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Two grand challenges in the postgenomic era are to develop a detailed understanding

of heritable variation in the human genome, and to develop robust strategies for iden-
tifying the genetic contribution to diseases and drug responses. Haplotypes of single
nucleotide polymorphisms (SNPs) have been suggested as an effective representation of
human variation, and various haplotype-based association mapping methods for com-
plex traits have been proposed in the literature. However, humans are diploid and, in
practice, genotype data instead of haplotype data are collected directly. Therefore, effi-
cient and accurate computational methods for haplotype reconstruction are needed and
have recently been investigated intensively, especially for tightly linked markers such as
SNPs. This paper reviews statistical and combinatorial haplotyping algorithms using
pedigree data, unrelated individuals, or pooled samples.
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1. Introduction

With the completion of the Human Genome Project,1,2 an almost complete human
genomic DNA sequence has become available, which is essential to understanding
the functions and characteristics of human genetic material. An important next
step in human genomics is to determine the genetic variation among humans as
well as the correlation between genetic variation and phenotypic variation such
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as disease status, quantitative traits, etc. To achieve this goal, an international
collaboration — the International HapMap Project3 — was launched in October
2002. The main objective of the HapMap Project is to identify the haplotype struc-
ture of humans and common haplotypes among populations. However, the human
genome is a diploid and, in practice, haplotype data are not collected directly, espe-
cially in large-scale sequencing projects (mainly due to cost considerations); instead,
genotype data are collected routinely in large sequencing projects. Hence, efficient
and accurate computational methods and computer programs for the inference of
haplotypes from genotypes are highly needed.

The existing computational methods for haplotyping fit into two broad cat-
egories: statistical methods and combinatorial (or rule-based) methods. Both
methodologies can be applied to pedigree data, population data, or pooled sam-
ples. An earlier review paper4 discussed haplotype inference on pedigree data, but
the methods mentioned did not directly address the problem for tightly linked
markers (i.e. single nucleotide polymorphisms or SNPs). Many developments have
been made since then. There have been a few review papers on haplotype inference
in recent years,5–7 but all of them focus mainly on combinatorial formulations and
solutionsa; two of them, Gusfield6 and Halldórsson et al.,7 deal only with unre-
lated population data. This paper will review both statistical and combinatorial
algorithms for three different types of data: pedigree data, population data, and
pooled samples. It is organized as follows. A biological background of the problem
will first be introduced in Sec. 1. Haplotype inference algorithms for three different
types of input data will be discussed in three separate sections. A brief summary of
genomic applications using haplotype information and possible future directions on
haplotype inference will be presented in Sec. 5. Some commonly used haplotyping
programs on the Internet will be listed at the end.

1.1. Genetic background

The genome of an organism consists of chromosomes, which are double-stranded
DNAs. Locations on a chromosome can be identified using markers, which are small
segments of DNA with some specific features (or a single nucleotide for SNP). The
position of a marker on the chromosome is called a marker locus, and a marker
state is called an allele. A set of markers and their positions define a genetic map
of chromosomes.9 There are many types of markers; the two most commonly used
markers are microsatellite markers and SNP markers. Different sets of markers have
different properties, such as the total number of different allelic states at one locus,
frequency of each allele, distance between two adjacent loci, etc. A microsatellite
marker usually has several different alleles at a locus (called multi-allelic); while
an SNP marker can be treated as biallelic, which has two alternative states. There

aIt was pointed out by a reviewer that a recent published survey8 has discussed haplotype assembly
and inference from both combinatorial and statistical points of view.
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are millions of SNPs, but only hundreds of microsatellite markers, so the average
distance between two SNPs is much smaller than the average distance between
two microsatellite marker loci. By tightly linked markers, we mainly refer to SNPs.
With advances in genotyping techniques, SNP markers are increasingly common in
gene fine mapping and whole-genome association studies.

In diploid organisms, chromosomes come in pairs. The status of two alleles at
a particular marker locus of a pair of chromosomes is called a marker genotype.
The genotype information of a locus is denoted using a set (a, b), where a and b are
integers representing allele identifiers (IDs). For example, for biallelic markers like
SNPs, a, b ∈ {1, 2}. If the two alleles are the same, the genotype is homozygous;
otherwise, it is heterozygous. A haplotype consists of all alleles, one from each locus,
that are on the same chromosome. Figure 1 illustrates the above concepts.

