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Abstract

We study the problem of reconstructing haplotype configurations from genotypes on pedi-
gree data with missing alleles under the Mendelian law of inheritance and the minimum re-
combination principle, which is important for the construction of haplotype maps and genetic
linkage/association analyses. Our previous results show that the problem of finding a minimum-
recombinant haplotype configuration (MRHC) is in general NP-hard. The existing algorithms for
MRHC either are heuristic in nature and cannot guarantee optimality, or only work under some
restrictions (on e.g. the size and structure of the input pedigree, the number of marker loci, the
number of recombinants in the pedigree, etc.). In addition, most of them cannot handle data
with missing alleles and, for those that do consider missing data, they usually do not perform
well in terms of minimizing the number of recombinants when a significant fraction of alleles are
missing. This paper presents an effective integer linear programming (ILP) formulation of the
MRHC problem with missing data and a branch-and-bound strategy that utilizes a partial order
relationship and some other special relationships among variables to decide the branching order.
The partial order relationship is discovered in the preprocessing of constraints by considering
unique properties in our ILP formulation. A directed graph is built based on the variables and
their partial order relationship. By identifying and collapsing the strongly connected compo-
nents in the graph, we may greatly reduce the size of an ILP instance. Non-trivial lower and
upper bounds on the optimal number of recombinants are introduced at each branching node
to effectively prune the search tree. When multiple solutions exist, a best haplotype configura-
tion is selected based on a maximum likelihood approach. The paper also shows for the first
time how to incorporate marker interval distance into a rule-based haplotyping algorithm. Our

results on simulated data show that the algorithm could recover haplotypes with 50 loci from a

*Department of Computer Science, University of California - Riverside and Department of Electrical Engineering
and Computer Science, Case Western Reserve University. jili@cs.ucr.edu. Research supported by NSF grant CCR-
9988353.

TDepartment of Computer Science, University of California - Riverside and Shanghai Center for Bioinformatics
Technology. jiang@cs.ucr.edu. Research supported by NSF Grants CCR-9988353, ITR-0085910 and CCR-0309902,
and National Key Project for Basic Research (973) 2002CB512801.



pedigree of size 29 in seconds on a standard PC. Its accuracy is more than 99.8% for data with
no missing alleles and 98.3% for data with 20% missing alleles in terms of correctly recovered
phase information at each marker locus. A comparison with a statistical approach SimWalk2
on simulated data shows that the ILP algorithm runs much faster than SimWalk2 and reports
better or comparable haplotypes on average than the first and second runs of SimWalk2. As an
application of the algorithm to real data, we present some test results on reconstructing hap-
lotypes from a genome-scale SNP data set consisting of 12 pedigrees that have 0.8% to 14.5%

missing alleles.

Keywords: Haplotyping, pedigree analysis, recombination, missing data imputation, integer linear

programming, branch-and-bound algorithm

1 Introduction

With the completion of the Human Genome Project [16, 33|, an almost complete human genomic
DNA sequence has become available, which is essential to the understanding of the functions
and characteristics of human genetic material. An important next step in human genomics is to
determine genetic variations among humans and the correlation between genetic variations and
phenotypic variations such as disease status, quantitative traits, etc. To achieve this goal, an
international collaboration, namely, the international HapMap project, was launched in October,
2002. The main objective of the HapMap project is to identify the haplotype structure of humans
and common haplotypes among populations. However, the human genome is a diploid and, in
practice, haplotype data are not collected directly, especially in large scale sequencing projects
mainly due to cost considerations. Instead, genotype data are collected routinely in large sequencing
projects. Hence, efficient and accurate computational methods and computer programs for the
inference of haplotypes from genotypes are highly needed.

The input data for haplotype reconstruction can be divided into three categories: SNP segments
from an individual [20, 22] or pooled samples [26], genotype data with pedigree information, and
genotype data without pedigree information (also called population data sometimes) [8, 9, 12,
24, 31]. A recent comprehensive review of computational methods for haplotype inference can
be found in [3]. Some other overviews of combinatorial and statistical methods for haplotype
inference on population data can be found in [13, 14]. This paper focuses on genotype data with
pedigrees. It is generally believed that haplotypes inferred from pedigrees are more accurate than
those from population data. Moreover, some family based statistical association tests such as TDT
(i.e. Transmission Disequilibrium Test) and its variants (e.g. [28, 36] among others) require access
to haplotype information of each member in a pedigree. The existing computational methods
for haplotyping pedigree data can be divided into two categories: statistical methods and rule-
based (i.e. combinatorial) methods. The goal of statistical approaches [1, 11, 19, 21, 29, 30]



is to find a haplotype solution with the maximum likelihood under certain assumptions. But
statistical methods are usually time consuming and thus cannot handle large or moderately large
data sets, especially for data sets with dense markers. On the other hand, rule-based approaches are
usually fast, although they do not normally provide numerical assessments of the reliability of their
results. Nonetheless, by utilizing some reasonable biological assumptions, such as the minimum
recombination principle, rule-based methods have proven to be powerful and practical [25, 27,
32, 34]. The minimum recombination principle basically says that genetic recombination is rare
for closely linked markers and thus haplotypes with fewer recombinants should be preferred in a
haplotype reconstruction [25, 27]. The principle is well supported by practical data. For example,
recently published experimental results [6, 10, 15] demonstrate that, in the case of human, the
number of distinct haplotypes is limited. Moreover, the genomic DNAs can probably be partitioned
into long blocks such that recombination within each block is rare or even nonexistent.

Since the maximum likelihood (ML) and MRHC formulations have different objectives, they
might be the most applicable in different situations. In general, the ML formulation is more appro-
priate for sparse markers where the assumption of linkage equilibrium is likely to hold, while the
MRHC formulation is more effective for dense markers where the expected number of recombination
events is small. On the other hand, ML methods can also be used to generate haplotype solutions
with few recombinants for dense markers and rule-based formulation could also be extended to take
into consideration the marker interval distance for sparse markers, as demonstrated later in this

paper. In fact, one may combine both approaches nicely in order to get a better performance.

