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Abstract: Large-scale Genome-Wide Association Studies (GWAS) for
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1 Introduction

With the completion of the human genome project and the HapMap project and
with advances of Single Nucleotide Polymorphism (SNP) genotyping technology,
GWAS for complex diseases are finally feasible (Hirschhorn andDaly, 2005;Marchini
et al., 2005) and results from several large scale GWAS have been reported in the
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literature (Hampe et al., 2006; Hu et al., 2005; Ozaki and Tanaka, 2006). Most existing
methods for GWAS are single-locus based approaches, which examine one SNP at a
time. However, empirical data have shown that many complex diseases may actually
involve multiple genes, and gene-gene interactions play an important role in the
etiology of complex diseases. Single-locus basedmethods usually are unable to recover
all involved loci, especiallywhen individual loci have little or nomarginal effects, which
is not uncommon for many gene-gene interaction models (Culverhouse et al., 2002;
Hoh and Ott, 2003; Millstein et al., 2006).

Traditionally, estimating epistatic effects has been investigated mainly in the
context of quantitative trait mapping of plants or animals (e.g., Zhang and Xu,
2005; Xu and Jia, 2007). In recent years, data mining approaches have also been
adopted in case-control studies. Hoh and Ott (2003) provided an excellent review.
In the context of genome-wide association studies with hundreds of thousands of
markers, Marchini et al. (2005) have shown that explicitly modelling of interactions
between loci is computationally feasible. And it can actually achieve reasonably
high power with realistic sample sizes under three interaction models with some
marginal effects, even after adjustments of multiple testing using a very conservative
approach (Bonferroni correction). However, directly modelling of interactions is still
computationally demanding and it can hardly be extended to include more than two
loci. On the other hand, a two-stage analysis strategy, for which a small subset of
promising loci is identified in the first stage and multi-locus methods are used in
the second stage to model interactions based on the selection in the first stage, is
promising. In the same paper (Marchini et al., 2005), results have also shown that
one particular two-stage strategy called simultaneous approach, in which only loci
showing moderate associations under a single-locus model will be subsequently tested
using a full two-locus model, has almost identical power as the full model using all
SNPpairs. Another commonly used two-stage approach in practice (called conditional
two-stage approach), where combinations between SNPs selected from a single-locus
model and original SNPs will be tested using a full model, was not evaluated in
their paper. In a more recent study, Lonita and Man (2006) have compared the two
two-stage approaches using a different set of disease models, and have concluded
that the conditional two-stage approach is more powerful and more robust than the
simultaneous approach.Unfortunately, nodirect comparisonsbetween the conditional
two-stage approach and the full model on all pairs under the same set of diseasemodels
have been made in either of the two papers (Lonita and Man, 2006; Marchini et al.,
2005). Furthermore, one underlying assumption for both studies is that somemarginal
effects must exist at either or both loci. Otherwise, none of the two two-stage strategies
will work.

In this paper, I extend the conditional two-stage approach by incorporating aGOF
test in stage one. The modified strategy, called Combined Conditional Two-Stage Test
(CCTST) can effectively identify a promising subset of SNPs for subsequent tests,
regardless of the magnitude of marginal effects. The GOF test examines deviations
of observed multi-locus genotype counts from the expected counts based on single
locus genotypes without separating cases from controls, and it implicitly assumes such
deviations are due to deviations in cases because of different penetrances (probabilities
of being affected) from different genotypes. The framework can easily incorporate
any single-locus based approaches in stage one and any tests for interactions in stage
two, and it can be extended to multiple stages and/or multiple loci. To evaluate the



152 J. Li

performanceofCCTST, three two-locusdiseasemodels havebeen chosen ranging from
a pure additive model without epistasis to a model with little or no marginal effects.
Simulations show that CCTST outperforms other four commonly used or recently
proposed searching strategyies, and achieves highest power in detecting both loci.

