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Chapter 1

Introduction

1.1 Overview

The program gs can quickly generate a large number of samples based on real data that are useful for a va-
riety of purposes, including evaluating methods for haplotype inference, tag SNP selection and association
studies. Two approaches have been implemented to generate dense SNP haplotype/genotype data that share
similar local linkage disequilibrium (LD) patterns as those in human populations. The first approach takes
haplotype pairs from samples as inputs, and the second approach takes patterns of haplotype block struc-
tures as inputs. Both quantitative and qualitative traits have been incorporated in the program. Phenotypes
are generated based on a disease model, or based on the effect of a quantitative trait nucleotide, both of
which can be specified by users. In addition to single-locus disease models, two-locus disease models have
also been implemented that can incorporate any degree of epistasis. Users are allowed to specify all nine
parameters in a 3× 3 penetrance table. For several commonly used two-locus disease models, the program
can automatically calculate penetrances based on the population prevalence and marginal effects of a disease
that users can conveniently specify.

We extend gs to generate samples involving genetic and environmental interactions. The new version of
the program gs2.0 provides great functionalities and flexibilities to simulate various interaction models. By
specifying the disease model and the parameters, one can use this program to simulate desired dataset for
association studies on complex disease. Data generated by gs2.0 can serve as a common ground to compare
different approaches in detecting interactions.

1.2 Algorithms

The program has implemented two generating models for haplotypes/genotypes, i.e., extension method and
block method. Both methods can be used to generate qualitative and quantitative phenotype data. We first
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6 CHAPTER 1. INTRODUCTION

introduce the two methods in the context of generating case-control data, and the extension to quantitative
traits will then be discussed.

1.2.1 Extension Method

The first model is an extension to the one used in [2] that takes phased haplotype pairs as its inputs. For
example, one can use the haplotype results from the HapMap project as inputs, which can be downloaded
from the HapMap website. Users first create a disease model by specifying the disease allele frequency
(DAF) and the penetrance of each genotype. Alternatively, users can define a disease model using the pop-
ulation prevalence and genotype relative risks. A simple relationship exists between penetrance parameters
and genotype relative risk parameters [6]. Therefore, in the following we discuss our procedure only using
one set of parameters, the penetrance. The program first picks a SNP t from the input data, where one
of its two alleles has the frequency approximately equal to the DAF specified in the parameter file. This
allele is regarded as the high-risk variant. (Alternatively, users can specify a particular SNP as the disease
susceptibility locus.) To generate the genotype at the disease locus for a case, it first calculates the condi-
tional probability of each genotype (homozygous wild, heterozygous, and homozygous mutant) given the
individual being affected based on equation 1.2.1.

Pr(gi|case) =
Pr(gi)Pr(case|gi)∑
j Pr(gj)Pr(case|gj)

(1.2.1)

The actual genotype g will then be selected based on the conditional distribution. The genotype frequencies
in the above formula can be obtained from allele frequencies under the assumption of Hardy-Weinberg
equilibrium. The probability of being affected given a particular genotype (penetrance) is given by users as
a parameter. To generate the haplotype pairs h1 and h2 for this affected individual, the program randomly
selects two haplotypes h3 and h4 from the inputs with the genotype at the disease locus t as required (i.e.,
(h3[t], h4[t]) = g, where hi[t] denotes the allele at the tth locus on haplotype hi ). In their original paper [2],
haplotype h1 will be given the same alleles as h3 from locus t− l to t+ l, where l is a parameter that can be
specified by users. To extend h1 to the right for one more locus, it randomly selects another haplotype h5

that has the same alleles as h1 from locus t− l + 1 to locus t+ l, and let h1[t+ l + 1] = h5[t+ l + 1]. By
iterating the above process, one can extend h1 to the right and then to the left. We found that LD patterns
from samples generated this way greatly depend on the parameter l (data not shown). Even for one particular
data set, the extend of LD may vary substantially in different segments. A single l can not accommodate
all the cases. We have extended the above method by introducing two parameters, lmin and lmax. The
overlapped length for both the initial assignment and the extension of h1 will be stochastically determined
by two values ll and lr (lmin ≤ ll, lr ≤ lmax), one for each direction. The values of ll and lr depend upon
the strength of local LD. More specifically, lr is initialized as lmin. The value of lr is increased by 1 if the
LD measure D’ between locus t + lr and locus t + lr + 1 is greater than a uniformly distributed random
number between 0 and 1. The process will terminate when the value of D’ is smaller than such a random
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number or when lr = lmax. The value of ll can be determined similarly to the left. The haplotype h1 will be
given the same alleles as h3 from locus t− ll to t+ lr initially. At each extension step, the procedure is the
same as in the original paper [2], but with differences in determining the length of the overlapped region.
For example, to extend to the right for one more locus, suppose the current locus (the right most one) is t1.
The leftmost locus t2 of the overlapped region is stochastically determined based on pairwise LD with the
constraint that lmin ≤ t1 − t2 ≤ lmax. A haplotype that shares the same segment with h1 from t2 to t1

will be randomly selected and its allele at t1 + 1 will be copied to h1. A detailed description of the above
procedure can be found in the manual of the program. The haplotype h2 can be obtained similarly. The
required number of cases can be generated by repeating the process. One can generate normal individuals
using the same approach based on the genotype distribution conditional on the fact that the individuals are
normal. By using two parameters, the method takes both long-range LD (up to lmax) and short-range LD
into considerations.

