
JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 15, Number 3, 2008

© Mary Ann Liebert, Inc.

Pp. 241–257

DOI: 10.1089/cmb.2007.0090

Prioritize and Select SNPs for Association Studies

with Multi-Stage Designs

JING LI

ABSTRACT

Large-scale whole genome association studies are increasingly common, due in large part to

recent advances in genotyping technology. With this change in paradigm for genetic studies

of complex diseases, it is vital to develop valid, powerful, and efficient statistical tools and

approaches to evaluate such data. Despite a dramatic drop in genotyping costs, it is still

expensive to genotype thousands of individuals for hundreds of thousands single nucleotide

polymorphisms (SNPs) for large-scale whole genome association studies. A multi-stage (or

two-stage) design has been a promising alternative: in the first stage, only a fraction of

samples are genotyped and tested using a dense set of SNPs, and only a small subset of

markers that show moderate associations with the disease will be genotyped in later stages.

Multi-stage designs have also been used in candidate gene association studies, usually in

regions that have shown strong signals by linkage studies. To decide which set of SNPs

to be genotyped in the next stage, a common practice is to utilize a simple test (such

as a �
2 test for case-control data) and a liberal significance level without corrections

for multiple testing, to ensure that no true signals will be filtered out. In this paper,

I have developed a novel SNP selection procedure within the framework of multi-stage

designs. Based on data from stage 1, the method explicitly explores correlations (linkage

disequilibrium) among SNPs and their possible interactions in determining the disease

phenotype. Comparing with a regular multi-stage design, the approach can select a much

reduced set of SNPs with high discriminative power for later stages. Therefore, not only

does it reduce the genotyping cost in later stages, it also increases the statistical power by

reducing the number of tests. Combined analysis is proposed to further improve power, and

the theoretical significance level of the combined statistic is derived. Extensive simulations

have been performed, and results have shown that the procedure can reduce the number of

SNPs required in later stages, with improved power to detect associations. The procedure

has also been applied to a real data set from a genome-wide association study of the sporadic

amyotrophic lateral sclerosis (ALS) disease, and an interesting set of candidate SNPs has

been identified.
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1. INTRODUCTION

TWO GRAND CHALLENGES in the post-genomic era are to develop a detailed understanding of heritable

variation in the human genome and to develop robust strategies for identifying genetic contributions to

diseases and drug responses (Collins et al., 2003). Central to the understanding of such complex systems

and the role of genes underlying diseases are effective mathematical models and software tools that can

facilitate the characterization of genetic variation in human populations based on genomic data, mostly

single nucleotide polymorphisms (SNPs) data, which has been available mainly due to the international

efforts driven by the HapMap project (International HapMap Consortium, 2005). Genome-wide association

studies are now feasible, and some are underway. On the other hand, studies have shown that a two-stage

or multi-stage design might be able to achieve a similar power but with much reduced genotyping costs,

comparing with a single-stage design (Hirschhorn and Daly, 2005; Satagopan and Elston, 2003; Skol et al.,

2006; Thomas et al., 2004; Wang et al., 2006). An optimal two-stage/multi-stage design to achieve a

minimum cost with a similar overall significance level and statistical power depends on many factors (such

as disease allele frequencies, disease effects, the fraction of samples genotyped in stage 1, the fraction

of markers genotyped in stage 2, and the genotyping cost ratio in stages 1 and 2). Several groups have

investigated this issue using different statistical tests under different assumptions (Satagopan and Elston,

2003; Skol et al., 2006; Thomas et al., 2004; Wang et al., 2006).

The purpose of the first stage in a multi-stage design is to select a much smaller but promising subset

of SNPs from all available SNPs for further tests. A common practice is to utilize a simple statistic to test

the association of each SNP with the disease, and adopt a liberal significance level (per test) to ensure

that no true signals will be filtered out. Because in principle, methods used in the first stage for SNP

selection in a two-stage design can be applied to any later stages in a multi-stage design, I will focus

my discussion on a two-stage design for simplicity. After the set of SNPs has been determined based on

stage 1, there are usually three test strategies that can be adopted in stage 2, namely, replication-based

analysis, joint analysis assuming homogeneity between stages, and joint analysis that allows heterogeneity

between stages (Satagopan and Elston, 2003; Skol et al., 2006; Thomas et al., 2004; Wang et al., 2006).

In a replication-based analysis, data in stage 2 are considered alone, and a positive association is reported

if a statistical score reaches its significance level. In a joint analysis, subjects in stage 1 as well as those in

stage 2 will be considered together at the end, while raw data from two stages are combined first to obtain

an overall statistical score if assuming homogeneity, and the two statistics from two stages are combined if

assuming heterogeneity (Skol et al., 2006). From now on, I use the term “joint analysis” for the former and

“combined analysis” for the latter. For both types of analyses, the significance level of the new test statistic

of each SNP has to be calculated conditional on the fact that the SNP has passed the screen in stage 1

(Skol et al., 2006). In addition, to obtain an experiment-wise significance level, Bonferroni corrections for

multiple testing have been commonly used for all three methods (replicate-based, joint, and combined).

However, it is well-known that the method using Bonferroni corrections is highly conservative because,

essentially, it assumes all SNPs are independent and in linkage equilibrium. The assumption does not

hold any more when using SNP arrays with hundreds of thousands markers. It has been observed that

many nearby SNPs are indeed in high linkage disequilibrium (Cancer Genetic Markers of Susceptibility

project [CGEMS] at http://cgems.cancer.gov). Furthermore, when a SNP shows moderate association with

the disease and is selected for stage 2, it is very likely that other SNPs in high correlations with this SNP

will also be selected for stage 2. In this paper, I propose a novel procedure within the framework of a

two-stage design to select a subset of highly discriminative SNPs based on data in stage 1. The procedure

consists of three phases. In the first phase, all the SNPs are ranked based on their associations with the

disease as usual. Correlations among SNPs will then be explored using a clustering algorithm in phase

two. In the third phase, potential haplotype effects and/or gene-gene interactions will be considered using

an information theory–based approach. A SNP will be genotyped and tested in stage 2 only if it passes all

three phases.

