
PedPhase Version 1.0 User Manual

Jing Li

Department of Computer Science

University of California-Riverside, CA 92521

jili@cs.ucr.edu.

July 29, 2003

2

PedPhase Version: 1.0. Release time: July 2003. Author: Jing Li Copyright (c): Jing Li. All rights

reserved. Collaborators: Tao Jiang and Koichiro Doi. The PedPhase software and this document can be

obtained athttp://www.cs.ucr.edu/˜jili/haplotyping.html . This software is provided

“AS IS” and is free for noncommercial use. The developers will not be responsible for any damages resulting

from its use. Please report bugs to the author atjili@cs.ucr.edu.

Citation: Jing Li and Tao Jiang. PedPhase: Haplotype inference for pedigree data. Submitted toBioin-

formatics, 2003.

Contents

1 Introduction 5

1.1 Overview . 5

1.2 Algorithms . 5

1.3 Platforms . 7

2 Running the software 9

2.1 Obtaining and installing the software . 9

2.2 File list . 9

2.3 Running the software . 9

2.4 Input file and data preparation . 10

2.5 Output files . 10

2.6 Conventions and restrictions . 11

3

4 CONTENTS

Chapter 1

Introduction

1.1 Overview

The program PedPhase Version 1.0 contains functions for inferring haplotypes from genotypes for mem-

bers in a general pedigree. Specifically, we are interested in solving theminimum recombinant haplotype

configuration(MRHC) problem,i.e. given a pedigree and the genotype information of each member in the

pedigree, we are interested in finding the haplotype configuration for each member such that the total num-

ber of recombinants (or recombination events) in the whole pedigree is minimized. Figure 1.1 illustrates an

example input and the expected output of the MRHC problem. The diagram on the left shows the pedigree

structure and genotype information. The diagram on the right shows the (paternal or maternal) origin of

each allele in a child (i.e. the inferred haplotype/phase information). Notice that, there is a recombinant

between loci 6 and 7 of the maternal haplotype in member 3-4.

PedPhase V1.0 implements four algorithms, namely, the block-extension algorithm, constraint-finding

algorithm, locus-based DP (dynamic programming) algorithm and member-based DP algorithm. The algo-

rithms are described in detail in [3, 4, 2] and will be shortly discussed in 1.2. The program is written in C++

and has been tested on simulated data and real data. The test results show that the programs perform better

than previous known algorithm and are thus useful for haplotyping pedigree data.

1.2 Algorithms

There are four algorithms implemented in the software package. All the algorithms are rule-based and thus

model-free. The block-extension algorithm is an efficient heuristic algorithm for MRHC that performs very

well when the input data requires few recombinants. The other three are exact algorithms for MRHC under

various restrictions. A summary of major differences of the four algorithms can be found in Table 1.1. All

the algorithms take pedigree structure and genotype data in one file as input and output haplotypes for each

member of the pedigree. Please refer to 2.4 for the format of input file and to 2.5 for the output files.

5

6 CHAPTER 1. INTRODUCTION

3-1
1 2
1 2
2 2
1 1
2 1
1 1
2 1
1 1

3-2
1 2
1 2
2 2
2 2
1 2
1 2
2 1
1 1

3-3
1 1
1 1
2 2
2 1
2 1
1 1
2 1
1 1

3-4
2 1
1 2
2 2
1 2
2 2
2 1
2 1
1 1

Input

3-1
1|2(0,0)
1|2(0,0)
2|2(0,0)
1|1(0,0)
2|1(0,0)
1|1(0,0)
2|1(0,0)
1|1(0,0)

3-2
1|2(0,0)
1|2(0,0)
2|2(0,0)
2|2(0,0)
1|2(0,0)
1|2(0,0)
1|2(0,0)
1|1(0,0)

3-3
1|1(0,0)
1|1(0,0)
2|2(0,0)
1|2(0,0)
2|1(0,0)
1|1(0,0)
2|1(0,0)
1|1(0,0)

3-4
1|2(0,1)
1|2(0,1)
2|2(0,1)
1|2(0,1)
2|2(0,1)
1|2(0,1)
2|1(0,0)
1|1(0,0)

Output

Figure 1.1: An illustration of the input and expected

output of the MRHC problem. In the pedigree, a

square represents a male and a circle represents a

female. The children (e.g. 3-3 and 3-4) are placed

under their parents (e.g. 3-1 and 3-2). The member

ID and genotype data are placed under each mem-

ber. On the left, the blank between two alleles at

a locus indicates that the locus is phase-unknown.