2 Methods

2.1 Disease models

Themost general formof two-locusmodels for diallelic loci consists of nine parameters,
one for each genotype combination. There are also many restricted models with less
than nine free parameters that are of great interests. By focusing on fully penetrant
models (the probability of an individual being affected is either 1 or 0 for any given
two-locus genotype), Li andReich (2000) enumerated all the 512possible combinations
and summarised 50 unique ones. With incomplete penetrances, the possible number
of models becomes infinite. Three submodels are selected in this study based on two
criteria, the level of epistasis and evidences from empirical studies. To test different
approaches under a variety of epistatic effects, the three models represent low/none,
medium and high level of epistasis. More detailed discussions of these models and
others, as well as references to some diseases that confer these theoretical models can
be found in Li and Reich (2000). Tables 1–3 present the three models by specifying the
penetrance of each genotype combination at two unlinked loci A and B. Based on their
definitions, the marginal penetrance for each genotype at each individual locus and
the population prevalence are also included in the tables. They are calculated based on
individual penetrances andallele frequencies under the assumptionofHardy-Weinberg
equilibrium. Let A/a (B/b) denote the two allele at locus A (B). Let p1 and p2 denote
the frequencies of alleles A and B, respectively. Let gi. (i = 1, 2, 3) denote the three
genotypes (AA, Aa, aa) at locus A and g.j (j = 1, 2, 3) denote the three genotypes at
locus B. Let gi,j denote the two-locus genotype combinations. Similarly, let λi., λ.j

and λi,j denote the marginal penetrance for gi. at locus A, the marginal penetrance
for g.j at locus B, and the penetrance for the two-locus genotype gi,j , respectively.
By definition,

λi. =
∑

j

λi,jPr(g.j), λ.j =
∑

i

λi,jPr(gi.), (1)

p =
∑

i,j

λi,jPr(gi,j), (2)

where p is the population prevalence, and genotype frequencies Pr(gi.) and
Pr(g.j) can be calculated based on allele frequencies under Hardy-Weinberg
equilibrium. The frequency of Pr(gi,j) can be calculated from genotype frequencies
of individual loci.

Model one (M1) is a pure additive model without epistasis. An individual with
a genotype aabb has a baseline probability η of being affected. The parameter θ
represents the level of increasing risk of having one or more disease associated
alleles A and/or B in a genotype. More specifically, for each of all other genotype
combinations in M1, the probability of being affected increases by ηθ with each
additional disease-associated allele, from either locus A or locus B. Based on marginal
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penetrances, it is easy to see that each individual locus is also an additive single-
locus model. Model two (M2) is a threshold model that has been widely studied by
different groups (Lonita and Man, 2006; Marchini et al., 2005). It requires at least one
copy of a disease-associated allele from each locus for the corresponding genotype
to have a higher penetrance. On the other hand, having more disease-associated
alleles does not increase the chance of being affected. Each individual locus is a
dominant single-locus model and the marginal effect actually depends on the allele
frequencies at the other locus. The third model (M3) is an epistatic model and has
been investigated by Culverhouse et al. (2002) and some other researchers. Based on
this model, an individual has a higher risk only if it has one of the three genotypes
(AAbb, AaBb, aaBB). This model is of particular interest because when the allele
frequency at one locus is 0.5, no marginal effects exist at the other locus, regardless of
the size of interaction effect θ. The three models are chosen so that algorithms can be
tested across various degrees of epistasis.

Table 1 Penetrance table for an additive model (M1), where each entry is the value of
penetrance (λ) of a particular genotype, characterised using a function of the baseline
penetrance η (for genotype aabb) and a parameter θ (representing the level of
increasing risk of having one or more disease associated alleles A or B in a genotype).
More specifically, the middle entries are penetrances for two-locus genotypes, and the
last column and the last row are penetrances of one locus genotypes with the last
entry the population prevalence. p1 and p2 are frequencies of allele A and B,
respectively

BB Bb bb

AA η(1 + 4θ) η(1 + 3θ) η(1 + 2θ) η(1 + 2p2θ + 2θ))
Aa η(1 + 3θ) η(1 + 2θ) η(1 + θ) η(1 + 2p2θ + θ))
aa η(1 + 2θ) η(1 + θ) η η(1 + 2p2θ)

η(1 + 2p1θ + 2θ) η(1 + 2p1θ + θ) η(1 + 2p1θ) η(1 + 2θ(p1 + p2))