The procedure is flexible because it can incorporate different measures/approaches in each phase. More

importantly, it is efficient for genome-wide association studies. It is different from tag SNP selection

methods because it is used in a two-stage design, and phenotype information can be incorporated into the

SNP selection problem. The efficiency and power thus can be improved for each specific study, while a

regular two-stage analysis only consists of phase 1 and is a special case of the proposed procedure.
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Extensive experimental studies using simulated and a real data set have been performed to systematically

evaluate the proposed algorithm. In the simulation of a candidate gene study, I investigate the power, the

number of SNPs prompted to stage 2, and the prediction errors of the proposed algorithm, and I compare its

performance with the single-stage analysis and the regular two-stage analysis. The framework has also been

applied to a genome-wide association study of the sporadic amyotrophic lateral sclerosis (ALS) disease

(Schymick et al., 2007). The dataset is one of the first sets of publicly available genome wide SNP data.

The genotypes of 555k SNPs from 276 cases and 271 controls, as well as phenotypes, are downloaded

from Coriell Institute for Medical Research (http://ccr.coriell.org). Because of the small sample size of

the dataset, a special treatment using the re-sampling technique has been adopted. An interesting set of

candidate SNPs has been identified. The rest of the paper is organized as follows. Some notations and

definitions are introduced in Section 2. The details of the algorithm are given in Section 3. Experimental

results are presented in Section 4. I conclude the paper with some remarks about possible future work in

Section 5.

2. PRELIMINARIES

2.1. Notations

I first introduce some notations and definitions that will be used later. Only diallelic SNPs will be

considered. For a locus A, let A1 and A0 denote the two alleles, where A1, A0 2 f0; 1g. A genotype g at a

locus is represented by 2, 1, or 0, where 2 means heterozygous genotypes, and 1 (or 0) means homozygous

genotypes with the same allele 1 (or 0). A haplotype h over m loci is just a binary string with the length m.

The allele at the kth position is denoted as h.k/. The frequencies of alleles at a locus A are denoted as

pA1 and pA0 D 1 � pA1 . The frequency of a two-loci haplotype h D 11 is denoted as p11. Frequencies of

other haplotypes can be defined similarly.

2.2. Haplotype estimation

Allele frequencies can be easily estimated using the maximum likelihood method based on genotype

counts (Weir, 1996). The estimation of haplotype frequencies is a computationally challenging problem

and has been intensively investigated recently. Despite the fact that some progress has been made, the

calculation of haplotype frequencies for large scale genome-wide association studies requires tremendous

computational resources and is not feasible in many cases. The proposed method in this paper will use the

estimated haplotypes whenever available. But one of the advantages of the algorithm is that, if haplotype

information is not available, it only uses haplotype frequencies over two or three loci that can be estimated

easily (Weir, 1996).

2.3. Linkage disequilibrium measures

The linkage disequilibrium (LD) coefficient for two alleles A1 and B1 at two loci A and B is defined

as the difference of the joint haplotype frequency and the product of the two allele frequencies: D D

p11 � pA1 pB1 D p11p00 � p10p01. Two normalized LD coefficients (D0 and r2) are in common use in

practice, where

D0 D

(

D=min.pA1 pB0 ; pA0pB1/ if D > 0

D=min.pA1 pB1 ; pA0pB0/ if D < 0
and r2 D D2=.pA1 pB1pA0 pB0/

2:

Both measures can be used in the proposed algorithm. A detailed description of these two and some other

measures can be found in Devlin and Risch (1995).

2.4. A close look at two-stage designs

When performing genome-wide association studies, not all existing SNPs (e.g., from dbSNP database)

will be used. As a matter of fact, a set of pre-fixed array of SNPs, denoted as tag SNPs, across the genome

is available to researchers from commercial companies (e.g., Affymetrix and Illumina), and it will be used
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FIG. 1. An illustration of a two-stage design for association studies (top) and the simulation strategy detailed in this

paper (bottom).

for any disease association studies in any population. Figure 1 (top) illustrates all the steps in a two-stage

design. The number of tag SNPs on those SNP chips is currently at the level of 300–500k, which is

much smaller than the total number of discovered SNPs in the dbSNP database (about 11 million). The

set of tag SNPs is selected primarily based on knowledge about human variation across the genome from

HapMap data. The rationale of using a set of tag SNPs to represent all variation is based on the fact

that the distributions of alleles at nearby loci are highly correlated and linkage disequilibrium across the

genome observes a block-like structure with low haplotype diversity within each block. So a small subset

of tag SNPs can approximate most common variation and can distinguish most common haplotypes within

each block. A variety of algorithms have been proposed to select an optimal set of tag SNPs, and most of

them (including the commercially available high-density SNP chips) are solely based on available HapMap

data. On the other hand, although the total number of tag SNPs is much smaller than the total number

of known SNPs, these tag SNPs are still not independent. First of all, tag SNPs are primarily selected

based on linkage disequilibrium and a high threshold (e.g., r2 D 0:85) is commonly used. In addition, tag

SNPs are selected based on HapMap data, which consist of a relatively small number of samples from

four populations. The problem of “over-fitting” might occur (i.e., tag SNPs selected from one population

may not be able to represent or predict non-tag SNPs in another population, because of the differences of

allele frequencies in different populations). The predictability of tag SNPs might be even worse in affected

individuals for a particular disease. It has been reported elsewhere (Ahmadi et al., 2005; de Bakker et al.,

2005) that loss of power might occur when using a prefixed set of tag SNPs for association studies in

other populations. To overcome drawbacks of decreasing power using tag SNPs in other populations,

one has to increase the density of tag SNPs. Therefore, many tag SNPs for genome-wide associations

are themselves in high LD. And this has been observed in various studies such as the CGEMS (Cancer

Genetic Markers of Susceptibility) project. For a candidate gene study, researchers can choose their tag

SNPs based on available SNPs in dbSNP database and/or HapMap datasets, functional annotations in the

candidate regions, and sometimes by resequencing the candidate regions. To ensure that statistical power

will not be deteriorated because of the selection of tag SNPs, researchers might choose all available SNPs

or a set of nonredundant SNPs for their studies. Therefore, high LD will also be observed in candidate

gene studies.