On the right, a| separates the paternal allele from

the maternal allele. For each phase-resolved locus,

we further use two numbers in parentheses to indi-

cate that the alleles come from the parents’ paternal

(represented as 0) and maternal (represented as 1)

alleles. The number of recombinants can be easily

derived from this information.

Algorithm Time Complexity Optimal # of Solutions Target Input Data

Block-extension O(dmn) No 1 large dataset with few recombinants

Constraint-finding O(m3n3) Yes all dataset with 0 recombinant

Locus-based DP O(nm022m0) Yes all loopless pedigree, small number of markers

Member-based DP O(mn24n) Yes all small pedigree

Table 1.1: Comparison of the four algorithms. In the above time complexity formulas,n is

the size of the pedigree,m the number of loci,m0 the maximum number of heterozygous

loci in any member, andd the largest number of children in a nuclear family.

• Block-extension algorithm The block-extension algorithm described in [3, 4] first attempts to re-

solve the haplotype configuration of all unambiguous loci using theMendelian lawof inheritance.

Some sensible greedy strategies (such as avoiding double recombinants within a small region of loci)

are then used to resolve loci that are adjacent to the previously resolved loci, resulting inblocks

of consecutive resolved loci. The algorithm then uses the longest block in the pedigree to resolve

more unresolved loci under the minimum recombination principle. This may extend some blocks into

longer blocks. The process is repeated until no blocks can be extended. The algorithm then fills the

remaining gaps between blocks in each member by considering the haplotype information at the other

members of the same nuclear family. The time complexity of the above algorithm isO(dmn), where

n is the size of the pedigree,m the number of loci, andd the largest number of children in a nuclear

family.

1.3. PLATFORMS 7

• Constraint-finding algorithm for 0-recombinant data The constraint-finding algorithm [3, 4] first

determines if an MRHC instance has0-recombinant haplotype configurations and identify all such

configurations if it does. More precisely, the algorithm first identifies all necessary (and sufficient)

constraints on the haplotype configurations derived from the Mendelian law and the zero-recombinant

assumption, represented as a system of linear equations on binary variables over the cyclic groupZ2

(i.e. integer additionmod 2), and then solves the equations to obtain all consistent haplotype con-

figurations satisfying the constraints, using a simple method based on Gaussian elimination. These

consistent haplotype configurations are shown to be feasible0-recombinant solutions. The running

time for representing and solving the equations isO(m3n3) and the time for enumerating all config-

urations is proportional to the number of feasible0-recombinant solutions.

• Locus-based dynamic programming algorithmThis algorithm assumes that the number of marker

loci is bounded by a small constant and performs dynamic programming on the members of the input

pedigree. It works only for pedigrees without mating loops. The algorithm takes advantage of the

tree structure of the input pedigree and has a running time linear in the size of the pedigree. It could

be very useful for solving MRHC in practice because most real pedigrees are loopless and involve a

small number of marker loci (in each haplotype block).

• Member-based dynamic programming algorithmThis algorithm assumes that the input pedigree

is small and performs dynamic programming on the marker loci in each member of the pedigree

simultaneously. The algorithm works for any input pedigree (without or with mating loops) and has a

running time linear in the number of marker loci. It could be useful as a subroutine for solving MRHC

on small pedigrees,e.g.nuclear families from a large input pedigree or independent nuclear families

from a (semi-)population data.

1.3 Platforms

The current version of PedPhase has executable code for Windows and Linux. Support fore other platforms

may be available upon request.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Running the software

2.1 Obtaining and installing the software

The PedPhase software and this document can be obtained at http://www.cs.ucr.edu/˜jili/haplotyping.html.

Once downloading the software, the user could create a folder and uncompress the files under the newly

created folder. The user could use WinZip to unzip the file on Windows and use the command “tar

-xzvf PedPhase.tar.z ” to unzip the file on Linux.

2.2 File list

In addition to the executable file PedPhase.exe (PedPhase on Linux) and the user’s guide PedPhaseReadMe.pdf,

there are two more example files: blockext.txt and dp.txt. The files contain simulated data. In blockext.txt

there are 100 pedigrees and each pedigree consists of 15 members. The number of markers is 10. The

block-extension, constraint-finding and locus-based DP algorithms could easily handle the data in minutes

on a regular PC. A smaller pedigree with 8 members in dp.txt can be used to test the member-based DP

algorithm.

2.3 Running the software

One can launch PedPhase on a Command Prompt (DOS) window on Windows by typing the following

command:

PedPhase.exe -option infile .