The Mendelian law of inheritance states that the genotype of a child must
come from the genotypes of its parents at each marker locus. In other words, the
two alleles at each locus of a child have different origins: one is from the father
(paternal allele), and the other from the mother (maternal allele). Such information
is also called the phase of the two alleles, which cannot be obtained directly from
genotypes. Usually, for a tightly linked region, a child inherits a complete haplotype
from each parent. However, recombination may occur, where the two haplotypes
of a parent get shuffled due to a crossover of chromosomes and one of the shuffled
copies is passed on to the child; such an event is called a recombination event,
and its result is called a recombinant. Figure 2 illustrates an example in which the
paternal haplotype of member 3 is the result of a recombinant.

Mathematically, the genotypes of an individual for a given region with m loci
can be represented by an m-dimensional vector g, where each of its elements is a
pair of alleles. A haplotype is simply a vector of alleles. The genotype vector is
actually composed of a maternal haplotype (hm) and a paternal haplotype (hp),
i.e. g = (hm, hp); however, such information is lost when obtaining an individual’s
genotypes due to the limitation of the current genotyping techniques. The goal of
haplotype inference is to reconstruct a haplotype pair based on constraints imposed
by genotypes of family members or some mathematical models. It is easy to see that,
without further constraints, an individual with k heterozygous loci will have 2(k−1)

2 1
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2 2

1 2 Locus
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Paternal Maternal
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Fig. 1. The structure of a pair of chromosomes from a mathematical point of view.
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Fig. 2. An example of a recombination event. A family with two parents (members 1 and 2) and
two children (members 3 and 4) is represented by a pedigree graph. The data consist of two loci,
with the genotype/haplotype information listed below each member. The notation a|b means that
the phase information at the locus has been resolved, and we know that allele a is from the father
and allele b is from the mother.

different haplotype pairs which are consistent with its genotypes. For example, for
g = 〈(1, 2), (1, 2)〉, both haplotype pair h1 = 〈1, 1〉, h2 = 〈2, 2〉 and haplotype
pair h1 = 〈1, 2〉, h2 = 〈2, 1〉 are consistent with g. For a pair of haplotypes h1, h2

consistent with a genotype g, we write g = h1 ⊕ h2.

2. Haplotype Inference from Pedigree Data

A pedigree is an extended family where individuals are related by a parenthood
relation. A pedigree can be naturally modeled using a directed acyclic graph, with
nodes representing individuals and edges representing parent–child relationships.
In addition, the genotype of each member in a pedigree is given with possibly some
missing alleles. It is generally assumed that pedigree data consist of no mutations,
thus the genotypes are consistent with the Mendelian law of inheritance; this is
realistic in practice, given the moderate sizes of most available human pedigrees.
With genotype information from parents, the phase of a child at a particular locus
may be determined in many cases, but there are other cases where the phase of
a child cannot be determined (e.g. when both parents and a child have the same
heterozygous genotypes). Missing data further complicate the situation and increase
the total freedom in a pedigree.

2.1. Maximum likelihood approach

The maximum likelihood (ML) principle can be naturally applied here. Given a
pedigree with genotype information for each member, with possibly missing data,
the goal of the ML approach is to identify the most likely haplotype pair for each
individual. For each haplotype assignment of a pedigree, the calculation of the prob-
ability involves two terms: the first term is the founder probability, and the sec-
ond one is the transmission probability. More specifically, let H denote a consistent
haplotype assignment of the pedigree. For individual i in the pedigree, let (ihm, ihp)
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denote its haplotype pair. Then,

Pr(H) =
∏

i

Pr(ihm, ihp)
∏

t,j,k

Pr(thm|jhm, jhp)Pr(thp|khm, khp), (1)

where the product on i ranges over all founders, and the product on {t, j, k} ranges
over all offspring-mother-father trios. Under Hardy–Weinberg equilibrium and link-
age equilibrium assumptions, the founder probability can be calculated from popu-
lation frequencies of alleles, i.e. Pr(ihm, ihp) = p(ihm)p(ihp), where p(ihm) and
p(ihp) are haplotype frequencies which are products of their allele frequencies.
The gamete transmission probabilities Pr(thm|jhm, jhp) and Pr(thm|jhm, jhp) can
be calculated based on recombination fractions between marker intervals. Notice
that for tightly linked markers like SNPs, the probability of recombination events
between two adjacent markers is extremely small, so the ML approach is in favor
of haplotype configurations with few recombinations.

