alleles were generated following a
uniform frequency distribution. Three different numbers of loci, namely 10, 25 and 50 were considered. The
number of recombinants used in generating each pedigree ranged from 0 to 4. For each data set, 100 copies

"Because we consider small numbers of recombinants in the simulation, the true haplotype configurations are usually optimal
solutions for MRHC. In fact, in most cases they are the unique optimal solutions.

19

of random genotype data were generated. The total number of data sets used is 30G0-@ - 5 - 100).
However, we were not able to run MRH on all these data sets because of its speed, especially for biallelic
genotypes.

|
| | |
|

i

DA
oﬁg';)«
Dﬁgx%%
DﬁFigg

2-100 | 2-199 2-102 | 2-103 2-111 | 2-104 2-113 2-114 2-115 2-116 2-117

| |
mReR=futufelu

2-9097 2-9098 2-9099 2-9003 2-9004 2-9005 2-9006

1-13 1-14 115 1-16 117

Figure 9: A pedigree with 17 members and a mating loop.

The experimental results demonstrate that our block-extension algorithm is much faster than MRH on
both multi-allelic and biallelic data (Table 3 and Table 4). The first column of the tables shows the combina-
tion of parameters: the number of members in the pedigree, the number of loci in each member, the number
of distinct alleles allowed at each locus, and the number of recombinants used to generate the genotype
data, respectively. The time used by each program is the total time for 100 random runs for each parameter
combination, on a Pentium Il with 500MHz CPU and 218MB RAM. The gap between the speeds of the
two programs is drastic, especially on biallelic data. In all cases, our program could finish 100 runs within
one minute. MRH, on the other hand, scaled very poorly. For small pedigree size or a small number of
loci, its running time was acceptable although it was much slower than our program. When the pedigree
size and the number of loci increase, MRH’s speed decreased drastically, especially on biallelic markers
that are becoming more and more popular because of SNPs. This is also true for zero-recombinant data. In

20

fact, MRH cannot handle pedigrees of size 29 in general [20], although such pedigrees are only considered
moderately large in practice. On the other hand, Qian and Beckmann [21] showed that MRH is faster on
average than the genetic algorithm of Tapastaal.[26].

Parameters| Time used by the block-extension algorithmTime used by MRH
(17,10,6,0) 2.1s 1m16s
(17,10,6,4) 2.1s 2ml4s
(15,25,6,0) 2.7s 28m
(15,25,6,4) 2.9s 30m
(29,10,6,0) 3.2s 6ml7s
(29,10,6,4) 3.1s 8m47s
(29,25,6,0) 15s 2h58m
(29,25,6,4) 10s 3h9m

Table 3: Speeds of the block-extension algorithm and MRH on multi-allelic markers.

Parameters| Time used by the block-extension algorithmTime used by MRH
(17,10,2,0) 1.9s 6m17
(17,10,2,4) 2.3s 16m16s
(15,25,2,0) 4.7s 3h43m
(15,25,2,4) 4.8s 4h44m
(29,10,2,0) 2.8s 1h3m
(29,10,2,4) 2.7s 57m
(29,25,2,0) 2.3s 28h
(29,50,2,0) 16s > 20h/run

Table 4: Speeds of the block-extension algorithm and MRH on biallelic markers.

In terms of accuracy, MRH is very good-(96% overall) whenever it is able to finish the computation,
because of its exhaustive search within a nuclear family. However, the performance of the block-extension
algorithm is comparable to that of MRH in most cases. For example, on multi-allelic data, the block-
extension algorithm could recover most haplotype configurations correctly, even when the input involves
a big pedigrees and a large number of marker loci (Table 5). For biallelic data, the performance of the
algorithm is very good when the number of required recombinants is small but becomes worse when the
number of recombinants increases (Tables 6 and 7).

5.2 PedPhase, MRH and the EM algorithm on a real dataset

We have also tested PedPhase and MRH on a public dataset from Whitehead/MIT Center for Genome Re-
search. Recently, Gabriet al. [8] reported results on a large scale SNP haplotype block partition and
haplotype frequency estimation project. Their original dataset consists of 4 populations and 54 autosomal
regions, each with an average size of 250K bps, spanning 13.4M bps (about 0.4%) of the human genome.
Haplotype blocks were defined using the normalized linkage disequilibrium parametanithin each

block, haplotypes and their frequencies were calculated via an EM algorithm. One of the populations (Eu-
ropean) has pedigree information and is of interest to us. There are totally 93 members in the European

21

Parameters| Percentage correctly recovered out of 100 runs
(15,50,6,0) 100
(15,50,6,4) 91
(17,50,6,0) 100
(17,50,6,4) 91
(29,10,6,0) 100
(29,10,6,4) 99
(29,25,6,0) 100
(29,25,6,4) 95
(29,50,6,0) 100
(29,50,6,1) 96
(29,50,6,2) 93
(29,50,6,3) 95
(29,50,6,4) 91

Table 5: Accuracy of the block-extension algorithm on multi-allelic markers.