1.2.2 Block Method

The second generating model is actually a Markov model based on haplotype block structures inferred
from real data such as HapMap data. LD patterns such as a block-like structure have been commonly
observed from experimental data for dense SNPs. Instead of directly using haplotype pairs, one can also
take the haplotype block structures as inputs. As a Markov chain, each block is a state that consists of
several common haplotypes controlled by an emission distribution. The connections of haplotypes between
adjacent blocks are specified by a transition probability matrix. More specifically, for each block, the input
data consist of the number of markers, the common haplotypes with their population frequencies, and the
probabilities of each common haplotype connecting the common haplotypes in the next block. An example
is given in Fig. 1.1. Such a structure can be inferred based on real data using some software such as
Haploview [1]. To generate samples, users first specify a disease model (DAF and penetrances/relative
risks) and the program selects a locus with its allele frequency approximately equal to the DAF. Users can
also specify a disease locus directly. The genotype of a case (or a control) at the disease locus is generated
in the same way as the extension method does. For each allele at the disease locus, a common haplotype
with the allele embedded will be selected according to their frequency distribution. The two haplotypes will
then be extended independently to both directions based on the transition probabilities. A large number of
samples can be generated that will share similar LD patterns with real data but with different haplotypes
and genotypes. To maintain a proper level of variety, we have considered SNPs that are not in any blocks,
as well as possible rare haplotypes that do not exist from the input block file. For many block definitions,
not all SNPs have to be within some blocks. To incorporate those missed SNPs, the original genotype data
file that is used in generating the block structure has to be provided to the program. When generating a
haplotype of a sample, the program imputes the missed SNPs sequentially based on their physical positions.
For each position, an allele is chosen based on the allele in the previous position, and their frequencies and
the pairwise LD between them estimated from the genotype data. Furthermore, rare haplotypes are usually
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Figure 1.1: Haplotype block structure as a Markov Model. Each block is a state and each small rectangle
within a block represents a common haplotype with its frequency denoted as fij . The transition probabilities
between adjacent blocks are depicted by lines with width representing quantity.

been dropped in the Markov model. Only major haplotypes and their frequencies are available for each
block. To incorporate rare haplotypes, we stochastically generates (only) one “rare” haplotype each time
when a block is selected. The alleles of the haplotype are sampled solely based on the allele frequencies and
pairwise LD. The frequency of the rare haplotype is defined so that the summation of haplotype frequencies
within each block will be one (the summation of frequencies from common haplotypes only is often less
than one from an input). The transition probabilities from the rare haplotype to haplotypes in the next block
are proportional to the haplotype frequencies in the next block. When a block is selected again in generating
another sample, a new rare haplotype will be generated and its frequency will be determined in a similar
fashion. In such a way, every possible haplotype within a block will have a chance being selected as a rare
haplotype for some samples. These new haplotypes will be rare overall in the samples because each time
a different one might be selected. The procedure is designed so that it is slightly biased to haplotypes with
common alleles.

For both methods, the disease locus can be removed from the output. Users can also specify a missing
rate to control the amount of missing alleles. By combining samples generated based on different popula-
tions, one can create a data set that is a mixture of different (isolated) populations. In addition to association
studies, the samples can be used in testing algorithms for tag SNP selection or haplotype inference.

Instead of providing three penetrances for one-locus model, users can also specify the prevalence p

and the genotype relative risks R1 and R2 [5]. The disease penetrance values p0, p1, p2, corresponding to
homozygous wild, heterozygous, and homozygous mutant, can be obtained as follows. Let pd denote the
disease allele frequency. Since R1 = p1/p0, R2 = p2/p0, we have [6],

p = (1− pd)
2p0 + 2pd(1− pd)p1 + p2dp2

= (1− pd)
2p0 + 2pd(1− pd)R1p0 + p2dR2p0

(1.2.2)

Solving for p0, we have,
p0 =

p

(1− pd)2 + 2pd(1− pd)R1 + p2dR2
(1.2.3)

By definition, p1 and p2 are solved based on p0.

1.2.3 Quantitative Traits

Quantitative phenotypes can also be generated by both the extension method and the block method. To
generate phenotypes for a quantitative trait, a quantitative trait nucleotide is chosen according to a specific
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allele frequency or a specific marker position provided by users. The phenotypic value of each individual
is generated according to the classical single-locus quantitative trait model [7]. More specifically, users
can specify the additive (VA) and dominance (VD) genetic variances attributable to the quantitative trait
nucleotide as proportions of the total phenotypic variance. Denote the proportions as πA and πD. Let VO

denote the variance due to all other (genetic and environmental) factors and assume its value is 1. Then VA

and VD can be calculated based on

VA + VD

VA + VD + 1
= πA + πD, and

VA

VD
=

πA
πD

.

If one assumes that the phenotypic value of an individual can be partitioned as

y = z + ui =


z homozygous wild
z + (1 + k)a heterozygous
z + 2a homozygous mutant

, (1.2.4)

where z follows the standard normal distribution, a is half of the difference between two homozygous
genotypic values (assume the mutant allele increases the phenotypic value), and k is a parameter representing
the dominance effect, it is known [7] that VA and VD can be written as

VA = 2p(1− p)a2(1− k(2p− 1))2, and VD = (2p(1− p)ak)2, (1.2.5)

where p is the frequency of the mutant allele. Thus a and k can be obtained based on the above equations.
The phenotypic value of an individual can be calculated by substituting a and k into Equation 1.2.4.