In traditional linkage analysis, the likelihood calculation involves the summation
over all possible haplotype assignments. So, theoretically, one can simultaneously
output the haplotype assignment with maximum likelihood when performing link-
age analysis. Two exact algorithms have been proposed to calculate the probability
of a pedigree for linkage analysis. The Elston–Stewart algorithm10 takes advan-
tage of the Markov property based on pedigree structure: given parents’ genotype
information, the genotypes of a child are independent from the genotypes of its
ancestors. The algorithm is linear in pedigree sizes, but exponential in the number
of genetic loci. The Lander–Green algorithm11 takes advantage of the Markov prop-
erty based on marker loci: under the assumption of no interference, the phase of
a marker only depends on the phase of its previous locus. This algorithm is linear
in the number of genetic loci, but exponential in pedigree sizes. Although much
improvements12–14 have been made for both algorithms, the exact calculations of
likelihood and haplotype inference for complex pedigrees with substantial missing
data are still computationally infeasible. Even approximation algorithms employ-
ing important sampling techniques such as simulated annealing4 are not efficient
enough for complex pedigrees with large sizes.

The calculation of the likelihood of a pedigree, as well as the calculation of
haplotype configurations, in most available tools for linkage analysis (for example,
GeneHunter, SimWalk2, and S.A.G.E.; the links to these programs are provided
in Sec. 5) assumes linkage equilibrium between markers. The assumption is unre-
alistic for tightly linked markers such as SNPs because it is well known that most
SNP markers are in linkage disequilibrium (LD). The effect of violation of such
an assumption has only been investigated very recently. Abecasis and Wigginton15

have proposed a new approach that can directly model LD between markers dur-
ing multipoint analysis of human pedigrees. The algorithm first partitions all of
the SNPs into clusters based on their LD. For each cluster, the authors assume
that there is no recombination and use haplotypes to incorporate LD within a clus-
ter. LD between clusters is ignored and the likelihood can be calculated using the
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Lander–Green algorithm, while taking each cluster essentially as a marker. Their
simulation results show that the approach resolves previously described biases in
multipoint linkage analysis with SNPs which are in LD. Therefore, although it is a
natural formulation, the ML approach is not very suitable for SNP data. This leads
to a discrete formulation to minimize the total number of recombination events in
each pedigree, as will be discussed below.

2.2. Recombination/Crossover minimization

Given the fact that ML-based approaches are usually time-consuming and the
assumptions that they require do not always hold for tightly linked markers, rule-
based approaches to minimize recombination/crossover in a pedigree have recently
received much attention. The minimum recombination principle basically states
that genetic recombination is rare, thus haplotypes with fewer recombinants should
be preferred in a haplotype reconstruction.16–18 For tightly linked markers such as
SNPs, the principle is well supported by experimental data. For example, recently
published results19–21 demonstrate that, in the case of human, the number of dis-
tinct haplotypes is very limited relative to the number of all possible haplotype
combinations. Moreover, the genomic DNA can probably be partitioned into long
blocks such that recombination within each block is rare or even nonexistent during
the history. For pedigree data, one can safely assume recombination is rare for a
much larger region. In the literature, the crossover minimization formulation is also
called the minimum-recombinant haplotype configuration (MRHC) problem.17,22,23

2.2.1. Algorithms for MRHC

Sobel et al.4 proposed a simulated annealing algorithm while taking a pseudo-
likelihood function, regarding the number of recombinants as the energy func-
tion. O’Connell16 worked on an important special case of the MRHC problem;
he assumed that the input data contain haplotype solutions with zero recombi-
nants, and the goal of his program was to find all such solutions. This special
case is called the zero-recombinant haplotype configuration (ZRHC) problem, and
will be discussed separately because of its importance for tightly linked markers.
Tapadar et al.18 utilized the genetic algorithm to attack the same problem. Qian
and Beckmann17 proposed a rule-based algorithm to reconstruct haplotype con-
figurations for pedigree data, based on local minimization of each nuclear family.
Although their program MRH performs well for small pedigrees and achieves better
results than some previous algorithms,16,18 its effectiveness scales poorly, especially
for data with biallelic markers.

