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Abstract
Background: With the availability of large-scale, high-density single-nucleotide polymorphism
(SNP) markers, substantial effort has been made in identifying disease-causing genes using linkage
disequilibrium (LD) mapping by haplotype analysis of unrelated individuals. In addition to complex
diseases, many continuously distributed quantitative traits are of primary clinical and health
significance. However the development of association mapping methods using unrelated individuals
for quantitative traits has received relatively less attention.

Results: We recently developed an association mapping method for complex diseases by mining
the sharing of haplotype segments (i.e., phased genotype pairs) in affected individuals that are rarely
present in normal individuals. In this paper, we extend our previous work to address the problem
of quantitative trait mapping from unrelated individuals. The method is non-parametric in nature,
and statistical significance can be obtained by a permutation test. It can also be incorporated into
the one-way ANCOVA (analysis of covariance) framework so that other factors and covariates can
be easily incorporated. The effectiveness of the approach is demonstrated by extensive
experimental studies using both simulated and real data sets. The results show that our haplotype-
based approach is more robust than two statistical methods based on single markers: a single SNP
association test (SSA) and the Mann-Whitney U-test (MWU). The algorithm has been incorporated
into our existing software package called HapMiner, which is available from our website at http://
www.eecs.case.edu/~jxl175/HapMiner.html.

Conclusion: For QTL (quantitative trait loci) fine mapping, to identify QTNs (quantitative trait
nucleotides) with realistic effects (the contribution of each QTN less than 10% of total variance of
the trait), large samples sizes (≥ 500) are needed for all the methods. The overall performance of
HapMiner is better than that of the other two methods. Its effectiveness further depends on other
factors such as recombination rates and the density of typed SNPs. Haplotype-based methods
might provide higher power than methods based on a single SNP when using tag SNPs selected
from a small number of samples or some other sources (such as HapMap data). Rank-based
statistics usually have much lower power, as shown in our study.
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Background
With the completion of the human genome project, sub-
stantial effort has been made to identify all common
genetic variations, such as single nucleotide polymor-
phisms (SNPs), from different populations in order to
have a detailed understanding of heritable variation in the
human genome. While millions of SNPs have been iden-
tified, a grand challenge in the post genomic era is to
develop robust strategies for identifying genetic contribu-
tions to complex traits that are important to human
health, using SNPs as genetic markers for whole genome-
scale wide analyses or fine-scale mapping. Complex traits,
including most common diseases and many continuously
distributed quantitative traits, are usually determined by
multiple genetic and environmental factors, and poten-
tially gene-gene interactions and gene-environment inter-
actions. The challenge of identifying and fine-mapping
genes underlying complex traits arises for many reasons,
including the complexity of the genetic architecture of a
trait, the small genetic effects which require a very large
sample size, the difficulty of defining appropriate pheno-
types, and the lack of effective approaches, among others.
Nevertheless, vigorous progress has been made in advanc-
ing the understanding of the haplotype structure of
human populations and in developing novel methodolo-
gies for genomic association mapping of disease genes
using haplotype information. For case-control designs,
the key assumption underlying haplotype mapping is the
nonrandom association of alleles in disease haplotypes
around the disease genes. The haplotypes from cases are
expected to be more similar than haplotypes from con-
trols in the regions near the disease genes. Various statisti-
cal methods (e.g., [10,19,21,22,29]) have been proposed
to take advantage of information about shared haplotype
segments instead of individual markers because the
former type of information may provide higher power
and greater accuracy. Strategies inspired by data mining
techniques (e.g., [18,28]) have also been proposed as
alternatives to model-based statistical methods.