Parameters Percentage correctly recovered out of 100 runs
(15,10,2,0) 100
(15,10,2,4) 96
(15,25,2,0) 98
(15,25,2,4) 78
(15,50,2,0) 100
(15,50,2,1) 82
(17,10,2,0) 97
(17,10,2,4) 92
(17,25,2,0) 100
(17,25,2,1) 84
(17,50,2,0) 100
(17,50,2,1) 72
(29,10,2,0) 95
(29,10,2,4) 93
(29,25,2,0) 100
(29,25,2,1) 91
(29,25,2,2) 87
(29,50,2,0) 100
(29,50,2,1) 88

Table 6: Accuracy of the block-extension algorithm on biallelic markers.

population, separated into 12 multi-generation pedigrees (each with 7-8 members). The genotyped regions
are distributed among all the 22 autosomes and each autosome contains 1-10 regions. We obtained the results
concerning common haplotypes and their frequencies in the European population, as given by the EM algo-
rithm, from the authors of [8]. In this paper, we focus on a randomly selected autosenafomosome

Number of recombinants in the pedigree 0 1 2 3 4
Number of correct reconstructions out of 100 runsl00 | 88 | 72 | 64 | 54

Table 7: Accuracy decreases when the number of recombination events increases for the
pedigree in Figure 8 with 50 biallelic marker loci.

22

3). There are 4 regions in the chromosome 3 data and each region is partitioned into 1-4 blocks according
to [8]. The physical location and partitioned block information of each region from [8] are summarized in
Table 8. We take the genotypes of each of the 10 blocks as our initial input dataset.

Region name| Physical length (kbps) Genotyped SNPS Block | SNPs in each block
16a 40 14 1 5
16b 106 53 1 6

2 4
17a 186 70 1 6
2 5
3 4
4 6
18a 286 74 1 16
2 6
3 4

Table 8: The regions and blocks on chromosome 3.

We downloaded the SNP genotype data and pedigree structures from Whitehead/MIT Center for Genome
Research websitéttp://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.htmi). The geno-
types have been preprocessed and are consistent with Mendelian law. However, as2aticbfdise alleles
could be missing at a particular locus. Since the current version (version 0.1) of MRH cannot handle miss-
ing data, PedPhase is used first to impute missing alleles according to the first step in the block-extension
algorithm. Completed genotype data are then fed to MRH. Once haplotypes are inferred for the members all
pedigrees, haplotype frequencies (in the population) are estimated by simple counting. The common hap-
lotypes and their frequencies in each block, estimated by PedPhase, MRH and the EM algorithm (obtained
from the authors of [8]), are summarized in Table 9. The majority (36 out of 39) of the common haplotypes
identified by PedPhase and MRH for all blocks are the same as those of the EM algorithm. Furthermore,
for the common haplotypes shared by the three programs, all three programs gave frequencies very close to
each other. In two of the three cases where PedPhase and MRH obtained slightly different common haplo-
types (in blocks 17a-1 and 18a-2), the involved haplotypes have frequencies very close to the thireshold (
5%) of common haplotypes. Only one haplotype in block 18a-1 was identified by the EM algorithm with a
frequency of 12.5% but missed by both PedPhase and MRH.

Since the pedigrees were very small, both PedPhase and MRH were very fast on this dataset. The com-
mon haplotypes given by PedPhase and MRH are always identical. PedPhase successfully reconstructed
haplotypes in all 120 (12 pedigree on 10 blocks) cases but MRH failed in 12 cases (no results were given)
for some unknown reason. Note that, PedPhase only gives one haplotype configuration for each input,
while MRH may produce multiple configurations. In this study, MRH found multiple solutions for 21 cases
and we randomly selected one for the calculation of haplotype frequencies. With regard to recombina-
tion, most pedigreesy 85%) can be realized with 0 recombinants. PedPhase and MRH agreed with each
other on the number of recombinants in all but three cases. In one case, PedPhase found a solution with
2 recombinants and MRH gave a solution with 4 recombinants. In the other two cases, PedPhase reported