In a series of papers,22–26 the authors proposed several algorithms based on
different assumptions about the real data. They developed an iterative heuristic
algorithm, called block extension, for MRHC that is much more efficient than
MRH. The experiments showed that the block-extension algorithm can compute an
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optimal solution or nearly optimal solution when the minimum number of recom-
binants required is small22,23; however, its performance deteriorates significantly
when the input data require more (e.g. four or more) recombinants. For pedigrees
with small sizes or pedigrees with a small number of markers, they developed two
dynamic programming (DP) algorithms.24 The running time for the first DP algo-
rithm is linear in the size of a pedigree and the time for the second one is linear in the
number of markers, which resemble the Elston–Stewart algorithm and the Lander–
Green algorithm for the statistical analysis, respectively. For the most general case
of the problem, the authors designed an effective integer linear programming (ILP)
formulation of MRHC. It integrates missing data imputation and haplotype infer-
ence together, and employs a branch-and-bound strategy that utilizes a partial
order relationship and some other special relationships among variables to decide
the branching order; the partial order relationship is discovered in the preprocessing
of constraints by taking advantage of some special properties in the ILP formulation.
A directed graph is built based on the variables and their partial order relationship.
By identifying and collapsing strongly connected components in the graph, the algo-
rithm can greatly reduce the size of an ILP instance. Nontrivial lower and upper
bounds on the optimal number of recombinants are estimated at each branching
node to prune the branch-and-bound search tree. When multiple solutions exist,
a best haplotype configuration is selected based on an ML approach. The algo-
rithm also incorporates the marker interval distance into the formulation whenever
it is known, thus overcoming the inadequacy of many rule-based algorithms which
ignore the important information. The test results on simulated data demonstrate
that the algorithm is very efficient in practice. A comparison of the algorithm with
a well-known statistical approach, SimWalk2,4 on simulated data with evenly and
unevenly spaced markers also demonstrates the effectiveness and soundness of the
ILP algorithm.26

2.2.2. Algorithms for ZRHC

For the zero-recombinant haplotype configuration (ZRHC) problem, the goal is to
enumerate all haplotype solutions that require no recombinant if such solutions
exist. It was first introduced in O’Connell.16 The formulation seems under a more
stringent biological assumption, but it is actually more practical for tightly linked
markers such as SNP data. An efficient algorithm for ZRHC could also be use-
ful for solving the general MRHC problem as a subroutine, when the number of
recombinants is expected to be small. Note that recent work on haplotype infer-
ence for population data based on perfect phylogenies also assumes that the data
are recombination-free.26,27 When the solution for ZRHC is not unique, it would
really be useful to be able to enumerate all of the solutions instead of finding only
one feasible solution, so that the solutions can be examined in subsequent analysis
(e.g. likelihood distribution of haplotypes,25,26 linkage between different haplotype
blocks, etc.) by geneticists.



February 26, 2008 12:26 WSPC/185-JBCB 00336

248 J. Li & T. Jiang

O’Connell16 presented an exponential-time algorithm for ZRHC based on
exhaustive enumeration. It works by eliminating all impossible genotypes. Zhang
et al.27 developed a program for ZRHC that combines logic rules and the
expectation-maximization (EM) algorithm. Li and Jiang22 introduced an O(m3n3)
time algorithm by formulating ZRHC as a system of O(mn) linear equations,
with mn variables over the finite field of F (2) and applied Gaussian elimination.
Although this cubic-time algorithm is reasonably fast, it is inadequate for large-scale
pedigree analysis where both m and n can be in the order of tens or even hundreds,
and we may have to examine many pedigrees and haplotype blocks; there are, for
example, over five million SNP markers in the public database dbSNP.

This challenge has motivated recent efforts of searching for more efficient algo-
rithms for ZRHC. Several attempts have been made by Chin and Zhang28 and
Li et al.,29 but the authors failed to prove the correctness of their algorithms in all
cases, especially when the input pedigree has mating loops. Chan et al.30 proposed
a linear-time algorithm, but the algorithm only works for pedigrees without mating
loops (i.e. the tree pedigrees). Xiao et al.31 very recently presented a much faster
algorithm for ZRHC with running time O(mn2+n3 log2 n log log n). Their construc-
tion begins with a new system of linear equations over F (2). Although the system
still has O(mn) variables and O(mn) equations, it can be reduced to an effectively
equivalent system with O(mn) equations and at most 2n variables by exploring the
underlying pedigree graph structure. By using standard Gaussian elimination, this
implies an improved algorithm for ZRHC with running time O(mn3). However, the
authors were able to reduce the number of equations further to O(n log2 n log log n)
(assuming that m ≥ log2 n log log n, which usually holds in practice) by giving an
O(mn) time method for eliminating redundant equations in the system. Although
such a fast elimination method is not known for general systems of linear equa-
tions, it was achieved by again taking advantage of the underlying pedigree graph
structure and recent progress on low-stretch spanning trees in Elkin et al.32 The
algorithm actually runs in O(mn2+n3) time when the input pedigree is a tree pedi-
gree with no mating loops (which is often true for human pedigrees), or when there
is a locus that is heterozygous across the entire pedigree. Moreover, the algorithm
produces a general solutionb to the original system of linear equations at the end
that represents all feasible solutions to the ZRHC problem.

