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Array comparative genomic hybridization (aCGH) allows identification of copy number
alterations across genomes. The key computational challenge in analyzing copy num-
ber variations (CNVs) using aCGH data or other similar data generated by a variety
of array technologies is the detection of segment boundaries of copy number changes
and inference of the copy number state for each segment. We have developed a novel
statistical model based on the framework of conditional random fields (CRFs) that can
effectively combine data smoothing, segmentation and copy number state decoding into
one unified framework. Our approach (termed CRF-CNV) provides great flexibilities in
defining meaningful feature functions. Therefore, it can effectively integrate local spatial
information of arbitrary sizes into the model. For model parameter estimations, we have
adopted the conjugate gradient (CG) method for likelihood optimization and developed
efficient forward/backward algorithms within the CG framework. The method is evalu-
ated using real data with known copy numbers as well as simulated data with realistic
assumptions, and compared with two popular publicly available programs. Experimen-
tal results have demonstrated that CRF-CNV outperforms a Bayesian Hidden Markov
Model-based approach on both datasets in terms of copy number assignments. Com-
paring to a non-parametric approach, CRF-CNV has achieved much greater precision
while maintaining the same level of recall on the real data, and their performance on
the simulated data is comparable.
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1. Introduction

Structure variations in DNA sequences such as inheritable copy number alter-
ations have been reported to be associated with numerous diseases. It has also
been observed that somatic chromosomal aberrations (i.e. amplifications and dele-
tions) in tumor samples have shown different clinical or pathological features in
different cancer types or subtypes.1–3 With remarkable capacity from current tech-
nologies in assessing copy number variants (CNVs), there is a great wave of interest
recently from the research community to investigate inheritable as well as somatic
CNVs.1–8 Broadly speaking, there are essentially three technological platforms for
copy number variation detections: array-based technology (including array com-
parative genomic hybridization (aCGH), as well as many other variants such as
oligonucleotide array or bacterial artificial chromosome array), SNP genotyping
technology,3,4 and next-generation sequencing technology.9

Not surprisingly, various algorithms have been proposed for different data in
recent years. The primary goal of all such studies is to identify and localize the copy
number changes. One important commonality in data from different platforms is
the spatial correlation among clones/probes/sequences. Many existing approaches
have taken advantage of such a property by utilizing the same methodology, Hidden
Markov Models (HMMs), which can conveniently model spatial dependence using a
chain structure. Results have shown initial success4,5,7,8 of HMMs. However, there
is an inherited limitation for all these HMMs, i.e. they are all first-order HMMs
and cannot take into consideration long-range dependence. We propose to develop
and apply a novel undirected graphical model based on Conditional Random Fields
(CRFs)10 for the segmentation of CNVs. It has been shown that CRFs consistently
outperform HMMs in a variety of applications, mainly because CRFs can poten-
tially integrate all information from data.10 This property makes CRFs particularly
appealing for modeling CNV data since one can define feature functions using data
from a region rather than a single or two data points for emissions and transitions,
respectively, in HMMs.

Our major analytical contributions include the construction of the CRF model,
the definition of effective feature functions using robust statistics, and the develop-
ment of efficient computation algorithms for parameter estimations. As an illustra-
tion of our proposed model, we have applied our approach on real and simulated
data based on array technology, and compared its performance with two popular
segmentation algorithms. Experimental results have demonstrated that CRF-CNV
outperforms a Bayesian Hidden Markov Model-based approach on both datasets
in terms of copy number assignments, with little sacrifice of accuracy in break-
point identification due to smoothing. Compared to a non-parametric approach,
CRF-CNV has achieved much greater precision while maintaining the same level
of recall on the real data. On the simulated data, CRF-CNV has obtained better
accuracy in identifying breakpoints with comparable performance in copy number
assignments.
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The remainder of this article is organized as follows. In Sec. 2, we give a brief
overview of aCGH data and existing approaches for detecting CNVs from aCGH
data. We also briefly mention the differences between HMMs and CRFs. Details
about model developments and implementations are provided in Sec. 3. Our exper-
imental results on two datasets and comparisons with other two programs are pre-
sented in Sec. 4. We conclude the paper with a few discussions in Sec. 5.

2. Preliminary

2.1. ACGH data and analysis

Though theoretically, our approach can be applied to data from different experimen-
tal platforms, we focus primarily on aCGH data in this analysis. Mathematically,
aCGH data usually consist of an array of log2 intensity ratios for a set of clones,
as well as the physical position information of each clone along a genome. Fig. 1
plots the normalized log2 ratio of one cell line (GM04435) analyzed by Snijders
et al.11 Each data point represents one clone and the y-axis represents normalized
log2 intensity ratio. The primary goal in CNV detection based on aCGH is to seg-
ment a genome into discrete regions that share the same mean log2 ratio pattern
(i.e. have the same copy numbers). Ideally, the log2 ratio of a clone should be 0 if
the cancer sample/cell line has a normal number (i.e. 2) copies of DNA, and the
value should be around 0.585 (or −1) if it has one copy of gain (or loss). However,
as shown in Fig. 1, aCGH data can be quite noisy with vague boundaries between
different segments. It may also have complex local spatial dependence structure.
These properties make the segmentation problem intrinsically difficult. Approaches
using a global threshold generally do not work in practice.
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Fig. 1. Array CGH profile of a Corriel cell line (GM04435). The borders between chromosomes
are indicated by vertical bars.
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2.2. Existing algorithms

In general, a number of steps are needed to detect copy number changes from aCGH
data. First, raw log2 ratio data usually needs some pre-processing, including nor-
malization and smoothing. Normalization is an absolute necessary step to alleviate
systemic errors due to experimental factors. Usually the input data is normalized
by making the median or mean log2 ratio of a selected median set from normal
copy number regions to be zero. Smoothing is used to reduce noises that are due
to random errors or abrupt changes. Smoothing methods generally filter the data
using a sliding window, attempting to fit a curve to the data while handling abrupt
changes and reducing random errors.

