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Haplotypes of closely linked single-nucleotide polymorphisms (SNPs) potentially offer greater power than individual SNPs
to detect association between genetic variants and disease. We present a novel approach for association mapping in which
density-based clustering of haplotypes reduces the dimensionality of the general linear model (GLM)-based score test of
association implemented in the HaploStats software (Schaid et al. [2002] Am. J. Hum. Genet. 70:425–434). A flexible
haplotype similarity score, a generalization of previously used measures, forms the basis for grouping haplotypes of
probable recent common ancestry. All haplotypes within a cluster are assigned the same regression coefficient within the
GLM, and evidence for association is assessed with a score statistic. The approach is applicable to both binary and
continuous trait data, and does not require prior phase information. Results of simulation studies demonstrated that
clustering enhanced the power of the score test to detect association, under a variety of conditions, while preserving valid
Type-I error. Improvement in performance was most dramatic in the presence of extreme haplotype diversity, while a slight
improvement was observed even at low diversity. Our method also offers, for binary traits, a slight advantage in power
over a similar approach based on an evolutionary model (Tzeng et al. [2006] Am. J. Hum. Genet. 78:231–242). Genet.
Epidemiol. 33:16–26, 2009. r 2008 Wiley-Liss, Inc.
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INTRODUCTION

With the advent of high-throughput genotyping meth-
ods for single-nucleotide polymorphisms (SNPs), it has
become feasible to carry out association mapping studies
that incorporate hundreds of thousands of genetic mar-
kers. Large sample sizes are necessary to identify disease-
susceptibility loci with small effect. Population-based
mapping studies rely on the correlation, or linkage
disequilibrium (LD), between genetic variants influencing
the trait and one or more markers being scanned.
However, methods that examine SNPs in isolation fail to
take advantage of the genetic information available in a
dense marker map where significant LD exists among
neighboring markers.

To incorporate multiple correlated markers, analyses can
group alleles into haplotypes to improve both the accuracy
of the genetic model and the power to detect association.
Use of haplotypes will reduce the complexity of the model,
while preserving the relevant interactions among markers.
In addition, haplotypes best approximate the unit of
expression of genetic variants, since single DNA molecules
are transcribed [Akey et al., 2001]. Haplotype-based tests

of association [e.g., Akey et al., 2001; Douglas et al., 2001;
Fallin and Schork, 2000] can offer better power than
genotype-based tests, especially when LD is high and a
small number of haplotypes carry the causal variant
[Thomas et al., 2003].

Grouping, or clustering, similar haplotypes to reflect
their evolutionary history should improve our chances of
locating a common causal variant. While haplotypes are
susceptible to the evolutionary forces of mutation, recom-
bination, and gene conversion, haplotypes carrying iden-
tical copies of a susceptibility locus should be more similar
to each other than to haplotypes that do not carry the
locus, on account of shared ancestry. In regions of high
sequence diversity, large numbers of haplotypes reduce
power by increasing the number of degrees of freedom
(d.f.) of statistical tests. It is also hard to estimate haplotype
effects in these diverse sequences because the sample size
is very small for each haplotype. Through clustering, we
can simplify the regression model while retaining most of
the information relevant to disease-locus inheritance.

A number of statistical methods have been proposed in
recent years to integrate haplotype grouping via similarity
and/or shared ancestry in association mapping on
population-based samples (see Table I). Coalescent-based
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approaches attempt to reconstruct the population history
of disease-causing mutations, under the assumption that
they can be traced back to a single common ancestor
[Kingman, 1982]. Several variations on the coalescent
model have been implemented for association analysis
[Liu et al., 2001; McPeek and Strahs, 1999; Morris et al.,
2002, 2004; Zöllner and Pritchard, 2005]. Ultimately, none
of the approaches rooted in explicit coalescent modeling
allows for large-scale association analyses covering large
portions of the genome.

Coalescent-based models are most applicable in the
absence of recombination and selective pressure, neither of
which is likely to apply in real case-control samples
[Molitor et al., 2005]. Coalescent approaches are also
extremely complex, and do not model attributes such as
natural selection, ascertainment, and population substruc-
ture [Morris, 2005]. An alternative approach is to group
haplotypes according to some measure of similarity that
approximates the coalescent model indirectly. Thus, the
goal is to simplify the model while retaining as much of
the information as possible about the natural history of the
sample.

One method that reduces the complexity of the
inheritance model is constructing a cladogram of haplo-
types based on their similarity, without attempting to
reconstruct their full population history. The origin of
these techniques is the cladistic analysis of Templeton et al.
[1987], which employed an unrooted tree. Cladograms
may also be constructed from a haplotype network
[Seltman et al., 2003], in which haplotypes conferring
similar disease risk are clustered based on inferred age. In
contrast, Durrant et al. [2004] hierarchically arranged
haplotypes by means of a distance metric based on the
longest interval of consecutive matching alleles [the
‘‘length measure’’: Tzeng et al., 2003; or ‘‘maximum
identity length’’: Bourgain et al., 2000], weighted to favor
rarer alleles, which are more likely to share recent common
ancestry.

