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Abstract—In systems biology, comparative analysis of molecu-
lar interactions across diverse species indicates that conservation
and divergence of networks can be used to understand functional
evolution from a systems perspective. A key characteristic of
these networks is their modularity, which contributes significantly
to their robustness, as well as adaptability. In this paper, we
investigate the evolution of modularity in biological networks
through phylogenetic analysis of network modules. Namely, we
develop a computational framework, which identifies modules
in networks of diverse species independently and projects these
modules into the networks of other species, with a view to cap-
turing the evolutionary trajectories of functional modules. These
trajectories can then be used to reconstruct modular phylogenies
and whole-network phylogenies, or to enhance identification of
functional modules. In the context of phylogeny reconstruction,
our experiments on a comprehensive collection of simulated and
real networks show that comparison of networks based on module
trajectories is more informative than other measures of network
similarity. These results demonstrate the key role of modularity
in the functional evolution of biological systems and motivate
further investigation of the evolution of functional modules.

I. INTRODUCTION

As a fundamental concept, evolution has profound implica-
tions in a variety of applications in modern molecular biology;
e.g., functional annotation of DNA/protein sequences through
comparative sequence analysis has become an important and
integral part of biological sciences [1]. Accurate reconstruction
of the evolutionary history of species, usually represented by
a phylogenetic tree, is critical for the success of such appli-
cations. Phylogenetic analysis of molecular sequence data has
drawn significant attention ever since protein/DNA sequences
have become available [2], [3]. There exist many models (from
the simplest Jukes-Cantor model to more complex General
Time Reversible model), but all of them specify site evolutions
at the DNA level for obvious reasons: structure constraints
(secondary structures of RNAs and tertiary structures of
proteins) are hard to model. Based on sequence evolution,
different approaches have been developed to either explicitly
use an evolutionary model (e.g., Maximum Likelihood) or
approximate one (e.g., Maximum Parsimony) [4].
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1) Comparative network analysis: Availability of high-
throughput data that relates to the organization and dynamics
of biological systems enables understanding of biological
functions from a systems perspective [5]. An important source
of data that pertains cellular organization and signaling is
in the form of physical interactions between proteins, or-
ganized into genome scale protein-protein interaction (PPI)
networks [6]. Comparison of recently available PPI networks
that belong to diverse model organisms reveals that parts
of extant molecular networks are conserved across diverse
species [7]–[9]. Furthermore, it is observed that proteins that
are organized into cohesive interaction patterns are more
likely to be conserved [10]. Comparative network analysis
is also shown to enhance the performance of computational
approaches to basic problems in functional genomics, such
as identification of orthologs across species and annotation
of protein functions [11], [12]. Furthermore, recent studies
show that incorporation of evolutionary models and knowledge
enhances the performance of network alignment methods
significantly [13]. Such findings demonstrate that network
comparisons provide essential biological information beyond
what is gleaned from the genome [14]. Consequently, phy-
logenetic analysis of network topology and function has the
potential to provide key insights on the evolution of biological
functions at a systems level [15].

2) Phylogenetic analysis of network modularity: In this
paper, we propose a modularity based approach to phyloge-
netic network analysis. The proposed framework, MOPHY, is
illustrated in Figure 1. Our approach differs fundamentally
from existing approaches, in that we focus on the conservation
and divergence of modular components, rather than one-to-
one comparison of network topologies. In our framework,
we first identify modular subgraphs in different networks
independently. Then, we project these modules on networks of
other species to understand the conservation and divergence of
different modular processes in these networks. While project-
ing a module on different species, we rely on the conservation
of network proximity between homologs (proteins with signif-
icant sequence similarity) of its constituent proteins in other
networks. Consequently, by utilizing network information, our
approach captures functional evolution beyond conservation
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of sequences. Namely, network information is incorporated
into the analysis by (i) considering network modules as
”features” of each network and (ii) assessing the conservation
of modularity in terms of the network proximity between
proteins with conserved sequences.