3. METHODS

3.1. The framework

The proposed algorithm for SNP selection and prioritization is based on a two-stage design that aims to

reduce genotyping costs and to possibly increase power of an association study by reducing the number

of tests. Both genome-wide and candidate gene studies will be discussed. For a genome-wide association

study, the algorithm mainly focuses on data in stage 1, which are sampled from the population under study

with phenotype information for each individual. This is because the set of m2 tag SNPs (Fig. 1) has been

fixed beforehand, and researchers usually cannot choose tag SNPs by themselves. In a candidate gene
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study, researchers can select their own tag SNPs, and there are many existing tag selection algorithms.

In this study, I take a simple approach and select all nonredundent SNPs as tag SNPs for candidate gene

studies (Section 3.2). Then a fraction of samples (say �%, including both cases and controls) will be

genotyped for all the m2 tag SNPs in stage 1. A much smaller subset of m3 SNPs is then selected from

the m2 SNPs based on correlations of SNPs and the phenotype/disease, as well as correlations among SNP

themselves (Section 3.3). Only a subset of SNPs with low redundancy and high discriminative power will

be kept. The remaining .100 � �/% samples will then be genotyped, but only for the m3 SNPs. The power

analysis will then be performed by combining the samples in the two stages (Section 3.4).

3.2. Tag SNP selection

Genome-wide tag SNP selection has been intensively studied recently, and the set of tag SNPs has

been fixed in commercial SNP chips. Therefore, tag SNP selection is not an issue/option for genome-wide

association studies. For a candidate gene study, researchers can choose their tag SNPs based on all available

SNPs using any selection algorithm. For example, one can use the HapMap data as the reference panel, and

a nonredundant set of m2 SNPs can be selected from all m1 SNPs in the regions. The most conservative

approach is taken here to ensure that the statistical power will not be deteriorated because of the selection

of tag SNPs. The algorithm for this step is simple. When haplotype information is available, one can

directly check whether two SNPs are the same or different across all haplotypes. Only one SNP is kept

from each set of such “equivalent” SNPs. When only genotypes are available, one can use the pairwise

LD measure r2 to remove all redundant SNPs. Because r2 is directly related to the power of Pearson’s �2

test, no information will be lost when removing a SNP if the value of r2 between the SNP and a tag SNP

is 1. A similar approach has been used in de Bakker et al. (2005). The pairwise haplotype frequencies,

which are required in calculating r2, can be efficiently estimated using the maximum likelihood approach

discussed in Subsection 2.2.

3.3. Prioritize and select SNPs in stage 1

The goal of SNP selection in stage 1 is to select a minimum set of SNPs with highest discriminative

power. It can be viewed as the classical problem of variable selection. Therefore, the principle of many

existing variable selection methods can be applied here. However, because the number of variables (i.e.,

the number of SNPs) considered here is extremely large (about half million), most traditional variable

selection approaches are not computationally feasible. This motivates us to develop efficient but effective

heuristics for this problem.

For simplicity, assume that there are n individuals to be sampled with equal number of cases and controls.

Among them, n�% individuals with equal number of cases and controls will be genotyped for all the m2

SNPs (the extension to unequal numbers of cases and controls is straightforward). The selection procedure

based on data in stage 1 consists of three steps with different emphases. In the first step, SNPs are ranked

based on their associations with the disease. A regular two-stage design selects SNPs solely based on this

ranking. But such a strategy is not optimal because of sampling errors and potential strong associations

of selected SNPs among themselves. In the second step, nearby SNPs will form clusters based on their

pairwise correlations, and only one representative from each cluster will be considered for subsequent

analysis. At last, in order to take into considerations joint effects from multiple SNPs and their potential

interactions, the proposed algorithm employs an entropy-based subset selection technique in the third step.

Not only does the algorithm select a much reduced set of SNPs for stage 2, it also provides an order

of SNPs according to their joint discriminative power with respect to the disease. It is very flexible and

can incorporate different algorithms in each step. But to ensure efficiency for genome-wide studies, some

efficient and easy-to-implement algorithms are chosen for each step in this study and will be discussed.

3.3.1. Single SNP ranking. One simple method to assess the association of a single SNP and the

disease under study is Pearson’s �2 test based on a 2 � 2 contingency table generated by the counts of two

alleles that occur in cases and controls. The goal is not to perform statistical tests here, but to provide a

quantitative measure of association to rank SNPs. It is expected that the values might have large variances

due to a small sample size in stage 1. More complicated ranking mechanisms are also possible. For
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example, if samples are haplotyped, haplotype information can be taken into consideration, using feature

selection techniques. Extensions along this direction are currently under investigations.

3.3.2. SNP clustering. It is not wise to take the SNPs with high ranks from the previous step as the

set of SNPs for stage 2. First, highly ranked SNPs themselves might be highly correlated. Therefore,

they are redundant for mapping disease susceptibility loci. Second, SNPs that are close to disease genes

might not have the highest ranks due to a variety of reasons (e.g., sampling errors). To address these two

questions, I propose a simple clustering algorithm that explicitly explores correlations among SNPs. More

specifically, starting from the SNP with the highest rank, all the SNPs that are highly correlated with it

(e.g., if the pairwise LD measure D0 is greater than a predefined threshold) will be grouped into a cluster,

conditional on that they are within a certain physical distance. The cluster will be represented by the SNP

with the highest rank. The process will continue in the decreasing order of SNP ranks until all the SNPs

have been included. At the end, the algorithm returns a set of clusters, each represented by a SNP with

the highest rank within its cluster. The clusters are different from haplotype blocks because it does not

require all SNPs in a cluster being consecutive. This flexibility is necessary given the small sample size

in stage 1 and some inconsistency in haplotype block structures. Further variation can be added to this

basic algorithm. For example, when adding a SNP to a cluster, one may also require that the SNP must be

in high or moderate correlations with all the SNPs that have been selected in the cluster, instead of only

using the correlation with the representative SNP.

3.3.3. Subset selection. The previous two steps mainly focus on the correlation of two SNPs, or the

correlation of one SNP and the disease. It works best if the disease is caused by a single mutation. But

it is well known that, for most complex diseases, multiple DS genes with low individual effects might be

involved, and haplotype effects or gene-gene interactions might play a key role in the development of a

disease. Explicit modeling of gene-gene interactions in genome-wide association studies is in general not

feasible, because it requires an extremely large sample size to obtain some statistical significant results.