Tzeng [2005] modified the cladistic approach to consider
all possible relationships within a haplotype network.
Their method allows haplotypes to be assigned to more

than one cluster and weights both distance and haplotype
frequency. A certain number of the most common
haplotypes are selected as ‘‘core’’ haplotypes (assuming
that more common haplotypes are more ancient). The
remaining haplotypes are each assigned to one or more
clusters using a probability score. The number of core
haplotypes is selected based on the Shannon [1948]
information criterion. Clustering is performed indepen-
dently of the trait status and is geared to reducing the d.f.
of statistical tests. The authors initially used the approach
to improve power of Pearson’s w2 test for association of
haplotypes with binary traits. A later study [Tzeng et al.,
2006] applied the clustering approach to the score test for
haplotype association built on the general linear model
(GLM) framework [Schaid et al., 2002], which improved
the power of the score test on both dichotomous and
continuous traits.

Cladistic techniques offer vast savings in computational
intensity over the full coalescent-based approach. As a
result, it is feasible to perform whole-genome association
analyses using cladistic-based mapping schemes. Never-
theless, the sensitivity of hierarchical clustering to recom-
bination and gene conversion [Seltman et al., 2003;
Templeton et al., 1987; Tzeng et al., 2006] limits single
analyses to very small regions. Moreover, not all cladistic
mapping methods accept unphased genotype data as
input (Table I).

A second approach to replacing the coalescent is a
spatial clustering algorithm, wherein haplotypes are
grouped according to a distance metric, which simplifies
the genetic model even further. Again, the success of these
methods depends critically on how closely the clustering
technique recreates the natural history of the population.
Molitor et al. [2003, 2005] clustered haplotypes determi-
nistically by assignment to one of a set of ancestral central
haplotypes, using the length measure about a proposed
trait locus as a distance metric. This approach has been
refined by Morris [2005, 2006] and by Waldron et al. [2006],
who employed measures of similarity that modified the
length measure to favor similarities in rare alleles, using
weight functions different from that of Durrant et al.

TABLE I. Previously published association mapping methods featuring haplotype clustering

Reference(s) Program Unphased data WG scalable Quant. data

Bardel et al. [2005; 2006] ALTree No No No
Browning and Browning [2007a, b] BEAGLE No Yes Yes
Durrant et al. [2004] CLADHC No Yes No
Li and Jiang [2005] and Li et al. [2006] HapMiner No Yes Yes
Liu et al. [2001] BLADE Yes No No
McPeek and Strahs [1999] DHSMAP No No No
Molitor et al. [2005] Yes No No
Morris et al. [2002, 2004] COLDMAP Yes No No
Morris [2005, 2006] GENEBPM Yes No No
Seltman et al. [2003] EHAP Yes Yes Yes
Toivonen et al. [2000] HPM No Yes No
Tzeng [2005] and Tzeng et al. [2006] Yes Yes Yes
Waldron et al. [2006] No Yes No
Yu et al. [2004] Yes No No
Zöllner and Pritchard [2005] LATAG No No Yes

Program, program name; Unphased data, program accepts genotypes without phase (haplotype) data; WG scalable, scalable for whole-
genome analyses; Quant. data, program will analyze continuous trait data.
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[2004]. In addition, Yu et al. [2004] grouped haplotypes by
constructing nested subsets, based on yet another variation
on the length measure. Despite the extreme simplification
of the inheritance model, computational demands from the
Markov chain Monte Carlo framework make whole-
genome association mapping using these techniques
infeasible. In a variation on the spatial clustering theme,
Browning and Browning [2007a,b] incorporated local LD
patterns into haplotype grouping by treating haplotypes as
edges in a directed acyclic graph, and merging haplotypes
that show similar probabilities for all combinations of
alleles that occur downstream within the graph [Brown-
ing, 2006].

The distance-based mapping method of Li and Jiang
[2005] and Li et al. [2006] is based on data mining
techniques. Li and Jiang’s [2005] approach uses the core
idea that haplotypes carrying trait loci tend to be more
similar to each other than haplotypes drawn at random
from the population. Haplotypes are clustered by a
density-based clustering algorithm [Easter et al., 1996]
using a similarity score generalizing two previously
described measures of similarity [Tzeng et al., 2003].
Implemented in the program HapMiner, the method is
efficient enough for whole-genome studies provided that
the sliding window of haplotypes is not too large, and has
been adapted for quantitative traits [Li et al., 2006].
HapMiner, like several other cluster-based techniques, is
limited in that it requires phased haplotypes as input.
Since phase is typically unknown, one possible solution is
to infer haplotypes and to use the most likely diplotype for
each individual as the ‘‘correct’’ one. However, this
solution may cause loss of information when numerous
phase resolutions are possible, and the most likely
haplotype pair has low probability. Furthermore, in some
situations this approach may result in bias [Zhao et al.,
2003] and decreased precision [Tanck et al., 2003] in
estimated parameters.