1.1 Previous Work on Rule-Based Haplotype Reconstruction on Pedigrees

Qian and Beckmann [27] proposed a rule-based algorithm to reconstruct haplotype configurations
for pedigree data, based on the minimum recombination principle. From now on, we refer to their
algorithm as MRH. Given a pedigree and the genotype information for each member with possibly
missing alleles, MRH attempts to find a haplotype configuration such that the total number of
recombinants (or recombination events) in the whole pedigree is minimized. We call the above
problem the minimum-recombinant haplotype configuration (MRHC) problem. In recent papers [7,
17, 18], we showed that MRHC is in general NP-hard, even for pedigrees without mating loops,
and developed an iterative heuristic algorithm, called block-extension, for MRHC that is much
more efficient than MRH. Our preliminary experiments showed that the algorithm block-extension
is often able to compute an optimal solution or nearly optimal solution when the minimum number
of recombinants required is small [17, 18]. However, its performance deteriorates significantly
when the input data requires more (e.g. 4 or more) recombinants. We have also devised an
efficient exact algorithm based on Gaussian elimination for solving MRHC on pedigree data that
requires no recombinants. In fact, the algorithm can find all haplotype configurations incurring no

recombinants [17, 18]. More recently, two dynamic programming algorithms [7] are developed for



general pedigrees of small sizes and loopless pedigrees with a small number of marker loci.
However, these existing algorithms for MRHC either are heuristics in nature (e.g. MRH and
block-extension) and cannot guarantee optimality, or only work under some restrictions on the
size and structure of the input pedigree, the number of marker loci, the number of recombinants
in a pedigree, etc. Furthermore, most of them cannot handle missing data and, for those that
consider missing data, their performance in terms of minimizing the number recombinants drops
significantly in the presence of a moderately large amount of missing alleles. In practice, pedigree
data often contains a significant amount of missing alleles. For example, as much as 14.5% of the
alleles belonging to a block could be missing in the pedigree data studied in [10]. Some of the live-
stock pedigree data that we have examined recently contained an even larger fraction of missing
alleles. Unfortunately, consistent imputation of missing alleles is NP-hard even if we do not care

about haplotypes and recombination [2].

1.2 Our Results

This paper presents an effective integer linear programming formulation of MRHC with missing
alleles that integrates missing data imputation and haplotype inference, and a branch-and-bound
strategy that utilizes a partial order relationship and some other special relationships among vari-
ables to decide the branching order. The partial order relationship is discovered in the preprocessing
of constraints by taking advantage of some special properties in the ILP formulation. A directed
graph is built based on the variables and their partial order relationship. By identifying and
collapsing strongly connected components in the graph, we may greatly reduce the size of an ILP
instance. Non-trivial lower and upper bounds on the optimal number of recombinants are estimated
at each branching node to prune the branch-and-bound search tree. When multiple solutions exist,
a best haplotype configuration is selected based on a maximum likelihood approach. The algorithm
also incorporates the marker interval distance into the formulation whenever it is known, which
overcomes the inadequacy of many rule-based algorithms that ignore the important information.

The test results on simulated data using three pedigree structures demonstrate that the above
algorithm, which will be referred to as simply as algorithm ILP from now on, is very efficient.
For example, it could recover haplotypes with 50 loci on a pedigree of size 29 in seconds on a
regular PC. It outruns MRH v0.2 on biallelic data while guaranteeing the minimum number of
recombinants. With respect to performance in terms of correctly recovered phase information at
each marker locus, ILP was able to recover correct phase information at more than 99.8% of the
marker loci for data with no missing alleles and 98.3% of the marker loci for data with as many as
20% missing alleles.

A comparison of the algorithm with a well known statistical approach SimWalk2 [30] on sim-
ulated data with evenly and unevenly spaced markers also demonstrates the effectiveness and
soundness of the ILP algorithm. The test results show that ILP is much faster than SimWalk2



and the difference is in the order of 6 to 35-fold. The difference increases drastically with the
increase of the size of the input pedigree and the number of markers. In terms of accuracy, the ILP
algorithm outperforms SimWalk2 on its first run and reports comparable results as the second run
of SimWalk2.

As an application to real data, we have applied the algorithm ILP to a genome-scale data set
that consists of 12 multi-generation human pedigrees studied in a recent paper [10]. We focus
on each of the blocks inferred in [10] and compare the haplotyping results of ILP with those of
the EM algorithm used in [10]. The comparison shows that ILP outputs haplotype configurations
that require a few recombinants and result in roughly the same set of common haplotypes (i.e.
haplotypes that occur with a frequency at least 5%) as the EM algorithm. We also compare ILP
with the algorithm block-extension on chromosome 3 consisting of 10 blocks. The results show that
ILP often finds solutions that require fewer recombinants than those returned by block-extension
or MRH, which has a similar performance. Out of the solutions for 120 (= 12 - 10) data sets
found by ILP, only 2 requires recombinants while 18 solutions output by block-extension require
recombinants. This difference is mainly due to different methods were used to impute missing

alleles.

1.3 Organization of the Paper

The rest of this paper is organized as follows. We introduce briefly the biological background of the
MRHC problem and some relevant terms in Section 2 and the integer linear program formulation in
Section 3. In Section 4, we explore some special properties in the constraints of the ILP formulation
and define several useful relationships among the variables. The statistical assessments on multiple
optimal solutions are presented in Sections 5 and the extension to incorporate marker interval
distances into the formulation is shown in Section 6. Section 7 shows the experimental results
on simulated data sets and on a real data set. We conclude the paper with a few remarks about

possible future work in Section 8.

2 Preliminaries

The genome of an organism consists of chromosomes that are double strand DNAs. Locations
on a chromosome can be labelled using markers, which are small segments of DNA with some
specific features. A physical position of a marker on a chromosome is called a marker locus and
a marker state is called an allele. A set of markers and their positions define a genetic map
of chromosomes. There are many types of markers. The two most commonly used markers are
microsatellite markers and SNP (single nucleotide polymorphism) markers. Different sets of markers
have different properties, such as the total number of distinct allelic states at a locus, frequency

of each allele, distance between two adjacent loci, etc. A microsatellite marker usually has several



different alleles at a locus (called multi-allelic) while an SNP marker can be treated as a biallelic,
which has two alternative states. The average distance between two SNP marker loci is much
smaller than the average distance between two microsatellite marker loci, thus making SNP markers
superior to other markers in gene fine-mapping. In diploid organisms, chromosomes come in pairs.
The status of two alleles at a particular marker locus of a pair of chromosomes is called a marker
genotype. The genotype information at a locus will be denoted using a set, e.g. {a,b}. If the
two alleles a and b are the same, the genotype is homozygous. Otherwise, it is heterozygous. A
haplotype consists of all alleles, one from each locus, that are on the same chromosome. Figure 1(A)

illustrates the above concepts, where alleles are represented by their numerical IDs.
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Figure 1: A. The structure of a pair of chromosomes from a mathematical point of view.

B. An illustration of a pedigree with 15 members. C. An example of recombination event.
A pedigree can be defined formally as follows.

Definition 2.1 A pedigree graph is a weakly connected directed acyclic graph (DAG) G = {V, E},
where V.= M UF, M stands for the male nodes, F' stands for the female nodes. The in-degree of
each node is 0 (founders) or 2 (non-founders). If the in-degree of a node is 2, one edge must start
from a male node (called father) and the other edge from a female node (called mother) and the
node itself is a child of its parents (father and mother).

A subgraph containing the father, mother, and child nodes is called a nuclear family. A mating
loop consists of two distinct paths from a node = to a node y. For convenience, we will use conven-
tional drawings of pedigrees throughout the paper. Figure 1(B) illustrates an example pedigree. !
Figure 3(B) shows a pedigree with a mating loop. The Mendelian law of inheritance states that
the alleles of a child must come from the alleles of its parents at each marker locus (i.e. assuming
no mutations within a pedigree). In other words, the two alleles at each locus of the child have
different origins: one is from its father (which is called the paternal allele) and the other from
its mother (which is called the maternal allele). Usually, a child inherits a complete haplotype
from each parent. However, recombination may occur, where the two haplotypes of a parent get
shuffled due to a crossover of chromosomes and one of the shuffled copies is passed on to the child.