3) Evaluating network comparison methods: In this study,
we also take a novel approach to the calibration and validation
of comparative network analysis methods. Based on theoretical
models on the evolution of molecular interactions [19], [20],
we simulate network evolution to generate networks with
known underlying phylogeny. Then, we use our algorithms
on the generated networks to reconstruct a phylogenetic tree.
By comparing the reconstructed tree with the underlying
tree, we evaluate the performance of different methods and
assess the effect of various parameters on the accuracy of
our methods. We also use simulated networks to evaluate
the robustness of our methods against noise and missing
data, by perturbing the simulated networks to mimic data
collection processes. Extensive experiments on simulated data
show that the proposed algorithm is extremely successful in
reconstructing the underlying phylogenies and is quite robust
to noise. We also use the proposed method, MOPHY, to
reconstruct the phylogeny of seven species, for which reason-
able interaction data is available. We show that our method
constructs a phylogenetic tree that is in accordance with the
phylogenetic relationships and evolutionary distances inferred
by independent methods. Furthermore, we demonstrate that
MOPHY outperforms existing phylogenetic network analysis
methods.

4) Learning from phylogenetic network analysis: It should
be noted that the application of the proposed framework ex-
tends well beyond phylogenetic tree reconstruction. The meth-
ods and results presented here rather constitute a step towards
establishing modularity based analysis as a key approach in
understanding the functional evolution of cellular organization.
Indeed, our results show that conservation of modularity and
network proximity is likely to provide useful insights into
the evolutionary histories of networks, by providing statistical
evidence for the following observations:

• Network modules are likely to be conserved more in
evolutionarily closer species, in terms of the network
proximity between the homologs of their constituent
proteins (Figure 3).

• Conservation of network proximity is a better indica-
tor of evolutionary relationships when modular network
components are considered (as opposed to the proximity
between arbitrary proteins) (Tables I and II).

• Modularity based analysis is quite robust to noise and
missing data in terms of capturing evolutionary re-
lationships, and therefore may be more promising in
comparative analysis of extant protein-protein interaction
networks, which are highly incomplete and susceptible to
noise (Figure 2(c))).

These results motivate elaborate studies of modular evolution,
including identification of module families and reconstruction
of evolutionary trajectories for these module families, which

in turn will be useful in constructing the “periodic table of
systems biology” [5].

II. METHODS

Our modularity-driven approach to phylogenetic network
analysis, MOPHY, which is illustrated in Figure 1, can be
summarized as follows:

1) Considering each extant network individually, identify
network modules that represent functional and topolog-
ical properties of each network.

2) Project modules identified on each network to other
extant networks, based on the conservation of functional
and topological properties, to obtain a module map for
each species. A module map can be thought of as
a mathematical representation of the conservation of
extant network modules in the corresponding species.

3) Using module maps, compare networks of diverse
species to construct network phylogenies.

4) Using resulting network phylogenies, investigate the
evolutionary histories of extant network modules to gain
insights on the evolution of functional modularity.

III. RESULTS AND DISCUSSION

In this section, we evaluate the performance of MOPHY

on simulated, as well as real data - in terms of (i) success
in accurately reconstructing the underlying phylogeny, (ii)
robustness to noise and missing data, and (iii) performance
as compared to existing algorithms.

A. Results on Simulated Data

We test our method on synthetic networks generated by
simulation of the evolutionary process. In our experiments, in
order to keep the size of the networks at a realistic scale with
sufficient variability, we set the average number of proteins in a
network to 3000, with a standard deviation of σ = 1000. Here,
average network size is kept relatively smaller as compared to
that of extant networks for feasibility constraints, since these
experiments are performed multiple times to assess statistical
significance and the effect of varying parameters. Our results
on extant networks show that the method also scales to larger
networks and is applicable in practice. Using this configu-
ration, we generate ten networks for each experiment. For
all experiments, we generate five different instances, and for
each performance figure, we report the average over these five
instances. Note that, in these experiments, the interactions are
not associated with reliability scores.