Table 2 Penetrance table for a threshold model (M2)

BB Bb bb

AA η(1 + θ) η(1 + θ) η η(1 + θ(1 − (1 − p2)2))
Aa η(1 + θ) η(1 + θ) η η(1 + θ(1 − (1 − p2)2))
aa η η η η

η(1+ η(1+ η η(1 + θ(1 − (1 − p1)2)
θ(1 − (1 − p1)2)) θ(1 − (1 − p1)2)) (1 − (1 − p2)2)))

2.2 Simulations with realistic marginal effects at both loci

It is awell accepted fact that gene-gene interactions account, at least partially, formany
unsuccessful stories in mapping and replicating susceptibility genes for complex traits.
However, little information is available about the nature andmechanisms of gene-gene
interactions, not to mention the magnitudes of joint effects (Marchini et al., 2005),
partially due to the lack of efficient and effective algorithms in dealing with the
multiple testing problem arising from testing interactions directly. On the other hand,
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increasing information on sizes of marginal effects is available. Marchini et al. (2005)
fixed the marginal effect at one locus and derived the parameters for the joint effect.
But the marginal effect at the other locus was not controlled. In reality, it is more likely
that marginal effects at both loci are small. To closely mimic real data, the magnitudes
ofmarginal effects at both loci are bounded using realistic empirical values for all three
models in this study. In general, there are two genotype relative risk parameters for
each locus, namely, λ1./λ2. and λ2./λ3. at locus A, and λ.1/λ.2 and λ.2/λ.3 at locus B.
Let γ denote themaximumallowedmarginal genotype relative risk for both loci. Based
on empirical data about complex diseases, it takes a value in the range of 1.2–1.5 in this
study. For each possible value of γ, and for any fixed allele frequencies p1 and p2, the
parameter θ is determined by its possible maximum value that satisfies the following
conditions:

λ1./λ2. ≤ γ, λ2./λ3. ≤ γ, λ.1/λ.2 ≤ γ, λ.2/λ.3 ≤ γ.

It is interesting tonotice that in certainareasof theallele frequency spectrumofmodel 3,
the size of marginal effects can not reach γ regardless of the value of θ. For example,
when p1 = p2 = 0.4, the marginal effects (λ1./λ2., λ2./λ3., λ.1/λ.2, λ.2/λ.3) based on
Table 3 are always less than 1.5. In such cases, a small fixed value θ = 0.25 is used
in the simulation. Therefore it is possible that the final assignment of the joint effect θ
with a greater γ maybe less then the assignment of θwith a smaller γ. The baseline value
η is then determined using equation (2) for any fixed population prevalence p. I take
model 2 as an example to illustrate the relationship of the joint effect, marginal effects,
and allele frequencies. Based on Table 2, each individual locus itself is a dominant
single-locus model and only one genotype relative risk needs to be considered at each
locus. Once γ, p1, p2 and p are fixed, θ and η can be calculated via

θ = argmax((1 + θ(1 − (1 − p1)2)) ≤ γ, (1 + θ(1 − (1 − p2)2)) ≤ γ)

and

η = p/(1 + θ(1 − (1 − p1)2)(1 − (1 − p2)2))).

Table 3 Penetrance table for a model with strong epistatic effects (M3)

BB Bb bb

AA η η η(1 + 4θ) η(1 + 4θ(1 − p2)2)
Aa η η(1 + 2θ) η η(1 + 4θ(1 − p2)p2)
aa η(1 + 4θ) η η η(1 + 4θp2

2)
η(1 + 4θ(1 − p1)2) η(1 + 4θ(1 − p1)p1) η(1 + 4θp2

1) η(1 + 4θ(p1 + p2 − 2p1p2))

Table 4 presents corresponding values of θ and the actual marginal effect at loci A
and B given allele frequencies at loci A and B for a fixed γ = 1.5. One can easily see
that allele frequencies can greatly influence the magnitude of joint effect θ for a fixed
maximummarginal effect. A much higher joint effect is required to accommodate low
disease-associated allele frequencies in order to keep a fixedmaximummarginal effect.
This is equivalent to say that, when θ is fixed, the ability of detecting each individual
locus greatly depends on the frequency of the disease-associated allele at the other locus
(see Table 2). The parameters of the other two models can be determined similarly.
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Table 4 Joint effect θ, marginal effects at loci A and B when γ (= 1.5) and p (=0.1) are fixed
for various allele frequencies for the threshold model (M2)