The second step in analyzing aCGH data is referred to as segmentation and
aims to identify contiguous sets of clones (segments) that share the same mean
log2 ratio. Broadly, there are two related estimation problems. One is to infer the
number and statistical significance of the alterations, the other is to locate their
boundaries accurately. A few different algorithms have been proposed to solve these
two estimation problems. Olshen et al.12 have proposed a non-parametric approach
based on the recursive circular binary segmentation (CBS) algorithm. Hupe et al.13

have proposed an approach called GLAD, which is based on a median absolute
deviation model to separate outliers from their surrounding segments. Willenbrock
and Fridlyand14 have compared the performance of CBS (implemented in DNA-
Copy) and GLAD using a realistic simulation model, and they have concluded that
CBS in general is better than GLAD. After obtaining the segmentation outcomes,
a post-processing step is needed to combine segmentations with similar mean levels
and to classify them as single-copy gain, single-copy loss, normal, multiple gains,
etc. Methods such as GLADMerge13 and MergeLevels14 can take the segmentation
results and label them accordingly.

As noted by Willenbrock and Fridlyand,14 it is more desirable to perform seg-
mentation and classification simultaneously. An easy way to merge these two steps is
to use a linear chain HMM. A few variants of HMMs have been proposed for aCGH
data in recent years.7,15 Guha et al.15 have proposed a Bayesian HMM which can
impose biological meaningful priors on the parameters. Shah et al.7 have extended
this Bayesian HMM by adding robustness to outliers and location-specific priors,
which can be used to model inheritable copy number polymorphisms. Note that all
these models are first-order HMMs which cannot capture long-range dependence.
Intuitively, it makes sense to consider high-order HMMs to capture informative local
correlation, which is an important property observed from aCGH data. However,
considering higher orders will make HMMs more complex and computationally
intensive.

2.3. Conditional random fields

To overcome the limitations of HMMs, we propose a new model based on the the-
ory of Conditional Random Fields (CRFs). CRFs are undirected graphical models
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Fig. 2. A linear chain conditional random field model for array CGH data.

designed for calculating the conditional distribution of output random variables Y

given input variables X .10 It has been extensively applied to language processing,
computer vision, and bioinformatics with remarkable performance when compared
with directed graphical models including HMMs. The key difference between CRFs
and HMMs is that one can define meaningful feature functions that can effectively
capture local spatial dependence among observations.

In general, a linear-chain CRF (Fig. 2) is defined as the conditional distribution

P (Y |X) =
1

Zθ(X)
exp




n∑
i=2

S(i)∑
j=1

θijfij(Yi−1, Yi, X̃i)


 ,

where the partition function

Zθ(X) =
∑
Y

exp




n∑
i=2

S(i)∑
j=1

θijfij(Yi−1, Yi, X̃i)


 .

Here θ = {θij} are parameters. Functions {fij} are feature functions. X̃i is a neigh-
bor set of Xi that are needed for computing features related clone i and i + 1. S(i)
is the total number of feature functions related to clone i and i + 1.

We will use a linear-chain CRF model for CNV detection. Our feature func-
tions to be defined can use observed data from a region. Therefore, it can capture
abundant local spatial dependence. In addition, by using a linear-chain CRF, we
can effectively combine smoothing, segmentation and classification into one unified
framework.

3. Methods

3.1. Linear-chain CRF model for aCGH data

Our model is based on the linear-chain CRF Model in Fig. 2. Let X =
(X1, . . . , Xn) denote the normalized log2 ratio intensities along one chromo-
some for an individual, where Xi is the log2 ratio for clone i. One can assume
that these n clones are sequentially positioned on a chromosome. Let Y =
(Y1, . . . , Yn) denote the corresponding hidden copy number state, where Yi ∈
{1, . . . , s} and s the total number of copy number states. These states usu-
ally indicate deletion, single-copy loss, neutral, single-copy gain, two-copy gain
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or multiple-copy gain. The exact number of states and their meaning need to
be specified based on specific input data. X̃i(u) is defined as a neighbor set
of Xi around clone i, i.e. X̃i(u) = {Xi−u, . . . , Xi−1, Xi, Xi+1, . . . , Xi+u}, where
u is a hyper-parameter to define the dependence length. Similarly, we define
X̃i,i+1(u) = {Xi−u, . . . , Xi, Xi+1, . . . , Xi+1+u}, X̃−

i,i+1(u) = {Xi−u, . . . , Xi−1, Xi}
and X̃+

i,i+1(u) = Xi+1, Xi+2, . . . , Xi+1+u}. The dependence length u plays a similar
role like the width of a sliding window in smoothing methods. The conditional prob-
ability of Y given observed log2 ratio X based on our linear-chain CRF structure
can be defined as

P (Y |X) =
1

Zθ(X)
exp




n∑
i=1

s∑
j=1

[λjfj(Yi, X̃i(u)) + µjgj(Yi, X̃i(u))]

+
s∑

j=1

ωj lj(Y1, X̃1(u)) +
n−1∑
i=1

s∑
j=1

s∑
k=1

νjkhjk(Yi, Yi+1, X̃i,i+1(u))


 , (1)

where the partition function

Zθ(X) =
∑
Y

exp




n∑
i=1

s∑
j=1

[λjfj(Yi, X̃i(u)) + µjgj(Yi, X̃i(u))]

+
s∑

j=1

ωj lj(Y1, X̃1(u)) +
n−1∑
i=1

s∑
j=1

s∑
k=1

νjkhjk(Yi, Yi+1, X̃i,i+1(u))


 .