1.2.4 Two-Locus Models

For a two-locus diallelic disease model, two interacting sites are involved, and in theory, one can specify nine
penetrances, one for each genotype combination from the two sites. The gs program provides two distinct
methods to allow users to specify a two-locus model. For the first method, all the nine parameters are free
and users have the freedom to assign each penetrance with any probability value. Thus the program can
generate datasets with any desired disease models. For the second method, the gs program has implemented
nine commonly used models in the literature. For each of these nine models, users only need to specify
the population prevalence p, and genotype odds ratio(s) 1 + θ for each locus, which are relatively easier to
obtain for a disease. The program can automatically calculate the penetrance table. For example, Table 1.1
represents a jointly dominant-dominant model and each cell represents the odds of disease given that an
individual has that particular genotype combination gi. Such a model requires at least one disease allele
at both loci to increase disease odds and both loci have the same effect size. Let Pr(D|gi) denote the
probability of an individual being affected given its genotype combination of gi (i.e., the penetrance of gi),
and let Pr(D|gi) denote the probability of an individual not being affected given its genotype gi. Based on
the definition of the odds of a disease

ODDgi =
Pr(D|gi)
Pr(D|gi)

=
Pr(D|gi)

1− Pr(D|gi)
, (1.2.6)
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the penetrance of gi can be calculated using the following formula,

Pr(D|gi) =
ODDgi

1 +ODDgi

. (1.2.7)

A corresponding penetrance table is give in Table 1.2. Once the population prevalence p and the genotype
odds ratio (1 + θ) are fixed in this model, the baseline value α, which indicates the odds of disease when
the two loci do not carry any disease alleles, can be calculated by plugging the terms in Table 1.2 into the
following formula,

p = Pr(D) =
∑
i

Pr(D|gi)Pr(gi). (1.2.8)

The frequencies on genotype combinations (Pr(gi)) can be obtained from allele frequencies under the
Hardy-Weinberg Equilibrium assumption. By focusing on fully penetrant models (the probability of an
individual being affected is either 1 or 0 for any given genotype combination), Li et al. [4] enumerated
all the 512 possible combinations and summarized 50 unique ones. We have chosen nine commonly used
models and implemented them in the program. Their parameters and usage can be found in the Section 2.4.1.

bb Bb BB

aa α α α

Aa α α(1 + θ) α(1 + θ)

AA α α(1 + θ) α(1 + θ)

Table 1.1: Odds table for the jointly dominant-dominant model.

bb Bb BB

aa α
1+α

α
1+α

α
1+α

Aa α
1+α

α(1+θ)
1+α(1+θ)

α(1+θ)
1+α(1+θ)

AA α
1+α

α(1+θ)
1+α(1+θ)

α(1+θ)
1+α(1+θ)

Table 1.2: Penetrance table for the jointly dominant-dominant model.

Once the three by three penetrance table is ready, the gs program can calculate the conditional proba-
bility of each genotype combination given affected status using a similar formula as Equation 1.2.1. Actual
genotypes at the two loci will then be selected based on the conditional distribution. The haplotypes will
then be selected independently for these two loci, using either the extension method or the block method.
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1.3 Extension to Genetic and Environmental Interactions

We extend gs to generate samples involving genetic and environmental interactions. Users can freely specify
interactions. Meantime, the program complexity is under control. A set of definitions are made to encap-
sulate different variations. The effect of a variation is described by its disease risk value. Besides genetic
variations, the simulation model may also include environmental factors and other covariates. The disease
risk of an individual is determined by the combination of all the risk factors.

1.3.1 Locus Interaction Group

The genetic interaction takes two forms. One is the combination of genotypes. The other is the haplotype.
Both are essentially a specific configuration over a set of loci that contributes to the disease. Therefore, we
define the locus interaction group as a basic unit describing genetic variations. Loci that have joint effect are
put in the same locus interaction group. Loci in different locus interaction groups contribute to the disease
independently. As a special case, one independent locus can form a locus interaction group by itself. Users
may specify as many locus interaction groups as needed. Each group consists of a series of entries that
specify the disease risks associated with each configuration. The simulation program will continue to use
bi-allelic SNPs. For instance, following the conventional genotype coding that 1, 2, 3 stand for genotype 11,
12, 22 respectively, an entry “3 1 2, 1.8” means genotype combination (22, 11, 12) has a disease risk of 1.8.
In the case of haplotype, an entry “1 2 2, 1.7” indicates the haplotype 122 has a disease risk of 1.7, which
actually defines a haplotype effect.

1.3.2 Independent Covariate

Independent environmental factors and other covariates follow specific distributions with different means,
variances, and other parameters. We have implemented some common distributions in our gs program, such
as normal distribution, exponential distribution, Weibull distribution, etc. Users can assign a distribution to
certain covariate and provide desired parameters. Obviously, complex distributions or mixed distributions
cannot be built in the simulation program in advance. Alternatively, gs allows users to provide a file that
contains desired values simulated from outside sources, such as R, MATLAB, or their own programs. gs
will randomly assign values from the provided file to the specified covariate.

1.3.3 Covariate Interaction Rule

We define the covariate interaction rule to incorporate the correlation between genetic variations, environ-
mental factors and other covariates. A covariate interaction rule consists of one or more genetic or environ-
mental variations, and their relationship. In order to simplify the problem to make the simulation more prac-
tical, two basic categories are implemented: one is the genetic-environmental (G×E) interaction, and the



12 CHAPTER 1. INTRODUCTION

other is the environmental-environmental (E×E) interaction. A typical example of genetic-environmental
interaction from GAW 15 simulation is that, only smokers with genotype Bb or BB at locus B will have
an increased RA risk 1.5. For the second category, the interaction does not involve genetic variations. For
example, phenotype latent IgM level and smoking status can have a joint effect to the RA risk. Covariate
Interaction Rules are examined one by one after all related covariates have been simulated. The subject will
obtain the corresponding risk if certain rule is satisfied.

1.3.4 Affection Status

The affection status is determined after all the genetic variations, environmental factors and other covariates
are simulated. For a subject i to be simulated, let θij denote the risk value defined by the jth locus interaction
group or covariant interaction rule. The combined disease risk for this subject is Ri =

∏
j θij . The reciprocal

of the combined Ri serves as the mean of an exponential distribution,

f(x) = (Ri)e
−(Ri)x (1.3.1)

from which a random variable x will be drawn. If x is less than a preset threshold, the subject is affected.
Otherwise, the subject is normal. This threshold effectively controls the baseline penetrance. Let λ denote
the fixed threshold, and F (x) denote the cumulative distribution function of f(x). The probability of an
individual getting affected is,

Pr(Affected) = Pr(x < λ) = F (λ) = 1− e−(Ri)λ (1.3.2)

Because the baseline individual doesn’t carry disease-related variation, the risk is 1. Therefore, the baseline
penetrance is 1 − e−λ. When λ = 0.1, the baseline penetrance is 0.095. Based on Equation 1.3.2, the
penetrance of an individual is a function of the combined disease risk of this individual. With λ fixed as 0.1,
Table 1.3 lists corresponding penetrances of different risks.

