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Abstract. This paper presents a large scale analysis of gene-coexpression
networks (GCNs) across four plant species, i.e. Arabidopsis, Barley, Soy-
bean, and Wheat, over 1471 DNA microarrays. We first identify a set of
5164 metagenes that are highly conserved across all of them. For each
of the four species, a GCN is constructed by linking reliable coexpressed
metagene pairs based on their expression profiles within each species. Sim-
ilarly, an overall GCN for the four species is constructed based on gene
expression profiles across the four species. On average, more than 50K cor-
relation links have been generated for each of the five networks. A num-
ber of recent studies have shown that topological structures of GCNs and
some other biological networks have some common characteristics, and
GCNss across species may reveals conserved genetic modules that contain
functionally related genes. But no studies on GCNs across crop species
have been reported. In this study, we focus on the comparative analysis
of statistical properties on the topological structure of the above five net-
works across Arabidopsis and three crop species. We show that: (1) the
five networks are scale-free and their degree distributions follow the power
law; (2) these networks have the small-world property; (3) these networks
share very similar values for a variety of network parameters such as degree
distributions, network diameters, cluster coefficients, and frequency distri-
butions of correlation patterns (sub-graphs); (4) these networks are non-
random and are stable; (5) cliques and clique-like subgraphs are overly
present in these networks. Further analysis can be carried out to inves-
tigate conserved functional modules and regulatory pathways across the
four species based on these networks. A web-based computing tool, avail-
able at http://cbe. case.edu/coexp.html, has been designed to visualize ex-
pression profiles of metagenes across the four species.

1 Introduction

With the availability of huge amount of genomic data, gene functions are usu-
ally predicted by similarity-based sequence analysis [7I0]. A great challenge in the
post-genomic era is to understand gene regulations, genetic pathways and func-
tional relations/modules of biological organisms at a system level [T3T7UTSITI22].
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For such a purpose, sequence-based analysis has its limitations because genes
with even very similar sequences may not be functionally related to one another
[11UT9]. Therefore, it becomes essential to integrate both genomic information and
microarray data (and some other data sources) in the discovery of gene regula-
tory and functional relations. However, it is still hard or even impossible to iden-
tify regulatory or functionally related genes if studies are limited to only a single
species[I9]. This motivates the investigation of gene regulatory and functional re-
lations by integrating both genomic information and microarray data to study not
only a single species, but across multiple species. Recently, much attention has
been paid to the investigation of biological networks and/or conserved functional
modules using multiple species, or multiple tissues. An earliest study has inves-
tigated gene-coexpression networks across humans, flies, worms, and yeast[I9],
and has discovered some global conserved genetic modules across these species.
Since then, a number of studies[4JT0/T5] have been proposed to analyze complex
gene-coexpression networks across species. Berg and Léssig[4] have proposed a
Bayesian alignment method and have identified significant conservations of gene
expression clusters and gene functions by analyzing GCNs between humans and
mice. Lelandais et al. [I5] have adopted the Multi-dimensional Scaling technique
to compare GCNs from budding and fission yeasts and have extracted some com-
mon properties and difference between the two species. Guimera and Amaral[I0)
have proposed a method that can generate a ‘cartographic representation’ of bio-
logical networks which enables the identification of functional modules from those
networks. They have applied the method on metabolic networks across twelve or-
ganisms and have discovered that nodes with different connectivity patterns are
affected by different evolutionary constraints and pressures. Gene-coexpression
networks across different tissues have also been studied by a number of groups
[2061T4] in order to identify conserved interactions among disease genes. Other re-
searchers [3] have identified functionally related proteins by analyzing conserved
protein-protein interactions across species.