On the other hand, it is unwise not to consider the issue when designing association studies. We explicitly

investigate joint contributions to the disease from a subset of representative SNPs obtained in the previous

step using an entropy-based approach. Entropy is a measure of uncertainty of a random variable. The

concept originates in information theory and has been widely used in many applications. Hampe et al.

(2003) have proposed an entropy-based SNP selection algorithm. In their paper, the usefulness of a SNP

is defined with respect to a disease locus. Because both the location and the allele status of the disease

locus are unknown, the authors defined a “mapping utility” function as an approximation. In this paper,

the usefulness of a SNP is defined directly based on its relationship with the disease status. Formally, for

a locus A, its entropy H.A/ is defined as:

H.A/ D �pA0 log.pA0 / � pA1 log.pA1 /:

Let Y denote the disease status, the joint entropy H.Y; A/ of Y and A is defined analogously based on

their joint distribution. The conditional entropy H.Y jA/ of Y given A is defined as:

H.Y jA/ D H.Y; A/ � H.A/:

It represents the uncertainty of Y given the fact that A is known. So one can measure how much information

A contributing to Y using the difference of Y’s entropy and the conditional entropy of Y given A:

I.Y jA/ D H.Y / � H.Y jA/:

In general, suppose a set of markers A1; A2; : : : ; Ai has been selected, the next marker B to be included

should be the one that maximizes the information gain about Y, i.e., the one that maximizes

I.Y jB; A1; A2; : : : ; Ai / � I.Y jA1; A2; : : : ; Ai/:

The principle used here is similar to the one used in Hampe et al. (2003). But with the disease status

instead of the disease locus, the computation of the quantities is now feasible when haplotype frequencies

are known. When haplotype frequencies across a larger number of markers are not available, we propose
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two strategies that use pairwise haplotypes or haplotypes of three loci instead. The first strategy uses

pairwise haplotypes of B and an Aj . The information gain about Y by further including a marker B

critically depends on the association of B with other markers that have already been included (A markers).

If B is highly associated with a marker Aj , it will contribute small amount information to Y since Aj has

already been included. Formally, one can choose a marker B that maximizes the minimum information

gain by utilizing all pairwise haplotypes (B and Aj ):

max
B

.min
j

.I.Y jB; Aj / � I.Y jAj ///: (1)

The second strategy is also to consider the association of a marker B with those markers that have already

been included. But this time, instead of examining all pairwise relationships, we propose to simultaneously

examine the relationship of B with the two markers Al and Ar that are adjacent to B. In general, these

two flanking markers are likely to contain more information about B. If B is not represented by the two

markers, including B may provide much more information on the disease. So one should choose a marker

B that maximizes the information gain by utilizing haplotypes of three loci:

max
B

.I.Y jAl ; B; Ar/ � I.Y jAl ; Ar//:

For both strategies, a global threshold � can be specified. Only markers with scores larger than � will

be included. In some cases, it is hard to define a threshold beforehand. As an alternative, an ad hoc stop

criterion is adopted. Let �i denote the quantity calculated using above formula when there are i markers

being selected. We suggest that the procedure should stop when �i is smaller than a fraction of �1. Such

a fraction can be chosen based on the distribution of �i s. Furthermore, this stop criterion can be adjusted

by the total number of markers already being selected. For example, the selection should stop at the first

i such that

�i = log.i/ < �1=c; (2)

where c � 1 is a constant. Essentially, one wants to achieve a balance between the model complexity

(the number of variables/SNPs) and the prediction accuracy on training data (data in stage 1), so that the

selected variables/SNPs will have a great generalization power on test data (data in stage 2). For both

strategies, the selection of markers is in the decreasing order of their informativeness with respect to the

disease. Therefore, this approach provides a way of prioritizing SNPs to be typed in stage 2. The above

discussion assumes the SNPs are linked so their haplotypes are used in the calculation. It is designed so

that if there are haplotype effects on the disease, it will be captured by considering the joint information

from different SNPs. For SNPs/genes on different chromosomes, one can use genotype frequencies instead

of haplotype frequencies in the above calculation, so that gene-gene interactions might be captured.

3.4. Power analysis in stage 2

To compare the power of the proposed method, the method using the regular two-stage design, and the

method using one-stage design, many statistical tests can be utilized. For simplicity, the Pearson’s �2 test

is used to compare the difference of allele frequencies among cases and controls for each SNP. Although

it is not ideal for the proposed method to use a single locus-based method, it is one of the few feasible

for genome-wide association studies. As mentioned earlier, three strategies (i.e., replication-based, joint,

and combined) for two-stage analysis have been proposed in the literature, and any of them can be used

here. It has been shown that both joint analysis and combined analysis have higher power than replication-

based analysis. Combined analysis has been chosen in this study because it is more general than the joint

analysis by allowing heterogeneity among stages. However, unlike the regular two-stage design, the power

of the proposed method cannot be obtained directly by analytic methods because the selection method

proposed here is not a pure test-based approach. Instead, we perform power comparisons using simulation

studies. Four different approaches have been considered, namely, single stage analysis (SS), regular two-

stage analysis (TS), two-stage with clustering (TS-C), and two-stage with clustering and subset selection

(TS-CS). For the three approaches that consist of two stages, the combined analysis adds the two statistics

from the two stages together. Because only SNPs with large statistics in stage 1 are evaluated using the



248 LI

combined statistics, the combined statistics are biased even under the null assumption of no association.

One needs to derive significance levels for the new statistic. Suppose a liberal significance level ˛1 with

the critical value c1 is used in stage 1. Let X1 denote the �2 test statistic based on samples in stage 1.

Only markers with X1 > c1 will be further considered for all three methods (TS, TS-C, and TS-CS).

TS-C and TS-CS will further limit the number of SNPs to be genotyped by considering their LD and their

discriminative power. For the set of markers to be genotyped in stage 2, let X2 denote the test statistic

using samples from stage 2. Under the null hypothesis of no association, X1 and X2 are independent and

follow �2 distribution with 1 degree of freedom. For the combined analysis, the statistic X is equal to

the summation of X1 and X2. Notice that X and X1 are not independent even under the null hypothesis.