1) Evaluating performance: Comparison of phylogenetic
trees: In order to quantify the performance of a tree recon-
struction method, it is necessary to compare the reconstructed
tree with the underlying tree based on a sound measure of
similarity between two phylogenetic trees. For this purpose, we
investigate the similarity between the two phylogenetic trees
by Nodal distance [33]. Nodal distance takes into account the
branch lengths and computes a similarity metric by comparing
the sum of distances of every node pair in each tree. We use
this method to evaluate the performance of algorithms in cap-
turing the evolutionary distances between different networks.
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Fig. 1. Modularity Based Phylogenetic Analysis of Molecular Interaction Networks.

TABLE I
COMPARISON OF PERFORMANCES OF MOPHY WITH USING RANDOM

PROTEIN MODULES, USING PROTEIN SIMILARITIES ONLY AND RDL.

METHOD Run 1 Run 2 Run 3 Run 4 Run 5 Avg.
MOPHY 5.28 5.85 8.82 5.82 8.15 6.79

RDL 14.40 15.50 19.80 13.12 14.83 15.53
Random Modules 14.81 9.33 11.54 8.11 12.6 11.29
Protein Similarity 11.72 11.56 13.96 11.22 10.75 11.84

For the simulated networks, we compare the performance of MOPHY with the random
module method, RDL and a method that only uses protein similarity in the networks.
Nodal distance for five simulation instances as well as the average values of these
five runs are shown in the table. For MOPHY, the result used is the best performance
achieved with coverage 0.60 and diameter 2, by using the most specific modules.
Similarly for the random module method, the best performance is achieved for the
instance with coverage 0.40 and diameter 4, with the most comprehensive modules.
As clearly seen, MOPHY outperforms the other methods in terms of capturing the
evolutionary distances between species.

2) Comparison of performance with other methods: We
compare the performance of MOPHY in reconstructing the
correct phylonegy to that of three alternate methods

• RDL: An existing method for network-based phylogeny
reconstruction, which uses relative description length to
assess the similarity between networks [15].

• Random Modules: This method implements a similar
algorithm with MOPHY, but it uses random groups of
proteins as modules. These random modules are selected
in a way that they reflect the modules incorporated by
MOPHY in terms of their quantity and size distribution.
We use this method as a reference method to assess
the contribution of the information on modularity in
reconstructing the correct phylogeny.

• Only Protein Similarity: This method incorporates only
the similarities between proteins to reconstruct a phylo-
genetic tree. Namely, we still compute feature vectors for
each network, but each entry of the feature vector repre-
sents the conservation (score of best sequence similarity
match) of a single protein. The purpose of using this
method as a reference is to assess the contribution of the

use of network information (proximity and modularity)
in reconstructing the correct phylogeny.

The comparison of the performances of these methods
over five different instances, obtained through simulation of
network evolution, is shown in Table I. As seen on the
table, MOPHY performs drastically better than any of the
three alternate methods in terms of minimizing the nodal
distance between the correct evolutionary history and the
reconstructed evolutionary history. Furthermore, the Random
Modules method performs clearly better than RDL, suggesting
that incorporation of network proximity, i.e., aggregation of
interactions, is more useful than incorporation of network
topology, i.e., incorporation of single interactions, in capturing
the similarity of networks. However, comparison of the per-
formances of Random Modules and Only Protein Similarity
suggests that, when modularity is not considered, incorpora-
tion of network information provides marginal improvement.

Finally, to evaluate the performance of MOPHY statistically,
we evaluate the statistical significance of its performance with
respect to the Random Modules method. The performance dif-
ference between MOPHY and Random Modules can be thought
of as an indicator of the usefulness of relying on conservation
of modular network structures as opposed to arbitrary (groups
of) proteins and their interactions. We quantify the statistical
significance of the performance difference between MOPHY

and Random Modules based on Student’s t-test to compare the
means of two populations. The p-value for an experiment gives
the probability that an algorithm that incorporates sequence
conservation and network proximity, but not modularity can
achieve as good as MOPHY solely based on chance.