Here θ = {λj , µj , ωj, νjk} are parameters that need to be estimated. Functions
fj , gj, lj and hjk are feature functions that need to be defined. For notational sim-
plification, we drop the parameter u in our subsequent discussions and write X̃i(u)
as X̃i and etc. Parameters, feature functions and main variables in our model are
summarized in Table 1.

Table 1. Notation for key elements in our CRF-CNV
model.

n Number of clone
s Number of copy number state

Xi log2 ratio for clone i
Yi Hidden copy number state for clone i
u Dependent length
σ2 Penalization coefficient
aj Mean log2 ratios with copy number state j

λj , µj Emission parameters
fj , gj Emission feature functions
ωj , νjk Transition parameters
lj , hjk Transition feature functions

X̃i(u) Neighbor set of Xi

X̃i,i+1(u) Neighbor set of Xi and Xi+1
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3.2. Feature functions

One important step to build our model is to define meaningful feature functions
that can capture critical information from input data. Essentially, we define two
types of feature functions, analogous to the emission and transition probabilities in
HMMs. However, our feature functions can be of any form. Therefore, our model
can provide much more flexibility and be able to capture long-range dependence.
The emission feature functions fj(Yi, X̃i) and gj(Yi, X̃i) are defined as follows

fj(Yi, X̃i) =
{

med X̃i if Yi = j

0 otherwise,
gj(Yi, X̃i) =

{
(med X̃i)2 if Yi = j

0 otherwise,

where med X̃i is defined as the median value of set X̃i. Our emission features serve
two purposes. First, they are used as a median filter that will automatically smooth
the input data. More importantly, the feature functions based on the first-order and
second-order median statistics are robust sufficient statistics one can derive from a
normal distribution, which resemble the emission pattern of log2 ratio intensities
for a given hidden copy number state.

The transition feature function hjk(Yi, Yi+1, X̃i,i+1) and the initial feature func-
tion lj(Y1, X̃1) are defined as follows

hjk(Yi, Yi+1, X̃i,i+1) =


(aj+1−aj)/2+(ak+1−ak)/2

(aj+1−aj)/2+(ak+1−ak)/2+med X̃−
i,i+1−aj+med X̃+

i,i+1−ak
if Yi = j, med X̃−

i,i+1 ≥ aj ,

Yi+1 = k, med X̃+
i,i+1 ≥ ak

(aj+1−aj)/2+(ak−ak−1)/2

(aj+1−aj)/2+(ak−ak−1)/2+med X̃−
i,i+1−aj+ak−med X̃+

i,i+1
if Yi = j, med X̃−

i,i+1 ≥ aj ,

Yi+1 = k, med X̃+
i,i+1 < ak

(aj−aj−1)/2+(ak+1−ak)/2

(aj−aj−1)/2+(ak+1−ak)/2+aj−med X̃−
i,i+1+med X̃+

i,i+1−ak
if Yi = j, med X̃−

i,i+1 < aj ,

Yi+1 = k, med X̃+
i,i+1 ≥ ak

(aj−aj−1)/2+(ak−ak−1)/2

(aj−aj−1)/2+(ak−ak−1)/2+aj−med X̃−
i,i+1+ak−med X̃+

i,i+1
if Yi = j, med X̃−

i,i+1 < aj ,

Yi+1 = k, med X̃+
i,i+1 < ak

0 otherwise,

lj(Y1, X̃1) =




(aj+1−aj)/2

(aj+1−aj)/2+med X̃1−aj
if Y1 = j, med X̃1 ≥ aj

(aj−aj−1)/2

(aj−aj−1)/2+aj−med X̃1
if Y1 = j, med X̃1 < aj

0 otherwise.

Here aj denotes the mean log2 ratio for clones with copy number state j (j =
1, . . . , s). a0 and as+1 denote the greatest lower bound of log2 ratio for clones with
copy number state 1 and the least upper bound of log2 ratio for clones with copy
number state s, respectively. Without loss of generality, we assume a0 < a1 < · · · <

as+1. We define the initial feature function lj(Y1, X̃1) such that data from the clone
set X̃1 will only provide information to its own labelled state. Furthermore, when
Y1 = j, the closer the med X̃1 to aj , the higher value for lj(Y1, X̃1), the more



April 6, 2010 14:26 WSPC/185-JBCB S021972001000480X

302 X.-L. Yin & J. Li

information data will provide and contribution to parameter ωj is higher. It will
achieve the highest value of 1 when med X̃1 = aj. The transition feature function
hjk(Yi, Yi+1, X̃i,i+1) is similarly defined using the clone set X̃i,i+1. When Yi = j and
Yi+1 = k, the closer the med X̃−

i,i+1 to aj and the med X̃+
i,i+1 is to ak, the higher

the value for hjk(Yi, Yi+1, X̃i,i+1), and the data will contribute more information
to νjk. Clearly, both types of our feature functions can capture the local spatial
dependence over a set of adjacent clones, thus potentially providing more robust
inference about hidden copy number states.