23

Block EM PedPhase MRH
Common haplotypeg Frequencies)] Common haplotypeg Frequencies| Common haplotypeg Frequencies|
16a-1 42222 0.4232 42222 0.3817 42222 0.3779
34344 0.2187 34344 0.1720 34344 0.1744
42224 0.2018 42224 0.1935 42224 0.1802
34224 0.1432 34224 0.1613 34224 0.1802
16b-1 324112 0.8014 324112 0.7634 324112 0.7849
132334 0.0833 132334 0.0753 132334 0.0753
16b-2 4122 0.5410 4112 0.4892 4112 0.4826
2334 0.2812 2334 0.2581 2334 0.2616
2332 0.1562 2332 0.1344 2332 0.1512
17a-1 313444 0.3403 313444 0.3172 313444 0.3226
133242 0.3021 133242 0.2419 133242 0.2473
332424 0.1354 332424 0.0914 332424 0.0914
333444 0.1021 333444 0.1183 333444 0.1183
332444 0.0681 332444 0.0806 332444 0.0806
133244 0.0521
17a-2 23242 0.3542 23242 0.2903 23242 0.2903
33424 0.3333 33424 0.2957 33424 0.3118
33442 0.1458 33442 0.1344 33442 0.1237
34444 0.1250 34444 0.1452 34444 0.1452
17a-3 4431 0.4129 4431 0.4355 4431 0.4167
3112 0.2813 3112 0.2258 3112 0.2051
4131 0.2363 4131 0.1935 4131 0.2115
4132 0.0696 4132 0.0753 4132 0.0705
17a-4 344124 0.3854 344124 0.3710 344124 0.4429
232432 0.3333 232432 0.2903 232432 0.2357
342424 0.2500 342424 0.1881 342424 0.1857
18a-1 | 1444231214144132 0.2697 1444231214144132 0.2473 1444231214144132 0.1706
1444111214144132 0.2396 1444111214144132 0.2151 1444111214144132 0.2357
1444131214144132 0.1887 1444131214144132 0.2204 1444131214144132 0.2176
4222133313412211] 0.1250
1444231234144132 0.0833 1444231234144132 0.0699 1444231234144132 0.0764
18a-2 312442 0.4967 312442 0.4892 312442 0.4765
132434 0.2604 132434 0.1935 132434 0.1765
312242 0.1271 312242 0.0753 312242 0.0765
134444 0.0938 134444 0.0806 134444 0.0941
132432 0.0538 132432 0.0588
18a-3 2211 0.4186 2211 0.4032 2211 0.4214
4333 0.2188 4333 0.1935 4333 0.1714
2311 0.2064 2311 0.2204 2311 0.1928
4313 0.1250 4313 0.1559 4313 0.1857

Table 9: Common haplotypes and their frequencies obtained by PedPhase, MRH and the
EM method. In haplotypes, the alleles are encoded as 1=A, 2=C, 3=G, and 4=T.

solutions with 1 recombinant each and MRH found solutions with 0 recombinants. The complete results

of PedPhase on this real dataset (and more datasets to be studied in the future) will be available at website
http://www.cs.ucr.edu/jili/haplotyping.html

24

6 Concluding remarks

Pedigrees with mating loops are not a big problem for both rule-based algorithms block-extension and MRH,
although they usually cause troubles for statistical methods. But, we have observed in the experiments that
for both of the rule-based algorithms, the results on the pedigree structure with a loop (in Figure 9) are
slightly worse than the results on the other two pedigree structures without loops. More investigation is
needed on this issue. Notice that the pedigree structure used in the proof of the NP-hardness of the MRHC
problem is very complicated and requires a large number of recombinants. An interesting question is if there
is an efficient algorithm for solving MRHC (exactly) on pedigrees that require only a small (fixed) number

of recombinants.

7 Acknowledgement

We thank the anonymous referee for a very thorough review and many helpful suggestions. We are grateful
to Drs. David Altshuler, Mark Daly, Stacey Gabriel, Stephen Schaffner, and their entire group at White-
head/MIT Center for Genome Research for sharing their haplotype block and frequency results analyzed
in [8] with us.

References

[1] L. Aceto, J. A. Hansen, A. Ir@fsdottir, J. Johnsen, and J. Knudsen. The complexity of checking
consistency of pedigree information and related probldvtemuscript 2003.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. P@uiagilexity
and approximation Springer-Verlag, Berlin, 1999.

[3] C. D. A program to draw pedigrees using linkage or linksys data filemals of Human Genetics
54:365-367, 1990.