In this report, we describe an expansion of the cluster-
based association mapping method implemented in
HapMiner [Li and Jiang, 2005; Li et al., 2006] to
accommodate phase-unknown genotype data. We apply
the clustering algorithm from HapMiner to the haplotype
score test of Schaid et al. [2002]. We explored the
performance and the validity of the new, computationally
efficient approach through simulation studies. Our meth-
od may be considered a partial generalization of the
approach of Tzeng et al. [2006], described above.

METHODS

A CLUSTER-BASED SCORE TEST
FOR ASSOCIATION

Our association mapping approach consists of three
steps: (1) obtaining posterior probabilities of phased
haplotype pairs [S.A.G.E., 2007]; (2) assigning haplotypes
consistent with unphased genotypes to clusters [Li and
Jiang, 2005]; and (3) assigning all haplotypes within a
cluster the same regression parameter in the GLM [Schaid,
2004].

Initially, we calculate probabilities of all possible
haplotype pairs for each unphased genotype, using the
DECIPHER program in S.A.G.E. [2007]. Probabilities are
summed over all individuals in the sample to create

haplotype weights for clustering. These weights mimic
sample haplotype frequencies, but are actually expected
numbers of possible haplotype copies in the sample.

In step (2), we use a modified version of HapMiner to
cluster the weighted haplotypes. Instead of assuming that
the haplotypes are known for each individual, we use a
flexible distance metric [Li and Jiang, 2005] for a set of
unique possible haplotypes and their weights. Disease
status is not provided to HapMiner, since the score statistic
is calculated under the null hypothesis of no haplotype
effects. We assign each pair of haplotypes a similarity
score si,j, which is a function of the total number of
matching alleles (the ‘‘counting measure’’) and the longest
interval of continuous matching including the reference
marker (the ‘‘length measure’’). This score generalizes
previously described scores [Tzeng et al., 2003]. The
similarity score is converted to a distance, di,j 5 (si,i�si,j)/
si,i, that is normalized to [0,1]. We then use a modified
DBSCAN algorithm [Easter et al., 1996] to group haplo-
types. Clusters form in regions of high density. A
haplotype is designated a ‘‘core’’ haplotype if enough
density, determined by the density threshold Min-
PtsA(0,1); is located within a given distance e from it.
Haplotypes within this e neighborhood of a core haplotype
are clustered together. ‘‘Common’’ haplotypes with weight
greater than a given value pminA(0,1) are never clustered
with one another. Hence, common, and therefore probably
ancient, haplotypes are not improperly clustered. How-
ever, haplotypes with weights less than pmin may still be
grouped with common haplotypes. We usually set pmin

proportional to 1/N, where N is the number of unique
haplotypes detected in the sample. If a haplotype is within
distance e of two common core haplotypes, it is clustered
with the one with smaller distance; if the distances are
equal, it is grouped with one at random, with probabilities
determined by the frequency of the core haplotypes. We
chose for this study an exponentially decreasing function
for weighting markers contributing to both the similarity
and length measures, of the form eax, where x approx-
imates the physical distance between a given SNP and the
reference marker in terms of number of markers (the
reference SNP itself is assigned x 5 0; its immediate
neighbors, x 5 1, etc.), and a 5�0.5. The reference marker
was defined as either the fourth SNP of six, or the fifth
SNP of eight, markers in a haplotype.

In some analyses, we allowed pmin to be determined by
the Shannon information criterion given the haplotype
frequencies in a particular sample [Tzeng et al., 2006]. If k
were the number of haplotypes that maximized the
Shannon information, pmin was set equal to the frequency
of the kth most common haplotype.

In step (3), we perform a score test of association using a
GLM approach in the haplotype score test in the
HaploStats package [Schaid, 2004; Schaid et al., 2002]. We
modified the test to use the cluster assignments to reduce
the number of regression parameters. In our approach,
posterior probabilities of haplotype pairs are converted to
posterior cluster-pair probabilities, and all haplotypes
within a cluster are represented by a single model
coefficient. The global score test for association is
asymptotically distributed, under the null model, as a w2

random variable with d.f. equal to the rank of the variance
matrix for the score statistic, which may be smaller than
the number of clusters. We observed unstable results and
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inflation of Type-I error for quantitative traits (data not
shown) using the algorithm supplied with HaploStats to
calculate the Louis-information-based variance of the score
statistic [Louis, 1982]. Consequently, we substituted the
calculations from the generalized score test of Boos [1992],
using the implementation of Tzeng et al. [2006].