In addition to binary traits, many continuously distrib-
uted quantitative traits are of primary clinical and health
significance. Examples of such quantitative traits are
blood pressure, cholesterol level, and bone mineral den-
sity. In many cases, the disease status of an individual is
actually defined based on some threshold value of a par-
ticular quantitative trait. The traditional linkage methods
for QTL mapping are primarily based on family data (see
[15] for a more detailed treatment of QTL mapping). The
extension of TDT-type (i.e., Transmission Disequilibrium
Test) methods to QTL association mapping [3,8,9] also
requires family information. The development of associa-
tion mapping methods using unrelated individuals for
quantitative traits has received relatively less attention
[12]. But quantitative values can actually provide much

more detailed information than the disease status alone
and are collected routinely in most studies. Owing to the
increasing interest in genomic association studies of com-
plex diseases, there are also increasingly available quanti-
tative data from unrelated individuals. Therefore, there is
a great need for the development of novel algorithms that
could directly map quantitative traits using population
samples. In a recent paper, we described a novel algorith-
mic approach for haplotype mapping of disease genes that
utilizes a clustering algorithm([18]). We reason that dis-
ease susceptibility (DS) allele embedded haplotypes, espe-
cially mutants of recent origin, tend to be close to each
other due to linkage disequilibrium, while other haplo-
types can be regarded as random noise sampled from the
haplotype space. The algorithm considers haplotype seg-
ments as data points in a high dimensional space. Clusters
are then identified using a density-based clustering algo-
rithm [11]. Pearson χ2 statistic or a Z-score based on the
numbers of cases and controls in a cluster can be used as
an indicator of the degree of association between the clus-
ter and the disease under study. We introduced the con-
cept of "density-based" clusters that was shown to be
critical to its effectiveness, owing to the nature of the noisy
data. In this study, we extend our previous method to QTL
association mapping based on haplotype information
from unrelated individuals. Clusters will be identified first
using the density-based clustering algorithm. The degree
of association of a cluster and the quantitative trait is
measured by a Q-score, which is based on the t-statistic for
testing the mean difference between two groups. The
method can also be incorporated into the one-way
ANCOVA framework so that other factors and covariates
can be easily included in the analysis. The method is non-
parametric in nature, because the significance of the pre-
dictions will be validated using permutation tests. Like its
counterpart for disease mapping, the effectiveness of the
approach depends on the similarity measure of haplotype
fragments used in the clustering algorithm. We use the
haplotype similarity measure proposed in [18], which
both captures the sharing of haplotype segments due to
historical recombination events and incorporates recent
mutations and/or genotype errors.

To systematically evaluate the proposed algorithm, we
perform extensive experimental studies using simulated
and real data sets. We investigate the power of the pro-
posed algorithm, defined as the proportion of times a sig-
nificant association is detected from n (n = 200 in our
experiments) independent replicates, and compare our
method to two other statistical approaches based on sin-
gle marker information. One is the most commonly used
association test based on allele states of a single SNP
(SSA), which is actually a one-way ANOVA analysis for
quantitative traits. The other is a nonparametric test based
on the Mann-Whitney U-test (MWU) [24]. It has been
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shown [4] that this rank-based statistic has better perform-
ance than SSA in detecting QTL associations. In addition
to power, we are also interested in the localization accu-
racy of each method, measured by the distance from the
SNP with the greatest score to the true QTN. To generate
simulated data sets, we have adopted the coalescent
model of evolution. The coalescent model provides an
efficient way of investigating the effects of population
parameters, such as recombination rates, on the power of
an association method and has been commonly used in
studying the properties of association approaches
[4,20,31]. For our purpose, a candidate gene region with
different numbers of SNPs will be generated using realistic
recombination rates and mutation rates. A causative DNA
polymorphism will be selected randomly from all the
SNPs. The effect of the QTN contributes a varying propor-
tion of the total variation of a quantitative trait. The sim-
ulation based on the coalescent theory is a great tool for
investigating the influence of population parameters on
the power of new approaches in a controlled manner, but
it might not capture the true characteristics of the LD in
human populations. We therefore further test the pro-
posed algorithm on empirical (rather than simulated)
human data. We take the phased genotype data of all par-
ents from [6], and compare our algorithm with the other
two methods on the complete data set as well as on
selected tag SNPs. Results on both simulated and real data
sets will be presented in the next section, followed by
some discussion on possible future directions. The details
of the algorithm are presented in the Method section.