The feature functions in our CRF-CNV model can be regarded as a general-
ization of feature functions in HMMs. (see Appendix A). The transition feature
functions of HMMs are index functions. They do not depend on observations. How-
ever, our transition feature functions can capture the local spatial dependence over
a set of adjacent clones. The way we define feature functions embodies the core idea
of CRFs, which make our CRF-CNV model more promising.

3.3. Parameter estimation

Unlike the standard algorithms for HMM training, there are significant computa-
tional challenges to efficiently and accurately estimate parameters for CRFs. Imple-
mentation of the training algorithms for our proposed CRF model requires sophis-
ticated statistical and numerical algorithms. To our best knowledge, no existing
implementations can be trivially used to solve our problem. We propose the follow-
ing algorithm for the parameter estimation.

In general, given a set of training data D = {(X(d), Y (d)), d = 1, . . . , D}, to
estimate parameter θ in model (1), one needs to maximize a penalized conditional
log likelihood which is defined as follows

Lθ =
D∑

d=1

logP (Y (d)|X(d)) − ‖ θ ‖2

2σ2

=
s∑

j=1

λj

D∑
d=1

n∑
i=1

fj(Y
(d)
i , X̃

(d)
i ) +

s∑
j=1

µj

D∑
d=1

n∑
i=1

gj(Y
(d)
i , X̃

(d)
i )

+
s∑

j=1

ωj

D∑
d=1

lj(Y
(d)
1 , X̃

(d)
1 ) +

s∑
j=1

s∑
k=1

νjk

D∑
d=1

n−1∑
i=1

hjk(Y (d)
i , Y

(d)
i+1, X̃

(d)
i,i+1)

−
D∑

d=1

logZθ(X(d)) − ‖ θ ‖2

2σ2
. (2)

Here D is the number of training samples, ‖θ‖ is the L2 norm of θ, σ2 is the
penalization coefficient. The penalization term ‖θ‖2/2σ2 is added for regularization
purpose. Before one can solve the optimization problem, one has to first specify
an additional set of hyper-parameters that include the dependence length u, the
mean log2 ratios {aj, j = 0, . . . , s + 1} and the penalization coefficient σ2. The set
of {aj} can be directly estimated given the training data set D, i.e. the maximum
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likelihood estimate of aj is just the mean value log2 ratios of all clones with copy
number state j in D for j = 1, . . . , s. While a0 and as+1 can be imputed using the
minimum log2 ratio of all clones with copy number state 1, and the maximum value
from all clones with copy number state s, respectively. For the dependent length u

and the penalization coefficient σ2, we rely on a grid search approach through cross-
validation. More specifically, the original training set D will first be partitioned into
two sets D1 and D2. We call D1 the new training set and D2 the validation set.
For a given range of (discrete) parameter values of u and σ2, we train the model
on D1 and get estimates of θ for each fixed pair of (u0, σ2

0). The exact procedure
to estimate θ given (u0, σ2

0) will be discussed shortly. We then apply the trained
model with estimated parameters on the validation set D2 and record the prediction
errors under the current model. The model with the smallest prediction error as
well as their associated parameters (u, σ2, θ) will be chosen as the final model. The
prediction error is defined as the mean absolute error (MAE) for all samples in the
validation set D2. The absolute error for a clone i is defined as |Yi − Ŷi|, where Yi

is the known copy number and Ŷi is the predicted copy number for clone i. This
measure not only captures whether a prediction is exactly the same as the real copy
number, but also reflects how close these two numbers are.

For a given set of hyper-parameters {aj}, u and σ2, the optimization of Lθ in
Eq. (2) can be solved using gradient-based numerical optimization methods.16 We
choose the non-linear Conjugate Gradient (CG) method in our implementation,
which only requires the computation of the first derivatives of Lθ. The partition
function Zθ(X) in the log likelihood and the marginal distributions in gradient func-
tions can be computed using forward-backward algorithms. Due to page limitation,
we provide the technical details of the CG method and the efficient computation of
the derivatives of Lθ in Appendix B.

For graphical model based approaches such as HMMs, many researchers group
both individuals and chromosomes in the analysis of aCGH data, which can dramat-
ically reduce the number of parameters needed without sacrificing much inference
accuracy. We also take a similar approach. This is reflected by our homogeneous
CRF structure.

3.4. Evaluation methods

We have implemented the above proposed approach as a Matlab package termed
CRF-CNV and evaluated its performance using a publicly available real dataset
with known copy numbers11 and a synthetic dataset from Willenbrock and
Fridlyand.14 Notice that many clones have normal (2) copies of DNAs, therefore the
number of correctly predicted state labels is not a good measure of performance of
an algorithm. Instead, we compare the performance of CRF-CNV with two popular
programs in terms of the number of predicted segments and the accuracy of seg-
ment boundaries, referred to as breakpoints. To summarize the performance of an
algorithm over multiple chromosomes and individuals, we use a single value called
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F−measure, which is a combination of precision and recall. Recall that given the
true copy number state labels and predicted labels, precision (P ) is defined as ntp

np

and recall (R) is defined as ntp
nt , where ntp is the number of true positive (correctly

predicted breakpoints), np is the number of predicted breakpoints, and nt is the
number of true breakpoints. F -measure is defined as F = 2PR/(P + R), which
intends to find a balance between precision and recall. The two programs we chose
are CBS12 and CNA-HMMer,7 both of which have been implemented as Matlab
tools. As mentioned earlier, CBS is one of the most popular segmentation algorithms
and different groups have shown that it generally performs better than many other
algorithms. CNA-HMMer is chosen because we want to compare the performance of
our CRF model with HMMs, and CNA-HMMer is an implementation of Bayesian
HMM model with high accuracy.7