Risk Penetrance

1.1 0.104165865
1.2 0.113079563
1.5 0.139292024
2.0 0.181269247
3.0 0.259181779
5.0 0.39346934
10.0 0.632120559

Table 1.3: Corresponding penetrances of different disease risks.

Let µ denote the desired baseline penetrance. One can specify λ = −ln(1− µ) to obtain such baseline
penetrance.
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1.3.5 Extension of Surrounding Loci

As in previous implementation, gs continues to use two methods to populate surrounding loci with diversity.
One is the extension method, and the other is the block method. Please refer to Section 1.2 for details.

1.3.6 Alternative Usage

By default, gs generates genotypes/haplotypes by perturbing real data or by utilizing haplotype block infor-
mation. When evaluating power of statistical approaches in detecting disease loci, hundreds or thousands of
replicates have to be generated. However, for large scale genome-wide association studies with up to one
million SNPs and thousands of individuals, such an approach will take a long time to generate simulated
genotype data. Our program provides a simple alternative. Users can choose to generate only genotypes at
disease loci, or only SNP markers that are in linkage disequilibrium with disease loci. These genotypes can
then be randomly inserted into real data. By iterating this process, users can quickly generate required num-
ber of replicates for their experiments. An obvious limitation for such a strategy is that LD patters around
disease loci can be arbitrary.

1.3.7 Quantitative Trait

We implemented a simple quantitative trait model. The reciprocal of the combined disease risk for an
individual serves as the mean of an exponential distribution, same as in 1.3.1, from which a random variable
x will be drawn. The quantitative trait value of this individual will be −ln(x).

1.3.8 Summary

A subject i is simulated as follows. Genetic variations are simulated first. The program will identify all the
involving SNP loci from user input, either by absolute positions or by minor allele frequencies. At each SNP
position, the program will determine a left and right boundary according to pre-defined threshold lengths
and LD values. Within the determined range, the program will randomly pick up a haplotype from the pool.
Second, after genetic variations required to determine the affection status are ready, the simulation continues
to environmental factors and other covariates. Those independent values are drawn from the specified distri-
butions or provided by the user. Third, all disease risks caused by different factors are collected by checking
each locus interaction group and each covariate interaction rule, and the affection status/quantitative trait
is determined thereafter. At last, if the affection status satisfies the requirement of the simulation in terms
of the desired quantity, or it is quantitative trait, each involving SNP locus is ready to be extended in both
directions using either the extension method or the block method.
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1.4 Platforms

Executable binaries are available for Windows, Linux and Mac OS X.



Chapter 2

Running the Software

2.1 Obtaining and Installing the Software

The gs program and this document can be obtained at http://www.eecs.case.edu/∼jxl175/gs.html. The user
may use a tool such as WinZip to unzip the files under Windows and use the command “unzip” to unzip
the files under Linux or Mac OS X.

2.2 File List

The package contains the executable binary, this manual, a readme file, and several examples organized in
the subdirectories. The examples are described briefly in the readme file and in detail in each additional
readme file inside each example subdirectory. The necessary input files and parameter files are provided
with examples, whose formats are described in the sections that follow.

2.3 Input Files

The extension method requires an input file that contains haplotype samples. Its format is very simple.
Each line is a haplotype. For the single-locus model and two-locus model implemented earlier, the allele
at each marker is denoted as 0 or 1. The file test 01 data in the subdirectory “example1” is in such format.
The haplotypes in this file were downloaded from the HapMap website. Users can use two of them when
generating data from a two-locus model. For the use in the extension to simulate genetic and environmental
interactions, the allele is denoted as 1 or 2. The file test data in the subdirectory “example2” and “example3”
is in this format.

The block method requires a block structure file that contains the block structure from a region. The file
format is the same as the output file from a widely used program Haploview[1]. Briefly speaking, each block

15
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begins with a line that consists of the block index and the marker indices, followed by common haplotypes
one line each. At the end of each block there is a line reporting the LD of the block in terms of multi-allelic
D’. Here is an example.
BLOCK 1. MARKERS: 1 2 3! 4 5 6 7 8

33121122 (0.825) |0.794 0.206|

11442343 (0.149) |0.310 0.690|

Multiallelic Dprime: 0.785

BLOCK 2. MARKERS: 10! 11 12 13 14

44123 (0.831)

22211 (0.144)

Multiallelic Dprime: 0.790

The symbol “!” after some marker index indicates that the marker is a tag SNP from Haploview. The
program gs does not use that information when generating samples. The number in the parenthesis is the
haplotype frequencies. Transition probabilities are shown as a matrix with this block’s haplotypes as the
rows and the next block’s haplotypes as the columns. In this example, the first block has 8 markers with 2
haplotypes displayed and the second block has 5 markers and 2 haplotypes. The transition matrix can be
read as follows: the haplotype 33121122 has a probability of 79.4% connecting 44123 and a probability
20.6% connecting 22211, and so forth.

Because the block structure file usually does not contain all markers, gs allows users to provide a supple-
mentary genotype file that contains all markers. In this way, markers not in any block will also be generated.
Such genotype file can be in the linkage format or the phased haplotype format same as the phased hap-
lotype format used by Haploview, i.e., one column for family ID, one column for individual ID, followed
by haplotypes, and two lines of haplotypes for each individual. The file test block geno in the subdirectory
“example1” is such a supplementary genotype file in the phased haplotype format. One may generate the
block structure file from a genotype file and use the same genotype file as the supplementary genotype file.