A�B 0.1 0.3 0.5

0.1 (2.63, 1.50, 1.50) (0.98, 1.50, 1.19) (0.67, 1.50, 1.13)
0.2 (1.39, 1.26, 1.50) (0.98, 1.50, 1.35) (0.67, 1.50, 1.24)
0.3 (0.98, 1.19, 1.50) (0.98, 1.50, 1.50) (0.67, 1.50, 1.34)
0.4 (0.78, 1.15, 1.50) (0.78, 1.40, 1.50) (0.67, 1.50, 1.43)
0.5 (0.67, 1.13, 1.50) (0.67, 1.34, 1.50) (0.67, 1.50, 1.50)

2.3 Commonly used testing strategies

The most commonly used searching strategies for susceptibility genes of complex
diseases for GWAS are still single-locus based tests. At each locus, a logistic regression
model or Pearson’s χ2 test for independence can be performed, and Bonferroni
correction is commonly used to adjust the overall significance level. Parallel to the
standard quantitative genetics model (Cordell, 2002), the full single-locus model under
the logistic regression framework is

log(λ/(1 − λ)) = µ0 + ax + dz,

where µ0, a, d are genetic parameters representing mean, additive and dominance
effects, and x and z are dummy variables with x = 1 for genotype AA, 0 for Aa, and
−1 for aa, and z = −0.5 for AA and aa, and 0.5 for Aa. The log likelihood ratio test
comparing the full single-locus model and the null model (a = d = 0) is used to test the
significance of the model. For a χ2 independence test of case-control samples, a 3 × 2
contingency table can be constructed, and the expected counts and the observed counts
from each category of genotype and phenotype combination are compared (Collett,
1999).

Both approaches can be readily extended to the two-locus case to construct
a fully saturated model. In addition to the mean, additive and dominance effects
at both loci, the logistic regression model has four interaction terms (iaa for
additive× additive, iad for additive× dominance, ida for dominance× additive, and
idd for dominance× dominance),

log(λ/(1 − λ)) = µ0 + a1x1 + d1z1 + a2x2 + d2z2 + iaax1x2

+ iadx1z2 + idaz1x2 + iddz1z2.

The χ2 test for two loci is calculated based on a 9 × 2 contingency table.
A third commonly used strategy is based on a two-stage analysis and has two

variants. For both variants, a small subset of promising loci is identified based on a
single-locus method in the first stage. In the second stage, a two-locus model will be
applied either on each pair of loci in the selected subset only (this variant is named the
simultaneous approach), or on pairwise combinations between the selected loci and the
original set of loci (this variant is named the conditional approach). The conditional
approach is frequently used in genetic studies and has been shown more robust and
powerful than the simultaneous approach (Lonita and Man, 2006). Therefore the
conditional approach has been chosen in this study. Notice that the two-stage analysis
approach is different from a two-stage design for which additional samples will be
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recruited in the second stage. Because of the sequential testing nature of any two-stage
analysis, obtaining the correct significance level is not a trivial task. When the logistic
regression framework is applied in both stages, a conservative approach to account
for the ‘selection bias’ has been proposed by Marchini et al. (2005) and has been used
in Lonita and Man (2006). More specifically, let α1 be the significance level in stage
one and let kα1 be the critical value that corresponds to α1 for the log likelihood ratio
test of a single locus. For the conditional approach, let R be the statistic of the log
likelihood ratio test of the two-locus model for a pair of loci i and j, where locus i
has been selected from stage one and j (j �= i) is any of other SNPs. The new defined
statistic for the overall approach is just R − kα1 and its significance is assessed against
a χ2 distribution (Lonita and Man, 2006; Marchini et al., 2005). When Pearson’s χ2

test is applied in both stages, a similar correction can be adopted here. Let tα1 be the
critical value that corresponds to α1 for the χ2 test using a single-locus model and let
T be the statistic of the χ2 test using a two-locus model, the new statistic is defined as
T − tα1 and its significance is evaluated against the χ2 distribution. Simulations (data
not shown) suggest that it has the correct type one error rate under the null hypothesis
of no associations.