SIMULATING HAPLOTYPE DATA

We generated haplotypes of tightly linked SNPs by a
slight modification of the haplotype-extension method of
Durrant et al. [2004]. This technique aims to emulate a
large population based on a smaller number of founder
chromosomes for which phased haplotype data are
available. We began with phased haplotypes over a range
of 12.3 Mb of chromosome 22 (14.4–26.7 Mb), comprising
the 5,000 dimorphic SNPs nearest the p telomere, from all
parents of the 30 CEPH trios in the HapMap Project [The
International HapMap Consortium, 2005]. The total was
120 presumed unrelated founder chromosomes. First, we
randomly chose a genotype at the disease-susceptibility
locus for each individual in the simulated sample. For
case-control samples, we fixed genotype relative risks
(RRs) for genotypes Dd and DD relative to dd, a
susceptibility allele frequency pd, and a disease risk for
the dd genotype. Trait genotypes were then chosen using
probabilities Pr(G|case) or Pr(G|control), where
G 2 fdd;Dd;DDg, as appropriate. For quantitative pheno-
types, genotypes were chosen directly from the population
under Hardy-Weinberg equilibrium (HWE). Trait values
were generated under a normal mixture model. We
assumed a genotype mean of 0 for dd individuals and
residual variance 1, and chose genotype means for Dd and
DD individuals (which are also the genotype effects)
according to the desired model.

We then extended haplotypes about the trait alleles as
described [Durrant et al., 2004]. In all analyses presented
here, we chose a common disease variant with pD�0.2. To
increase the diversity in the genetic context, we accepted
any SNP within the source data with a minor allele
frequency between 0.183 and 0.217 (i.e., between 22 and 26
copies in the set of 120 founder chromosomes) as a
potential trait locus. Before analysis, we removed phase
information and trait-locus genotypes.

PARAMETER OPTIMIZATION FOR HAPMINER
AND POWER ANALYSES

We optimized HapMiner parameter values for pmin, e,
and MinPts under various genetic models, and explored
the sensitivity of these optima to small changes in the
parameters. We typically performed analyses at two
different genetic signal strengths. Specifically, we chose
model parameters so that the haplotype-only score test
would yield roughly 40% (‘‘low’’) or 75% (‘‘high’’) power
at a significance level (a) of 0.05. For studies at low power,
we chose either a multiplicative binary-trait model with
RR 5 1.6 for each susceptibility allele D, or an additive
quantitative trait with an allele effect of �0.6 for each D
allele. In the high-power model, we either set the allele RR
to 1.95 for a multiplicative binary trait, or the allele effect
to �0.8 for an additive quantitative trait. Each study
simulated 1,000 data sets, each of which comprised either
200 cases and 200 controls for a binary trait, or 200 total

individuals for a quantitative trait. Haplotypes contained
either six or eight SNPs, not including the trait locus.

Power to detect association was estimated by the
proportion of data sets yielding a significant result.
Type-I error was measured as the power to detect
association from data sets generated under the null
model in which the trait locus had no effect on the
phenotype. In studies of power vs. haplotype diversity,
data for assessing Type-I error were prepared by permut-
ing phenotype values in each sample relative to the
genotypes. We compared power and Type-I error among
three tests: the haplo.score function with modified
variance calculation (HST), our new cluster-based score
test (CST), and the test developed by Tzeng et al. [2006]
with clustering based on an evolutionary model (TzST).
The HST is identical to the CST without clustering. The
score test of Tzeng et al. [2006] was applied using the
default settings in the R script available from the authors’
Web site (http://www4.stat.ncsu.edu/�jytzeng/Softwares/
Hap-Clustering/R/).

RESULTS

We explored the properties of the CST, built on
HapMiner’s clustering algorithm, and compared our test
to two related score tests: the modified haplotype-based
HST of Schaid et al. [2002] and the cluster-based TzST
based on the evolutionary clustering algorithm [Tzeng
et al., 2006].

OPTIMIZING HAPMINER PARAMETERS

Maximizing the performance of our new cluster-based
score test was primarily a matter of finding the optimal
values for the parameters governing the clustering algo-
rithm in HapMiner. We identified a range of values for
HapMiner parameters pmin, e, MinPts that provided near-
maximum power for both binary- and quantitative-trait
data at two different signal strengths. Specifically, power
was optimal or near optimal at pmin 5 1/2N or 1/3N,
e5 0.4–0.5, and MinPts 5 0.25. The performance of the test,
moreover, changed little with small deviations away from
the best parameter values.