3) Design parameters and module selection: In MOPHY,
the module identification process can be tuned by adjusting
several parameters: (i) The threshold on proximity adjusts
the trade-off between the tightness and comprehensiveness
of modules (higher threshold on proximity results in smaller
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and more tightly coupled modules). Since the interactions in
the simulated networks are unweighted, we use diameter, i.e.,
the maximum distance between two proteins in a module, to
represent the proximity threshold. (ii) As multiple modules are
identified in each network, using all modules in phylogeny
reconstruction may lead to problems associated with high-
dimensionality. Therefore, we investigate the effect of network
coverage provided by the modules considered, where coverage
is defined as the percentage of proteins included in the selected
modules. (iii) In order to understand which modules are
more informative, we consider two different module selection
strategies: most specific, i.e., the set of smallest (with size ≥ 3)
modules for a given coverage or most comprehensive, i.e., the
set of largest modules for a given coverage.

4) Performance of MOPHY for different parameters: De-
tailed statistics on the comparison of underlying and recon-
structed phylogenetic trees for a sample instance are shown
in Tables II, and in Figure 2. As seen in Table II, for any
configuration of parameters, the accuracy of the phylogenetic
tree reconstructed by MOPHY is highly significant. In general,
more specific (smaller) modules appear to be more informa-
tive. Indeed, as seen in Table II, when evolutionary distances
are considered, the performance with more comprehensive
(larger) modules is not statistically significant. Furthermore,
performance degrades with increasing diameter (less proxim-
ity), suggesting that conservation of tightly coupled modules
is more informative in reconstructing evolutionary histories.
The effect of coverage on performance is shown in Figure
2(a) and (b). When more specific modules are used, the effect
of coverage on performance is marginal. This indicates that
careful selection of a concise set of small, tightly coupled
modules may be adequate to reconstruct network phylogenies
accurately. Finally, it is interesting to note that the randomized
method performs better with large clusters, which is probably
due to the increased likelihood that a random group of proteins
will contain an informative subset of proteins.

5) Robustness against noise and missing data: Currently
available PPI data is likely to be highly noisy and incomplete.
Hence, we evaluate the robustness of MOPHY against random
noise and incompleteness of data. For this purpose, after
generating the networks via simulation of network evolution,
we randomly perturb the resulting networks by repeatedly
swapping randomly selected interactions. The behavior of the
performance of MOPHY with respect to noise rate (percentage
of interactions that are swapped) is shown in Figure 2(c). This
experiment is performed for diameter = 3, coverage = 60%.
As seen in the figure, although the accuracy of MOPHY

decreases with noise as expected, the performance difference
between MOPHY and the randomized method is significant
even at the presence of 50% noise. This observation suggests
that MOPHY can be used to extract meaningful information
on evolutionary histories of networks even when the networks
are highly noisy and incomplete. Moreover, note that the
performance of the randomized method is not effected by
noise, and the performance of MOPHY becomes equivalent to
that of the randomized method at the presence 100% noise

(i.e., random edge swapping is repeated for a sufficiently
large number of iterations). These results indicate that the
biological signals captured by MOPHY depend on network
topology and the use of network proximity and modularity
provide significant information on conservation of function
that is beyond sequence similarity.

B. Results on Extant PPI Networks

We test our method on the available PPI networks from
seven diverse species. The PPI data is obtained from the
Database of Interacting Proteins (DIP) [34]. These networks
include those of D. melanogaster (7471 proteins, 22656 in-
teractions), S. cerevisiae (4968 proteins, 17286 interactions),
E. coli (1848 proteins, 5930 interactions), C. elegans (2646
proteins, 3977 interactions, H. sapiens (1334 proteins, 1539
interactions), H. pylori (710 proteins, 1359 interactions), and
M. musculus (414 proteins, 337 interactions). Although the
network sizes in this database vary dramatically for different
species, MOPHY can effectively deal with such incompleteness
by considering modules from each pair of species.

To reconstruct the phylogeny of these seven networks via
MOPHY, we use the most specific modules that contain at
least three proteins and set the coverage to 50%. As in our
experiments on simulated data, we compare MOPHY with
three alternate methods; (i) RDL, (ii) using only protein
similarities and (iii) using random modules. For reference, we
also consider the phylogenetic tree that is reconstructed based
on sequenced genomes [35], which is shown in Figure 3(a).
The phylogenetic trees reconstructed based on the seven PPI
networks by MOPHY, RDL, using only protein similarities and
using random modules are shown in Figures 3 (b), (c), (d) and
(e) respectively. Unlike other methods, the tree reconstructed
by MOPHY complies well with common knowledge on the
underlying phylogeny of these seven diverse species and is
also consistent with the whole genome based phylogeny. As
seen in Figure 3, network-based distance measures tend to
overestimate evolutionary distances between extant species.
Therefore, methods for normalizing the estimated distances
between networks are necessary.