Results
Model for generating simulated data
The coalescent model has been widely used in assessing
the power of association tests [4,20,31]. It assumes a ran-
dom mating population with selectively neutral muta-
tions and an infinite-sites model. It is believed that the
model could generate samples that are reasonable approx-
imations of human variation with respect to the density,
number and frequency spectrum of SNPs, and the pattern
of linkage disequilibrium between them [4,20], although
it involves some simplifications in mimicking human
populations. In our simulation, the MS program from
[14] was utilized to generate a large number of independ-
ent replicates of genealogies and SNPs under a wide range
of population parameters. To examine the power of the
three methods, four parameters that have potential effects
on the power were investigated, namely, the sample size,
the QTN effect, the recombination rate, and the density or
number of SNPs. The size of the region for fine mapping
was fixed to be 50 kb, with an effective population size
(Ne) of 106. The total number of SNPs was set to be 50 or
100, corresponding to the density of 1 SNP per 1000 or
500 base pairs, respectively. Only SNPs with minor allele
frequency larger than 5% were included in the calculation,

so the actual number of SNPs (n) in each replicate varied.
Haploid data were used in the study to avoid the time
needed for haplotype inference. Similar results can be
expected to hold for diploid data under the additive
model. The sample sizes (m) considered were 250, 500,
750. Recombination rate has a strong influence on the
power of LD-based tests. We used realistic values of
recombination rates based on the data of human popula-
tions. The evolutionary recombination rates (c) between
adjacent sites considered were 0.5E-9, 1E-9, 2E-9 per indi-
vidual per generation, corresponding to a rate (u) of 100,
200, 400 at the population level in the region (u = 4Nec ×
size of the region), respectively. After each replicate was
generated, a SNP was randomly chosen as a QTN, and was
deleted from the data before further analysis. The effect of
the QTN (π) was defined as the proportion of phenotypic
variation attributable to the QTN. In most complex traits
in human, a realistic estimate of π for a single QTN is usu-
ally less than 0.1. The power of any statistical approaches
to detect such a QTN could be quite low [20]. In our
study, the contribution of the QTN to the total variation
of the quantitative trait was set to 0.1, 0.05, and 0 (for type
I error). We have taken conservative values of π because
they are more likely to represent reality, and the power of
detecting associations with larger π would be higher. The
model used to generate the phenotypic distribution was
similar to that used in [4,20]. Details will be illustrated in
the Method section. For each parameter combination,
200 independent replicates were generated. For each rep-
licate, a permutation test with 1000 shuffles was per-
formed to obtain the experimentwise significate level [5].

HapMiner parameters
There are five parameters that need to be specified in Hap-
Miner. It has been shown that HapMiner is quite robust
and has consistent performance across a wide range of
parameter values in disease gene mapping [18]. In this
study, the two weight functions were assigned to be the
strength of pairwise linkage disequilibrium measured by
D', for the reasons to be discussed in the Method section.
The haplotype segment length was seven for both the sim-
ulated data and the real data with complete SNPs. The
length was three for the real data with tag SNPs. The other
two parameters for the clustering algorithm took their
default values.

Type I error
To assess the power of different approaches of detecting
significant associations between SNPs and traits, it is
important to have a proper control of false positive dis-
coveries due to chance (i.e., type I errors). In this study, we
set the error rate to be 0.05. The false positive rate of each
method was estimated as the proportion of significant
associations reported in 200 independent replicates for
each parameter combination while keeping the contribu-
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tion of the QTN to be 0. All three methods have correct
type I error rates. The average false positive rates (and their
standard errors) over all parameter combinations tested
(i.e., sample size, number of typed SNPs, recombination
rate) for HapMiner, SSA and MWU are 0.028 (0.0034),
0.045 (0.0047) and 0.022 (0.0027), respectively.

The power of different methods
It is well known that a QTN can be easily detected by any
(reasonable) method if it contributes a large fraction of
the total variation in a phenotype, or if a very large sample
size has been used. But in reality, for most complex traits,
the contribution of a QTN to the phenotypic value is usu-
ally less than 10% of the total variance. On the other
hand, the sample size in most studies is in the range of
hundreds. In this study, we compare the power of the
three methods under realistic assumptions that the QTN
effect is not greater than 10% and that the sample size is
not larger than 750 individuals.