Power to detect association with a multiplicative binary
trait, using haplotypes of six closely spaced markers, was
maximized at moderate levels of pmin and at relatively
large values of e (Fig. 1). Restrictions on clustering
common haplotypes were clearly required for maximum
power. Without such restrictions (pmin 5 1), performance
was relatively poor (data not shown), and in the studies at
high power (panels C and D), the CST underperformed the
HST at higher e. This performance likely reflects ‘‘over-
clustering,’’ in which widely diverged haplotypes are
inappropriately clustered, thereby merging disease-sus-
ceptible and nonsusceptible lineages. Setting pmin 5 1/N,
where N is the number of distinct haplotypes in the
sample, and e5 0.4 maximized performance for the low-
power data (panels A and B) but yielded considerably
inferior power at a5 0.05 with a strong trait locus (panel
C). With pmin 5 1/2N, e5 0.4, power was optimal at high
power and a5 0.01 (panel D), and was very nearly optimal
under the other conditions examined (panels A–C).
Although maximum performance at high power and a
5 0.05 was achieved with pmin 5 1/3N (panel C), this level
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of pmin returned suboptimal results at low power. Finally,
except when pmin 5 1, the Shannon information-guided
pmin consistently performed very poorly compared to the
analyses that more aggressively clustered haplotypes.

At e40.3, both power and extent of clustering were
essentially independent of the value of MinPts (data not
shown). Consequently, we set MinPts to its default value
of 0.25 in our other studies. Our CST slightly outperformed
the TzST at optimal parameter values, in an increase of
power of 3–5% when analyzing a trait locus with moderate
effect (panels A and B) and of 1–3% with a strong trait
locus (panels C and D).

The optimal parameter values were similar for an
additive quantitative-trait locus (QTL) compared with
the results for a binary trait, though not identical
(Supplementary Fig. A). The parameter settings pmin 5 1/
2N, e5 0.5 yielded the best overall power: they optimized
power at a5 0.01 at both high and low power, and tied for
greatest power at a5 0.05. The TzST performed better,
relative to the CST, on quantitative data than on binary
data. The best parameter values in HapMiner conferred
power less than 2% greater than that of the TzST for a low-

power trait locus. The methods were essentially equally
powerful for the high-power locus.

The optimal parameter values were similar for eight-
marker haplotypes compared with six-marker haplotypes
(data not shown), although due to elevated haplotype
diversity both cluster-based tests outperformed the HST
by a greater margin. On the whole, power to detect
association was greater on six-marker haplotypes than on
eight-marker haplotypes. This finding most likely reflects
reduced correlation among the markers and greater
diversity within the longer haplotype.

DIMENSION REDUCTION VS. POWER

Density-based clustering substantially reduced the
dimensions of the CST relative to the HST in analyses of
a simulated multiplicative binary trait (Fig. 2). As
expected, reducing pmin, the minimum haplotype fre-
quency at which haplotypes are not clustered, raises the
mean d.f. by reducing the extent of grouping. Within a
single value of pmin, the average number of d.f. fell with
increasing e, reflecting the larger radius of the neighbor-
hoods within which haplotypes can be grouped with a
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Fig. 1. Optimizing power to detect association with a multiplicative binary-trait locus. Power from the score test was estimated over
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determined by the range of performance, and therefore is different in each panel.
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‘‘core’’ haplotype (see the Methods section). At pmin 5 1,
indicating no frequency restrictions on clustering, all the
haplotypes were grouped into a single cluster with nearly
every simulation when e was set above 0.3; these results
are not shown in Figure 2. Otherwise, the d.f. reached a
plateau as e was elevated to 0.5, indicating that every
haplotype with frequency less than pmin had been grouped
with a common haplotype. The median value of N in these
analyses was 9 (first and third quartiles 5 7 and 13,
respectively). Thus, values of pmin, whenever pmin was
defined in terms of 1/N, were usually between 0.02 and
0.15. For example, the median value of pmin, when
pmin 5 1/2N, was 0.055 (first and third quartiles 5 0.038
and 0.071, respectively). Haplotypes with frequencies
below this range could be considered rare enough to
warrant clustering with more common haplotypes. Results
were nearly identical for data sets generated under low-
and high-power trait models (compare Fig. 2, panels A
and B). Under optimal HapMiner parameters, our
approach clustered haplotypes more extensively than did
the evolutionary clustering method of Tzeng et al. [2006],
as shown by the reduced average d.f. in the score test. A
reduction in the number of predictor variables generally
conferred a slight advantage in power under optimal
conditions, but clustering to fewer than about 2.5 groups,
on average, rapidly diminished power, probably due to
improper clustering of benign and deleterious haplotypes
(Supplementary Fig. A and data not shown). Power was
not strictly a function of the extent of clustering, even near
the optimum.