Such an event is called a recombination event and its result is called a recombinant. Since markers

!The pedigree diagrams in this paper were generated using WPEDRAW [5].



are usually short DNA sequences, we assume that recombination only occurs between markers.
Figure 1(C) illustrates an example where the paternal haplotype of member 3 is the result of a
recombinant. Paternal allele and maternal allele at each locus is separated by a “|” in this figure.

We use the term haplotype configuration to describes not only the paternal and maternal hap-
lotypes of an individual, but also the grandpaternal or grandmaternal origin of each allele on the
haplotypes. Observe that the number of recombinants required in a pedigree can be easily computed
once the haplotype configuration of each member of the pedigree is given. The following problem,
called MRHC in the above, is known to be NP-hard [17, 18], which trivially implies MRHC with

missing alleles is also NP-hard.

Definition 2.2 (MRHC) Given a pedigree and genotype information for each member of the pedi-
gree, find a haplotype configuration for the pedigree that requires the minimum number of recombi-

nants.

3 An ILP Formulation of MRHC with Missing Alleles

We first introduce variables needed in the formulation. Consider an input pedigree with genotype
information. Let n denote the size of the pedigree, and m the total number of marker loci. For
a marker locus j, let ¢; denote the total number of distinct alleles that occur at locus j, and
M; = {mjl, m‘%, - m‘gj} the set of all possible alleles at locus j, where mi: > 1. For each member ¢
and locus j, we introduce 2¢; binary indicator variables ff  and mfk 1 <k <t;, denote the paternal
allele and maternal allele of member 7 at locus j, respectively. Namely, fi p =1 (mz’k =1) if and
only if the paternal (maternal) allele of member ¢ at locus j is mj,. For each non-founder member i
and locus j, we introduce two indicator variables 9{,1 and 9572' Such information is unnecessary for
the founders. The variable 95,1 indicates the grandparental origin of i’s paternal allele at locus j,
i.e. gil = 0 (or 1) if i’s paternal allele is copied from its father’s paternal (or maternal, respectively)
allele. The variable 93,2 is defined for i’s maternal allele at locus j in a similar way.

The haplotype (i.e. phase) information and the grandparental origin of each allele at non-
founders are completely defined by the above f, m and g variables. Hence, we can easily formulate
an integer program for MRHC with missing alleles using these variables, the genotype information,
and the Mendelian law of inheritance. However, it is not obvious how we can represent the total
number of recombinants in the pedigree as a linear function of these variables. In order to make
the objective function linear, we introduce a variable ril for each pair of “adjacent” variables gf}l

and gﬁl (1<j<m-—1and!=1,2) to count the number of recombinants. Here, rfl =1if and

only if gil #* gffl. The total number of recombinants can thus be described as:

m—1 ] )
Z Z (r]y +172) (3.1)

non—founder i j=1



3.1 The Constraints

For each member ¢ and locus j, the f and m variables have to satisfy the following constraints:

t; ' t; .
Z fin =1, Z mi, =1 (3.2)
k=1 k=1

Given the genotype information (denoted as {a,b}) of member i at locus j, we have the following

constraints:

{mi,mi} = {fi, + fls=mi, +mi;=1,

Jodmi, = fl +ml =1} (3.3)
{ml,ml} = {fl,=1,m] =1} (3.4)
{m],0} = {fl,+ml, >1} (3.5)

where mJ, m! € M;, ml # mJ, and 0 stands for a missing allele. If both alleles are missing at the
locus, no further constraints (other than constraint 3.2) are provided.

Following the Mendelian law of inheritance, the f, m and g variables must satisfy constraints:

=T —9l1<0 (3.6)
fly—mip+gi <1 (3.7)

where 1 < k < ¢; and f in the subscript denotes ¢’s father. Constraint 3.6 ensures that if ¢’s
paternal allele is supposed to originate from its father’s paternal allele (i.e. when gil = 0), then
the two alleles must be the same. In other words, constraint 3.6 implies that if ff =1 f]]c,C must
be 1 when 95’,1 = 0. Constraint 3.7 deals with the case 95,1 = 1 in a similar way. The constraints
relating ¢ to its mother can be defined in the same way. Recall that variable rik is the exclusive-or

of variables glj . and gg 2,'1. The following four constraints will ensure this relationship.

Tik - gfk - 93,21 <0 (3-8)
sz,k + gfk + gfjgl <2 (3.9)
ol <0 310
i <0 (311

Finally, since all the variables are binary integers, we have constraint

. . . .
fik’m"g,k’gl‘?/,l’rl‘?/,l S {0, 1},
1<j<m,1<i<n1<k<ty,

1<j <m—1,non — founder ¢/,1 <1 <2 (3.12)



The above binary integer linear program defines exactly the MRHC problem with missing alleles.
Observe that it implicitly contains the problem of checking Mendelian consistency of genotype data
with missing alleles on a pedigree, which is known an NP-hard problem [2]. The total numbers of
variables and constraints are linear in the input size. Since it uses binary representation, the actual
number of variables could be quite large for multiallelic data. In the next subsection, we will try

to simplify the formulation a bit.

3.2 A Simplified Formulation

The main idea of our simplification is to explicitly explore the dependency relationship between
variables in the system and try to remove as much redundancy as possible without complicating
the constraints too much. Observe that constraints 3.3 and 3.4 supersede constraint 3.2. So, we
only need to keep constraint 3.2 when some alleles are missing. We can thus replace constraints 3.2
and 3.5 by:

tj ' tj '
{0,0y = D fly=1> ml, =1} (3.13)
k=1 k=1

{mi,0} = {—fl,-ml <-1,
t]' ) tj )
Z fgk =1, Z m;k =1} (3.14)
k=1 k=1

Furthermore, since there are only two variables in each equality of constraint 3.3, fixing the value
of any variable would determine the other three variables. We arbitrarily select one of the four
variables as the representative, and substitute appropriately the representative for the other three
variables in the system. Constraint 3.3 can then be removed. Constraint 3.4 can be removed if we
replace its variables by constant values in the system. Constraints 3.6 and 3.7 will be kept only if
they remain non-trivial after constant variables are replaced. Constraints 3.13 and 3.14 may also
contain equality constraints with only two variables after constant variables are replaced. Those

equality constraints with two variables can be treated similarly as constraint 3.3.