Let f .x/ and F.x/ denote the probability density function and the cumulative distribution function of �2

distribution with 1 degree of freedom, the significance level of X with a value c should be defined as the

conditional probability of X > c given the fact of X1 > c1. By some simple algebraic manipulations, it can

be shown that the significance level can be calculated based on the following formula through numerical

methods (Press et al., 1992):

Prob.X > cjX1 > c1/ D

�
Z c

c1

.1 � F.c � x1//f .x1/dx1 C .1 � F.c//

�

=˛1:

For a fixed overall significance level ˛, if the above value is smaller than ˛=ni , where ni (i D 1, 2, 3) is the

number of SNPs selected by TS, TS-C, and TS-CS respectively, a positive finding is declared. Basically,

Bonferroni correction is applied here to obtain an overall p-value. Bonferroni correction is less problematic

for TS-C and TS-CS because SNPs with high LD have been grouped into clusters. Another approach to

obtain an empirical p-value is via Monte Carlo simulation. For case-control studies, a permutation test can

be easily performed by shuffling the phenotypes among all the individuals to obtain an empirical p-value.

By randomly shuffling the phenotype values (disease status), it is expected that associations between the

disease locus and the trait will be broken. The association mapping analysis is performed on each shuffled

data set and the values of the resulting statistics are recorded. The process is repeated for a sufficiently

large number of times to mimic the distribution of the original data. The proportion of the data sets whose

statistic values are equal to or more extreme than the statistic produced by the original data set is regarded

as the empirical p-value. But this usually can only be done for candidate gene studies, but not genome-wide

studies because it is time consuming.

4. RESULTS

The above algorithm has been implemented using CCC and has been tested under two different sce-

narios: candidate gene studies and genome-wide association studies. First, a simulation study is performed

in the context of candidate gene studies. The algorithm is then applied to a publicly available genome

wide association data set for sporadic ALS (Schymick et al., 2007). For a simulation study, one can either

generate genotypes based on population genetics models, or by perturbing real data with some noise. Due

to simplified assumptions, simulations based on population genetics models may not be able to capture the

true property of LD in human populations. Therefore, the second approach is taken in this study, and large

numbers of case and control samples are generated based on data from the HapMap ENCODE project

using a tool developed recently by our group (Li and Chen, 2008).

4.1. Generating empirical data sets based on HapMap data

The ENCODE project has selected ten 500-kb regions to discover all SNPs within those regions

by resequencing. SNP genotypes were obtained for all the 269 HapMap samples from four different

populations. We randomly take one region (ENr112 on chromosome 2p16.3) from one population (30 trios

with northern and western European ancestry) to generate our empirical data. The number of SNPs in

region ENr112 is 1157. We start with the phased genotypes (120 haplotypes of parents) from HapMap

website. We first partition all the SNPs into sets of equivalent classes, where a SNP in a class can

be totally determined/predicted by any other SNPs in the class. In other words, we take the data from

HapMap project as our reference panel, and the set of nonredundant SNPs is kept and typed in stage 1.
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Four hundred forty-one SNPs are retained after this step. To generate case-control samples, we consider

four different disease models (dominant, recessive, multiplicative, and additive) with a small genotype

relative risk � (1.2–1.5) and a single high-risk variant at the disease locus. The population prevalence � is

fixed to be 0.1 for a common disease. The disease allele frequency (DAF) f varies from 0.1 to 0.5. The

penetrance (the probability of an individual being affected given its genotype) can be calculated based on

disease models, prevalence, genotype relative risk and allele frequencies under the assumption of Hardy-

Weinberger equilibrium. For example, for the dominant model, assuming the penetrance for homozygous

wild genotype is �, we have:

� D �.1 � f /2 C 2��.1 � f /f C ��f 2:

For each disease allele frequency, we select one locus with the minor allele frequency approximately equal

to the DAF. We extend the approach used by Durrant et al. (2004) in generating the genotypes at the disease

locus and other loci in the region. To generate a case, the distribution of all three possible genotypes at

the disease locus t can be obtained based on genotype frequencies and penetrances using Bayes theorem:

P.gi jcase/ D .P.gi /P.casejgi //=

0

@

X

gj

.P.gj /P.casejgj //

1

A :

To generate an empirical haplotype pair .h1; h2/ across the region, we first randomly select two haplotypes

(h3; h4) from the 120 haplotypes with the required genotype at the disease locus t—that is, .h1.t/; h2.t// D

.h3.t/; h4.t//. In their original paper (Durrant et al., 2004), the haplotype h1 is given the same alleles as h3

from locus t � l to t C l , where l is a parameter that can be specified by users. To extend h1 to the right for

one more locus, it randomly selects another haplotype h5 that has the same alleles as h1 from locus t �l C1

to locus t C l , and let h1.t C l C 1/ D h5.t C l C 1/. By iterating the above process, one can extend h1 to

the right and to the left. We found that LD patterns from samples generated this way greatly depend on the

parameter l (data not shown). But it is difficult for users to select a proper l . We have extended the above

method by introducing two parameters, lmin and lmax. The overlapped length for both the initial assignment

and the extension of h1 will be stochastically determined by two values ll and lr (lmin <D ll ; lr <D lmax),

one for each direction. The values of ll and lr depend upon the strength of local LD. By using two

parameters, our method takes both long-range LD and short-range LD into considerations. A detailed

description of the procedure can be found on our website at www.eecs.case.edu/�jxl175/gs.html. Alleles

of h2 can also be constructed similarly. The required number of cases can be generated by iterating the

above process. Controls can also be generated similarly. The disease locus will be removed before further

analysis. Figure 1 (bottom) illustrates the procedures in the experiment. By taking such an approach, we

can generate a large number of samples based on the 120 haplotypes. These samples are not exact copies

of human data, so large scale simulation studies can be performed. Also, the samples have similar local

LD patterns as those in real human data (data not shown). The results obtained from these synthetic data

are very likely to hold in real data.