The QTN effects and the sample sizes
Figure 1 depicts the power of the three methods to detect
significant associations when the QTN accounts for 10%
and 5% of the total variation in phenotype, averaged over
all other parameters such as recombination rates and the
number of SNPs. As expected, the power of all three meth-
ods increases with the sample size and with increase of the
QTN effect. These two factors have a bigger influence on
power than the other factors. HapMiner and SSA achieve
much higher power than the rank-based method (MWU)
across all the parameters tested, demonstrating that much
information is lost by only considering rank orders, and
MWU should not be the choice in such an analysis. Hap-
Miner is more powerful than SSA when the sample size is
larger than 500. Otherwise, the two methods are compa-
rable. The differences also depend on other parameters,
such as recombination rates and marker densities, and
will be discussed shortly. But in general, the power can be
quite low (<50%) for all the methods if the sample size is
smaller than 250 for both QTN effects. Even for a sample
size of 750 individuals and with π = 10%, the average

power of the three methods are only 81.3% (HapMiner),
71.3% (SSA) and 45.8% (MWU) (Figure 1). The values of
the standard errors of power for both HapMiner and SSA
are similar (around 0.05, not shown in Figure 1). This
value is relatively large because the power of both meth-
ods can be quite different for different recombination
rates or marker densities. Nevertheless, among the 36 dif-
ferent parameter combinations with the QTN effect of
10%, the power of HapMiner is higher than that of SSA in
33 cases with the largest difference of 13.5% (Table 1). In
summary, for many quantitative traits with realistic
effects, a larger sample size is necessary in real data analy-
ses. In the following, we will mainly focus on the results
based on 750 individuals with the QTN effect of 10%.

Recombination rates
The power of all three methods decreases with increase in
the recombination rate (Figures 2, 3). This is not surpris-
ing because linkage disequilibrium breaks down more
rapidly with larger recombination rates. HapMiner is

Power vs Sample sizeFigure 1
Power vs Sample size. The power of three methods as a 
function of sample sizes with two different QTN effects. Each 
point is the average power over all the recombination rates 
and different numbers of SNPs.
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Table 1: Power of HapMiner and SSA (π = 0.1). The power of HapMiner and SSA across all the parameter combinations when the 
QTN effect is 0.1.

Sample size # of SNPs 40.5 19.8

Rec. rate 100 200 400 100 200 400

750 HapMiner 95.0 88.0 78.5 93.5 73.5 59.5
SSA 95.0 83.0 68.5 80.0 66.0 48.5

500 HapMiner 90.5 80.0 59.0 82.0 69.5 47.0
SSA 87.0 78.5 57.5 76.0 58.5 38.0

250 HapMiner 62.0 53.5 43.5 58.0 36.5 21.5
SSA 62.0 54.5 40.0 59.5 36.5 32.0
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more robust than the other two methods. The power of
HapMiner has a smaller decrease than that of SSA if the
density of the SNPs is high (Figure 2). HapMiner still con-
sistently outperforms SSA across all the recombination
rates for both marker densities when π = 0.1 (Figure 2, 3).
The two methods achieve similar power when π = 0.05 for
all recombination rates (Figure 2, 3). Recent human
experimental data [6,13] indicate that the human genome
can be partitioned into blocks of various lengths (tens to
hundreds of kilobases) such that, within each block, there
is no or little evidence of historical recombination events.
In such regions with low recombination rates, it is not
necessary to genotype every SNP. A small subset of tag

SNPs can be used to reduce genotyping efforts without
losing much information. Our results suggest that, in such
a case, HapMiner has more advantages than SSA. For
example, by using about half of the SNPs in the region
with recombination rate of 100 (Figures 2, 3), the power
of SSA dropped 15% (from 95.0% to 80.0%) while Hap-
Miner only dropped 1.5% (from 95.0% to 93.5%).