To facilitate input file preparation, we have developed a gs file conversion tool — gsconverter that can
directly convert HapMap files and fastPhase output files into gs input files. Please see details in Section 2.8.

2.4 Parameter File

The gs program relies on the parameter file to specify running mode, SNPs to simulate, disease model,
output format and other important parameters. The structure and definitions of a parameter file will be
explained in details as follows.
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2.4.1 For Previous Single-Locus and Two-Locus Models

The parameter file is organized in the following way. Each parameter consists of a tag and parameter body.
The tag occupies one row and has the format “Pi”, where i is a number indicator. Each parameter may have
multiple values to be specified under the tag. Currently, there are 10 parameters. An example is given below.

P1

0

P2

100 100 10

P3

1 0.15

P4

0

0.05 0.075 0.1125

P5

0.0

P6

2 11

P7

0

P8

0 output

P9

0

P10

1

P1 indicates gs running mode: 0 for case-control data, and 1 for quantitative data.

P2 specifies the number of cases, number of controls and number of replicates one wants to generate
for case-control samples. In the case of simulations for quantitative traits, only two values are needed for
the second parameter. The first one specifies the number of individuals, and the second one specifies the
number of replicates.

P3 is used to specify which marker is disease/trait locus and which allele is the high risk allele (or the
allele that increases the value in the case of a quantitative trait). Two values are needed in this line. The first
value can be 1 or 0, representing that the allele with greater (or smaller) ID will be the risk allele. To choose
a marker, one can either specify a frequency or directly specify a marker position, using the second value.
When a frequency f is specified (0 < f < 1), the program will automatically pick a marker position with
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the frequency of the above specified allele roughly equal to f . If the value is an integer i (1 ≤ i ≤ m, m is
the total number of markers), the program will pick the ith marker as the trait locus. For a two-locus model,
one can specify the second locus in the same line following the first locus in the same manner.

P4 is used differently for one-locus model and two-locus model.

For case-control samples based on one-locus disease model, the fourth parameter has four values to
specify. The first is an indicator to use three penetrances directly if set as 0, or to use disease prevalence
along with genotype relative risks if set as 1. The following three values are the penetrances of each genotype
(in the order of homozygous wild, heterozygous, and homozygous mutant) in the case of directly providing
penetrances, or the disease prevalence, genotype relative risk 1 and genotype relative risk 2 in the other case.
For the mode of one-locus QTN, users need to specify the πA followed by the πD (see Section 1.2).

Regarding a two-locus model, a nonnegative integer i (0 ≤ i ≤ 9) is required as an indicator and a
built-in model index. If i is zero, users need to provide a 3 by 3 penetrance table like the following example.

P4

0

0.025 0.025 0.025

0.025 0.025 0.325

0.025 0.325 0.325

If i is greater than zero and less than or equal to 9, the gs program will pick the ith built-in two-locus model.
Three model parameters are then followed, in the order of population prevalence, genotype odd increments
θ1 and θ2 for the first and second locus, respectively. If a two-locus model only requires one θ, such as
the jointly dominant-dominant model with the same effect at both loci (Table 1.1), θ2 should have the same
value as θ1. An example is given below.

P4

6

0.1 0.25 0.3

The complete list of built-in two-locus models and their indices is given in the Table 2.1, followed by their
odds tables one by one.

P5 indicates the missing rate.

P6 is to set the values of min overlap and max overlap, indicating the minimum and maximum
lengths of the overlapped region when using the option e (see Section 1.2 for details).

P7 is a binary value which indicates whether gs should output the alleles at the disease/trait (when the
value is 1), or not (when the value is 0).

P8 has two values. The first one is an integer and can be either 0, 1 or 2, corresponding to one of the three
output formats (i.e., phased haplotype format, linkage format, and gs own output format). The three formats
will be explained in depth in Section 2.6. The second value is a string to specify an output subdirectory
under the current running directory. If the subdirectory does not exist, the program will automatically create
one.
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Index Model Name

0 (using 3 x 3 penetrance table)

1 Jointly multiplicative-multiplicative model (Table 2.2)

2 Model of two-locus interaction multiplicative effects (Table 2.3)

3 Jointly dominant-dominant model (Table 1.1)

4 Jointly recessive-recessive model (Table 2.4)

5 Jointly recessive-dominant model (Table 2.5)

6 Threshold model (Table 2.6)

7 Additive-additive model (Table 2.7)

8 Exclusive OR model (Table 2.8)

9 A special interaction model (Table 2.9)

Table 2.1: Built-in two-locus model list

bb Bb BB

aa α α(1 + θ2) α(1 + θ2)
2

Aa α(1 + θ1) α(1 + θ1)(1 + θ2) α(1 + θ1)(1 + θ2)
2

AA α(1 + θ1)
2 α(1 + θ1)

2(1 + θ2) α(1 + θ1)
2(1 + θ2)

2

Table 2.2: Jointly multiplicative-multiplicative model

bb Bb BB

aa α α α

Aa α α(1 + θ) α(1 + θ)2

AA α α(1 + θ)2 α(1 + θ)4

Table 2.3: Model of two-locus interaction multiplicative effects

bb Bb BB

aa α α α

Aa α α α

AA α α α(1 + θ)

Table 2.4: Recessive-recessive model

P9 is for users to specify a seed for the random number generator. Users can duplicate their simulation
results by assigning a specific seed. More precisely, if the number in this parameter is greater than zero, the
random generator of gs will take the number as its seed. Otherwise, a time-based seed will be adopted.
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bb Bb BB

aa α α α

Aa α α α

AA α α(1 + θ) α(1 + θ)