4 Exploring the Constraints

Because of the NP-hardness of MRHC, it is unlikely to find an efficient polynomial-time algorithm
to solve the above ILP formulation. We adopt a widely used strategy, branch-and-bound, to search
for an optimal solution. A comprehensive treatment of integer linear programming techniques based
on branch-and-bound can be found in [35]. Basically, the branch-and-bound method solves an ILP
instance by dropping the integer constraint (i.e. linear relaxation) to obtain a lower bound of the
instance. The procedure terminates when the optimal solution of the relaxed instance is integral or

larger than some estimated upper bound, or no feasible solutions exist. Otherwise, it branches on



some selected variables and creates some sub-instances. The process iterates until all sub-instances
have been considered or pruned. Clearly, different branching orders may have a large impact on
the size of the search tree. In this section, we consider some special properties of the above ILP
formulation and use them to guide the branching process. We will also use additional lower bounds
derived from nuclear families and upper bounds derived by the block-extension heuristic to prune

the search tree.

4.1 A Partial Order Relationship

The replacement of constant variables in inequality constraints may result in many inequality
constraints with two variables, which define a partial order relationship among the involved variables

as given below. For convenience, let us drop the subscript of a variable in the following and denote

. Y ify=1
y =
1—y ifv=0

Each inequality constraint involving two variables can be expressed in the form

e <y (4.1)

We define a directed graph G on variables involved in the above inequality constraints as follows. For
each variable 7, G contains a vertex v(y”). There is an edge from v(y$) to v(yf ) if inequality 4.1
holds. It is easy to see that for all the vertices in a strongly connected component (SCC) of G,
their corresponding variables must have the same value in a feasible solution. By identifying and
collapsing the SCCs of GG, we can remove many variables and simplify their associated inequality
constraints as we did for the two-variable equality constraints before. The SCCs can be constructed
by using a standard depth-first search (DFS) [4].

Furthermore, the following rules can be used to detect inconsistency and variables with “forced”
constant values. Rule 1 states that a variable and its complement cannot occur in the same SCC
S. Rule 2 states that if a variable is smaller (or larger) than another variable and the complement
of this variable, it must be 0 (or 1, respectively). Rule 3 states if a variable is smaller than its

complement, it must be 0.

Rule 1:

v(y°),v(y') € S = Inconsistency
Rule 2:

yE <y Ay <y "=yt =0

yE <yl Nyl <yl =) =
Rule 3:

y' <yt =yl =0
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The above simplifications may result in new equality constraints with two variables and constant
variables. We can repeat the steps in Section 3.2 to further reduce these variables and constraints.

Not only does the directed graph provide a way to reduce variables and constraints, the partial
order obtained on the variables after shrinking each SCC can also guide the selection of branching
variables. Observe that, if y§* < y]@ , then y* =1 implies yf = 1. So, we perform a topological sort
on the shrunk graph (which is a directed acyclic graph, or DAG). For each vertex v, we define the
weight of v as the number of successors of v in the topological sort. When branching, we consider

the variables in the topological sorted order and always take the 1-branch first for each variable.

4.2 Equality Constraints with Three or More Variables

The procedure in Section 3.2 removes all equality constraints from constraints 3.3, 3.13 and 3.14
with two variables. This leaves some equality constraints with more than two variables as given in
constraints 3.13 and 3.14. These equality constraints could be modified in the above simplification
process (i.e. some variables can be replaced and constants substituted in), but we may assume
without loss of generality that each of them still has the form of 337 _ ff p=1(or X7_, mzk =1)
because the variables are binary integers. 2 Observe that, in such an equality constraint, fixing
a variable to one would make all other variables zero. So, we say that the variables in each
equality constraint form an exclusion set (for lack of better terms). We can take advantage of this
information when selecting branching variables by considering the variables from an exclusion set
consecutively and taking the 1-branch first for each variable. We define the weight of a variable in

such an exclusion set as the size of the set minus one.

4.3 Lower Bounds from Nuclear Families

When dealing with data sets that require a large number of recombinants (e.g. data in linkage
analysis involving markers separated by large genetic distances), the linear relaxation usually does
not give a tight lower bound on the number of minimum recombinants. Observe that an effective
lower bound must involve variables from more than 1 locus and MRHC is already NP-hard for
data with 2 loci. Hence, we have to work with substructures of the input pedigree. A natural
substructure in a pedigree is a nuclear family. A nuclear family constitutes a small instance of
MRHC and can usually be solved in a much shorter time. The solution for a nuclear family gives
a valid lower bound concerning the r variables from the family and the sum of these lower bounds
forms a lower bound for the whole pedigree. The lower bound can be computed in advance for the
root node of the branch-and-bound search tree and updated at each branching node, but the latter

might incur big time overhead. A sensible strategy is to keep track of the difference between the

2If it is necessary, we could introduce some complementary variables to replace expressions of the form 1 —x in an
equality constraint. If a variable and its complement both appear in (different) equality constraints, we could derive

new equalities without such a variable or its complement by summing up appropriate equalities.

11



current upper bound and lower bound, and update the lower bound only when the difference is

larger than a predefined threshold.

4.4 An Upper Bound

When the input data require a small number of recombinants (e.g. in the case of SNP data),
a tight upper bound could be more effective than the above lower bound because many nuclear
families could be realized with 0 recombinants. In this case, the block-extension algorithm [17, 18]
can be used to estimate an upper bound because it is efficient and accurate when the number of
recombinants is small.

In our implementation of the above ILP algorithm, we solve the linear relaxations of the ILP
instances by using the IBM Optimization and Solution Library (OSL). A complete pseudo-code of
the branch-and-bound algorithm that summarizes the discussions in sections 3 and 4 is given in

Figure 2.

5 Statistical Assessment of Multiple Solutions

The above branch-and-bound algorithm in fact finds all solutions with the minimum number of
recombinants. We can further choose the “best” one from these optimal solutions using a maximum
likelihood approach if the genetic distances between markers are given. An alternative treatment
is to output all solutions together with their associated probabilities. Both approaches require
the calculation of the likelihood of a haplotype solution given the genotype information. Because
the number of optimal haplotype solutions is usually small, this calculation is much easier than
calculating the maximum likelihoods for all feasible solutions [21]. Let H denote a haplotype
solution and G the input genotypes. Let f(i) and m(i) denote the father and mother of an individual
i, and h; and g; the haplotypes and genotype of i. The likelihood of the haplotype configuration
H given the genotypes G is

PH|G)= [[ Pulg) I Philhsay ho), (5.1)
founder 4 non—founder 1
where the term P(h;|g;) can be obtained under Hardy-Weinberg equilibrium assumption, if prior
knowledge about haplotype frequencies is known. The transmission probability P(hi]hf(i), hm(i))
can be calculated under the assumption that recombination events are independent (no interference)
and uniformly distributed.

If our input is actually a population of pedigrees (as in the case of [10]), we can further estimate
the population haplotype frequencies and the probability of observing the genotypes in each pedi-
gree given the estimated haplotype frequencies by an expectation-maximization (EM) algorithm,
under the assumption that all the founders are independent. The EM algorithm works by summing

over all possible optimal solutions for each pedigree, weighted according to their relative likelihoods.
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Algorithm ILP

Input: Genotype data of a pedigree with possible missing alleles

Output: Haplotypes for all the members in the pedigree

Data structure: Constant variable set C, the set of representatives (R) of some variables, constraints S, global
upper bound gub and lower bound glb, exclusion sets I, partial order relationship O, partial order graph G and

topological sorted order L, instance list P, current instance p, and local lower bound [b by linear relaxation.