These studies mainly focus on crossing humans, animals or diseases. None
of them have investigated the properties of GCNs across plants. In this paper,
we study the statistical properties [I] of gene coexpression networks across four
plant species: Arabidopsis, Barley, Soybean, and Wheat using 1471 hybridiza-
tions, whose genomic and DNA microarray data are available at public webs.
Arabidopsis is chosen here because it is a well-understood model organism and
can be used to study the functionality of genes and/or functional modules in
other three species, which are important crops in the world. To the authors’
best knowledge, this is the first study on gene-coexpression networks of crop
species together with a model organism Arabidopsis. It is of importance to un-
derstand the statistical properties of gene-coexpression networks in order to learn
their functional relations, and to understand regulatory pathways among genes
across these species. The current study on GCNs is an important step towards
further understandings and studies of conserved functional modules from the
four species.
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The rest of this paper is organized as follows. In Section 2, we first introduce
the data sources that include genomic sequences and 1471 DNA microarray
expression profiles of the four plant species. A set of 5164 metagenes is then
obtained by comparing the genes across the four species using BLAST. A web-
based computing tool is designed to view the expressions of metagenes across
various species, experiments, and hybridizations. Five gene-coexpression net-
works are then constructed based on the Pearson’s correlation coefficient from
the DNA microarray expression profiles of metagenes. We also propose a sim-
ple algorithm to calculate the frequency distribution of correlation patterns. In
Section 3], a comparative analysis is conducted on the five gene-coexpression net-
works. We have obtained the following statistical properties for these networks:
(1) the degree distributions of the five coexpression networks follow the power-
law, i.e., P(k) ~ k=7, which means the probability of a node with a degree of
E (P(k)) is proportional to k=7, where v > 0 is the exponent of the power-law
[1]; (2) the five gene-coexpression networks have the small-world property [20],
i.e., the network diameters are small and the cluster coefficients are great; (3)
the five gene-coexpression networks share very similar values across a variety of
network parameters such as degree distributions, network diameters, cluster co-
efficients, and the frequency distributions of interaction/correlation patterns; (4)
these networks are non-random and their properties are stable under randomly
introduced noise, even with as large as 20% changes of edges; (5) cliques and
clique-like subgraphs are overly present in these gene-coexpression networks. In
Section ], we conclude the paper by discussing some potential work in predicting
functional modules and regulatory pathways using these coexpression networks
from multiple species.

2 Materials and Methods

2.1 Sequence and Expression Data

The materials used in this study include the genomic sequences and a large set
of DNA microarray expression profiles of the four plant species, which were
collected from several public sources on the Internet: hitp://affymetriz.com,
http://arabidopsis.org, hitp://tigr.org, hitp://ausubellab.mgh.harvard.edu/imds,
http://psi081.ba.ars.usda.gov/SGMD, hitp://soybeangenome.ory, hitp://harvest-
web.org, http://plexdb. org, http://www.ncbi.nlm.nih.gov/projects/geo, hitp://
smd.stanford.edu, etc. For Arabidopsis, we select 617 DNA microarray expres-
sion profiles. For Barley, Soybean, and Wheat, we respectively have 671, 53, and
130 microarrays. These 1471 DNA microarray expression profiles contain diverse
conditions of microarray experiments (e.g., various experimental organisms, dif-
ferent experimental types, a wide range of experimental factors, etc.)

The aim of this study is to investigate the common orthologous genes of the
four species and the statistical properties of the gene-coexpressions across the
species, experiments, and hybridizations.

There are three major steps in this study: (1) identifying metagenes across the
four species; (2) constructing five gene-coexpression networks based on microarray
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expression profiles of the metagenes: one for each of the four individual species,
and one for the overall gene-coexpressions across the four species; (3) investigating
the statistical properties of the five gene-coexpression networks by a comparative
analysis.

2.2 Identifying Metagenes

By applying “all-against-all” BLAST[I9] to all genes of each pair of species,
5146 metagenes are obtained and shown in Table[] (a complete list of the 5164
metagenes is available on our website). These 5164 metagenes are only a small
fraction of all the genes with expression data from each species. Each metagene
is defined as a set of four genes, one from each of the four species. Any two
genes in a metagene are each other the best hit by BLAST using their protein
sequences. For example, Metagene 1 consists of four genes: “244901 at” in Ara-
bidopsis, “Barleyl 53087” in Barley, “GmaAffx.25198.1.S1 at” in Soybean, and
“Ta.22468.1.S1 at” in Wheat (see the first row in Table[I]). These four genes are
the best hits each other by BLAST using their protein sequences. Metagenes
setup a mapping between the genes of one species and those of another species.
By this mapping, it is possible to analyze gene expressions across various species,
experiments, and hybridizations. The expressions of metagenes across species,
experiments, and hybridizations can be viewed by our web-based computing tool
at http://cbe.case.edu/coexp.hitml.