Table 2.5: Recessive-dominant model

bb Bb BB

aa α α α

Aa α α α(1 + θ)

AA α α(1 + θ) α(1 + θ)

Table 2.6: Threshold model

bb Bb BB

aa α α(1 + θ2) 2α(1 + θ2)

Aa α(1 + θ1) α(2 + θ1 + θ2) α(3 + θ1 + 2θ2)

AA 2α(1 + θ1) α(3 + 2θ1 + θ2) 2α(2 + θ1 + θ2)

Table 2.7: Additive-additive model

bb Bb BB

aa α α α(1 + θ)

Aa α α α(1 + θ)

AA α(1 + θ) α(1 + θ) α

Table 2.8: Exclusive OR model

bb Bb BB

aa α α α(1 + θ)

Aa α α α

AA α(1 + θ) α α

Table 2.9: A special interaction model

P10 specifies starting ID number. By default, the ID number of generated haplotypes/individules in each
replicate starts from 1. One can change the initial number by specifying it in this last parameter. By doing
so, users can combine outputs generated from tow different inputs. If the two inputs represent two different
populations, which might have different allele frequencies and effects at the disease/trait locus, then the
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combined output is actually a sample of mixed populations.

2.4.2 For Genetic and Environmental Interactions

Part of the parameter file has changed significantly to meet the new requirements. First of all, the structure
of the parameter file is the same. We still use “Pi” tag to separate different parameters. Parameter values
must follow the tag without empty lines in between. One can use “//” to write comments at the tail of each
line. Comment lines led by “//” and empty lines are allowed after current parameter ends and before next
parameter tag.

P1 indicates running mode. 0 is for case-control simulation, and 1 is for quantitative trait simulation.
For the mode of case-control simulation, following the 0, additional floating point number is required as the
disease affection status threshold mentioned above in formula 1.3.1.

P2 doesn’t change, which gives the number of cases, the number of controls and the number of replicates
for generating case-control samples, or the number of individuals and the number of replicates in the case
of quantitative trait.

P3 accommodates the definitions of Locus Interaction Groups. (1) The Locus Interaction Group def-
inition starts with an indicator “LIG” followed by an ID number. (2) The second line specifies the entry
type in this locus interaction group: 1 for genotype, and 2 for haplotype. An entry means a combination of
genotype or a haplotype with its disease risk, which is essential to define the disease effect of any variation.
(3) The third line indicates how to locate the disease-associated loci. Integer 1 means specifying them by
minor allele frequencies, and integer 2 means by absolute marker positions. (4) Depending on the way of
specifying disease loci, the fourth line lists the minor alleles with frequencies pair by pair or a series of
marker numbers. (5) From the fifth line on, users can specify as many entries as needed. Each entry takes
one line and should have identical number of marker genotypes or alleles corresponding to the number of
pairs or markers in the fourth line. Meanwhile, there should be no conflicts and redefinitions. In the case of
genotype combination, we take the traditional coding. Only number 1, 2, and 3 are allowed and represent
homozygous wild-type, heterozygous, and homozygous mutant respectively. gs will calculate which allele
is the major allele and which one is minor at each locus from the input file. For example, at certain locus,
allele 1 is the major allele, and allele 2 is minor. Genotype 3 stands for ’22’. In the case of haplotype, a
sequence of characters that match the allele characters in the input file at corresponding positions should be
given. The entries end by an empty line. More Locus Interaction Groups can be defined one after another.

P4 defines independent covariates and their interactions with other covariates or genetic variations.

We have built in several common distributions that users can select from for a covariate or users can
provide a value file that contains a series of numeric values for the specified covariate. (1) the covariate
definition starts with the indicator “COV” and the name of this covariate follows. (2) The second line
specifies the way of generating values for this covariate: 1 for built-in distribution, and 2 for from file. (3) If
the built-in distribution option is selected, the third line is used to specify the distribution and its parameters
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given in the parenthesis and separated by commas. Currently, the following distributions are supported:
NORM: Normal distribution with two parameters the mean and the variance.

EXP: Exponential distribution with one parameter the mean.

WEIBULL: Weibull distribution with one scale parameter and one exponent parameter.

If from file option is selected, the third line specifies the file that contains the covariate values. The format
of the value file is very simple. It is a text file and each line is a numeric value. The gs program will read
in all values line by line till the file end. During the simulation procedure, each time one individual being
simulated needs a value of this covariate, gs will randomly select one from those read in from the value file.

Covariate Interaction Rule(s) should be defined after all involved independent covariates have been de-
fined above. (1) The rule definition starts with “CIR” followed by an ID number. (2) The second line speci-
fies the type of this Covariate Interaction Rule: 1 for genetic-environment interaction, and 2 for environment-
environment interaction. (3) In the case of G×E interaction, the third line to the fifth line are similar to the
definition in the Locus Interaction Group, which give the entry type, the way of specifying disease loci,
and the minor alleles with frequencies or the marker positions. The sixth line gives the name(s) of involved
covariate(s) defined before. In the case of E×E interaction, the third line gives the name(s) of involved
covariate(s) defined before. (4) The following lines are entries defining disease risks. The genetic variations
are given similarly as in the Locus Interaction Group definition. Covariate value requirements are specified
in the form of a range given in the square brackets. The items in an entry should match the order given in
previous lines.

Similarly, more independent covariates and Covariate Interaction Rules can be defined one by one and
separated by an empty line. However, to keep the program simple, no duplication of genetic loci in Locus
Interaction Group definition and Covariate Interaction Rule definition is allowed. If one locus interacts with
several other loci, all of those loci should be defined in one Locus Interaction Group and any one of them
should not appear in other Locus Interaction Groups or Covariate Interaction Rules. On the other hand, if
several loci interact with certain covariates, they should be defined in a Covariate Interaction Rule and any
one of them should not appear in other Locus Interaction Groups or Covariate Interaction Rules.