Each of the above three strategies has its own advantages and disadvantages.
Single-locus based methods are computationally efficient and easy to perform.
The power to detect all involved loci is low because some of them may have little
marginal effects. The full two-locus model is powerful when the model is correct and
when only epistatic effects exist. But the computational cost is high. Furthermore,
because of the problem of multiple testing, the overall significance level across the
genomehas tobe adjusted andBonferroni correction is commonly used inpractice. The
total number of tests for a full two-locusmodel ismuch greater than the number of tests
from single-locus basedmethods. For example, if the number of SNPs ism, the number
of tests is (m2 ) for a two-locus model, vs. m for a single-locus model. The conditional
two-stage approach lies in between. It has the potential to detect all involved loci but
with much reduced computational costs. With a liberal threshold in stage one, it is
possible that loci with small marginal effects can pass the screen. The number of tests
greatly reduces to l × (m − l), where l is the number of SNPs identified in stage one
with its expectation E(l) = m × α1. Furthermore, this is the only strategy that can
be extended to directly model complex diseases involving more than two loci, for any
realistic sample sizes.

2.4 The proposed strategy

One of the drawbacks of the conditional two-stage approach is that when marginal
effects are extremely weak or do not exist, the approach is unlikely to work, even for
a liberal threshold α1 in the first stage. I propose a new strategy called CCTST, which
is an improved version of the original conditional approach. In addition to the screen
based on each individual locus, it directly assesses pairs of loci in hope that some
promising pairs will be prompted into stage two even when marginal effect sizes from
individual loci are weak.

More specifically, the preprocessing step based on marginal effects of single loci
is performed first, as it was in stage one for the original conditional approach.
In addition, another procedure is proposed to preprocess all possible SNP pairs in
stage one in order to identify promising pairs that might have little marginal effects.



A novel strategy for detecting multiple loci 157

Under the assumption that the joint effect of two disease susceptibility genes/SNPs
is mainly from epistasis, the multilocus genotype distribution among cases will be
different from the expected distribution that can be estimated based on genotype
frequencies of each individual locus. The magnitude of such differences will depend
on the differences of penetrances from different genotypes. However, any test with
explicit use of disease status is almost the same as performing the test on all pairs of
SNPs thus must be avoided. I argue that in the case that the epistatic effect is great
enough, say the penetrance λij of genotype Gij is very different from the population
prevalence λ, the total number of individuals with genotype Gij from the pooled case
and control samples might also deviate from its expected value greatly, because of
excessive sampling of cases. Certainly, the magnitude of the deviation will depend on
the size of the epistatic effect, as well as the genotype/allele frequencies. Based on this
observation, a χ2 GOF test that compares the observed genotype count nGi,j for Gi,j

and its expected count E(nGi,j
), which is calculated based on genotype counts at each

individual locus in the combined case and control samples, can be used to pre-screen
all pairs of SNPs:

W =
3∑

i=1

3∑

j=1

(nGi,j − E(nGi,j ))
2

E(nGi,j
)

,

where E(nGi,j ) = ni.n.j/n, ni. and n.j are the numbers of individuals with genotype
gi. and g.j respectively, and n is the total number of samples. Only pairs with a statistic
that exceeds a predefined threshold (for example, a point-wise significance level of α2)
will be further examined in stage two. Notice that unlike the single SNP screen, the
χ2 GOF test does not introduce biases for subsequent tests in stage two. Under the
null hypothesis of no associations between genotypes and the disease, the above GOF
test is independent of disease status because it only uses information about genotypes.
Therefore, no adjustments are needed in the second stage in testing the selected subset
from the GOF test. The same argument and a similar test have been proposed in a
recent paperMillstein et al. (2006). The new proposedmethod differs from the method
inMillstein et al. (2006) because it does not assume an underlying model of risk, which
is usually unknown in practice.