4.2. Selection results

We compared the power, the number of SNPs selected for stage 2, and the distance from predicted

positions to the true disease SNP position for the four strategies (SS, TS, TS-C, and TS-CS) over a

wide range of parameters, including four different disease models (dominant, recessive, multiplicative, and

additive), three different levels of genotype relative risks (� D 1:2, 1.35, 1.5), and three different disease

allele frequencies (f D 0:1, 0.3, 0.5). With the correction of bias introduced from selection in stage 1

(Subsection 3.4), all three two-stage methods have correct type one errors (data not shown). We have tried

different sample sizes (total number of individuals n D 500, 1000, 2000, with equal numbers of cases

and controls), and selected a sample size of 1000 to avoid the situation that all methods have very low or

very high power. We have also tried different split fractions (30%, 40%, 50%) of samples genotyped in

stage 1, and no major differences have been observed. Therefore, we fixed the split fraction as 50%. The

LD threshold for the clustering step is fixed as D0 D 0:8. Formula (1) is used in the subset selection step,

and the procedure stops when the inequity (2) (with c D 1) holds for the first time. For each parameter
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combination, 100 replicates were generated. Results of the four methods were recorded. As shown in

Figure 2, the power of each method greatly depends on the parameters such as disease models, genotype

relative risks and allele frequencies. For each fixed set of parameter, the original two-stage design (TS)

always has the lowest power. The two-stage design with clustering and subset selection (TS-CS) always

has the highest power. The two-stage design with clustering only (TS-C) and the single stage design (SS)

have similar performance. This means that with further processing by clustering and/or subset selection, the

proposed approach achieves higher power comparing with the original two-stage design (TS). In addition, a

noticeable result from the simulation is that TS-CS, with much reduced genotyping costs, always performs

better than SS. The increase in power is due to smaller number of SNPs examined by TS-C and TS-CS

in their second stage. In terms of the total number of SNPs genotyped, SS needs to consider all the 440

SNPs for all the 1000 individuals. The other three methods need to genotype the 440 SNPs for only 500

individuals in their first stage. In stage 2, TS needs to genotype about 50 SNPs on average (with a liberal

FIG. 2. Power analysis of the four approaches (SS, single stage analysis; TS, regular two-stage analysis; TS-C, two-

stage analysis with clustering; TS-CS, two-stage analysis with clustering and subset selection) across four different

disease models (rows) with different disease allele frequencies (columns). The sample size is 1000 with equal number

of cases and controls. Assume half of them are genotyped in stage 1 for the three 2-stage strategies.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0090&iName=master.img-001.jpg&w=434&h=429
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FIG. 3. The average number of single nucleotide polymorphisms (SNPs) examined in stage 2 comparing with the

total number of SNPs (top), and the average distance from predicted locus to the disease locus (bottom) for different

disease allele frequencies.

significance level of 0.1 in stage 1). By clustering nearby SNPs that are in high LD and subset selection,

one can further reduce genotyping costs in stage 2. For example, TS-C needs to genotype about 15 SNPs,

and TS-CS only needs about seven SNPs across the whole region of 500 kb (Fig. 3, up row). Even with

a much reduced number of SNPs, the prediction errors (the distance from the most significant SNP to the

true disease SNP) are almost the same for all four methods (Fig. 3, bottom row), which demonstrates that

the proposed approach can effectively remove irrelevant SNPs.

4.3. Genome wide association of amyotrophic lateral sclerosis (ALS)

ALS is a fatal neurological disease with unknown causes. Recently, a genome-wide association study has

been carried out with the aim to identify genetic variants that are associated with an increased or decreased

risk for developing sporadic ALS (Schymick et al., 2007). As the first stage, the study genotyped 555k

SNPs using the Illumina Infinium II SNP chip, but only for a very small sample size (276 patients and

271 controls). The study identified a set of candidate SNPs that are associated with the disease, but, not

surprisingly, none of them are significant after Bonferroni correction. This is not an ideal test data set for

the proposed algorithm because of its small sample size. Nevertheless, the data represent one of the first

sets of publicly available genome wide association data, and I decide to test the new proposed framework

using it.

To determine proper parameter values for clustering (LD threshold) and subset selection (�) for this

genome-wide association study, preliminary tests were first performed on one chromosome. Chromosome

10 was chosen because it contains the strongest signal based on allelic association analysis in the original

paper by Schymick et al. (2007). The total length of chromosome 10 is 135 Mbps and the total number

of SNPs is 28,818. The average interval distance between adjacent markers is about 4.7 kbps. Because of

the small sample size of the dataset, multiple (100) random runs were performed to selection a subset of

samples in stage 1. Results averaging across all random runs were used in determining proper parameter

values. For each run of the two-stage analysis, an individual from all 276 patients and 271 controls is

selected as a sample in stage 1 with a probability of 0.5. The average sizes of clusters were obtained

using both D0 and r2 ranging from 0.9 to 0.1. Results showed that the average number of SNPs within

each cluster is always smaller than 2 (Fig. 4A), comparing with the average size of 3 in the candidate

gene study with D0 D 0:8. This difference is mainly due to the difference of SNP densities of the two

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0090&iName=master.img-002.jpg&w=434&h=230
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FIG. 4. Experimental results on chromosome 10. (A) The average size of clusters for different levels of linkage

disequilibrium (LD) threshold using D0 and r2. (B) The difference of the maximum of minimum information gains

by including additional single nucleotide polymorphisms (SNPs) and the entropy of the first SNP (�i � �1) from one

random run. (C) The number of times of a SNP being prompted to stage 2 out of 1000 runs from the original data

(diamond) and permuted data (square). The x-axis represents the physical distance. (D) The � log.p/ of the allelic

association test obtained from the original paper. The x-axis represents the marker index.

studies. Because the average size of clusters does not change much with different threshold of D0 and

r2, and some clusters actually only consist of a single SNP, the same threshold (D0 D 0:8) was chosen

for the genome-wide study. To determine a proper threshold value for � , I examined the distribution of

the maximum of minimum information gains (�i , calculated based on Equation (1)) and compared their

values to �1. Figure 4B provides a typical case in illustrating how the values (�i � �1; i � 2) change

when including more markers. A clear exponential decay was observed and the trend held consistently for

different runs examined (data not shown). Based on this observation, the global threshold � was set to be

�1 in this study.