[4] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander. High-resolution haplotype
structure in the human genomeat Genet29(2):229-32, 2001.

[5] K. Doi. MRHC2 and loopless MRHC are NP-har@rivate Communicatior2003.

[6] J. A. Douglas, M. Boehnke, E. Gillanders, J. M. Trent, and S. B. Gruber. Experimentally-derived hap-
lotypes substantially increase the efficiency of linkage disequilibrium studesGenet28(4):361—4,
2001.

[7] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a
diploid population.Mol Biol Evol, 12:921-927, 1995.

25

[8] S.B. Gabriel, S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice,
A. Lochner, M. Faggart, S. N. Liu-Cordero, C. Rotimi, A. Adeyemo, R. Cooper, R. Ward, E. S. Lander,
M. J. Daly, and D. Altshuler. The structure of haplotype blocks in the human gen@uo®nce
296(5576):2225-9, 2002.

[9] D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and efficient solutidtrsc.
RECOMB’02 pages 166-175, 2002.

[10] L. Helmuth. Genome research: Map of the human genomes&ience293(5530):583-585, 2001.

[11] J. C. Lam, K. Roeder, and B. Devlin. Haplotype fine mapping by evolutionary theesl Hum Genet
66(2):659-73, 2000.

[12] S.Linand T. P. Speed. An algorithm for haplotype analy$i€omput Biol 4(4):535-46, 1997.

[13] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies for the single nucleotide
polymorphism haplotype assembly probleBriefings in Bioinformatics3(1):23-31, 2002.

[14] J. S. Liu, C. Sabatti, J. Teng, B. J. Keats, and N. Risch. Bayesian analysis of haplotypes for linkage
disequilibrium mappingGenome Red.1(10):1716-24, 2001.

[15] T. Niu, Z. S. Qin, X. Xu, and J. S. Liu. Bayesian haplotype inference for multiple linked single-
nucleotide polymorphisms#Am J Hum Genef70(1):157-169, 2002.

[16] J. R. O’'Connell. Zero-recombinant haplotyping: applications to fine mapping using sbeset
Epidemio] 19 Suppl 1:564-70, 2000.

[17] J.R. O'Connell and D. E. Weeks. Pedcheck: a program for identification of genotype incompatibilities
in linkage analysisAm J Hum Gene63(1):259-66, 1998.

[18] J. R. O'Connell and D. E. Weeks. An optimal algorithm for automatic genotype eliminafionJ
Hum Genet65(6):1733—-40, 1999.

[19] A. Piccolboniiand D. Gusfield. On the complexity of fundamental computational problems in pedigree
analysis.Manuscript Submitted for publication.

[20] D. Qian, 2002. Personal communication.

[21] D. Qian and L. Beckmann. Minimum-recombinant haplotyping in pedigre&s J Hum Genet
70(6):1434-1445, 2002.

[22] H. Seltman, K. Roeder, and B. Devlin. Transmission/disequilibrium test meets measured haplotype
analysis: family-based association analysis guided by evolution of haplotydes] Hum Genet
68(5):1250-63, 2001.

26

[23] S. K. Service, D. W. Lang, N. B. Freimer, and L. A. Sandkuijl. Linkage-disequilibrium mapping of
disease genes by reconstruction of ancestral haplotypes in founder populd&iond.Hum Genet
64(6):1728-38, 1999.

[24] A. H. Sherman. Algorithms for sparse gaussian elimination with partial pivot@M Transactions
on Mathematical Software (TOMS)(4):330-338, 1978.

[25] M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype reconstruction from
population dataAm J Hum Gene68(4):978-89, 2001.

[26] P. Tapadar, S. Ghosh, and P. P. Majumder. Haplotyping in pedigrees via a genetic algéfithm.
Hered 50(1):43-56, 2000.

[27] A. Thomas, A. Gutin, V. Abkevich, and A. Bansal. Multilocus linkage analysis by blocked gibbs
sampling.Stat Computpages 259-269, 2000.

[28] H. T. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen, P. Sevon, H. Mannila, M. Herr, and J. Kere. Data
mining applied to linkage disequilibrium mappingm J Hum Gene67(1):133-45, 2000.

[29] E. M. Wijsman. A deductive method of haplotype analysis in pedigr&es] Hum Gene#1(3):356—
73, 1987.

[30] S. Zhang, K. Zhang, J. Li, and H. Zhao. On a family-based haplotype pattern mining method for
linkage disequilibrium mappindg?ac Symp Biocompupages 100-11, 2002.

27

