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Abstract

Summary: We have developed a computer program consisting of four algorithms for inferring haplotypes from (unphased)
genotypes on pedigree data. These algorithms are designed based on a combinatorial formulation of haplotype inference,
namely theminimum-recombinant haplotype configuration (MRHC)problem, and are effective for different types of data. One
of the algorithms, called block-extension, is an efficient heuristic algorithm for MRHC that performs very well when the input
data requires few recombinants. The other three are exact algorithms for MRHC under various restrictions.Availability: Exe-
cutable code for Windows and Linux is available at websitehttp://www.cs.ucr.edu/˜jili/haplotyping.html .
Contact: jili@cs.ucr.edu.

1 Introduction

With the completion of the Human Genome Project [5, 13], an (almost) complete human genomic DNA sequence has become
available, which is essential to understand the functions and characteristics of human genetic material. An important next
step in human genomics is to determine genetic variations among humans and the correlation between genetic variations and
phenotypic variations (such as disease status, quantitative traits,etc.). To achieve this goal, an international collaboration,
namely, the international HapMap project, was launched in October, 2002. The main objective of the HapMap project is to
identify the haplotypestructure of humans and common haplotypes among populations. However the human genome is a
diploid and, in practice,genotypedata instead of haplotype data are collected directly, especially in large scale sequencing
projects, mainly due to cost considerations. Hence, efficient and accurate computational methods and computer programs for
inferring haplotype information from genotype data are highly demanded. A recent comprehensive review of computational
methods for haplotype inference can be found in [2].

Genotype data used in haplotyping can be divided into two categories:pedigreedata andpopulationdata. Although
collecting population data and reconstructing haplotypes according to some evolutionary model seems an economic way for
haplotype inference, studies [1] show that for a larger number of marker loci, haplotype estimations from small pedigrees such
as nuclear families (i.e. two-level pedigree consisting of only parents and children) can be more efficient than estimations from
independent individuals in a population on a per genotype base. Furthermore, some family based statistical tests like TDT (i.e.
Transition Disequilibrium Test) and its variants require haplotype data as input. In this paper, we are only interested pedigree
data.

The existing computational methods for haplotyping can be divided into two categories: statistical methods and rule-based
(i.e. combinatorial) methods. Statistical methods [8, 11] often infer haplotype configurations with some likelihood estimation,
but they are usually very time consuming and not suitable for large data sets. These methods work well for data with sparse
markers separated by large genetic (and physical) distances, because they rely on the linkage equilibrium assumption. This
assumption does not hold for dense markers like SNPs (i.e. single nucleotide polymorphisms), for which linkage disequilibrium
between adjacent markers is common. On the other hand, rule-based methods are usually very fast although they normally do
not provide any numerical assessment of the reliability of their results. Nevertheless, by utilizing some reasonable biological
assumptions, such as the minimum recombination principle (i.e. haplotype configurations with the minimum recombinants are
likely to be the true haplotype configurations), rule-based methods have proven to be powerful and practical, especially for data
with dense markers [9, 10, 12].

In a recent paper [10], Qian and Beckmann proposed a rule-based algorithm for theMinimum-Recombinant Haplotype
Configuration (MRHC) problem, where we are given a pedigree with genotype data and we are required to find the haplotype
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configurations for each member of the pedigree such that the total number of recombinants (or recombination events) in the
whole pedigree is minimized. Figure 1 illustrates an example input and the expected output of the MRHC problem. The
diagram on the left shows the pedigree structure and genotype information. The diagram on the right shows the (paternal or
maternal) origin of each allele in a child (i.e. the inferred haplotype/phase information). Notice that, there is a recombinant
between loci 6 and 7 of the maternal haplotype in member 3-4.

In recent papers [6, 7, 4], we showed that the MRHC problem is in general NP-hard, even for pedigrees without mating
loops,1 and developed an iterative heuristic algorithm, called block-extension, that is much more efficient than the algorithm
MRH given in [10]. Preliminary experiments showed that the algorithm is often able to compute an optimal solution or nearly
optimal solution when the minimum number of recombinants required is small [6, 7]. However, its performance decreases
when more recombinants are required. We have also devised an efficient exact algorithm for solving MRHC on pedigree data
that requires no recombinants,i.e. the algorithm can find all haplotype configurations incurring no recombinants [6, 7]. More
recently, two dynamic programming algorithms are developed for (general) pedigrees of small sizes and loopless pedigrees
with a small number of marker loci [4]. In this paper, we report a computer program implementing these algorithms.
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Figure 1: An illustration of the input and expected out-
put of the MRHC problem. In the pedigree, a square
represents a male and a circle represents a female. The
children (e.g.3-3 and 3-4) are placed under their parents
(e.g. 3-1 and 3-2). The member ID and genotype data
are placed under each member. On the left, the blank
between two alleles at a locus indicates that the locus is
phase-unknown. On the right, a| separates the paternal
allele from the maternal allele. For each phase-resolved
locus, we further use two numbers in parentheses to indi-
cate that the alleles come from the parents’ paternal (rep-
resented as 0) and maternal (represented as 1) alleles. The
number of recombinants can be easily derived from this
information.