2.2.3. Complexity results

It has been shown that MRHC is computational-hard.23,24 Further properties about
the complexity and approximability of MRHC have been recently studied by Liu
et al.33,34 It was shown that the MRHC for simple pedigrees, where each member

bA general solution of any linear system is denoted by the span of a basis in the solution space
to its associated homogeneous system, offset from the origin by a vector, i.e. by any particular
solution.
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has at most one mate and at most one child (i.e. binary-tree pedigrees), is NP-hard;
and that the MRHC on two-locus pedigrees or binary-tree pedigrees with missing
data cannot be approximated unless P = NP. The authors also proved that the
MRHC on two-locus pedigrees without missing data cannot be approximated within
any constant ratio under the Unique Games Conjecture, but can be approximated
within the ratio O(

√
log n); moreover, they showed that the MRHC for tree pedi-

grees without missing data cannot be approximated within any constant ratio under
the Unique Games Conjecture, too. Some hardness and approximation results are
also given in Liu et al.33 ,34 for the MRHC on pedigrees where each member has a
bounded number of children and mates, as is often the case in real pedigrees.

3. Haplotype Inference from Population Data

In this section, we consider the haplotype inference (HI) problem based on popu-
lation data, i.e. unrelated individuals. In addition to the haplotype assignment of
each individual, we are also interested in the estimation of population haplotype
frequencies. These two problems are related and are usually solved simultaneously.
Without constraints from family members, an individual with m heterozygous loci
has 2m−1 consistent haplotype pairs. Furthermore, the HI problem from population
data is meaningful only for tightly linked markers, where correlations among mark-
ers exist. Still, one cannot directly infer which pair is more likely to be the true
haplotypes for a given individual. Instead, genetic models based on the evolution of
human population history have to be adopted, directly or indirectly, to define the
extent of “optimality” of a particular consistent solution for given samples.

The HI problem from unrelated individuals was first addressed by Clark35 in
1990, and a rule-based algorithm was proposed in his paper. We will start our
discussion from this simple but widely used algorithm. Gusfield investigated math-
ematical properties of Clark’s algorithm36; and later proposed a discrete model
called the perfect phylogeny haplotype (PPH) problem, which implicitly adopts
the coalescent model with no recombination.37 Another commonly used discrete
model in the literature is called the pure-parsimony approach,38–40 which intends
to find a solution with the smallest number of distinct haplotypes. In addition to
discrete models, statistical approaches have also been applied on the HI problem.
Two different groups41,42 have proposed an ML approach and employed the EM
algorithm to find a haplotype solution. Bayesian approaches43,44 have also been
applied on the HI problem by incorporating an informative prior based on popula-
tion genetics models.

3.1. Clark’s algorithm

Observe that for a set of m markers, if an individual is homozygous at all loci
or if it has only one heterozygous locus, the haplotype pair of the individual is
trivially determined since there is only one consistent pair of haplotypes. If there
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is at least one such individual, one can obtain an initial set of haplotypes H from
the input data. For each genotype vector g with more than one heterozygous locus,
Clark’s idea was to use a haplotype h1 in H that is consistent with g to obtain
the haplotype pair for g, i.e. g = h1 ⊕ h2, and include h2 in H ; the algorithm
will then iterate until no more genotypes can be resolved. It is possible that the
algorithm cannot even start if there are no individuals with 0 or 1 heterozygous
locus. The algorithm also does not guarantee that every genotype will eventually
be resolved. Different sequences of application of Clark’s rule might give different
results. Gusfield36 investigated mathematical properties of Clark’s algorithm, and
proved that finding the sequence(s) of application of Clark’s rule with a minimum
number of unresolved genotypes is NP-hard.