Table 1. Metagenes across Arabdopsis, Barley, Soybean, and Wheat

No. Arabidopsis Barley Soybean Wheat

1 244901 at Barleyl 53087 GmaAffx.25198.1.S1 at Ta.22468.1.S1 at

2 244936 at Barleyl 53095 GmaAffx.17247.1.51 at TaAffx.124056.1.S1 at
5164 267646 at Barleyl 07944 Gma.3262.1.51 at Ta.10084.1.S1 at

2.3 Constructing Gene-Coexpression Networks

Gene-coexpression networks are constructed based upon metagenes’ DNA mi-
croarray expression profiles. Relabel the 1471 hybridizations and denote Hy, Ha,
Ty, and H617 the 617 hybridizations of Arabidopsis; H6187 H6197 Ty, and nggs the
671 hybridizations of Barley; legg, H1290, Ty, and H1418 the 130 hybridizations of
Soybean; and H1419, H1420, - - -, H1471 the 53 hybridizations of Wheat. These 1471
DNA microarrays define the following 5164 x 1471 matrix of intensities, where
the ki, row of the matrix represents the expression intensities of the k;, metagene
across the 1471 hybridizations. Whereas each column represents the expression
intensities of all metagenes under a hybridization. The hybridizations within each
experiment have been normalized when we downloaded the data. However, when
the hybridizations from various experiments and different species are put together,
a new normalization is needed. The expression intensities are normalized across
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species and experiments using the Quantile normalization method[5]. The pur-
pose is to adjust the effects arising from variation of different experiments rather
than from biological differences [5I21].

To construct a gene-coexpression network G = (V, E'), we take each metagene
as a node in V. For each pair of metagenes: k and j, the Pearson’s correla-
tion coefficient (r(k,j)) based on their expression profiles can be calculated as

N EKL-3K

T(k'aj) - \/(21(27 (ZI{’()Q N2 (216)2 )
row vectors of the intensity matrix, and N is the number of hybridizations. If
|r| is greater than a predefined cutoff value (the choice of the exact value of the
threshold will be discussed below), the expressions of metagenes k and j are
highly correlated and an edge is added between the pair. When constructing a
gene-coexpression network, a proper cutoff value is necessary so that only signif-
icant correlations are included in a coexpression network. In this study, a similar
approach as in[I4] has been used in determining threshold values for different
datasets. Basically, under the null hypothesis of no correlation, the Pearson cor-
relation coefficient corresponds to a t-distribution with degrees of N — 2. An
overall error rate of 0.05 is chosen after Bonferroni correction of multiple test-
ing. In addition, only top and bottom 0.5% of correlations will be included for
further study[14]. The combination of criteria corresponds to cutoff values from
0.8 to 0.9 in this study.

There are five gene-coexpression networks being constructed as follows. For
Arabidopsis, the gene-coexpression network Gar = (V,Ear) is constructed
based on the microarray data of Arabidopsis: Hy, Hs, ---, and Hgi7, with a
cutoff value 0.8. Similarly, for Barley, Soybean, and Wheat, their gene coex-
pression networks Gpg = (V, Egp), Gam = (V,Egm), Gra = (V,Era) are
respectively constructed by using Hgis, He1g, - -, H1288 with cutoff value 0.8 for
GBB; I’Ilggg7 ]:1129()7 crey H1418 with cutoff value 0.85 for GGM; ]:114197 H1420,
<+, Hygppwith cutoff value 0.9 for Gra. Finally, G = (V| E) is constructed as
an overall gene coexpression network across four species by using all 1471 DNA
microarrays with cutoff value 0.8. Therefore, Gar, Ggp, Gagym and Gra respec-
tively represent metagene pairs that are coexpressed with significant correlations
within the experiments of each individual species. Whereas, G represents meta-
gene pairs coexpressed with significant correlations in all experiments across the
four species. Each of the networks has 5164 nodes and the number of edges
is in the range of 50k-70k (see Table ). A possible explanation that different
networks have different cutoff values is that the numbers of hybridizations for
different networks vary dramatically, from around 600 for G 47 and Ggp to 100
for Ggam and 50 for G 4. Greater cutoff values for smaller data sets are chosen
to ensure only significant correlations being included.

, where K and L represent the ky, and Iy,

2.4 Statistical Analysis of Network Parameters

The aim of this study is to investigate the statistical properties of network pa-
rameters that include degree distributions, network diameters, and clustering
coefficients from the five gene-coexpression networks. These parameters have



620 S. Wu and J. Li

been widely discussed for large-scale complex networks and the calculation can
be performed based on their definitions [IJ.