4. Experimental Results

4.1. A real example

The Coriell data is regarded as a well-known “gold standard” dataset which was
originally analyzed by Snijders et al.11 The data is publicly available and has been
widely used in testing new algorithms and in comparing different algorithms. The
CBS algorithm has been applied on this dataset in the original paper. We redo
the analysis using the Matlab code to obtain a complete picture. The Coriell data
consists of 15 cell lines, named GM03563, GM00143, . . . , GM01524. We simply use
number 1, 2, . . . , 15 to represent these cell lines. For this particular dataset, there
are only three states (s = 3), i.e. loss, neutral and gain. Notice that unlike CBS,
CRF-CNV requires training data to obtain parameters. It is unfair to directly com-
pare the prediction results of CRF-CNV on training data with results from CBS.
We take a simple approach which divides the 15 samples into three groups, with
each group having 5 samples. In the first run, we use Group 1 as training data and
Group 2 as validation data to obtain model parameters (as discussed in Sec. 3.3).
We then use the model to predict data in Group 3 (testing data), and record the
prediction results. In the second and third run, we alternate the roles of Groups
1-3 and obtain prediction results of samples in Group 1 and Group 2, respectively.
Finally we summarize our results over all 15 samples. For example, for the first
run, we first obtain {aj , j = 0, . . . , 4} directly based on samples in Group 1. The
estimates of {aj} is (−1.348,−0.682,−0.001, 0.497, 0.810). To search the penal-
ization coefficient σ2 and the dependent length u, we define the search space as
A × B = {0, 1, 2, . . . , 30} × {0, 1, . . . , 5}. For each data point (m, u0) ∈ A × B, we
let σ2 = 400 × 0.8m and u = u0. Essentially, to search σ2 in a broad range, we use
a geometric decay. The upper bound on u is set to be 5 because for aCGH data
such as the Coriell dataset, each clone can cover a quite long range of DNA. The
optimal σ2 and u will be chosen by minimizing the prediction errors on samples
in Group 2 (the validation set). Our results indicate that the model with u = 1
and m = 21 achieves the lowest prediction error. Note that u = 1 implies feature
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functions are defined based on a window size of 3. The values of θs can be estimated
simultaneously. We then apply Viterbi’s algorithm to find the most possible hidden
copy number states for samples in Group 3, as well as the number and boundaries
of segments. Run 2 and Run 3 will obtain results on Group 1 and Group 2. For the
CNA-HMMer, one can either use its default priors or use training data to obtain
informative priors. We have tested the performance of CNA-HMMer both with and
without informative priors.

Table 2 shows the segment numbers of each sample from the Gold Standard,
and from the predicted outcomes of the three algorithms CRF-CNV, CBS and
CNA-HMMer. The segment number detected by CRF-CNV is exactly the same as
the Gold Standard for almost all samples (except for samples 9 and 10). Further
examination of samples 9 and 10 (see Fig. 3) reveals that the segment that we missed
in sample 9 only has one clone, which has been smoothed out by our algorithm.
The segment missed in sample 10 is also very short and the signal is very weak. Our
results have shown that CBS has generated many more segments comparing to the
ground truth, which is consistent with the results in the original paper. The overall
number of segments reported by CNA-HMMer with default priors is even greater
than the total number from CBS. On the other hand, once we have used training

Table 2. Comparison of segment numbers returned by three algorithms.

Method �Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum

Gold 5 3 5 3 5 3 5 5 5 5 3 5 2 3 3 60
CRF-CNV 5 3 5 3 5 3 5 5 3 3 3 5 2 3 3 56
CBS 17 42 7 6 9 5 5 6 5 5 13 7 17 3 9 156
CNA-HMMer(default) 9 83 9 7 11 3 7 5 11 11 21 5 16 10 16 224
CNA-HMMer (trained) 3 3 5 3 5 3 5 5 3 3 3 5 2 3 3 54
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Fig. 3. Predicted breakpoints by CRF-CNV (bottom) vs. true breakpoints (up) on two cell lines
GM01535 (a) and GM07081 (b).
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data to properly assign informative priors for CNA-HMMer, it almost returns the
same number of segments as CRF-CNV. The only exception is that CNA-HMMer
missed one breakpoint in sample 1. This illustrates that by using correctly labeled
training data, both CRF-CNV and CNA-HMMer can effectively eliminate all false
positives in this dataset. For the subsequent experiments, we only report the results
of CNA-HMMer with proper training.

As a comparison measure, the number of segments is a very rough index
because it does not contain information about breakpoints. To further examine
how accurate the predicted breakpoints by each approach, we pool all the break-
points from all the samples and use the F measure defined earlier to compare the
performance of the three algorithms. Note that even though exact matches are pos-
sible, shifting by a few clones around boundaries is also likely given noisy input
data. Therefore we use a match extent index D to allow some flexibility in defining
matches of predicted breakpoints to those given by the gold standard. Table 3 shows
F measures given different match extent values for the three methods. Clearly, CBS
has the worst performance, regardless of the match extent values. This partially
reflects that it has many false positives. The results from CNA-HMMer are very
accurate when no match extent is allowed and then shows modest increase when
we increase the value of D from 0 to 1. The results of CRF-CNV lie in between
when the match index D = 0. However, the performance of CRF-CNV is greatly
enhanced when D = 1 and finally it outperforms CNA-HMMer when D ≥ 2. The
primary reason CRF-CNV has shifted one or a few positions for many breakpoints
is because of the automatic median smoothing step. In contrast, CNA-HMMer
directly models outliers using prior distributions.