2 Methods and implementation

The above four algorithms are implemented in a program, called PedPhase, in C++. Executable codes for Windows and Linux
are available free of cost for non-commercial use. The following gives a brief synopsis of the algorithms.

• Block-extension algorithm The block-extension algorithm described in [6, 7] first attempts to resolve the haplotype
configuration of all unambiguous loci using theMendelian lawof inheritance. Some sensible greedy strategies (such as
avoiding double recombinants within a small region of loci) are then used to resolve loci that are adjacent to the previously
resolved loci, resulting inblocksof consecutive resolved loci. The algorithm then uses the longest block in the pedigree
to resolve more unresolved loci under the minimum recombination principle. This may extend some blocks into longer
blocks. The process is repeated until no blocks can be extended. The algorithm then fills the remaining gaps between
blocks in each member by considering the haplotype information at the other members of the same nuclear family. The
time complexity of the above algorithm isO(dmn), wheren is the size of the pedigree,m the number of loci, andd the
largest number of children in a nuclear family.

1A mating loop is a substructure of a pedigree that shows two descendants of the same member mate and produce children.
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• Constraint-finding algorithm for 0-recombinant data The constraint-finding algorithm [6, 7] first determines if an
MRHC instance has0-recombinant haplotype configurations and identify all such configurations if it does. More pre-
cisely, the algorithm first identifies all necessary (and sufficient) constraints on the haplotype configurations derived from
the Mendelian law and the zero-recombinant assumption, represented as a system of linear equations on binary variables
over the cyclic groupZ2 (i.e. integer additionmod 2), and then solves the equations to obtain all consistent haplo-
type configurations satisfying the constraints, using a simple method based on Gaussian elimination. These consistent
haplotype configurations are shown to be feasible0-recombinant solutions. The running time for representing and solv-
ing the equations isO(m3n3) and the time for enumerating all configurations is proportional to the number of feasible
0-recombinant solutions.

Observe that the complexity of an instance of MRHC is defined by two independent parameters, namely, the number of
members in the pedigree (i.e. the size of the pedigree) and the number of marker loci in each member. A polynomial time
algorithm for MRHC can be constructed if one of these parameter is bounded by a constant (which is often the case in practice).
This gives rises to two dynamic programming algorithms introduced in [4].

• Locus-based dynamic programming algorithmThis algorithm assumes that the number of marker loci is bounded by
a small constant and performs dynamic programming on the members of the input pedigree. It works only for pedigrees
without mating loops. The algorithm takes advantage of the tree structure of the input pedigree and has a running time
linear in the size of the pedigree. It could be very useful for solving MRHC in practice because most real pedigrees are
loopless and involve a small number of marker loci (in each haplotype block).

• Member-based dynamic programming algorithmThis algorithm assumes that the input pedigree is small and performs
dynamic programming on the marker loci in each member of the pedigree simultaneously. The algorithm works for any
input pedigree (without or with mating loops) and has a running time linear in the number of marker loci. It could
be useful as a subroutine for solving MRHC on small pedigrees,e.g. nuclear families from a large input pedigree or
independent nuclear families from a (semi-)population data.

All the algorithms have been tested on simulated data and real data. The test results [6, 7, 4] demonstrate that the programs
are more efficient than the previously known algorithms, and perform as well as those algorithms. In summary, the block-
extension algorithm works well for large dataset in a tight linked region, although it does not guarantee optimality of its
solution. The program has simple missing allele imputation capabilities. The other three algorithms are exact algorithms, but
they are efficient only for pedigree data with certain restrictions. They also assume that no genotype data is missing.

The input to PedPhase is simply a text file. Each line represents a member, specifying its parental and genotype information.
The output (text) file gives the parental source of each allele in a member and the parental source of the allele in the involve
parent. The text files can be used to draw pedigree diagrams (similar to the ones in Figure 1) using WPEDRAW [3]. The
detailed specifications and instructions on the use of the program can be found in theUser’s Guide, available along with the
package.
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