In addition to expression links, some subgraphs in gene-coexpression networks
may represent important functional modules, and it is of great interest to under-
stand or identify special patterns of subgraphs that are overly represented from
GCNs across species. As the first step, we have studied the frequency distri-
bution of correlation patterns/subgraphs in this paper that have similarly been
taken into considerations by other researchers [19]. In total, 29 correlation pat-
terns/subgraphs each with 3 to 5 nodes have been included (see Fig. ). For
each of the patterns, its frequency in a network is defined as the number of its
occurrences in the network. If a substructure has been counted as one pattern
(say Pattern 17 in Fig. 2l), none of its subgraphs with the same number of nodes
(say Pattern 12 and 16) will be counted as occurrences of smaller patterns. A
simple computer program has been implemented to count the frequencies of the
29 correlation patterns in a network based on the following algorithm. The run-
ning time of the algorithm depends on the degree distribution of a network. But
it is much faster than the naive method that examines every subset with 5 nodes.

Algorithm: Counting Pattern Frequency

Input Network G = (V| E) (denote V by integers: 1,2,...,5164).
Output Frequency fi (denote Py the ki, pattern, 1 < k < 29).

Step 1 For each node 4, find its neighbors:
N; = {jl(j,i) € E,j >i},1 <i <5164

Step 2 For each Nj;, check every subset U of N; with |U| < 4,
if {i} UU is a pattern, say P = Gyuu, and Gryou
is not contained in any other patterns with |U| + 1 nodes,
count the occurrence into the frequency of Py, i.e. fr++.

3 Results

In this section, we present the statistical properties of network parameters ob-
tained by the comparative analysis of the five gene-coexpression networks. First,
a brief summary on the network parameters of the five networks is given in
Table Pl It can be seen that all the parameters are very similar across the five
gene coexpression networks. This is probably because the four plant species have
relatively small evolutionary distances from each other.

As observed in many gene expression networks by other researchers, the GCNs
obtained here also have the small-world property, i.e., they all have small net-
work diameters (either 4 or 5) and great cluster coefficients (at least 0.6). The
degrees of the five GCNs follow the power-law distributions with very similar
power-law exponents v (Table[2]). The values of v (1.13-1.28) are consistent with
many other gene-coexpression networks obtained by other researchers( see [2]
and references therein). The degree distributions of the five GCN are displayed
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Table 2. Summary of network parameters

Network Node Edge Power-law exponent Network diameter Cluster coefficient

Gar 5164 56392 1.1520 5 0.7042
Gpp 5164 52714 1.2147 4 0.8264
Gam 5164 72968 1.1298 4 0.7827
Gra 5164 63382 1.1569 4 0.6338
G 5164 51905 1.2777 4 0.6444

350) G- Arabdopsis Gy Barley

50 100 150 200

350 Gy Soybean G, Wheat

50 100 150 200

Gy Common network
G: Overall network

50 100 750 200 i 2 3 @ g 50 100 150 200

Fig.1. The first and third columns are the degree distributions of Gar,GggB,
Gam,Gra,G and Gy, respectively, where r—axis represents the number of degrees
and y—axis represents the number of nodes. The second and forth columns are the
log-log plots of the degree distributions of Gar,Ger, Gam,Gra, G, Go.

in Fig. [l together with their log-log plots. In addition, we have defined a new
network Gy = (V, Ep) (called the common network) by taking all the com-
mon edges from the four gene-coexpression networks for individual species, i.e.
FEo=FEsrNEpgNEgy N Epa. The degrees of Gy also follows a power-law dis-
tribution, shown in Fig.[Il but the total number of edges in G is much smaller
compared with other five networks.

Distributions of correlation patterns/subgraphs. Genes and proteins al-
ways interact with each other in groups to perform certain biological functions.
It is important to understand their interaction/correlation patterns. As the first
step, we evaluate the frequency distributions of 29 correlation patterns (also
see [16], each of which has 3 to 5 nodes) in the gene-coexpresion networks
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obtained in this study. Each pattern may represent a particular type of the
interactions/correlations of the genes/metagenes. For comparison purpose, we
further introduce two new networks. The perturbed network under noise Gg is
defined by introducing as much as 20% noise on edges, i.e., deleting 10% of the
existing edges and adding 10% of new edges in the network G. And a random
network Gp is generated, which consists of the same number of nodes (5164). An
edge will be added to each pair of nodes in G with a small probability so that
the total number of edges in G will be similar as the number of edges in other
networks. The frequency distributions of the 29 patterns in all eight networks,
.., Gar,Gpp,Ganm,Gra,G,Gs, Gy and GR, are counted using the algorithm
described in subsection 2.4 and shown in Fig.
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Fig. 2. Left: the 29 correlation patterns (also see [16]). Right: the frequency distribu-
tions of the 29 patterns; Top part: Gar,GeB,Gam, Gra, G, Gs (presented by “«”),
Gl - 10°(presented by “o”); Bottom part: Go (presented by “0”); Gr is indicated by

[IPIIN

o”: up and down between top and bottom. x—axis: 29 patterns. y—axis: frequency.