Marker density
The power of all three methods increases with increase in
the number of typed SNPs. Figure 4 compares the power
of the three methods when the region has different marker
densities with the recombination rates being binned
together. Figures 5 and 6 show the power of HapMiner
and SSA with different marker densities for different
recombination rates. For a small recombination rate (u =
100), the power of HapMiner only decreases little when
the number of SNPs decreases by half, while SSA deterio-
rates much more. When the recombination rates are large
(i.e., u = 200, 400), HapMiner gains more power than SSA
on increasing the marker density. Overall, the increase of
power for both methods is only small to modest when the
number of SNPs is doubled. Therefore if resources are lim-
ited and the total number of genotypes to be typed (the
number of individuals times the number of SNPs) is fixed
in a given region for fine mapping, it is more desirable to
have a large number of individuals with modest coverage.
On the other hand, dense SNPs may provide more accu-
rate information on location and this type of effect will be
examined in the next subsection.

Power vs Marker densityFigure 4
Power vs Marker density. The power of three methods as 
a function of the marker density, average over three recom-
bination rates. The sample size is 750 and the QTN effect π 
= 0.1. The number of markers is the average number of SNPs 
(allele frequency ≥ 5%) over 200 replicates.
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Power vs Recombination rate (1)Figure 2
Power vs Recombination rate (1). The power of three 
methods as a function of recombination rates when the sam-
ple size is 750. The average number of SNPs is 40.
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Power vs Recombination rate (2)Figure 3
Power vs Recombination rate (2). The power of three 
methods as a function of recombination rates when the sam-
ple size is 750. The average number of SNPs is 20.
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Localization accuracy
We also investigate the prediction accuracy for each data
set, when the identified association is significant, by tak-
ing the SNP with the highest score as the predicted QTN.
Our simulation results show that the predictions are
rather accurate for all three methods when associations
are significant, especially when the sample size is large
(i.e., 750). HapMiner performs consistently better than
the other two methods. With high density markers, where
the average number of SNPs in the analysis (with the
minor allele frequency larger than 5%) is about 40.5 and
the average marker interval distance is around 0.025, (i.e.,
2.5% of the length of the region), the prediction errors of
HapMiner are around 0.04 (within the range of 0.030 to
0.042). The accuracy increases with increase of the recom-
bination rates. The predictions of the other two methods
are also reasonably accurate (SSA: 0.040–0.053, MWU:
0.038–0.079). But no obvious trends are observed for
these two methods when the recombination rate
increases. When the marker interval distance is around
0.051 (i.e., around 19.8 markers in the region), the abso-
lute values of prediction errors are larger than those with
dense markers. But in terms of how many markers away
the predicted positions are from the true QTNs, the results
are comparable in these two cases. The prediction accu-
racy does not decrease substantially when the sample size
decrease, or the QTN effect decrease, which illustrates that
these two factors have most of their influence on power.
Higher marker density improves the prediction accuracy
in terms of absolute distances because the highest preci-
sion possible is half of the average marker interval dis-
tance. High recombination rates might give more accurate
results, but with the risk of reduced power. The methods
can be used as prediction tools because, under the simu-

lated model, the association of SNPs with phenotype is
mainly due to the linkage of the SNPs and the QTN. More
investigations are needed for more complex population
models.

Results based on human data
The simulation based on coalescent theory might not cap-
ture the true property of LD in human populations owing
to its assumptions of a simplified population structure
and demographic history. We further test the three meth-
ods on empirical human data taken from [6]. The data
consist of 129 trios in a region of 500 kb at 5q31 that is
implicated as containing a genetic risk factor for Crohn
disease. There is a total 103 SNPs with minor allele fre-
quency > 5%. The whole region shows a picture of discrete
haplotype blocks with limited diversity within each block,
suggesting great information redundancy. A substantially
smaller subset of tag SNPs should be enough for associa-
tion studies. We take the phased genotype data of all par-
ents (in total 516 haplotypes) and mimic a two-stage
study design for association mapping. At the first stage,
only a small fraction of the total haplotypes is available to
us, with all the SNPs. In this study, we randomly choose
150 haplotypes (around 30%) from the total of 516 hap-
lotypes. The top 25 tag SNPs (around 25% of all the SNPs)
are then selected using the online program Tagger [27],
which has been demonstrated to be effective for SNP
selection [7]. In the second stage, all the haplotypes with
tag SNPs are then used in the power analysis. We ran-
domly select a SNP from the tag SNPs as the QTN and the
effect is set to be 0.1. A trait value for each haplotype is
then generated according to the allele state of the QTN
and the same phenotypic model as in the simulated data.
The QTN is removed before further analyses. There are