4.2. Simulated data

Though results on the real data have shown that CRF-CNV has a better perfor-
mance than CBS and CNA-HMMer, the experiment is limited because the sam-
ple size is very small. To further evaluate the performance of CRF-CNV, we test
the three algorithms using a simulated dataset obtained from Willenbrock and
Fridlyand.14 The dataset consists of 500 samples, each with 20 chromosomes. Each
chromosome contains 100 clones. Each clone belongs to one of six possible copy
number states. The authors generated these samples by sampling segments from

Table 3. Comparison of F measure with different match extent
values for three algorithms.

Method �Match extent CRF-CNV CNA-HMMer CBS

0 0.638 0.877 0.333
1 0.914 0.947 0.500
2 0.948 0.947 0.519
3 0.967 0.947 0.519
4 0.967 0.947 0.519
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a primary breast tumor dataset of 145 samples and used several mechanisms (e.g.
the fraction of cancer cells in a sample, the variation of intensity values given a
copy number state) to control the noise level. By using simulated data from the
literature, we can obtain an unbiased picture about CRF-CNV’s performance. The
original paper also compared three algorithms and concluded that CBS has the best
performance.

To train CRF-CNV, we divide the 500 samples into three groups as usual. This
time, the training set Group 1 contains sample 1–50, the validation set Group 2
contains sample 51–100 and the test set Group 3 contains sample 101–500. We use
the same grid search approach as discussed earlier to obtain hyper-parameters {aj},
u and σ2. For each fixed set of hyper-parameters, we use the conjugate gradient
method to obtain parameter θ. Finally, we use Viterbi’s algorithm to decode the
most possible hidden copy number state labels for samples in Group 3 and com-
pare the results with the other two algorithms. In addition, we also compare the
predictions by CRF-CNV on Group 2 and Group 3 to see, using new testing data,
how much deterioration our model might incur based on sub-optimal parameters
inferred from a small number of samples. Results from CBS and CNA-HMMer are
also presented separately for these two groups for easy comparison. We also use
Group 1 as training data to assign proper priors for CNA-HMMer.

Table 4 shows the total number of segments in Group 2 and Group 3 predicted
by CRF-CNV, CBS and CNA-HMMer, and in comparison with the known segment
number. Interestingly, on this simulated data, both CBS and CNA-HMMer have
predicted smaller number of segments. CRF-CNV has predicted smaller number
of segments on Group 2 and greater number of segments in Group 3. However,
the number of segments does not provide a whole picture. We therefore examine
the accuracy of boundary prediction by each method using the F measure for
both Group 2 and Group 3. Table 5 shows the F measures for different methods,
different groups and different match extents. As expected, the F measure increases
as D increases from 0 to 4 for all methods and for both data groups. It is also
not surprising to see that the results of CBS and CNA-HMMer on Group 2 and
Group 3 are consistent. Interestingly, the performance of CRF-CNV on Group 3
is also very close to its own performance on Group 2. This property is desirable
because it illustrates the robustness of CRF-CNV. The performance on new testing
data is almost the same as the performance on validation data, which is used to
select optimal hyper-parameters. This observation alleviates the need of training

Table 4. Comparison of number of segments
predicted by three different approaches.

Method �Data Group 2 Group 3

Gold 997 8299
CRF-CNV 966 8868
CNA-HMMer 784 6692
CBS 867 7430
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Table 5. Comparison of F measure of different methods with different match extent.

Method �Match extent 0 1 2 3 4

CRF-CNV(Group2) 0.590 0.792 0.875 0.900 0.906
CNA-HMMer(Group2) 0.702 0.801 0.832 0.852 0.855
CBS(Group2) 0.436 0.850 0.885 0.900 0.909
CRF-CNV(Group3) 0.568 0.786 0.864 0.889 0.896
CNA-HMMer(Group3) 0.697 0.805 0.840 0.858 0.869
CBS(Group3) 0.436 0.847 0.893 0.911 0.918

samples by our approach and makes it more practical. Note that the sizes of training
data and validation data are also very small. One can expect that with a small
number of training data, our approach can be used to reliably predict new data
generated under the same experimental conditions. In terms of the performance of
the three approaches, CNA-HMMer is more accurate then CRF-CNV, and CBS is
the worst for the case of exact match. However, when we relax the matching criteria
by increasing the value of D, both CBS and CRF-CNV achieve better performance
than CNA-HMMer. The results of CNA-HMMer and CRF-CNV are consistent with
those from the real data. While CBS has much better performance compared to
those from the real data, this might be attributed to the simulation process because
CBS was used to segment the 145 samples from the primary breast tumor dataset.14

5. Conclusion and Discussions

The problem of detecting copy number variations has drawn much attention in
recent years and many approaches have been proposed to solve the problem. Among
these computational developments, CBS has gained much popularity and it has been
shown that it generally performs better than other algorithms on simulated data.14

However, as shown in the original paper (as well as rediscovered by our experi-
ments), CBS has reported many more false positives on copy number changes in the
standard Coriell dataset identified by spectral karyotyping.11 Another commonly
used technique for segmentation is HMMs. HMM approaches have the advantage of
performing parameter estimation and copy number decoding within one framework
and its performance is expected to improve with more observations. Furthermore,
Lai et al.17 have shown that HMMs performed the best for small aberrations given
a sufficient signal/noise ratio. However, almost all HMMs for aCGH are first-order
Markov models and thus cannot incorporate long region spatial correlations within
data.