Under the assumption of strong pairwise interactions, CCTST can potentially
identify both loci regardless of the magnitude of marginal effects. And the framework
can be easily extended to include interactions from more than two loci and to include
more than two stages. Thenumber of pairs needs to be examinedby a fullmodel in stage
two ismuch smaller than the number of all possible pairs.Assumea significance levelα1
for the single SNP screen andα2 for theGOF screen, the expected number of pairs that
will be prompted to stage two will be bounded from above by mα1m(1 − α1) + (m

2)α2
because some pairs will be selected by both screens.

3 Results

3.1 Simulation details

For each of the three disease models, simulated genotype data at two unlinked marker
loci have been generated using the program gs (Li and Chen, 2008) under a variety of
parameter values, assuming a population-based genome wide association study design
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with m = 300, 000 markers. The maximum value of marginal effects γ takes realistic
values (γ = 1.2, 1.3, 1.4, 1.5). The disease allele frequencies at both loci vary from 0.1
to 0.5. The population prevalence p is fixed as 0.1. The penetrance table can then
be calculated based on previous discussions. The linkage disequilibrium r2 between
marker loci and unobservable disease loci varies from 0.6 to 1.0. Equal numbers of
cases and controls have been generated with n = 1000, 1500, 2000. For each parameter
combination, 1000 random replicates are utilised to compare the power of five
strategies, namely,

• the single SNP test, detecting either of the two loci

• the full interaction model

• the conditional two-stage test

• the new proposed method CCTST

• the single SNP test, detecting both loci.

The logistic regression method is used in testing of single and two-locus models and
log-likelihood ratio tests are performed comparing full models vs. the null model.

Figure 1 Power comparison of the five strategies across the three models. Each row is an
interaction model and each column is one strategy. The five strategies are:
(A) single-locus (either); (B) full two-locus model; (C) conditional approach;
(D) CCTST and (E) single-locus (both). Within each panel, the x and y axes are
risk allele frequencies at the two interaction loci, and the z axis is the power for each
strategy. The bound on the size of marginal effects λ = 1.5. For model one, the
samples consist of 1000 cases and 1000 controls. For the other two models, there are
1500 cases and 1500 controls. The genome wise significance threshold is 0.05 after
Bonferroni corrections. For the two-stage tests, the initial threshold α1 = 0.05 and
the threshold for the goodness of fit test is α2 = 0.05
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3.2 Results

Under the null hypothesis of no associations, simulations indicate that the new
proposed approach has the correct type one error rate (data not shown). A subset of
representative results is presented in Figures 1–3 to illustrate some general features of
power of the five strategies across different interaction models. The subset is selected
so that not all the five strategies have extremely high or extremely low power across the
parameter space. A notable result from Figure 1 is that the interaction model has great
influence on power of any method, even when the maximum value of marginal effect
size is fixed. For example, for the additive model, all five methods achieve high power
when the frequency of at least one of the risk alleles is high (≥0.3). But with increase of
epistatic effects from model 1 to model 3, the power of all methods decreases in most
of the spectrum of allele frequencies, even with increase of sample sizes from 1000 in
M1 to 1500 in M2 and M3. Not surprisingly, the decrease in power is more serious in
the two single-locus based strategies (methods A and E). For a fixed disease model,
risk allele frequencies can also greatly affect power in a specific way that depends on
the model. For example, for model 2, all the methods achieve higher power when the
frequencies of risk alleles from two loci are the same.