POWER AS A FUNCTION OF HAPLOTYPE
DIVERSITY

The analyses heretofore described were performed on
data sets with a wide range of haplotype diversity. We next
examined the performance of the cluster-based score test
on data specifically containing low (5–8 unique haplo-
types), medium (9–12), and high (13 and up) haplotype
diversity. Based on our previous results, we focused on the
three overall best-performing levels of pmin: 1/N, 1/2N,
and 1/3N.

Power to detect a multiplicative binary-trait locus varied
only modestly with choice of pmin, except at high power
and low haplotype diversity, in which case the setting pmin

5 1/N performed significantly worse than the other two
values (Fig. 3 and Supplementary Fig. B).

Overall, power of both HST and cluster-based tests
dropped uniformly with increasing haplotype diversity,
suggesting that the genetic architecture in regions of high
diversity contains complexity that neither clustering
scheme can adequately simplify (Fig. 3 and Supplemen-
tary Fig. B, compare low, medium, and high columns in
each row). This observation is not surprising, as a causal
mutation with susceptibility allele frequency of about 0.2
in a region of high complexity is expected to occur on
several different haplotypic backgrounds.

In contrast, the relative improvement in performance with
clustering compared with no clustering was the greatest at
high haplotype diversity, even when overall power was
modest. Here, haplotype grouping enhanced performance
by 11–13% at low power and by 14–18% at high power. The
results of Figure 3 and Supplementary Figure B, further-
more, show a general trend in favor of more aggressive
clustering in regions of greater haplotype complexity.
Setting pmin to 1/N invariably yielded the greatest power
at high diversity, at both significance levels and at both
high and low overall power, resulting in an average
number of clusters between 4.2 and 5.4. Results were less
consistent at low diversity, although pmin 5 1/2N proved
most versatile in delivering strong results, with mean
cluster number from 2.6 to 3.0. In the middle range of
diversity, performance varied little with choice of pmin.

The CST performed best relative to the TzST at higher
haplotype diversity and at modest power. With the best
HapMiner parameter settings, the CST conferred greater
power than the TzST, with a difference of 4–6%, when
analyzing a low-power genetic model in the presence of
medium or high diversity. On the other hand, in the
presence of a strong trait locus and low diversity, the CST
and TzST (with optimal parameters) performed about
equally, with a difference in power less than 0.01.

The results from continuous data, with an additive QTL,
largely paralleled those from the binary data, with a few
exceptions (Supplementary Fig. C). The greatest difference
was that improvement in power with both the CST and
TzST, relative to the HST, was greater here than for the
binary trait (compare Fig. 3 and Supplementary Fig. B with
Supplementary Fig. C). As in our initial studies of power
at all diversity levels (Figs. 1 and 3 and Supplementary
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Fig. B), we observed that the CST performed slightly less
well relative to the TzST on quantitative data than on
binary data (compare Supplementary Fig. C with Fig. 3
and Supplementary Fig. B). Notwithstanding that power
at high diversity was consistently several percent greater
using the CST with optimal parameters (Supplementary
Fig. C, column 3), it showed no improvement over the
TzST at low diversity (column 1).

The combined data of Figure 3 and Supplementary
Figures B and C show that, although the ideal choice of
pmin varies directly with haplotype diversity, the precise
mathematical relationship is obscure. This overall trend, as
well as preliminary studies of the method, discouraged us
from fixing pmin as a constant, i.e., independent of the
number of observed unique haplotypes.

POWER COMPARISONS AT PRESELECTED
PARAMETER VALUES

Our approach appears to be limited by the large number
of HapMiner parameters over which power must be
optimized. However, we have shown above that certain
combinations of parameters deliver near-maximum power
over a range of conditions tested, in which the strength of
the association and the haplotype diversity were varied. To
make a ‘‘fair’’ comparison among the HST, CST, and TzST,
we chose one set of parameter values (pmin 5 1/2N, e5 0.4)
for the CST on binary traits, and another (pmin 5 1/2N,
e5 0.5) for quantitative traits, and assessed power over a
range of trait-locus strengths under various genetic models.

Regardless of the mode of inheritance of the trait, the
CST consistently outperformed the other two tests at
moderate power. Figure 4 presents comparisons of power
of the three methods under three types of binary-trait-

locus models: multiplicative, dominant, and recessive.
Clustering raised performance over the entire range of
power under every model (Fig. 4, CST vs. HST). The
increase was at a maximum when power was near 50%, as
may be expected, but definite improvement was also
observed for all disease models when the power of the
haplotype method was over 80%. The CST also yielded
greater power, by several percent, than the TzST in the
range of 40–60% power, but this advantage disappeared at
80% power and above.