P5 through P10 remain same as described in Section 2.4.1. A comprehensive pseudo parameter file is
given below as an example for illustration purpose only.

P1

0 0.1

P2

100 100 10

P3 //locus interaction group

LIG: 1 //group ID

1 //entry type: 1/2 (genotype/haplotype)

1 //specify disease locus: 1/2 (by MAF/marker position)
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2, 0.05; 1, 0.1; 2, 0.25 //minor allele and frequency pair(s)

2 1 3 1.1 //genotype combinations with risks

1 2 2 1.5

3 1 1 1.2

LIG: 2

2 //haplotype

2 //by marker position

3, 4, 5 //marker position(s)

1 2 1 1.2 //haplotype risks

2 2 2 1.8

P4 //covariates and G×E, E×E interaction rules

COV: ENV1 //covariate name

1 //generating way: 1/2 (built-in distribution/outside file)

NORM(0, 1) //distribution name with parameter(s)

COV: ENV2

2 //outside file

env2 values //value filename

CIR: 4 //covariate interaction rule ID

2 //type: 1/2 (G×E/E×E)

ENV1, ENV2 //involved covariate(s)

[1.0, 2.0] [1, 1] 1.8 //covariate condition(s) with risk(s)

CIR: 5

1 //G×E

1 //genotype

1 //by MAF

2, 0.05; 1, 0.1; 2, 0.25

ENV1, ENV2 //involved covariate(s)

2 1 3 [1.0, 2.0] [1.0, 2.0] 1.2 //genotype and covariate condition(s) with risk(s)

3 3 3 [1.0, 2.0] [1.0, 2.0] 1.2

P5 //missing rate

0.0
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P6 //min overlapping length, max overlapping length for extension method

2 11

P7 //output disease locus: 1/0 (yes/no)

0

P8 //output format: 0/1/2 (phased, linkage, gs own), output directory

0 output

P9 //random seed: 0/(an integer) (time-based/user-specified)

0

P10 //starting ID number

1

2.5 Running the Software

One can launch gs on a Command Prompt (DOS) window on Windows by typing the following command:
gs -option infile1 [infile2] parafile

Similarly, one can launch gs by typing the following command in a Linux or Mac OS X terminal:
./gs -option infile1 [infile2] parafile

The above commands assume that gs is in the current directory. Otherwise, appropriate path needs to be
included in front of the executable file. The file infile2 is only needed if one needs to generate samples based
on a two-locus model.

2.5.1 Options for Previous Single-Locus and Two-Locus Models

There are four options for generating samples under previous single-locus and two-locus models using
extension and block methods. They require different inputs. For a single-locus model, one needs to invoke
the option bwith an input containing a block structure in order to use the block method. To use the extension
method, one needs to invoke e with an input containing phased haplotype pairs. For a two-locus model, one
needs to invoke b2 and e2 respectively for the two methods.

-b: block-based

-e: extension-based

-b2: two-locus, block-based

-e2: two-locus, extension-based

For the block-based method, in addition to the structure file, one can provide a genotype file that contains
all the SNPs. The gs program provides two additional options gp and gl to allow users to specify a
supplementary genotype file when using a one-locus model. Each of the two options is followed by a
genotype filename, while option gp indicates that the genotype file is in phased haplotype format, and
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option gl indicates the linkage format.
-gp <filename>: provide a genotype file in phased haplotype format

-gl <filename>: provide a genotype file in linkage format

For a two-locus model, users can provide two genotype files using option gp1 and gp2, or gl1 and gl2,
for the phased haplotype format and the linkage format respectively.

The following are some sample runs. More are provided in the program package.
gs -e test 01 data para.txt

gs -e test 01 data para-qtn.txt

gs -b test block para.txt -gp test block geno

gs -e2 test 01 data test 01 data2 para-2loci.txt

gs -b2 test block test block2 para-2loci.txt

2.5.2 Options for Genetic and Environmental Interactions

Two options are introduced to invoke simulation of genetic and environmental interactions.
-bm: block-based multiple-factor simulation

-em: extension-based multiple-factor simulation

Similarly, “-gp” option and “-gl” option can be used to provide supplementary genotype file in phased hap-
lotype format or linkage format respectively. The command line launch of the program remains the same.
The following are examples to run interaction simulation.

gs -em test data para.txt

gs -bm test block para-3loci.txt -gp test block geno

gs -em test data para-qt.txt

2.6 Output Files

For each replicate, there is one output file (this is also true for a two-locus model). The name of the output
file is automatically given based on the method used and a serial number for replicate. For example, “ext20”
means the 20th replicate using extension-based method. Similarly, “block16” means the 16th replicate using
block-based method. For previous single-locus and two-locus models, in case of QTN simulation, the suffix
“-qtn” will be appended at the end of filename, and for a two-locus model, “-2loci” will append to the
filename. For genetic and environmental interactions, there will be no additional suffix.

The program can generate three different formats, i.e., phased haplotype format, linkage format, and gs
own output format.

gs’s own format: each individual consists of two lines, one for each haplotype. For each line, the first
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column is the index/ID of a haplotype, and the second column is the status or the trait value of an individual.
We use 2 denoting affected status and 1 denoting normal status (both haplotypes from one individual have the
same status as the individual), followed by the alleles. The haplotypes downloaded from HapMap website
using 0 and 1 denoting alleles at each marker position. But zero is also commonly used to denote missing
alleles. In this case, the program automatically changes 0 to 1 and 1 to 2 in the output file and uses 0 to
represent missing alleles. The block structure file from Haploview uses 1, 2, 3 and 4 denoting alleles and
this will not change in the output file.

Phased haplotype format: it is one input format of Haploview. It also uses two lines to represent
the two haplotypes for each individual. But in their format, the first column is family ID and the second
column is an individual ID. No disease status or trait values will be printed out. Users can use this format to
investigate different tag SNP selection algorithms implemented in Haploview.