Power of SSA with different recombination ratesFigure 6
Power of SSA with different recombination rates. The 
power of SSA with different marker densities across different 
recombination rates.
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Power of HapMiner with different recombination 
rates. The power of HapMiner with different marker densi-
ties across different recombination rates.
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one hundred runs on each such data set and the power is
defined as the proportion detecting significant associa-
tions. Table 2 summarizes the power of the three methods
and the total numbers of genotypes screened under the
two study designs. The two-stage design using tag SNPs
can save more than half of the genotyping cost compared
to the design with all SNPs. The power of HapMiner is
almost the same for the two designs (from 88% to 87%).
The power of SSA drops 9%, although it performs better
than HapMiner when using all the SNPs. A possible expla-
nation is that some SNPs are in almost complete LD with
the QTN. In this case, taking the average over a haplotype
segment like HapMiner does may actually deteriorate the
power. MWU achieves better performance using tag SNPs
than using all the SNPs. The reason for this is probably
because the number of multiple tests for tag SNPs is much
smaller than that for all SNPs. But its power is much lower
than SSA and HapMiner. The results demonstrate that our
haplotype-based approach has higher power when using
tag SNPs than SSA and MWU, and should be used in stud-
ies with a two-stage design.

Discussion
In this paper, we extend our previous haplotype-based
association mapping method to quantitative traits. The
algorithm has been implemented in our existing software
called HapMiner. Extensive simulation results illustrate
that HapMiner is more robust and achieves higher power
than two other statistical approaches. The two methods
(SSA and MWU) were chosen because of their popularity
and their performance in previous studies [4]. We have
not compared HapMiner with other haplotype-based
approaches because of the lack of availability of existing
programs for haplotype-based QTL association mapping
using population samples.

In reality, most complex traits are the product of joint
gene-environment action. The environmental factors may
include, for example, smoking habit, drinking habit,
times of exercise per week, special diet, among many oth-
ers. Instead of using the t-based Q-score, we can easily
incorporate the clustering algorithm into the framework
of an ANCOVA analysis, thus taking into account environ-
mental factors as well as gender, age, etc. as covariates into
our haplotype-based association mapping model. More
specifically, the marker information (all haplotypes) is
taken as one independent variable, and all clusters (plus

one more group formed by all random noise) are taken as
the groups of that variable. ANCOVA (and a F-statistic) is
used to test if the means of the groups are different
enough not to have occurred by chance, with confirma-
tion using a permutation test. If the result is significant,
multiple comparison tests [24] can be employed to fur-
ther test which groups/clusters are significantly different.
By incorporating the clustering algorithm into ANCOVA
framework, our approach has the potential to deal with
locus or allelic heterogeneity. Because HapMiner can
return multiple clusters at each marker, each of the clus-
ters may represent a single ancestral mutation event. In
such a case, ANCOVA (and an F-statistic) simultaneously
tests if the mean values of different clusters and the group
of random noise are the same. If the null hypothesis is
rejected, multiple comparison tests [24] can be employed
to further test which clusters are significantly different
from the group of random noise. But a new permutation
schedule is needed in this case and will be investigated in
the future.

The method presented here assumes that haplotype infor-
mation on each individual is available, which in general
can be inferred based on genotype data using currently
available programs (e.g. Haplotyper [23], Phase [26] for
case-control data, or Genehunter [16], PedPhase [17] for
case-parent data). The mapping accuracy directly depends
on the quality of the haplotype inference. The trait value,
which is the characteristic of an individual, is assigned to
a pair of haplotypes, and the two haplotypes from one
individual are assumed to be independent. All these fac-
tors may potentially compromise the effectiveness of the
algorithm. An alternative to the use of inferred haplotypes
is to calculate similarity/distance based on genotype vec-
tors instead of haplotype segments. One way to extend the
algorithm to genotype vectors is to consider the number
of alleles that are identical in state (IIS) at each locus. The
pair-wise similarity between genotype vectors can be
defined by counting the number of alleles that are IIS and
properly weighted. The clustering algorithm can then be
applied to the genotype vector similarity matrix in the
same way as we did before on the haplotype similarity
matrix. But our preliminary results have shown that the
method based on genotype vectors is not effective. On the
other hand, it should also be noted that further (asymp-
totically) independent information is available in these
vectors in the form of departure from Hardy-Weinberg

Table 2: Comparison of the three methods on the real data set. The power of the three methods when using all SNPs or using tag 
SNPs only. The numbers in parentheses are the total numbers of genotypes screened for the two designs.