With binary-trait data, the CST performed best relative to
the HST and the TzST when a recessive trait locus was
simulated (Fig. 4, panels E and F), yielding as much as 14%
more power than the HST, and 5% more power than the
TzST, and performing better than the other two approaches
over a range from about 20 to 80% power (panel E).
Approximately the same advantage of the CST was observed
at a5 0.01 (panel F). We noted similar trends in analyses of
multiplicative (panels A and B) and dominant (panels C and
D) binary-trait loci, although the improvement in power
with the CST was slightly smaller in magnitude, with an
approximately 10% increase near 50% power.

The CST also fared better at moderate power, relative to
the other tests, in a comparison of power to detect QTLs
(Supplementary Fig. D), raising the power some 15% over
the HST and 2–4% over the TzST. At higher power, the CST
and the TzST performed about equally well, and near 80%
power both heightened detection of the trait locus by
about 6%. In summary, whereas the relative power to
detect association by these score tests varies with the type
of trait and the mode of trait-locus inheritance, density-
based clustering of haplotypes consistently improved
performance, and compared well with the evolutionary
clustering method of Tzeng et al. [2006].
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TYPE-I ERROR

Measurements of Type-I error at near-optimal parameter
values show that the CST is valid for use with either binary
(Table II) or quantitative (Table III) data. Both the CST and
the HST returned false-positive rates within sampling
error of the nominal 0.05 and 0.01 Type-I error for a
multiplicative binary trait at either low or high power, at
all three levels of haplotype diversity described earlier
(Table II). Type-I error of the CST was also appropriate
when considering quantitative-trait data (Table III). How-
ever, the HST was significantly conservative for contin-
uous data, except at high power and low haplotype

diversity. The HST grew more conservative at greater
haplotype diversity, especially at a5 0.01. We could not
explain this phenomenon, nor why it was characteristic
only of the haplotype-based test, although we did observe
the same effect in a binary trait adjusted for covariates [Igo
et al., 2007].

DISCUSSION

Our results show that a novel test using density-based
clustering substantially enhances power to detect associa-
tion under an array of genetic models, whether evidence
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for association is modest or strong, with valid Type-I error
rates. The clustering algorithm groups haplotypes likely to
share common recent ancestry. This technique reduces the
complexity of the score test for association developed by
Schaid et al. [2002]. Improvement in power to detect QTLs
was somewhat greater than that to detect binary causative
loci, though the reason for this was not clear. While a major
strength of our cluster-based approach is the flexibility in
the HapMiner clustering algorithm, we identified sets of
HapMiner parameters that delivered near-optimum per-
formance under several inheritance patterns and over a
broad range of haplotype diversity. The GLM framework
enables analysis of several types of data—binary, contin-
uous, and Poisson (count) data foremost among them—
and also, when needed, incorporates environmental
covariates. In addition, the method is computationally
efficient: analyses of 1,000 data sets of 200 cases and
controls and 6 SNPs required only about 35 min on a 2.6-
GHz AMD processor running Linux. For short haplotypes
(less than 10 markers), the speed of the new method is
comparable to that of the score test of Tzeng et al. [2006],
whereas analysis of longer haplotypes tends to slow
HapMiner (data not shown). However, a sliding window
of six to eight SNPs is expected to cover most regions of
strong LD in a genome-wide scan comprising approxi-

mately 500,000 markers [The International HapMap Con-
sortium, 2007]. Our approach can accommodate missing
data, at the expense of additional computational complex-
ity. The effect of missing data on the computational
burden, and on the performance of the clustering
algorithm, is a topic for future investigation.

We expect our approach to work well in the presence of
both allelic and locus heterogeneity. The simulation
method here models allelic heterogeneity by placing
disease alleles on a variety of haplotype backgrounds.
We did not explicitly simulate locus heterogeneity, but the
binary-trait model allowed sporadic cases, and most
quantitative-trait models showed considerable overlap in
the trait values of the three genotypes at the trait locus.

Our studies revealed that although optimizing HapMi-
ner parameters is potentially laborious, a certain range of
parameter values seems to work well in several contexts.
Such ‘‘all-purpose’’ parameter settings are necessary for
the success of genome-wide association mapping using
this method. In certain cases, clustering under different
values of pmin yielded very similar power despite
considerably different mean d.f. The overall haplotype
diversity affected optimal parameter choice more strongly,
but in a predictable way.

We do not attempt to localize causative variants. The
cluster-based mapping approaches that do, however, are
too computationally intensive to be useful for scans of
large genomic regions [e.g., Bardel et al., 2005, 2006;
Zöllner and Pritchard, 2005]. However, individual clusters
with highly significant effect under the score test may be
good candidates for harboring causal variants. Our
simulations, in which the causative locus was omitted
from the haplotype, provide a realistic simulation of a
genome-wide association analysis using a random (agnos-
tic) or tag SNP set. We did not conduct simulations in
which genotypes of a single causative SNP were available
because, in this situation, single-SNP association is
expected to be more powerful.