3.2. Perfect phylogeny model

Later, Gusfield37 introduced a perfect phylogeny model for the HI problem, based
on two assumptions. First, the model assumes that, for a set of tightly linked SNPs,
historical recombination events do not exist; experimental results and population
genetics models generally support this assumption. Second, the model adopts the
standard assumption of infinite sites in population genetics, which basically means
that, at each SNP site, mutation can only occur at most once. Under these two
assumptions, the 2n haplotypes from n individuals can be organized into a rooted
tree called perfect phylogeny. Each leaf of the tree represents a haplotype. Each
interior edge is labeled by at least one SNP, and each SNP labels exactly one edge.
A path from the root to a leaf spells all of the mutant sites of the haplotype at the
leaf from the ancestral haplotype at the root (usually not given). The PPH problem
finds, given a set of genotypes, a set of haplotypes that admits a perfect phylogeny.
Gusfield37 presented an algorithm by reducing the problem to a graph realization
problem with an almost linear running time in theory, but the implementation of
the algorithm is too complex to be practical. Since then, a couple of algorithms
have been proposed. Two groups45,46 have independently proposed two algorithms
with the same running time O(nm2), where n is the number of individuals and m

is the number of SNPs. More recently, Ding et al.47 presented a linear algorithm for
the problem, and the algorithm has been implemented in a program called LPPH.
For future directions, it is desirable to extend the perfect phylogeny model to allow
recombination and missing data.

3.3. Pure parsimony

The pure parsimony approach has also been investigated by researchers38–40 in
the computational biology community. Under this criteria, the goal is to find a
minimum set of distinct haplotypes that can resolve all of the given genotypes. The
rationale of the parsimony principle for the HI problem is also based on the same
observation that, in human populations, the number of observed distinct haplotypes
is far smaller than the total number of all possible haplotypes. Unlike the perfect
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phylogeny model, which has an optimal linear time algorithm, the computation
of the diversity minimization problem turns out to be hard. It has been shown40

that, in theory, the problem not only has no practical exact algorithms, but it
also has no practical approximation algorithms. Gusfield38 formulated the problem
using the integer linear programming approach, which can find optimal solutions for
instances with small sizes. Wang and Xu39 proposed a branch-and-bound algorithm,
and experimental results have shown it to be effective for practical problems.

All three combinatorial formulations for HI using population data have been
reviewed in detail by Gusfield.6 In addition to discrete approaches, statistical models
have been studied in the literature. We will introduce the ML model and Bayesian
approaches in the next two subsections.

3.4. Maximum likelihood

The ML approach41,42 takes haplotype population frequencies as unknown param-
eters which need to be inferred. The goal is to estimate values of haplotype frequen-
cies that maximize the probability of observing the given genotype data. Assume
that all of the individuals are independent; then, the likelihood of the data is just
the multiplication of the probability of each individual. Under the assumption of
random mating and Hardy–Weinberg equilibrium, the probability of observing a
particular genotype from an individual is the summation of the product of two
haplotype frequencies for all haplotype pairs that are consistent with the genotype:

L(G) =
n∏

i

∑

hs⊕ht=gi

p(hs)p(ht). (2)

When the maximum likelihood estimates (MLEs) cannot be readily obtained
from an analytical derivation like in this case, numerical methods are commonly
used. A widely accepted approach to obtain the MLEs is the EM algorithm. The
EM algorithm is an iterative method that consists of two steps (E-step and M-step)
in each iteration. In the context of haplotype inference, it takes the haplotype
frequencies as parameters and the phase of each individual as missing data. If
the phase of each individual is known, the MLE of the frequency of a particular
haplotype is just the fraction of that haplotype occurring in the samples; on the
other hand, if haplotype frequencies are known, the probability of observing an
individual with a phased haplotype pair is just the product of the frequencies of
the two haplotypes under the assumption that haplotypes are in Hardy–Weinberg
equilibrium.

The EM algorithm starts with an initial (probably arbitrary) assignment of
haplotype frequencies, p0(h1), p0(h2), . . . , p0(hk). In the E-step of the ith iteration,
it calculates the expected counts (ni

hs
) of a haplotype hs from samples, assuming

that the haplotype frequencies are true values:

ni
hs

=
∑

g:g=hs⊕ht

pi(hs)pi(ht)∑
hu,hv:hu⊕hv=g pi(hu)pi(hv)

, (3)
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where the first summation on the right-hand side is over all individuals whose
genotypes are consistent with hs, and the second summation is over all consistent
haplotype pairs for a particular individual with genotype g. In the M-step, the
haplotype frequencies are updated based on the expected counts ni

hs
:

pi+1(hs) =
ni

hs

2n
. (4)