We have presented a novel computational model based on the theory of con-
ditional random fields. We have also developed effective forward/backward algo-
rithms within the conjugate gradient method for efficient computation of model
parameters. We evaluated our approach using real data as well as simulated data,
and results have shown our approach performed better than a Bayesian HMM on
both datasets when a small shift is allowed while mapping breakpoints. Comparing
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with CBS, our approach has much less false positives on the real dataset. On the
simulated data set, the performance of our approach is comparable to CBS, which
has been shown to be the best among three popular segmentation approaches.

Like with any other CRF, in order to train our model, one has to rely on some
training data. To be practically useful, Bayesian HMMs such as CNA-HMMer also
need training data for proper assignments of informative priors. We argue that the
problem is not that serious as it appears to be, primarily for two reasons. First, as
illustrated in our experiments, our algorithm is indeed very robust and performs
consistently even when one may not find the optimal estimates of model parameters.
For example, we used a simplified procedure in the analysis of the simulated dataset
by randomly picking one subset for training. Theoretically, parameters estimated
from such a procedure might heavily depend on this particular subset and might not
be necessarily globally optimal. However, the results in Table 5 have shown that the
performance on new testing data is almost the same as the results in the verification
data which has been used to tune the parameters. Furthermore, the training size
required by our algorithm is very small, as illustrated by both the real and the
simulated data. Our algorithm requires the number of hidden states to be known.
It suggests that we train our algorithm for a specific platform. The parameters can
then be used for future data to be generated on the same platform. Our algorithm
can be applied in real application that the set of hidden states for predicted data is
a subset of the platform we train. If the predicted data contains the state we never
learnt from training data, the accuracy of our algorithm will be reduced.

In terms of computation costs, CNV-CRF has two separate portions: time for
training and time for prediction. The training requires intensive computations to
optimize the log-likelihood and to determine the hyper-parameters. In addition,
one can also perform k-fold cross-validations, which will require much more com-
putational time. On the contrary, once the parameters have been estimated, the
prediction phase is rather efficient. Fortunately, the training phase of our algorithm
only requires a small number of samples, which makes the algorithm still practically
useful. For our proposed method, we focus primarily on aCGH data. More recently,
new algorithms have been proposed to identify CNVs from new SNP-genotyping
platforms by integrating information from both SNP probes and CNV probes.18

Next-generation sequencing is on the horizon, i.e. one can use massively paral-
lel sequencing technique to identify CNVs with finer resolutions. For our future
work, we will investigate possible extensions and applications of our algorithm on
other high-throughput technologies (such as SNP-genotyping and next-generation
sequencing) in detecting copy number alterations.
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Appendix A. Relationship of CRFs and HMMs

A special case of our linear-chain CRF model defined in Subsec. 3.1 corresponds
to a familiar HMM. For example, let λj = cj/d2

j , µj = −1/(2d2
j), ωj = log

P (Y1 = j), νjk = log P (Yi+1 = k|Yi = j), fj(Yi, X̃i(u)) = I{Yi=j}medX̃i, gj(Yi,

X̃i(u)) = I{Yi=j}(med X̃i)2, lj(Y1, X̃1(u)) = I{Y1=j}, hjk(Yi, Yi+1, X̃i,i+1(u)) =
I{Yi=j,Yi+1=k}, let med X̃i = Ti, then Model (1) becomes

P (Y |X) =
1

Zθ(X)
P (Y1)

n∏
i=1

P (Ti|Yi)
n−1∏
i=1

P (Yi+1|Yi), (3)

where P (Ti|Yi = j) =
∏n

i=1
1√

2πdi
exp{− (Ti−bj)

2

2d2
j

}, Zθ(X) =
∑

Y P (Y1)
∏n

i=1

P (Ti|Yi)
∏n−1

i=1 P (Yi+1|Yi). Model 3 is equivalent to an HMM with normal emis-
sion distribution. In this regard, if Model 1 is built based on median smoothed data
{med X̃i}, the model parameters and feature functions are selected as above, then
Model 1 reduces to Model 3. However, we notice that in our Model 1, neither the
initial function lj(Y1, X̃1(u)) nor the transition function hjk(Yi, Yi+1, X̃i,i+1(u))} is
a simple index function. They depend on the observation X . Moreover, the param-
eters θ of Model 1 are with more freedom than that of Model 3. These properties
make our Model 1 more promising.

Appendix B. Outline of the CG Algorithm and Efficient
Computation of the Derivatives of Lθ

The nonlinear CG method only requires the computation of the first derivatives.
The outline is as follows

d(0) = γ(0) = L′(θ(0)),

Find α(i) that maximize L(θ(i) + α(i)d(i)),

θ(i+1) = θ(i) + α(i)d(i),

γ(i+1) =
∂L

∂θ
|θ=θ(i+1) ,

β(i+1) =
(γ(i+1))

′
γ(i+1)