1. //Init:
2. Collect C, R and S, and calculate gub by BE and glb from nuclear families.

3. //Preprocessing
4. ITterate until no new updates exist:

- Update R and S by removing constant variables;

- Update O and build G;

- Find the SCCs of G and update R;

- Detect variables forced into constants and put them in C'

5. Prepare I and L, set the current instance as p, run steps 6-10 until P is empty.

6. //Branch-and-bound
7. Solve p by linear relaxation to obtain a local lower bound (b.

- If p is infeasible or Ib > gub, mark it as processed;
- If the solution is integral, update gub;
- Otherwise, continue to branch.

8. //Branching and selection

9. If I # ¢ or L # ¢, select a variable with the largest weight to branch, select the instance that results from
the 1-branch as p, and put the outcome of the O-branch into P;

10. Otherwise select a variable from the objective function, select the outcome of the 0-branch as p, and put
the outcome of the 1-branch into P.

11. Output the optimal solutions or report that the instance is infeasible.

Figure 2: A pseudo-code of the ILP algorithm.
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More specifically, an arbitrary optimal solution is selected from each pedigree and the haplotype
frequencies are estimated according to Equation 5.2. Based on the estimated frequencies, a haplo-
type solution with the maximum probability (Equation 5.3) is then chosen for each pedigree, which
will serve the input of the next iteration. Let h} and h? denote the two haplotypes of a founder ¢
for any given optimal solution, and N the total number of founders. Let m(h}) denote the number

of haplotypes h! occurring in all founders. Then the expected frequency of haplotype h} is simply

Al ﬂ-(h’zl )
. p— . .2
fny =T (52)
The probability of observing genotypes G and a haplotype solution H in a pedigree is
PG H|f)= T[ fehiedh I Pillsiy hmg)- (5.3)
founder ¢ non—founder 1%

6 An Extension to MRHC and the ILP Algorithm

Most rule-based algorithms do not take into consideration the interval distances between adjacent
markers, which is undesirable, especially for markers that are unevenly spaced and are separated
by relatively large interval distances. In this case, the optimal solutions based on MRHC may
be quite different from the true solutions. With the ILP formulation, one can easily incorporate
into the objective function a coefficient for each marker interval that represents the likelihood of
recombination. In this section, we propose several simple ways to achieve this. In general, we
could define a coefficient w’ for each marker interval j,1 < j < m — 1, which is a function of the
genetic/physical distance (denoted as d’) between marker j and marker j + 1. Revise the objective

function as .
S W+, (6.1)

non—founder i j=1
where w’ = f(d’) for some decreasing function f(-) that can be specified by the user. For example,
if we are using genetic distances between markers, we may choose f(d) = 1/d. An alternative would
be to use some mapping function * m(-) to transform the genetic distance to recombination rate and
let f(d) = 1—m(d). If we are given physical distances instead, we may first find the correspondence
between physical distances and genetics distances according to some prior knowledge and then apply

the functions mentioned above.

7 Experimental Results

We have implemented the above algorithm ILP as a module of our PedPhase program, which
is available at website http://www.cs.ucr.edu/~jili/haplotyping.html. To evaluate the effi-
ciency of ILP, we first compared ILP, block-extension (BE, also in PedPhase) and MRH v0.2 [27]

3Like Haldane’s mapping function or Kosambi’s mapping function among others [23].
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on simulated genotype data in terms of efficiency on three different pedigree structures. The results
show that, as an exact solution, our ILP is in fact faster than MRH v0.2 on SNP data. We also eval-
uated how the number of marker loci, the size of a pedigree, the number of recombinants, and the
amount of missing alleles affect the efficiency. An advantage of using simulated data here is that we
know the true haplotype configurations and the number of recombinants. Hence, we can evaluate
the accuracy of ILP in terms of the percentage of markers with haplotypes correctly inferred. We
further compared ILP and SimWalk2 on simulated data sets and the results show that ILP is much
faster than SimWalk2. We defined three measures of accuracy, namely, the percentage of alleles
correctly recovered, the number of recombinants inferred and the likelihoods of haplotype solutions.
ILP outperformed SimWalk2 on its first run and reported comparable results as the second run of
SimWalk2. As an application to real data, we tested ILP on a genome-scale data set that consists
of 12 multi-generation human pedigrees studied in a recent paper [10]. We focused on each of the
inferred blocks and compare the results of ILP with those of the EM algorithm used in [10]. The
comparison shows that ILP outputs haplotype configurations that require a few recombinants and
result in roughly the same set of common haplotypes as the EM algorithm. We also compared ILP
with block-extension on chromosome 3 consisting of 10 blocks. The results show that ILP often
finds solutions that require fewer recombinants than those returned by block-extension. The details

of the test results are given in the following subsections.

7.1 Efficiency and Accuracy of ILP on Simulated Data

We used a method similar to those in [7, 17, 18] to generate simulated data sets. Three different
pedigree structures were considered. One is a small pedigree with 15 members as shown in Figure 1.
The second is a medium-sized pedigree with 29 members as shown in Figure 3 (left) and the third is
a pedigree of 17 members with a mating loop as shown in Figure 3 (right). Both multi-allelic (with
6 alleles per locus) and biallelic data were considered. In order to test the worst-case performance
of the algorithms, the alleles were generated following a uniform frequency distribution to maximize
the chance of heterozygosity. Three different numbers of loci, namely 10, 25 and 50 were considered.
The number of recombinants used in generating each pedigree ranged from 0 to 4. In addition,
we considered the rate of missing alleles as 5%, 10%, 15%, and 20%. For each data set, 100
copies of random genotype data were generated. The total number of data sets used is 45000
(=3-2-3-5-5-100).

The test results demonstrate that ILP is slower than block-extension, but faster than MRH
v0.2 on biallelic data (although it is a little bit slower than MRH v0.2 on multi-allelic data), as
described in Table 1. In the table, the first column indicates the combination of parameters: the
size of the pedigree, the number of loci in each member, the number of distinct alleles allowed at
each locus, and the number of recombinants used to generate the genotype data, respectively. The

time used by each program in this section is the total time for 100 random runs for each parameter
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Figure 3: A. A pedigree with 29 members. B. A pedigree with 17 members and a mating
loop.

Table 1: Speeds of BE, MRH and ILP on multi-allelic and biallelic markers.

Parameters | BE MRH ILP
(17,10,6,0) | 2.1s 7s 34s
(17,10,6,4) | 2.1s 11s 37s
(15,25,6,0) | 2.7s 18s 2m34s
(15,25,6,4) | 2.9s 33s 3m9s
(29,10,6,0) | 3.2s 10s 1m49s
(29,10,6,4) | 3.1s 15s 1m57s
(20,25,6,0) | 155 | 4m 15m2s
(29,25,6,4) | 10s | 2m6s | 15m10s
(17,10,2,0) | 1.9s 155 20s
(17,10,2,4) | 2.3s | 1mlls 23s
(15,25,2,0) | 4.7s | 10m50s | 1m6s
(15,25,2,4) | 4.8s | 13m49s 1m18s
(29,10,2,0) | 2.8s | 6m26s 44s
(29,10,2,4) | 2.7s | 3md6s 50s
(20,252,0) | 2.3s | 2h7m | 3m4ls
(20,50,2,0) | 16s | 45h | 15m21s
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combination on a Pentium IV with 1.7GHz CPU and 512MB RAM.