The algorithm iterates until it converges or it reaches the maximum number of
iterations allowed. To estimate the haplotype pair of each individual, one can pick
the pair with the largest probability based on the estimated haplotype frequencies.
Theoretically, the EM algorithm is guaranteed to converge to a (local) maximum
in linear time, but the number of variables in this case (i.e. haplotype frequencies)
can be exponentially large with respect to the number of loci in the region. So, a
direct implementation of the EM algorithm for the HI problem usually cannot deal
with data of more than 25 loci. It is also a known fact that the EM algorithm might
converge to a local optimal point instead of a global one. Users are recommended
to start with different initial values, and pick the solution with the ML probability.
Furthermore, the EM algorithm cannot provide the estimates of variances of the
MLEs in general, unless the number of loci is small.

3.5. Bayesian approaches

Unlike the ML method, where parameters are unknown points in a parameter space,
Bayesianists treat parameters as random variables. The goal of Bayesian inference
is to estimate the posterior distribution of parameters given data we observed,
assuming some known prior knowledge about parameters before seeing data. Point
estimations can be obtained by taking expectations of the posterior distribution. Let
Pr(p(H)) denote the prior distribution of haplotype frequencies, and Pr(p(H)|G)
denote the posterior distribution of haplotype frequencies given genotype data G.
The posterior distribution can be calculated via Bayes’ theorem:

Pr(p(H)|G) =
Pr(G|p(H))Pr(p(H))

Pr(G)
. (5)

The prior probability Pr(p(H)) is assumed to be known, and the probability of
data given a particular set of parameters Pr(G|p(H)) is easy to calculate. While the
calculation of the overall probability Pr(G) involves multidimensional integrations
or a summation over an exponentially large number of terms, it is infeasible in many
cases. Important sampling techniques such as Markov chain Monte Carlo (MCMC)
are commonly used in such situations.

Two Bayesian approaches43,44 have been proposed for HI from population data,
both of which use Gibbs sampling techniques to obtain an estimation of posterior
distribution of haplotype frequencies. The algorithm of Stephens et al.43 starts from
an arbitrary haplotype solution of the given genotypes, and iteratively updates
a randomly selected individual assuming that all of the other individuals have
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their correct haplotype assignments. The algorithm of Niu et al.44 starts from an
initial assignment of haplotype frequencies; at each iteration step, it first samples a
pair of compatible haplotypes for each individual, and then updates the haplotype
frequencies based on the haplotype solution of each individual. The two methods
differ mainly from the prior distributions they assume48: Stephens et al.43 used
a prior approximating the coalescent model, while Niu et al.44 used the Dirichlet
prior. Under the coalescent model, haplotypes to be sampled will tend to be more
similar to previously sampled haplotypes, a property that has been used in Clark’s
algorithm. Experiments48 have shown that estimations based on the coalescent
model are more accurate than those based on the Dirichlet prior. Both algorithms
have been implemented into computer programs (i.e. Phase and Haplotyper) that
have been widely used.

An important contribution in Niu et al.44 is the introduction of the partition–
ligation technique, which is an application of the divide-conquer technique that
can reduce the computational burden for large data sets. The same idea has been
incorporated into other algorithms such as Phase V2.0 and the EM algorithm.49

4. Haplotype Inference from Pooled Samples

As a strategy of reducing the genotyping cost, pooling individual samples has
been shown to be efficient in estimating population allele frequencies and long
distance (LD) coefficients.50 For HI, it is obvious that pooling samples adds more
ambiguity. Nevertheless, several groups51,52 have investigated the efficiency and
cost-effectiveness of estimating haplotype frequencies from pooled DNA data. In
general, suppose K ≥ 1 independent individuals are pooled together, where K = 1
corresponds to the strategy with no pooling. The genotype at each locus can be
represented by the number of allele 1, i.e. an integer g such that 0 ≤ g ≤ 2K.
The primary goal is to estimate haplotype frequencies for the region of interest.
Although the most likely haplotype configurations (the 2K haplotypes in each pool
that are consistent with the input genotypes) might be inferred, haplotypes for each
individual cannot be constructed in general. Because the accuracy of haplotype fre-
quency estimates decreases with an increase of K, it is not worthwhile to pool a
large number of samples if the accuracy deteriorates too much. To compare the cost-
effectiveness of different strategies, Yang et al.52 defined a simple measure named
relative efficiency: R(K) = K×v1/vK , where v1 and vK are the mean squared errors
for samples without pooling and with pooling of a size K, respectively. Pooling is
only meaningful when R(K) ≥ 1.