Incidentally, these results also provide evidence supporting
the Coelomata topology in the Coelomata vs. Ecdysozoa
debate regarding the evolutionary relationship between nema-
todes, arthropods, and vertebrates, which has also been sup-
ported recently through rigorous analysis of the conservation
patterns in intron positions [36]. It is worth to note that, due to
limited availability of data, PPI networks differ significantly
in size from one species to another. This actually introduces
a lot of artificial variation between networks, which might,
on a common graph measure, overwhelm desired biological
signals. Indeed, as seen in Figure 3(c), RDL is significantly
effected by the variability in data availability; it assigns mouse
PPI network to the same clade with prokaryotic networks,
presumably because the interaction data for this species is
quite limited. On the other hand, by focusing on the signals
harbored by some more informative modules, we avoid the
interference of this global difference among networks.
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TABLE II
PERFORMANCE OF MOPHY IN CAPTURING THE TOPOLOGY OF UNDERLYING PHYLOGENY FOR SIMULATED NETWORKS.

Most Specific Modules
Diameter

2 3 4
Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 6.87∗∗ 16.40 0.0020 6.84∗∗ 15.85 0.0017 6.97∗∗ 15.78 0.0019
40% 6.81∗∗ 16.14 0.0017 6.86∗∗ 15.85 0.0017 7.01∗∗ 15.53 0.0029
60% 6.79∗∗ 15.85 0.0017 6.86∗∗ 15.41 0.0016 7.02∗∗ 15.25 0.0026

Most Comprehensive Modules
Diameter

2 3 4
Coverage MOPHY Random p-value MOPHY Random p-value MOPHY Random p-value

20% 8.89 11.72 0.2283 9.67 11.76 0.3512 10.83 11.82 0.6277
40% 7.62∗ 13.12 0.0277 8.44 11.61 0.2029 9.63 11.29 0.4922
60% 6.70∗∗ 14.93 0.0018 7.92 12.90 0.0529 8.96 11.51 0.3263

(b) Most Comprehensive Modules

Performance of MOPHY in capturing the underlying phylogeny for simulated networks. For each parameter setting, the Nodal distance between the underlying tree and the tree
reconstructed by MOPHY/randomized method is shown. Reported values are averages over five runs. p-values indicate the statistical significance of the performance difference
between MOPHY and the randomized method. ∗∗: p < 0.01, ∗: p < 0.05.

Fig. 2. Effect of Coverage and Noise on Performance

(a), (b): Performance of MOPHY in capturing the underlying evolutionary distances between simulated networks with respect to coverage (fraction of modules that are used in

phylogeny reconstruction). (a) Most specific modules, (b) most comprehensive modules. (c): The effect of noise on the performance of MOPHY. Even when the data is perturbed

with 50% noise, MOPHY’s accuracy in reconstructing the phylogeny is statistically significant.

IV. CONCLUSIONS

In this paper, we propose a phylogenetic framework for
analyzing modularity in protein-protein interaction networks.
Our approach is motivated by the premise that biomolecular
interactions and their modularity are likely to provide direct
functional information on the evolution of biological systems.
We also develop a method based on the simulation of network
evolution to evaluate phylogenetic tree reconstruction methods.
Comprehensive experimental results on simulated, as well as
real data show that our algorithm is highly successful in recon-
structing the underlying phylogenies based on PPI networks,
is quite robust to noise, and performs significantly better than
existing network-based phylogeny reconstruction algorithms
on available protein-protein interaction data. These results
demonstrate the promise of modularity-based approaches in
comparative network analysis and motivate the study of the
evolution of network modularity within a phylogenetic frame-
work.
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