Figure 4(A) uses a bar diagram to show how the speed of ILP is affected by the input size (i.e.
number of marker loci and size of a pedigree) on biallelic data, when the number of recombinant
is fixed as 1. For example, ILP requires a total of 20 minutes for 100 runs on a pedigree with 29
members and 50 loci. This suggests that ILP is efficient for MRHC instances of practical sizes.
To consider the effect of the number of recombinants and the rate of missing data, Figure 4(B)
indicates that the running time will increase with these two parameters, mainly because the number
of free variables in the system will increase. But unlike parameters such as the pedigree size and
the number of loci, for which the time increases exponentially as expected, the growth rates in
Figure 4(B) are more like linear functions. In this figure, the number of marker loci is 50 and the
size of the pedigree is 29.

Not only does ILP solve MRHC with missing data optimally, the results in Figure 4(C) demon-
strate that the algorithm is good at recovering true haplotypes. Its overall accuracy is better than
98% in terms of the number of missing alleles correctly recovered and the number of loci with hap-
lotypes correctly inferred, for missing rate as many as 20%. Its accuracy on data with no missing
alleles is even better; More than 99.8% of the loci were correctly phased. The few errors were mainly
due to existence of multiple optimal solutions. These results also show that, when the number of
recombinants are few and the recombination events are randomly distributed, the true haplotype
configuration is often a minimum recombinant haplotype configuration. In contrast, similar simu-
lations in [17, 18] show that the performance of block-extension could fall below 80% on pedigrees

with mating loops or data that require a moderately large number (i.e. > 4) of recombinants.

7.2 Comparison with SimWalk2

Standard linkage programs such as GeneHunter [19] and SimWalk2 [30] can also infer haplotypes
based on genotype data of a pedigree. The aim of these statistics-based approaches is to find a
haplotype configuration with the maximum likelihood under the assumed model. Exact algorithms
for finding the most probable haplotype configuration can only work for small data sets, where
the number of consistent haplotype configurations for a given pedigree is in a manageable range.
Important sampling techniques such as MCMC (Markov chain Monte Carlo) are commonly used,
such as in SimWalk2, to find an approximate solution for more complicated data sets within a
reasonable time frame.

As mentioned in the introduction, the objectives and application ranges of the ML and MRHC
formulations are not exactly the same, but overlap exists in both aspects. So it is useful to know
how the ILP algorithm performs under different assumptions when compared to ML methods and
how the maximum parsimony principle of minimizing the total number of recombinants reflects the
truth.

We took a widely-used, state of the art ML-based program SimWalk2 version 2.89 and compared
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Figure 4: Some simulation results on ILP. A. Effect of problem size on speed. B. Effect
of number of recombinants and rate of missing alleles on speed. C. Effect of number of

recombinants and rate of missing alleles on accuracy.

18



its results on two data sets with the results of the ILP algorithm. The first data set contains the
three different pedigree structures mentioned above. The total genetic length of the segment is
fixed as 20cM while the total numbers of markers analyzed are 11, 26 and 51 respectively for
each pedigree. The markers are evenly distributed for the first data set thus the marker interval
distances are 0.2, 0.08 and 0.04 ¢cM. The numbers of non-founders in each pedigree is 10, 11 and
20 respectively, and thus the expected numbers of recombinants in each pedigree is 4, 4.4 and 8.
For the second data set, we selected the pedigree with 29 members (Figure 3(A)) and fixed the
number of markers as 26. The recombination fractions between markers were chosen uniformly at
random from the range [0.001, 0.061]. The total number of expected recombinants in a pedigree
is 26.9. For both data sets, we considered biallelic markers with equal frequencies. The data were
generated according to Haldane’s model of recombination assuming no interference. In generating
the simulated data, the founders’ alleles were sampled first according to the allele frequencies. The
inheritance of alleles in children followed a widely used scheme described below. The first allele of
each child was randomly chosen from its parent’s paternal or maternal allele. The child inherited
that haplotype until a recombination occurred, whereafter it started to inherit the other haplotype
of its parent. The probability of the recombination event in each interval was determined by the
recombination fraction associated with it. For each parameter combination, 100 copies of random
data were generated. The marker interval distances and allele frequencies were assumed known to
both programs.

For the first data set, we compared the efficiency and the accuracy of the two programs. Our
current implementation of ILP outputs one of the optimal solutions. We compared it with the
haplotype result of the first run of SimWalk2. ILP is much faster than SimWalk2 as shown in
Table 2, where the time is the total time used for 100 data sets on a Pentium IV computer with
256MB RAM and Window 2000 run on Linux through VMware. The difference is in the order
of 6 to 35-fold. The difference increases drastically with the increase of the size of the input
pedigree and the number of markers. We measured the accuracy using the percentage of correctly
recovered alleles, which is called point accuracy, and the number of recombinants in a pedigree.
The results in Table 2 and 3 showed ILP outperformed SimWalk2 on both measures. The average
point accuracy of ILP is around 99% compared to 91% by SimWalk2. As shown in Table 3,
the number of recombinants per pedigree found by ILP was very close to the expected and real
numbers of recombinants across all the data sets tested. ILP might underestimate the total number
of recombinants by its definition, but the difference was around 1 in this simulation. For data set
with 11 markers, the difference of reported recombinants by SimWalk2 and the real number of
recombinants was also around 1. But with the increase of markers, SimWalk2 reported much more
recombinants than those in the real solutions.

Notice that SimWalk2 may not find a satisfactory solution on its first run. For the second data

set, we compared the results of ILP with the results of SimWalk2 on its first and second runs. A
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Table 2: Comparison of ILP and SimWalk2 in terms of speed and point accuracy.

Efficiency Accuracy
Parameters ILP SimWalk2 | ILP | SimWalk2
(15,11) 24m 2h12m 99.4 91.5
(15,26) 1h3m | 10h18m | 99.7 90.4
(15,51) 2h6m | 44hd5m | 99.7 91.0
(17,11) 25m 2h46m 98.9 91.1
(17,26) 1h4m 13h42m 99.2 91.2
(17,51) 2h9m 48h8m 99.3 91.6
(29,11) 48m 7h2m 99.4 91.4
(29,26) 2h6m 35h40m 99.6 91.7
(29,51) 4h35m 155h46m | 99.5 91.3

Table 3: Comparison of ILP and SimWalk2 in terms of the number of recombinants.