(γ(i))′γ(i)
,

d(i+1) = γ(i+1) + β(i+1)d(i),

where θ(0) is the initial value of θ, ∂L
∂θ is the first derivative function of L. The first

order derivatives of Lθ with respect to {λj}, {µj}, {ωj} and {νjk} are given by

∂Lθ

∂λj
=

D∑
d=1

n∑
i=1

fj(Y
(d)
i , X̃

(d)
i ) −

D∑
d=1

n∑
i=1

∑
y

P (Yi = y|X(d))fj(y, X̃
(d)
i ) − λj

σ2
,

j = 1, . . . , s,

∂Lθ

∂µj
=

D∑
d=1

n∑
i=1

gj(Y
(d)
i , X̃

(d)
i ) −

D∑
d=1

n∑
i=1

∑
y

P (Yi = y|X(d))gj(y, X̃
(d)
i ) − µj

σ2
,

j = 1, . . . , s,
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∂Lθ

∂ωj
=

D∑
d=1

lj(Y
(d)
1 , X̃

(d)
1 ) −

D∑
d=1

∑
y

P (Y1 = y|X(d))lj(y, X̃
(d)
1 ) − ωj

σ2
,

j = 1, . . . , s,

∂Lθ

∂νjk
=

D∑
d=1

n∑
i=1

hjk(Y (d)
i , Y

(d)
i+1, X̃

(d)
i,i+1) −

D∑
d=1

n−1∑
i=1

∑
y,y′

P (Yi = y, Yi+1 = y′|X(d))

hjk(y, y′, X̃(d)
i,i+1) −

νjk

σ2
, j, k = 1, . . . , s.

We have noticed the computational cost of training. The partition function Zθ(X)
in the likelihood and the marginal distributions P (Yi = y|X(d)), P (Yi = y, Yi+1 =
y′|X(d)) in the gradient can be efficiently computed by forward-backward algo-
rithms, both of which have an O(ns2) complexity, where n is the clone number, s is
the hidden state number. However, each training data will have a different partition
function and marginal distributions, so we need to run forward-backward for each
training data for each gradient computation. The cost for all training is O(ns2DG),
where D is the number of training examples, G is the number of gradient compu-
tations required by the optimization procedure.

We define forward variables γi and backward variables ηi as follows

γ1(y, d) = F (Y1 = y, X̃
(d)
1 )G(Y1 = y, X̃

(d)
1 )L(Y1 = y, X̃

(d)
1 ), y = 1, . . . , s,

γi(y′, d) = F (Yi = y′, X̃(d)
i )G(Yi = y′, X̃(d)

i )
s∑

y=1

γi−1(y, d)

H(Yi−1 = y, Yi = y′, X̃(d)
i−1,i), i = 2, . . . , n; y′ = 1, . . . , s,

ηn(y, d) = 1, y = 1, . . . , s,

ηi(y′, d) =
s∑

y=1

ηi+1(y)F (Yi+1 = y, X̃
(d)
i+1)G(Yi+1 = y, X̃

(d)
i+1)

H(Yi = y′, Yi+1 = y, X̃
(d)
i,i+1), i = 1, . . . , n − 1; y′ = 1, . . . , s.

Here,

F (Yi, X̃i) = exp




s∑
j=1

λjfj(Yi, X̃i)


 , G(Yi, X̃i) = exp




s∑
j=1

µjgj(Yi, X̃i)


 ,

L(Y1, X̃1) = exp




s∑
j=1

ωjfj(Y1, X̃1)


 ,

H(Yi−1, Yi, X̃i−1,i) = exp




s∑
j=1

s∑
k=1

νjkhjk(Yi−1, Yi, X̃i−1,i)


 .
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Combining forward and backward recursions, we see that

P (Yi = y|X(d)) = γi(y, d)ηi(y, d)/Zθ(X(d)), y = 1, . . . , s; i = 1, . . . , n,

P (Yi = y, Yi+1 = y′|X(d)) = γi(y, d)F (Yi+1 = y′, X̃(d)
i+1)G(Yi+1

= y′, X̃(d)
i+1)H(Yi = y, Yi+1 = y′, X̃(d)

i,i+1)ηi+1(y′, d)/Zθ(X(d)),

y, y′ = 1, . . . , s; i = 1, . . . , n − 1.

Zθ(X(d)) can also be efficiently computed using forward variables Zθ(X(d)) =∑s
y=1 γn(y, d).

We notice that the forward variables γi and backward variables ηi are unstable.
They may suffer from overflow or underflow due to numerous times of exponential
product calculations. Stable modification is to derive recursive relationship of the
forward variables γi and backward variables ηi in the log type. It is easy to show
that log γi(y′, d) obeys the recursive relationship

log γi(y′, d) = log γi−1(y0, d) + log(F (Yi = y′, X̃(d)
i )G(Yi = y′, X̃(d)

i )H(Yi−1 = y0,

Yi = y′, X̃(d)
i−1,i) + log


1 +

∑
y �=y0

exp[log γi−1(y, d) + log(F (Yi = y′, X̃(d)
i )

G(Yi = y′, X̃(d)
i )H(Yi−1 = y, Yi = y′, X̃(d)

i−1,i)) − log γi−1(y0, d)

− log(F (Yi = y′, X̃(d)
i )G(Yi = y′, X̃(d)

i )H(Yi−1 = y0, Yi = y′, X̃(d)
i−1,i)]


 ,

i = 2, . . . , n; y′ = 1, . . . , s,

where y0 = arg maxy log γi−1(y, d). The backward variables ηi(y′, d) has a similar
log-type recursive relationship; we omit it for brevity.

The marginal distributions P (Yi = y|X(d)) and P (Yi = y, Yi+1 = y′|X(d))
can be calculated using stable log γi and log ηi, for example, P (Yi = y|X(d)) =
exp{log γi(y, d) + log ηi(y, d) − log Zθ(X(d))}, y = 1, . . . , s; i = 1, . . . , n, where
log Zθ(X(d)) = log γn(y0, d) + log(1 +

∑
y �=y0

exp[log γn(y, d) − log γn(y0, d)]), y0 =
arg maxy log γn(y, d).
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