The five gene-coexpression networks (Gar,Gep,Gom, Gra, G), as well as
the perturbed network Gg, have very similar frequency distributions over all the
29 patterns. The frequencies in graph Gy are much lower because G consists
of a much smaller number of edges. But the distribution pattern is the same as
those of other coexpression networks. To make it clear, we multiple the frequency
distribution in Gy by 10° and denote the new scaled distribution by Gy -10°. Fig.
shows that all the 7 gene coexpression networks have very similar distributions
across all the patterns, but the random network G has a very different distri-
bution. Further examinations reveal that a subset patterns (such as patterns 2,
7-8, 22-29) in the 7 coexpression networks have very different frequencies from
the random network Gr. Those patterns are either cliques (patterns 2, 8 and
29) or some condensed patterns that are very similar to cliques (patter 7 and
patterns 22-28). The over presence of cliques or clique-like subgraphs in GCNs
may reflect the facts that those genes in a clique may encode proteins that form
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a protein complex, or they may be regulated by a common transcription factor.
More investigations are needed on these overly presented patterns.

In order to quantitatively measure the overall differences of frequency dis-
tributions of the 29 patterns among Gar,Gpp,Gan,Gra, G, Gs, and Gg, a
distance measure is defined as d(G;, G;) = Zig:l willog(nir) — log(nji)|, where
n, and njy are the frequencies of Pattern k of G; and G, respectively, and wy,
is the weight of Pattern k (wy > 0 and Zigzl wy, = 1). In this study, we simply
take an equal weight for each pattern, i.e., wy = 1/29 for any k. The pairwise
distances among all the networks are given in Table [3l The distances show that
Gar,Gee,Gan,Gra, G, and Gg (also G - 10°) are very close each other (all
pairwise distances of the 6 networks are less than 1.66). In contrast, the random
network G is quite different from them (the distance between G r and any other
one is around 6, see the last row).

Table 3. Distances on frequency distributions

Distance Gar GBB Gam Gra G Go Go - 10° Gs Gr

Gar 0 0.99 1.07 1.30 049 11.39 1.19 0.61 6.81
GBB 0.99 0 1.11 0.93 0.63 10.57 1.33 0.76  5.91
Gaoum 1.07 1.11 0 1.27 1.21 11.29 1.35 1.14 6.41
Gra 1.30 0.93 1.27 0 1.26 10.32 1.66 1.38 6.18
Ga 0.49 0.63 1.21 1.26 0 11.00 1.06 0.22 6.33
Go-10°  1.19 1.33 1.35 1.66 1.06 11.40 0 1.14 6.73
Gs 0.61 0.76 1.14 1.38 0.22 11.22 1.14 0 6.37

Gr 6.81 5.91 6.41 6.18 6.33 19.13 6.73 6.37 0

Non-randomness and stability of coexpression networks. We believe that
the correlation links and the overly presented patterns in the networks are sta-
tistically significant and they might be biologically meaningful. First of all, the
analysis was performed on a large data set that consists of 1471 hybridizations.
It is unlikely to obtain significant correlations and expression patterns by chance
over such a large data set. Furthermore, we have constructed a random network
Gr and a perturbed network GGg. The network parameters of the two networks
are shown in Table @ and their degree distributions are shown in Fig. B It is ob-
vious that the gene-coexpression networks are quite different from the random
network in terms of degree distributions, cluster coefficients, and pattern fre-
quency distributions. On the other hand, all the parameters from the perturbed
network are very similar with those from all other gene-coexpression networks.
This indicates that the results obtained from this study are quite robust and can
not be generated by chance.