Parameters | Expected | Real | ILP | SimWalk2
(15,11) 4 4.02 | 3.08 3.63
(15,26) 4 3.99 | 3.46 9.25
(15,51) 4 3.87 | 3.64 19.31
(17,11) 4.4 4.31 | 3.12 3.57
(17,26) 4.4 4.3 3.49 6.70
(17,51) 4.4 4.46 | 3.92 11.62
(29,11) 8 7.54 | 5.66 9.18
(29,26) 8 8.18 | 7.13 22.98
(29,51) 8 8.70 | 8.04 46.18

pedigree needs to be rerun by SimWalk2 if the number of recombinants in its current solution is
larger than the expected number of recombinants, or its current solution is found in the late stage
of the search procedure. So, by running multiple times, SimWalk2 will likely find a solution with a
smaller number of recombinants than that of the first run, as well as a better likelihood. Since for
model-based methods such as SimWalk2, the measure of a haplotype solution is its likelihood, it is
important to know how rule-based methods like ILP perform in terms of the likelihood measure. In
a more realistic setting, as found in the second data set where the marker interval distance varies
randomly, ILP was also made to report the likelihood of a haplotype solution. In order to compare
the results with SimWalk2, the likelihood of a haplotype found by ILP was calculated according
to the definition in [29] while omitting the phenotype and the penetrance probability terms, which
is slightly different from the formula 5.1. The test results as shown in Figure 5 demonstrated that
haplotypes inferred by ILP were better than those generated by the first run of SimWalk2, although
ILP used much less time than SimWalk2. The results of ILP were obtained by incorporating the
maker interval distance into the objective function as mentioned in Section 6. The function we
used was simply one minus the recombination fraction. Figure 5(A) shows the logl0 likelihoods
of two methods on 100 data sets. The vertical lines and the open circles represent the results of
ILP and the solid circles represent the results of SimWalk2. Figure 5(B) shows the differences of
log10 likelihoods of ILP and SimWalk2. The results show that ILP was better than SimWalk2 in
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75 out of the 100 data sets. The mean of the differences was around 10. With much more time
consumed, the results of the second run of SimWalk2 were much better than its first run, while the
results from ILP were still comparable as shown in Figure 6. The time used for ILP, the first run of
SimWalk2 and the second run of SimWalk2 was 2, 27 and 94 hours, respectively. It is still possible
that SimWalk2 could identify more probable haplotypes if time allowed. We plan to compare the

two programs more thoroughly in our future study on data with missing alleles.

7.3 A Genome-Scale Haplotype Reconstruction

We have also tested ILP on a real data set from Whitehead/MIT Center for Genome Research.
Gabriel et al. [10] recently reported results on a genome-scale SNP haplotype block partition and
haplotype frequency estimation project. Their original data set consists of 4 populations and
54 autosomal regions, each with an average size of 250K bps, spanning 13.4M bps (about 0.4%)
of the human genome. Haplotype blocks were defined using the normalized linkage disequilibrium
parameter D’. Blocks with fewer than four markers are omitted from further consideration. Within
each block, haplotypes and their frequencies were calculated via an EM algorithm from [9]. One of
the populations (European) has pedigree information and was used in our study. There are totally
93 members in the European population, separated into 12 multi-generation pedigrees (each with 7-
8 members). The genotyped regions are distributed among all the 22 autosomes and each autosome
contains 1 to 10 regions. The overall allele missing rate in a block is between 0.8% and 14.5%.
We downloaded the SNP genotype data and pedigree structures from Whitehead/MIT Center for
Genome Research website (http://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.html), and
obtained the results of the EM algorithm concerning common haplotypes and their frequencies
in the population from the authors of [10]. * ILP was able to reconstruct the haplotypes for all
regions and pedigrees accurately, by taking advantage of the available haplotype block structure. A
comparison of the EM algorithm and ILP in terms of the common haplotypes that they output is
given in Table 4. The first column of the table is the chromosome number and the second column
is the number of blocks with more than four markers (no blocks with length larger than four in
chromosome 19). Columns 3 and 4 are the average numbers of common haplotypes per block found
by EM and ILP, respectively. Column 5 is the average number of different common haplotypes
output by the two methods, which is usually about 10% of the common haplotypes output by each
method. Column 6 is the average number of recombinants in each pedigree and each block as found
by ILP, which is close to zero. A detailed description of the haplotypes found by ILP for the data
set will be available at website http://www.cs.ucr.edu/~jili/haplotyping.html.

We further compared the results of ILP with our previous experiment on the block-extension

and EM algorithms on chromosome 3 reported in [17]. (The results of the EM algorithm was

“Here, the pedigree information was used first to resolve the phases of some heterozygous loci using the Mendelian

law of inheritance before the EM algorithm was run on founders.
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Figure 5: Comparison of the likelihoods of ILP with the first run of SimWalk2 on 100 data
sets. A. The logl0 likelihoods by the two programs. The vertical lines and the open circles
represent the results of ILP and the solid circles represent the results of SimWalk2. B. The
differences of log10 likelihoods of ILP and SimWalk2.

22



Loglikelihoods of ILP and SimWalk2

. | l i
o |
—
I
l. 1
3 | o
—
! o
. f ®llloe
8 8 | . °
8 & od < i
£ ! ° o oo o %l
g L
= L4 °
g
i () ¢
S | ol e . ’.
R .
] . . o &
g | . ° *
N
)
° .
.
o
@
l'l\‘ T T T T T T
0 20 40 60 80 100

Dataset

Differences of loglikelihoods on 100 datasets

30
1

10
1

- | "
O

0 20 40 100

Difference of loglikelihood

-10

Dataset

B

Figure 6: Comparison of the likelihoods of ILP with the second run of SimWalk2 on 100
data sets. A. The logl0 likelihoods by the two programs. The vertical lines and the open
circles represent the results of ILP and the solid circles represent the results of SimWalk?2.
B. The differences of log10 likelihoods of ILP and SimWalk2.
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Table 4: Comparison of the EM and ILP algorithms on a human genome SNP data.

Chr | # of blocks | EM | ILP | Mismatch | Recombs(ILP)
1 22 3.82 | 4.00 0.45 0.034
2 6 3.33 | 4.00 0.67 0.000
3 10 3.9 | 4.00 0.50 0.033
4 7 3.57 | 3.29 0.14 0.048
5 7 3.86 | 4.12 0.43 0.024
6 11 3.55 | 3.54 0.67 0.008
7 9 2.67 | 3.33 0.22 0.037
8 8 3.63 | 3.38 0.25 0.000
9 3 3.67 | 4.33 1.33 0.333
10 7 4.14 | 3.57 0.71 0.095
11 5 3.40 | 3.60 0.40 0.083
12 6 3.00 | 2.83 0.17 0.00
13 6 3.67 | 3.83 0.50 0.042
14 4 3.50 | 3.50 0.00 0.000
15 3 3.33 | 4.33 1.00 0.028
16 4 3.50 | 3.75 0.25 0.125
17 2 2.5 2.00 0.50 0.000
18 4 3.25 | 3.25 0.25 0.125
20 2 4.00 | 4.00 0.00 0.000
21 1 2.00 | 3.00 1.00 0.167
22 8 4.12 | 3.88 0.50 0.021

Table 5: The regions and blocks on chromosome 3.