Similarly, one can launch PedPhase by typing the following command on Linux terminal:

PedPhase -option infile .

9

10 CHAPTER 2. RUNNING THE SOFTWARE

The above assumes that PedPhase is in the current directory. Otherwise, we need include the correct

path information in front of the executable file.

There are 4 options in the current version. Different options will invoke different algorithms as follows.

-b: block-extension

-c: constraint-finding

-l: locus-based DP

-m: member-based DP

2.4 Input file and data preparation

The input file consists of the pedigree information and the marker information for each member. The struc-

ture of the input file is very simple. Each line represents one individual (i.e. member of the pedigree). Differ-

ent fields are separated using Tab. Each line consists of the following fields:FamilyID IndividualID

FatherID MotherID Gender AffectionStatus LiabilityClass Allele11 Allele12

Allele21 Allele22

FamilyID and IndividualID are natural numbers.FatherID andMotherID are the current

individual’s parents’IndividualID and are set to 0 if the current individual does not have parent informa-

tion available in the pedigree. ForGender , 1 stands for male and 2 stands for female.AffectionStatus

andLiabilityClass are reserved fields and are not used in the current version. Allele numbers (Allele11

Allele12 Allele21 Allele22 ...) are non-negative integers where 0 stands for missing value.

The input file can be prepared by using any file editors such as Notepad on Windows or Emacs or vi on

Linux. It can also be exported from a database system. There can be multiple pedigrees in an input file, but

the marker information for all individuals must be consistent (i.e. all the individuals have the same marker

loci). At the end of the input file, there is an empty line. The user is encouraged to check Mendelian errors

using other programs like PedCheck [5] before feeding the data to PedPhase, although we have implemented

a simple algorithm for checking Mendelian inconsistency in nuclear families.

2.5 Output files

There are three output files for each input file. If the name of the input isa.txt , the names of the output

files would bea.out , a.dat anda.res respectively. The filea.out contains the haplotyped data (as

well as pedigree information that is the same as the input data). For each locus, the two alleles are separated

by a ‘/’ to indicate that the first allele is paternal and the second maternal. At the end of each line, two binary

strings follow to further indicate the grand-parental source of each allele (i.e. 0 means that the allele is from

the parent’s paternal haplotype and 1 means that the allele is from the parent’s maternal haplotype). For

founders of the pedigree, we arbitrarily fix the haplotype at a heterozygous locus and set the grand-parental

2.6. CONVENTIONS AND RESTRICTIONS 11

source of the alleles at this locus to 0s. The filea.dat has exactly the same information but has been

formatted so that the program WPEDRAW [1] could read it directly. The user can use WPEDRAW to draw

the traditional pedigree graphs from such a file. Some auxiliary information like the time used by PedPhase

and the number of recombinants in each pedigree can be found in the filea.res .

2.6 Conventions and restrictions

There are some conventions and restrictions in the current version of PedPhase:

• An individual has either both parents or no parents at all in the pedigree. In the latter case, the

individual is called a founder of the pedigree. Since there is no way to tell the paternal haplotype from

the maternal haplotype in a founder, we arbitrarily fix the haplotype of a heterozygous locus in each

founder.

• We have implemented some algorithms to detect Mendelian inconsistency only in nuclear families,

and recommend the user to use some other programs like PedCheck to check Mendelian errors first.

• Only the block-extension algorithm has some heuristic to impute missing values. We will improve

the ability of dealing with missing data in future versions. Since the block-extension algorithm makes

random decisions at several places, it could be useful to run it multiple times and take the solution

with the minimum number of recombinants.

12 CHAPTER 2. RUNNING THE SOFTWARE

Bibliography

[1] D. Curtis A program to draw pedigrees using linkage or linksys data files.An. of Hum. Genet.,

54:365–367, 1990.

[2] K. Doi, J. Li and T. Jiang. Minimum Recombinant Haplotype Configuration on Pedigrees without

Mating Loops. To appear WABI2003.

[3] J. Li and T. Jiang, Efficient rule-based haplotyping algorithms for pedigree data.Proc. RECOMB’03,

pages 197–206, 2003.

[4] J. Li and T. Jiang, Efficient inference of haplotypes from genotypes on a pedigree.J. Bioinfo. and

Comp. Biol.1(1):41-69, 2003.

[5] J. R. O’Connell and D. E. Weeks. Pedcheck: a program for identification of genotype incompatibilities

in linkage analysis.Am J Hum Genet, 63(1):259–266, 1998.

13