Because of the small sample size of the current data set, it is unlikely to obtain globally significant

SNPs for any method as illustrated by the original paper. Furthermore, the ranks of SNPs based on one

random run are expected to have large variances. Therefore, I took a different approach in evaluating the

importance of each SNP using this dataset. The approach resembles the principle of boosting methods in

determining the importance of each variable in a classification analysis. More specifically, for each run, the

set of SNPs selected in stage 1, as well as their ranks, are recorded. Such experiments will be performed

for a large number of times (here N D 1000), and the number of occurrences that a SNP being prompted

to stage 2, along with its average rank will be used to evaluate the significance of the SNP. As usual, such

an analysis was first performed on chromosome 10. To assess the soundness of the approach, I compared

the results obtained using this approach and those obtained by other two approaches. First, a permutation

test with 1000 runs was performed to examine the distribution of the number of a SNP being prompted to

stage 2 totally by random. The results from the permutation and the results from the real data are shown in

Figure 4C. None of the SNPs in the permutation test have occurrences greater than 100 times. There are

93 SNPs from the real dataset with occurrences great than 100. There are probably many false positives

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0090&iName=master.img-003.jpg&w=432&h=283
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TABLE 1. TOP RANKED SNPS FROM CHROMOSOME 10 AND THEIR FUNCTIONAL ANNOTATIONS

Chromosome SNP ID Location

No. of

occurrences

Average

rank Gene Function

10 rs4363506 129164492 598 20.6 Intergenic —

10 rs7902011 26868894 420 1.9381 APBB1IP Amyloid beta (A4)

precursor protein-binding,

family B, member 1

interacting protein

10 rs7907643 9869811 372 14.4651 Intergenic —

10 rs567700 131313115 318 24.0849 MGMT O-6-methylguanine-DNA

methyltransferase

10 rs10508935 52536508 317 5.97476 PRKG1 Protein kinase,

cGMP-dependent, type I

10 rs7092269 72152824 316 45.4652 ADAMTS14 ADAM metallopeptidase

with thrombospondin

type 1 motif, 14

10 rs1857060 93436051 310 21.2581 Intergenic —

10 rs1906470 62675876 309 30.89 Intergenic —

SNPs, single nucleotide polymorphisms.

among the set of SNPs, but that can be tolerated because they will be further assessed in stage 2. Table 1

summarizes all the SNPs with the number of occurrences greater than 300 (out of 1000 runs). It is very

unlikely that all these top candidates returned by the method are totally due to random. I also compared

the results with results using the single SNP-based allelic association test (Fig. 4D) obtained directly from

Schymick et al. (2007). The two methods returned the same SNP (rs4363506) as their top candidate. This

further shows that the number of occurrences of a SNP from a large number of runs of the algorithm is

indeed a good indicator of its significance. The allelic association test reported only two additional SNPs

(rs10765118 and rs10830099) on chromosome 10 with a p-value smaller than 10�4. All three SNPs are in

the same genomic region within a 10-kb interval on 10q26.13 (Table 1 in Schymick et al., 2007). The other

two SNPs were not in the top candidates returned by our approach (Table 1). Further examinations reveal

that they are not in the cluster represented by SNP rs4363506 neither, under the current parameter setting

of D0 D 0:8. It seems that they are not significant any more after rs4363506 has been included. The second

SNP (rs7902011) on the list of Table 1 is within an intron region of the gene APBB1IP. According to

its Gene Ontology annotation, this gene involves in the neuropeptide signalling pathway. The minor allele

frequencies at this SNP are 0.291 and 0.389 in cases and controls, respectively. But this SNP has a large

missing rate (81 normal individuals and 49 controls have missing genotypes). Additional investigation is

needed for this and other candidate SNPs.

A similar analysis was carried out for each of the 22 autosomes individually. Sex chromosomes were not

included because of a confusing format in the original data.1 The autosomes were analyzed individually

because a joint analysis including all chromosomes is not feasible due to high computational costs. Figure 5

illustrates the combined results from all autosomes. All SNPs with the number of occurrences greater than

one were included and were ranked according to their occurrences. Those ordered SNPs were then aligned

in the x-axis with their occurrences on the y-axis in Figure 5A. A SNP on chromosome 3 (rs11915402)

has the maximum number of occurrences (993 out of 1000) with the average rank of 2.57 within SNPs

on chromosome 3. It is within an intron region of a predicted gene with no functional annotations. The

number of occurrences decays rather rapidly. There are only about 500 SNPs with occurrences greater

than 200. Figure 5B shows the histogram of SNPs according to the number of their occurrences, and it

follows an exponential decay in general. However, the number of SNPs with extreme values (the number

of occurrences greater than 800) seems enriched. This can be clearly seen in Figure 5C, in which a

linear regression has been used in fitting the number of SNPs (after a logarithmic transformation) with

1A query has been sent to the data provider, but no explanation was given.
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FIG. 5. Distribution of occurrences across all autosomes. (A) Single nucleotide polymorphisms (SNPs) are ordered

according to their occurrences. (B) SNP histogram based on the number of occurrences. The first two bins are truncated.

(C) Linear regression analysis of the number of SNPs (y-axis, in a logarithmic scale) and the number of occurrences

(x-axis). SNPs are grouped into 10 equally sized bins according to their occurrences. Regression is performed based

on the first eight bins (with occurrences from 1 to 800). The number of SNPs with occurrences greater than 800 clearly

shows a reversing trend.

TABLE 2. TOP RANKED SNPS ACROSS THE GENOME AND THEIR FUNCTIONAL ANNOTATIONS

Chromosome SNP ID Location

No. of

occurrences

Average

rank Gene Function

3 rs11915402� 58957114 993 2.56898 FLJ42117 Hypothetical protein

18 rs2941394 64428505 992 1.08972 Intergenic —

22 rs140054� 45101063 983 2.66328 GTSE1 G-2 and S-phase

expressed 1; cell cycle;

controls DNA

damage-induced apoptosis

by affecting p53 function

17 rs2567494� 68308488 962 1.41476 SLC39A11 Solute carrier family 39

(metal ion transporter),

member 11

5 rs6596428� 137669928 931 1.2782 CDC25C Cell division cycle 25

homolog C (S. pombe),

regulation of cell division;

suppress p53-induced

growth arrest

7 rs6957895 117715999 920 6.09457 Intergenic —

15 rs4924608 40120075 917 4.45474 Intergenic —

6 rs9359255 77976705 895 4.51397 Intergenic —

7 rs3800818‘ 66058577 880 1.26477 C7orf42 Hypothetical protein

11 rs10501396� 64642020 874 4.49428 ZNHIT2 Zinc finger, HIT type 2,

metal/zinc ion binding

1 rs2473323� 22261913 862 10.2749 CDC42 Cell division cycle 42 (GTP

binding protein, 25 kDa)

The functional role of each SNP is also labeled (�for intron, �for nonsynonymous SNPs, �for 5
0 UTR, ‘for 3

0 UTR).

SNPs, single nucleotide polymorphisms; UTR, untranslated region.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2007.0090&iName=master.img-008.jpg&w=435&h=137
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occurrences smaller than 800. This was done by first separating SNPs into 10 equally sized bins according

to the numbers of their occurrences (possibly from 1 to 1000). The R2 of the linear regression is 0.9206.