Because our simulation studies required analyses on
thousands of unique data sets, we could not use a
weighting function for haplotype similarity that incorpo-
rated potentially useful information about physical dis-
tance or LD between the reference SNP and other SNPs in
the haplotype. HapMiner, however, does allow weighting
functions based on either map distance or LD. We chose
the exponential function, assigning greater weight to more
central markers. This weighting scheme has the advantage
of being robust to recombination. In practice, the ideal
number of SNPs in the haplotype and the best weight
function may depend on the density of the sampled SNPs
and the LD structure of the region of interest. In a genome-
wide scan, these properties will vary widely, and therefore
a generic, simple weighting function like the exponential is
likely to work best. Having focused on features of the CST
relevant to genome-wide association mapping, we did not
evaluate, in this study, its performance in a fine-mapping
context in which the LD structure would play an
important role. We expect, nonetheless, that the CST
would perform favorably, relative to HapMiner, when
LD is used as the criterion for clustering, since a major
advantage of the CST is that, unlike HapMiner, it does not
require phased haplotype data.

As with any statistical approach, our clustering method
is limited in several respects. We have sacrificed some

TABLE II. Type-I error of haplotype- and cluster-based
tests as a function of haplotype diversity, with binary
trait

Low Power High Power

Diversity Analysis a5 0.05 a5 0.01 a5 0.05 a5 0.01

Low Haplo. 0.038 0.012 0.042 0.014
Clusters 0.059 0.012 0.038 0.012

Medium Haplo. 0.039 0.009 0.036 0.006
Clusters 0.051 0.011 0.036 0.007

High Haplo. 0.045 0.009 0.040 0.008
Clusters 0.046 0.006 0.050 0.012

Haplo., HST; Clusters, CST; a, nominal Type-I error. See the
Methods section for definitions of low, medium, and high
diversity and of low and high power.

TABLE III. Type-I error of haplotype- and cluster-based
tests as a function of haplotype diversity, with
quantitative trait

Low Power High Power

Diversity Analysis a5 0.05 a5 0.01 a5 0.05 a5 0.01

Low Haplo. 0.031 0.005 0.039 0.006
Clusters 0.041 0.009 0.058 0.011

Medium Haplo. 0.033 0.000 0.023 0.000
Clusters 0.061 0.008 0.039 0.007

High Haplo. 0.022 0.001 0.018 0.001
Clusters 0.044 0.009 0.046 0.006

Entries in italics are significantly different from the nominal level,
as determined by an exact test using a binomial probability
distribution. Designations are as in Table II.
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accuracy in modeling to reduce the computational burden.
Thus, the approach may not be ideal with data from
populations markedly different from the Utah CEPH
families, who were the source of the haplotype data from
which genetic data were simulated. There is no clear-cut
strategy for determining the proper number of SNPs to
include in a haplotype. Several criteria are commonly
used, such as map density and intermarker correlation.
Posterior haplotype probabilities are calculated under the
assumption of HWE. The approach is not expected to offer
great power to detect rare variants, in part because
haplotypes are parameters. Therefore, our approach
creates an additive haplotype effect on the transformed
trait (where the transformation depends on the relevant
GLM). Indeed, we were unable to detect a rare disease
susceptibility locus simulated for Genetics Analysis Work-
shop 15 (GAW15) [Igo et al., 2007]. Posterior haplotype
probabilities are calculated under the assumption of HWE.
We did not test here the sensitivity of our approach to
departures from HWE. However, like the haplotype-based
score test in HaploStats [Schaid, 2004], the CST is robust to
the severe departure from HWE observed in the vicinity of
the HLA-DRB1 locus in the simulated data from GAW15,
in which there was an excess of homozygosity [Igo et al.,
2007].

In the technique described here, we cluster and predict
haplotypes independently of trait status. Our method
improved performance most dramatically in the presence
of extreme haplotype diversity, with slight improvement at
low diversity. Our method also offers, for binary traits, a
slight advantage in power over the Tzeng et al. approach.
To estimate cluster effects, we would ideally account for
the trait status, as in the haplo.glm regression-based
association test in HaploStats [Lake et al., 2003; Schaid,
2004]. Using the framework of haplo.glm would also
enable us to model gene-environment interaction. Because
clustering in this context will relieve some of the problems
of large numbers of coefficients necessary to model all
haplotype-covariate interactions, we expect that our
clustering algorithm will enhance the power of this more
sophisticated test, as well. This refinement of the CST is a
subject for further research.
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