Design (# of Genotypes) HapMiner SSA MWU

All SNPs (26574) 88% 93% 33%
Tag SNPs (12300) 87% 84% 45%
Page 7 of 11
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equilibrium [25], and using this information may make
the test more powerful. Another possible extension is that,
for each individual, we consider multiple haplotype pairs
that have high probability and are consistent with the gen-
otypes. Further investigation will be needed on how to
incorporate Hardy-Weinberg disequilibrium and/or the
uncertainty during haplotype inference.

Marker selection is one key issue that will facilitate the
process of identifying genetic contributions to complex
traits. A number of methods have been proposed for iden-
tifying the subset with the minimum number of tag SNPs
according to different metrics [6,13,30]. So the set of tag
SNPs obtained by different methods may also be differ-
ent. The discussion of the efficiency and power of different
tag SNP selection approaches itself may require a separate
paper. So in this paper, we have only considered different
marker density in the simulated data and only one tag
SNP selection method in the real data analysis. In the case
where the haplotype block structure in a region is known
in advance, it is also possible to take into consideration
such prior knowledge. Instead of using the sliding win-
dow approach, one may perform tests block by block.

The Q score is based on the t statistic for comparison of
means of different groups. One assumption of the t statis-
tic is that it assumes equal variances in the two groups.
This might not hold because similar haplotypes are more
closely related and thus their trait values should be more
similar to each other than haplotypes not forming any
clusters. Therefore, it is expected that the variance of the
trait values inside a cluster will be smaller. In this case,
Welch's T statistic [24] for two independent samples with
different variances can be adopted. Our tests have shown
that the values of the two statistics are almost the same.
However, since we are using a permutation test to obtain
the significate level, and not the t distribution, the
assumption of equal variances is not an issue for our algo-
rithm.

It is well known that the spectrum of allele frequencies is
also an important factor in determining the power of a
method. The effect of allele frequency in this study can be
easily seen from the model of generating phenotypic val-
ues in the Method section. With a low frequency, a QTN
actually has a large allele effect; while with an intermedi-
ate frequency, it will have a smaller allele effect. The
results presented in this paper comprise an average across
different allele frequencies because each QTN is randomly
chosen from all the SNPs with different frequencies.
Finally, it should be noted that the permutation test for
association is based on an exchangeability assumption. It
is therefore important to have a sample from an ethnically
homogeneous population or make allowance for the pos-
sibility of population stratification [26]. To what extent

this might be an important issue will be studied in a future
publication.

Conclusion
In summary, HapMiner can be complementary to the cur-
rent model-based statistical methods for QTL mapping
and will serve as a useful tool for geneticists to explore
their data. Our experimental results show that HapMiner
is more robust and achieves higher power in most cases
than two statistical approaches (SSA and MWU). The
rank-based statistic (MWU) has much lower power than
HapMiner and SSA, as shown in our study. In regions with
low recombination rates or with blocks between recombi-
nation hot spots, two-stage association mapping using tag
SNPs is an efficient study design to reduce genotyping cost
without losing too much power. With the availability of
HapMap data, such a design will gain much popularity in
the near future. In such cases, HapMiner is preferable to
SSA, as shown in this study, because haplotypes might
capture moderate LD between tag SNPs in different blocks
and haplotypes might represent some rare variants that
will be missed by methods based on single markers using
tag SNPs.