Linkage format (pre MAKEPED): it is a widely used format in the statistical genetics community.
Each line is an individual with columns of family ID, individual ID, father ID, mother ID, gender, affected
status and genotypes.

For all the three formats, the simulated cases are output first followed by the simulated controls.

In addition to the data files, there is one more information file (ext.info for the extension method
and block.info for the block method). This information file simple gives the real disease/trait allele
frequency(ies) (which might not be exactly the same as the disease allele frequency specified by users), the
disease locus position(s) and the number of total replicates.

When the simulation involves environmental factors to determine the affection status of an individual,
their values are also output in a separate file for each replicate. The suffix “.env” will be appended to the
replicate filename as its environmental value filename, e.g., “ext1.env”. The first line is a column name line
including the names of all environmental factors. Each individual occupies one line and has the individual
ID and all environmental factor values listed.

2.7 Generating Interacting Disease Loci or Markers in LD Only

By default, gs generates genotypes/haplotypes by perturbing real data or by utilizing haplotype block infor-
mation. When evaluating power of statistical approaches in detecting disease loci, hundreds or thousands of
replicates have to be generated. However, for large scale genome-wide association studies with up to one
million SNPs and thousands of individuals, such an approach will take a long time to generate simulated
genotype data. The gs program provides a simple alternative. Users can choose to generate only genotypes
at disease loci, or only SNP markers that are in linkage disequilibrium with disease loci. These genotypes
can then be randomly inserted into real data. By iterating this process, users can quickly generate required
number of replicates for their experiments. An obvious limitation for such a strategy is that LD patters
around disease loci can be arbitrary.
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The following two options are used to generate disease loci only and SNP markers that are in linkage
disequilibrium with disease loci respectively.

-dlm: disease loci only

-dlmld: only SNP markers in LD with disease loci

Since no input is needed, only one parameter filename is required following the option. Please see the ex-
amples below.

gs -dlm para.txt

gs -dlmld para.txt

For the option of generating disease loci only, the parameter file is in the same format as defined before in
Section 2.4.2. However, when specifying how to locate the disease-associated loci in the definition of Locus
Interaction Group or Covariate Interaction Rule, one can only choose the way of minor allele frequencies.

For the option of SNP markers in LD only, the parameter file requires one additional line following the
definition of how to locate the disease loci in each Locus Interaction Group or Covariate Interaction Rule.
An example is given below. Each SNP marker in LD with the disease locus is specified by an ordered triple.
The first element gives the minor allele of the marker, the second specifies its frequency, and the third gives
the r2 value between the disease locus and the marker. The number of LD marker definitions must match
the number of disease loci specified just above them.
LIG: 1 //group ID

1 //entry type: 1/2 (genotype/haplotype)

1 //specify disease locus: only 1 (by MAF) allowed for LD markers

2, 0.25; 2, 0.25; 2, 0.25 //minor allele and frequency pair(s)

2, 0.25, 0.8; 2, 0.25, 0.7; 2, 0.25, 0.9 //matched LD markers

2 1 3 1.1 //genotype combinations with risks

1 2 2 1.5

3 1 1 1.2

The output can also select the three formats described in Section 2.6. The prefix of the output files is
“dl”, e.g., “dl.info”, “dl1”, “dl1.env”, etc.

2.8 gsconverter

To facilitate input file preparation, we have developed a gs file conversion tool — gsconverter that can
directly convert HapMap phased haplotype files and fastPhase output files into gs input files. The executable
is included in the software package.

Similarly as gs, to run gsconverter, one can type as follows on Windows and Linux/Mac OS X respec-
tively: gsconverter -option source file
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./gsconverter -option source file

Five options are available:

-01to12 converts 0,1-represented haplotypes to 1,2-represented ones.

This is a simple replacement of 0 by 1 and 1 by 2. The source file contains haplotype samples. Each
line is a haplotype. The allele is denoted as 0 or 1, separated by a space. The name of the converted file is
the source file name plus a suffix “.gs12”.

-12to01 converts 1,2-represented haplotypes to 0,1-represented ones.

This is a reverse replacement of 1 by 0 and 2 by 1. The name of the converted file is the source file name
plus a suffix “.gs01”.

-12toph converts haplotype samples to phased haplotype format.

The source file contains 1,2-represented haplotypes line by line without leading columns. HaploView
cannot directly take such input but the phased haplotype format with two leading columns — Family ID
and Individual ID. This option adds two pseudo leading columns so that HaploView can read. This is
useful when one wants to generate block structure from HaploView. Moreover, the converted file in phased
haplotype format can also serve as the supplementary genotype file when using the block method. The name
of the converted file is the source file name plus a suffix “.gsph”.

-hm3to12 converts HapMap Phase III phasing file to gs input file.

For HapMap Phase III, files are organized in a SNPs×haplotypes format with a header row. Every row
that follows represents a SNP and every column a haplotype. This option reads in such file, counts the major
and minor alleles, and outputs haplotypes line by line using 1 for major allele and 2 for minor allele. The
name of the converted file is the source file name plus a suffix “.gs12”.

-fpto12 converts fastPhase output file to gs input file.

This option converts the standard fastPhase output file to gs 1,2-represented line-haplotype input file.
The fastPhase output file should be the standard one with descriptions ahead and inferred haplotypes between
labels “BEGIN GENOTYPES” and “END GENOTYPES”, not the simplified output generated using “-Z”
option. The name of the converted file is the source file name plus a suffix “.gs12”.

The following are some sample runs.
gsconverter -01to12 test 01 data

gsconverter -12to01 test data

gsconverter -12toph test data

gsconverter -hm3to12 hapmap3 r2 b36 chr22 ceu.unr.phased

gsconverter -fpto12 test hapguess switch.out
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