To obtain haplotype frequency estimates from pooled samples, in theory, both
the ML approach and Bayesian-based approaches can be applied, with the haplo-
type pair of an individual replaced by the haplotype configuration of a pool. As a
matter of fact, Quade et al.53 proposed an algorithm that views pedigree data and
population data as special cases of pooled samples. Yang et al.52 also applied the
ML method on pooled data, and adopted the EM algorithm for the estimation of
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haplotype frequencies. The algorithm iteratively updates population haplotype fre-
quencies and haplotype configurations of each pool. Because the number of distinct
haplotypes increases exponentially with the number of loci m, and the number of
distinct haplotype configurations in each pool increases exponentially with the size
of each pool K, the algorithm is only practical for problems with small sizes (m ≤ 15
and K ≤ 6). In terms of cost-effectiveness, simulation results in Yang et al.52 showed
that the relative efficiency R(K) increases the most when K = 2 or 3, and the pool-
ing strategy is more effective for SNPs with high LD and for SNPs with moderate
or large minor allele frequencies. In addition to the loss of genotype and haplotype
information for each individual, one other limitation of pooling strategies in genome
association studies is the loss of phenotype information, especially when multiple
measures of different quantitative traits have been recorded for each individual.

5. Discussion

Haplotype information can be used in many applications in biomedical research. For
example, because nearby SNPs have high correlations, only a subset of tag SNPs
is needed to approximate all common SNPs in genome-wide association studies.54

A smaller number of SNPs corresponds to a smaller number of tests, which usually
means higher power for association analysis.54 Therefore, tag SNP selection is an
important task for genome-wide association studies, and the selection of tag SNPs is
usually based on haplotype structures and haplotype frequencies.55,56 Furthermore,
it has been shown that haplotype-based methods may provide higher power than
single SNP-based methods under certain conditions, and various methods have
been proposed to directly use haplotype information in disease gene association
mapping.57–60 Accurate haplotype estimations are essential for the success of such
methods.

Many models and algorithms for haplotype reconstruction and haplotype fre-
quency estimation have been discussed in this review. Different formulations have
adopted different assumptions, and different programs have different time com-
plexities; this makes a fair comparison of all programs a difficult task. Attention
should be paid in choosing appropriate programs for each specific dataset. In gen-
eral, haplotype inference is still a computation-intensive problem, especially when
the data consist of substantial missing alleles. Faster and more accurate algorithms
for each model are still in great need. We believe that one particular type of data
has not been adequately addressed in recent studies. In biomedical research, it is
common to collect multiple individuals from each family; examples of such designs
include parent-child trios, affected siblings, and parent-child pairs. Constraints from
relatives can greatly reduce the number of possible haplotype pairs of each individ-
ual, as well as ambiguities caused by missing alleles. Existing approaches usually
only apply the Mendelian principles whenever possible to infer phase information
at each individual locus, and then select only one individual from each family.
Actually, many more constraints can be explored, and much useful information has
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been discarded by including only one individual from each family. Therefore, new
algorithms designed specifically for such data have a great potential to be more
efficient and more accurate than existing ones.

6. Software Available on the Web

Table 1. Commonly used software tools.

Name Comments Website

SimWalk24 Pedigree http://watson.hgen.pitt.edu/
docs/simwalk2.html/

Merlin15 Pedigree, linkage, http://www.sph.umich.edu/
statistics, incorporating LD csg/abecasis/Merlin/

S.A.G.E.61 Pedigree, linkage, EM http://darwin.case.edu/

GeneHunter12 Pedigree, linkage, http://www.fhcrc.org/science/labs/
Lander–Green kruglyak/Downloads/index.html/

PedPhase26 Pedigree, MRHC/ZRHC http://www.eecs.case.edu/
jxl175/haplotyping.html/

HAPLORE27 Pedigree, ZRHC http://www.soph.uab.edu/Statgenetics/
People/KZhang/HAPLORE/index.html/

Phase43 Population, Bayesian http://www.stat.washington.edu/
coalescent prior stephens/software.html/

Haplotyper44 Population, Bayesian http://www.people.fas.harvard.edu/

Dirichlet prior junliu/Haplo/docMain.htm/

PPH and LPPH6 Population, PPH http://wwwcsif.cs.ucdavis.edu/gusfield/
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