Among the five strategies, the method to detect both loci simultaneously based on
single-locus screens (method E) has least power across models and allele frequencies.
The problem is more serious when marginal effects are small. Strategy A (the
single-locus test to detect either SNP) has high power in many cases, but with the
limitation of detecting one of the two sites. Furthermore, its power decreases with
increase of epistatic effects and essentially becomes no power when there only epistatic
effects exist. In those cases, a full interaction model (strategy B) may actually achieve
higher power than strategy A. For the other three strategies (B–D), the conditional
method (C) have slightly lower power than the full interaction model (B) in many
settings (Figures 1 and 2). This result is consistent with results obtained by other
researchers using different models (Lonita and Man, 2006; Marchini et al., 2005).
For example, results in Marchini et al. (2005) have shown that the full model has
equivalent power comparing with the simultaneous two-stage approach, while results
in Lonita and Man (2006) have shown the conditional two-stage approach is more
powerful and more robust than the simultaneous method. However, the power of
strategy (C) is much lower than that of strategy (B) whenmarginal effects are small, for
example, in the cases of Model 3 when allele frequencies at both loci are great than 0.4
(Figure 2). On the other hand, the new proposed CCTST (strategy (D)), is consistently
better than both strategy B and strategy (C) across all parameters tested in this study.
All three methods have similar power when the signal is extremely strong or extremely
weak, otherwise, CCTST achieves much higher power than the other two approaches
(Figure 2). For example, when allele frequencies at both loci are 0.5 in model 3, the
power of CCTST (73.4%) represents a 10-fold increase comparing with the original
conditional approach (6.2%). It also represents a 25% increase in power comparing
with the full two-locus model (46.7%). The gains in power by CCTST reflect that it
can balance well the magnitude of marginal effects and the number of tests for the full
model in stage two. When there are some marginal effects, which is probably true for
many models, the pairs being prompted to stage two by CCTST are mostly from the
single-locus screen. When there are little marginal effects, the pairs being prompted
to stage two by CCTST are mostly from the GOF screen. In these cases, CCTST
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and strategy C have similar performances and both of them have higher power than
strategy B. The results suggest that not only is CCTST computationally appealing, it
is also more robust than those commonly used strategies.

Figure 2 Power comparison of the three strategies (B, C, D) across the three models.
The bound on the size of marginal effects λ = 1.4 and all other parameters
are the same as those in Figure 1

Figure 3 illustrates the power of the three methods when the LD (r2) between markers
and disease loci varying from 0.6 to 1. Not surprisingly, the power of all three methods
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decreases with the decay of LD. But themagnitude of decrease not only depends on r2,
but also depends on genetic models and allele frequencies. Models with high epistatic
effects are more easily being adversely affected by dropping of LD. For the three
methods, (strategies B–D), they have similar power regardless of LD values under the
additive model. For both the threshold model (M2) and the epistatic model (M3),
the new proposed strategy (D) has greater power than both strategies (B) and (C).
However, the advantage of strategy (D) is most noticeable when LD are small for M2
and when LD r2 = 1 for M3. A possible explanation is that all three methods have
relatively high power forM2 when r2 = 1 and have extremely low power forM3 when
r2 �= 1 for most allele frequencies.

Figure 3 Statistical power of the three methods when markers and disease-associated loci are
in different levels of LD. All the markers have the same allele frequencies as those
unobserved disease loci, and markers at the two loci also have the same frequencies.
The bound on the size of marginal effects λ = 1.5. There are 1500 cases and 1500
controls for model one, and 2000 cases and 2000 controls simulated for models 2
and 3

4 Conclusion

Identification of genetic risks underlying complex diseases is a great challenge, mainly
because many involved genes have small individual effects, among other reasons.
Computational approaches to model gene-gene interactions are greatly needed. In
this paper, I demonstrate that a new proposed strategy based on a two-stage analysis
is quite robust and more powerful than several existing strategies for three models
from pure additive to pure epistatic. It is not my intention to claim that this is the
best strategy, because the properties of each method greatly depend on the form of
interactions and there are many different types of interactions. But the new proposed
framework is appealing not only because it has great performance in the experiments,
but it also is easy to extend to models with multiple loci.

There are several ways in which the proposed framework can be extended.
As pointed out in Marchini et al. (2005), obtaining the significance level in such a
sequential test framework is not trivial. And the problem is coupled with the multiple
testing problem in the context of genome wide association studies. The corrections
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for both problems in this study are conservative, and more sophisticated approaches
can further improve the power of the proposed framework. The extension to multiple
stages is straightforward and haplotype effects can be considered at some point within
a multi-stage analysis framework. Given the large number of SNPs for GWAS, some
datamining approaches (Hoh and Ott, 2003) can be adopted here to preprocess data
so that formal statistical tests can be performed to detect high order interactions.
Knowledge on biological pathways and genomic data should also be incorporated in
a multi-stage analysis.
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