Name | Length | SNPs | Blocks | SNPs/block | Missing rate
16a 40 14 1 5 7.96%
16b 106 53 1 6 3.76%

2 4 2.69%
17a 186 70 1 6 4.70%
2 5 1.50%
3 4 7.80%
4 6 6.27%
18a 286 74 1 16 3.70%
2 6 5.73%
3 4 2.15%
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Table 6: Common haplotypes and their frequencies obtained by block-extension, ILP and
the EM method. In haplotypes, the alleles are encoded as 1=A, 2=C, 3=G, and 4=T.

Block | Common haplotypes EM BE ILP
16a-1 42222 0.4232 | 0.3817 | 0.3750
34344 0.2187 | 0.1720 | 0.2187
422214 0.2018 | 0.1935 | 0.1979
34224 0.1432 | 0.1613 | 0.1458
sum 0.9869 | 0.9085 | 0.9374
16b-1 324112 0.8014 | 0.7634 | 0.7813
132334 0.0833 | 0.0753 | 0.0833
sum 0.8847 | 0.8387 | 0.8646
16b-2 4122 0.5410 | 0.4892 | 0.5104
2334 0.2812 | 0.2581 | 0.2500
2332 0.1562 | 0.1344 | 0.1562
sum 0.9784 | 0.8788 | 0.9166
17a-1 313444 0.3403 | 0.3172 | 0.2917
133242 0.3021 | 0.2419 | 0.2500
332424 0.1354 | 0.0914 | 0.0938
333444 0.1021 | 0.1183 | 0.1354
332444 0.0681 | 0.0806 | 0.0729
133244 0.0521
sum 1.0000 | 0.8494 | 0.8438
17a-2 23242 0.3542 | 0.2903 | 0.3229
33424 0.3333 | 0.2957 | 0.3125
33442 0.1458 | 0.1344 | 0.1563
34444 0.1250 | 0.1452 | 0.1250
sum 0.9583 | 0.8656 | 0.9167
17a-3 4431 0.4129 | 0.4355 | 0.4167
3112 0.2813 | 0.2258 | 0.2292
4131 0.2363 | 0.1935 | 0.2188
4132 0.0696 | 0.0753 | 0.0729
sum 1.0000 | 0.9301 | 0.9376
17a-4 344124 0.3854 | 0.3710 | 0.3436
232432 0.3333 | 0.2903 | 0.3021
342424 0.2500 | 0.1881 | 0.2188
sum 0.9687 | 0.8494 | 0.8645
18a-1 1444231214144132 0.2697 | 0.2473 | 0.2396
1444111214144132 0.2396 | 0.2151 | 0.2083
1444131214144132 0.1887 | 0.2204 | 0.1979
4222133313412211 0.1250
1444231234144132 0.0833 | 0.0699 | 0.0729
4444133214144132 0.0521
sum 0.9063 | 0.7527 | 0.7708
18a-2 312442 0.4967 | 0.4892 | 0.4271
132434 0.2604 | 0.1935 | 0.1667
312242 0.1271 | 0.0753 | 0.0938
134444 0.0938 | 0.0806 | 0.0729
132432 0.0538 | 0.0625
3124414 0.0521
sum 0.9780 | 0.8924 | 0.8751
18a-3 2211 0.4186 | 0.4032 | 0.3854
4333 0.2188 | 0.1935 | 0.2188
2311 0.2064 | 0.2204 | 0.2396
4313 0.1250 | 0.1559 | 0.1146
sum 25| 0.9688 | 0.9730 | 0.9584




obtained from the authors of [10].) There are 4 regions in the chromosome 3 data and each region
is partitioned into 1 to 4 blocks. The region name, physical length (kbps), number of blocks,
SNPs in each block and percentage of missing alleles of each block are summarized in Table 5.
In the experiment, the algorithm block-extension imputed missing alleles by sampling the alleles
according to their estimated frequencies. On the other hand, ILP inferred missing alleles so that the
number of required recombinants is minimized in the final haplotype solution. In other words, both
missing data imputation and the reconstruction of haplotype configurations were combined in one
framework. After haplotypes were inferred for the members of all pedigrees, population haplotype
frequencies were estimated by counting the founders’ haplotypes. Such frequency information can
be used to estimate the likelihood of the haplotypes in a pedigree as described in Section 5. The
common haplotypes, their frequencies and their total frequency in each block of chromosome 3
estimated by block-extension, ILP and the EM algorithm are summarized in Table 6. The majority
of the common haplotypes identified by the three algorithms are the same. The small number
of differences mainly concern haplotypes with frequencies close to 5%. Similar patterns were also
observed in the tests on other chromosomes. Furthermore, for common haplotypes shared by the
three algorithms, all three algorithms gave frequencies close to each other, although the frequencies
given by ILP and block-extension are in general smaller than those found by the EM algorithm.
This is perhaps mainly due to different strategies used for imputing missing alleles and the fact
that the EM algorithm only used the founders of the pedigrees in its computation.

We have also looked at the number of recombinations required in the solutions found by ILP.
Out of the 120 data sets derived from the 10 blocks in chromosome 3 and the 12 pedigrees, only 2
data sets had solutions that require recombinants. In contrast, 18 data sets had recombinants in
the solutions found by block-extension [17]. The difference could be due to different methods for

missing data imputation and the fact that block-extension is a heuristic algorithm.

8 Concluding Remarks

Our simulation results have demonstrated the soundness of the minimum recombination principle.
It works not only for tightly linked dense markers like SNPs, where the expected number of recom-
binants in a pedigree is small, but also for data with moderate size of recombinants. The haplotype
solutions identified by ILP could recover the correct phase information in most cases and achieve
large likelihoods as well. The ILP algorithm is an effective tool for solving the MRHC problem on
human pedigrees with practical sizes and missing data. It also incorporates the marker interval
distance into the formulation, thus may handle data with loose markers. Our experimental results
also show that ILP could identify a haplotype solution using much shorter time than SimWalk2 and
its solution usually has a large likelihood. It is a natural thought to combine ILP with SimWalk2,
or any other maximum likelihood approaches relying on random search, to save time in the search

for the most probable solution. For example, one may use the ILP solution as the initial starting
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point for SimWalk2.

The results on the simulated data show that the minimum number of recombinants in a pedigree
is very close to the expected number of recombinants or the real number in that pedigree. One
natural extension to the MRHC problem, denoted as MRHC-k, is how to find all haplotype solutions
of which the number of recombinants is smaller than the minimum number of recombinants plus
k. We may expect with more confidence that the true haplotype solution is among solutions of
MRHC-k.

Like many other haplotyping algorithms, the MRHC formulation and the ILP approach are
designed for data from a pedigree and a segment of some chromosome. It is important to combine
whole genome data on multiple pedigrees and solve them directly, especially for the purpose of
whole genome association studies and the understanding of the population haplotype structure.
There should be no doubt about the superiority in accuracy of this approach compared to methods

using unrelated individuals. Further investments are needed.
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