Biological meaning of the gene coexpression networks. The networks we
construct represent significant correlations among metagenes across the species
over a large set of microarray data. Various types of subgraphs in these coexpres-
sion networks may imply biological meaningful properties or functional relations
of genes. We first take the top three hub nodes from the Arabidopsis network
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Table 4. Network parameters of Gr and Gs

Network Node Edge Power-law exponent Network diameter Cluster coefficient
Gr 5164 53461 Non Power-law 4 0.008
Gs 5164 73119 1.2672 6 0.604

“ 400
G Random network
350 350 GS: Perturbed network

300 300
250 250
200 200
150 150

100 100

- N © & 0 @ N o

0 20 40 60 80 0 50 100 150 200 0 1 2 3 4 5 6

Fig. 3. Left: the non-power-law degree distribution of Gr. r—axis: number of degrees;
y—axis: number of nodes. Middle: the degree distribution of G's. Right: the log-log plot
of the degree distribution of Gs.

and check their GO (Gene Ontology) annotations(http://www.arabidopsis.org).
We find that the genes represented by the hub nodes are involved in protein
expressing, folding, and binding, which are essential in protein synthesis and
protein-protein interactions. The corresponding metagenes also have large num-
ber of links in the coexpression networks of other three species (due to the page
limitation, details of the results in this subsection can be found from our website).
The above observations suggest that our coexpression networks may reveal cer-
tain important biological properties. Gene functions from Barley, Soybean, and
Wheat, which are mostly unknown, can be predicted through our coexpression
networks and functional annotations of Arabidopsis.

To further explore the networks, we choose those highly significant links by a
cut-off value of 0.99. The node with the largest number of links in Arabidopsis
(gene 246075 at) has 47 neighbors. This gene has its GO annotation as trans-
ferase activity, transferring glycosyl groups, and UDP-galactosyltransferase ac-
tivity. Among all the 48 genes, more than 70% of all the gene pairs (48 choose
2) are linked. Most genes in this subgraph share similar GO annotations such as
catalytic activity, cellulose synthase activity, transferase activity, and kinase ac-
tivity. Therefore this subgraph may present one or several groups of functionally
related genes. A few genes with unknown biological functions in this subgraph
may be predicted based on annotations of other genes within the same group.

4 Discussions

In this study, we first obtained metagenes that are orthologous genes in common
to the four plant species by sequence analysis. Those metagenes might have been
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conserved from their common ancestor through evolution and might play an im-
portant role in biological functions and regulations. Gene-coexpression networks
were then constructed based on their expression profiles. We have investigated
the statistical properties of those gene-coexpression networks. The degrees of
all gene-coexpression networks follow power-law distributions and they have the
small-world property with small network diameters and great cluster coefficients.
The values of those parameters from all the expression networks are very similar,
probably because the four species are very close in evolution. The properties are
quite different from those of a random network and are robust under pertur-
bation. We have also investigated the frequency distributions of 29 correlation
patterns and have found that cliques and clique-like patterns are overly present
in these networks but not in a random network with similar size. This result
implies that some of those patterns may represent certain important functional
modules. Further studies are needed to explore the biological meanings of those
patterns.

This study has two significant features. First, it is the first study on the gene-
coexpression networks across crop species, whereas previous studies mainly focus
on the gene-coexpression networks of single crop species[8], or across humans,
animals and diseases[2I3AIGITOITAITEITY]. Secondly, this study first investigates
the statistical properties of the frequency distributions of correlation patterns
in gene-coexpression networks and has identified that cliques and clique-like
patterns are overly present in these networks. Previous studies mainly discuss
network parameters such as degree distributions, diameters, cluster coefficients.

Pathways and gene regulatory networks are usually predicted by compara-
tive genomics using sequence information, which can also be applied on crops
such as Barley, Soybean, and Wheat. However, metagenes and coexpression net-
works can be used as a new method to predicting functionally related genes,
functional modules and regulatory pathways. By across-species inference, the
known functionally related genes, functional modules and regulatory pathways
of one species can be used to predicting those of other species. Arabidopsis is
a well-studied species. Many functionally related genes, functional modules and
regulatory pathways have been identified in Arabidopsis. Whereas, little has
been known on the pathways, regulations, functions, and modules about Bar-
ley, Soybean, and Wheat. Gene-coexpression networks can make it possible to
predict functionally related genes, functional modules and regulatory pathways
in the three species by those in Arabidopsis. If a group of coexpressed meta-
genes are functionally related in Arabidopsis, by comparing gene-coexpression
networks, it is possible to predict that those metagenes may also be functionally
related in Barley, Soybean, and Wheat. We will address this issue in our future
studies.
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