The SNPs with occurrences greater than 800 clearly do not follow the trend. There are total 11 such

SNPs, and their functional annotations are given in Table 2. Incidently, in the final list, there are three

genes (GTSE1, CDC25C, CDC42) involving cell cycles and two genes (SLC39A11, ZNHIT2) involving

ion transporting/binding. It is well known that ALS was caused by the gradual degeneration and death

of motor neurons. It has also been shown that familial ALS is linked to SOD1 gene, which encodes

proteins that bind copper and zinc ions. There are two predicted genes (FLJ42117 and C7orf42) with no

functional annotations, and the remaining SNPs are located in intergenic regions. Complete results across

the genome are available from our website (www.eecs.case.edu/�jxl175/PS_SNP.html). Although definite

links between these SNPs and ALS cannot be established here because of the small sample size, the set

of top ranked SNPs, together with the set of candidate SNPs identified by single-SNP based approaches

provide a promising set of SNPs for further association studies or functional analysis of ALS.

5. DISCUSSION

For genome-wide association studies or candidate gene studies with dense SNP arrays, SNPs within a

short distance are not independent from each other. In this paper, I have presented a novel framework for

prioritizing and selecting SNPs for association analysis with two-stage designs. The framework is unique

in the sense that it takes into consideration correlations among SNPs, as well as correlations between

SNPs and the disease. Simulation results from a candidate gene study have shown that by selecting a

compact and discriminative subset of SNPs for stage 2, the framework indeed achieves higher power

than a regular two-stage design. It also performs better than the single-stage design, with much reduced

genotyping costs. I have also applied the method using a boosting strategy to a real data set generated

by a genome-wide association study of ALS and identified an interesting candidate set of SNPs. Like

any results from genome-wide association studies, this set of SNPs also needs to be validated by further

replication studies.

Two-stage designs have been mostly studied in the context of optimizing genotyping costs with desired

power, given a set of parameters such as allele frequencies and disease effects (Satagopan and Elston, 2003;

Thomas et al., 2004; Wang et al., 2006). However, prior information about those parameters are usually

not available for many complex diseases. Actually, not requiring prior information about diseases has been

viewed as one of the advantages of genome-wide association studies. In practice, when a two-stage or

multi-stage strategy is being adopted in genome-wide association studies, the ability that a researcher can

make choices on options (such as sample split fractions among stages or number of markers to be prompted

to later stages) is usually limited by many other factors such as budgets and the availability of cases and/or

controls. Therefore, in many cases, it is unrealistic for researchers to have an optimal design beforehand,

and this is not the focus of the current study. Instead, our goal is to compare the performance of the new

strategy with the performance of the original two-stage analysis. The results indeed show that the new

strategy consistently performs much better than the original two-stage analysis, regardless of disease allele

frequencies and gene effects, for instance.

The model in generating the simulated data in this study is under overly simplified assumptions. This

problem was compensated by a study of real data set. However, because of the small sample size of

the ALS dataset, it is hard to draw a conclusion based on the analysis. This problem will be alleviated

by emerging genome-wide association data sets concerning many other complex diseases (e.g., diabetes,

breast cancer, prostate cancer), as well as data for ALS from additional studies. Some of the projects such

as CGEMS have promised to provide raw data, including SNP genotypes and clinical phenotypes, to the

community. Such datasets will be invaluable resources for the whole community, not only for the study of

the diseases themselves, but also for the advance of methodology developments.

The proposed framework is flexible and can incorporate different algorithms or measures in each step.

An important consideration in implementation is efficiency for genome-wide association studies. I have

implemented some simple algorithms/measures in each step in this study so that the final boosting and

permutation analysis can be performed. Still, the algorithm has to run on each chromosome individually. The

experiments were performed using a cluster with 42 nodes provided by the high-performance computing
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service at Case Western Reserve University. Each node either has a dual 3.2-GHz Pentium-4 Xeon

processors with 4 gigabytes of memory, or has two Intel Pentium-4 Xeon EM64T processors running

at 3.8 GHz, 4 Gb of main memory. It took 2–3 days to analyze one chromosome on one node (the actual

time depends on the number of markers on each chromosome).

Although the problem has been formulated to identify a minimum subset of SNPs with low redundancy

and maximum discriminative power from data in stage 1, redundancy may not be useless in real data

analysis. For example, the (most) significant SNPs are not necessarily causal SNPs themselves, but may

be in LD with them. Including more relevant SNPs might be helpful in identifying functional elements

that are involved in the development of diseases. The framework can be easily modified to include all

SNPs in clusters that have been prompted to stage 2. Additional SNPs can be selected based on HapMap

information when needed.

As an unbiased scan, genome-wide association studies have the potential to identify genetic risks with

moderate effects for complex diseases. A multi-stage design has been shown effective and has been

commonly used in practice. Our experiments (data not shown) indicate that combined analysis using

statistics from both stages is more powerful than replication-based analysis, which is consistent with a

previous report using a different statistic (Skol et al., 2006). Therefore, such a strategy should be adopted

whenever possible. Results from genome-wide association studies have to be interpreted with caution.

Independent studies usually are needed for validation. Even after SNP associations have been confirmed,

it is still not easy to fully understand the functionality of those SNPs if the mutations do not directly

change their protein sequences. A comprehensive study that incorporates data from all different sources

(such as gene/protein expressions, interactions, regulatory information) should be undertaken to provide

new insights about functional roles of those genomic elements. Experiments then need to be performed to

test biological hypotheses before diagnoses or treatments can be possible.
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