Methods
The algorithm for a quantitative trait works as follows.
The inputs to HapMiner are haplotypes, which can be
inferred computationally based on information of family
members or some population models for unrelated indi-
viduals. Both haplotypes of an individual take the same
phenotypic value. For each marker position, a haplotype
segment with certain length centered at the position is
considered. Clusters are identified based on some similar-
ity measure via a density-based clustering algorithm. For
each cluster, a Q-score that is based on the t-statistic is cal-
culated, representing the deviation of the phenotypic
mean of the cluster from the phenotypic mean of all other
samples. The Q-score can be used as an indicator of the
degree of association between the cluster and the pheno-
type. The effectiveness of the method depends on the sim-
ilarity measure of haplotype fragments, the clustering
algorithm and the Q-score. We will describe each of these
concepts shortly. The overall time complexity of our algo-
rithm is O(MN2), where M is the total number of marker
loci and N is the sample size, which is approximately in
the hundreds in most real datasets. The algorithm is effi-
cient for whole-genome screens, as shown in [18]. The
current study focuses on QTL fine mapping.

A haplotype sharing score
We have proposed a general haplotype similarity score in
[18]. Briefly speaking, it is a combination of two similarity
measures. One is the Hamming similarity and the other is
the longest common substring. Since the similarity of two
haplotype segments is defined with respect to a particular
Page 8 of 11
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marker locus, we have introduced two weight functions
based on the distance of a marker to the reference marker.
The similarity measure is robust against recent marker
mutations and genotyping/haplotyping errors, and it also
picks up partial sharing from a common ancestral haplo-
type due to historical recombination events. We adopted
the same similarity measure in the current study. In the
following, we only illustrate the concept using an exam-
ple. Detailed definition of the measure can be found in
[18]. Suppose there are four haplotypes: h1 = (11212), h2
= (12222), h3 = (11221), and h4 = (21222), and we want
to define similarities between h1 and h2, h3 and h4. If we
only count the number of common alleles (Hamming
similarity), both pairs have three common alleles, i.e.,
s(h1, h2) = s(h3, h4) = 3. But one might believe that h3 and
h4 are more closely related because they share a longer seg-
ment which is more likely to be inherited from a recent
common ancestor haplotype. If we define the similarity as
the length of the longest common interval around the
third locus in the middle, then s(h1, h2) = 0, s(h3, h4) = 2.
But if there is a genotyping error or a point mutation from
the ancestor haplotype at the second position of h1, the
similarity of h1 and h2 will be underestimated. So we
believe that, by combining these two measures, our simi-
larity measure is more robust than either of them. Further-
more, we define the similarity of a pair of haplotypes with
respect to each of the SNP positions. Weight functions can
be naturally formulated based on the distance to the refer-
ence SNP. In our previous paper [18], we required the
weight functions to be non-increasing functions of the
genetic/physical distance but left it to users to choose their
exact form. Another parameter that users must specify is
the haplotype segment length. Although previous results
[18] have shown HapMiner is robust to the selection of
these parameters, it is still difficult to argue which values
would be optimal. In this paper, we propose to use a pair-
wise linkage disequilibrium coefficient such as D'(x0, xk)
between a locus k and the reference locus 0 as weights.
HapMiner will automatically calculate the values of D' for
each data set so users do not need to try different weight
functions for different data sets. In addition, because the
expected value of D' decreases with increase in marker dis-
tance, varying haplotype segment lengths might only have
minimum influence on the final results in general,
because SNPs with large distances are expected to contrib-
ute much less than nearby SNPs. In addition, in many
studies, haplotype structures are actually defined based on
a linkage disequilibrium measure such as D'. So the pro-
posed new weights not only capture much information
within a block, they can also incorporate some moderate
linkage disequilibrium between blocks.

A density-based clustering algorithm
Clustering is a powerful tool for mining massive data. The
idea of assigning haplotypes to clusters for gene mapping

is promising and has been explored by many researchers
recently [10,18,19,22]. In the haplotype association map-
ping setup, we are interested in identifying haplotype clus-
ters that are strongly associated with the quantitative trait
under study. The goal is not to partition all the haplotypes
into some clusters. Neither do we try to build a cladog-
ram, because it is difficult to reconstruct the evolutionary
relationship for all the haplotypes. Instead, we believe
that for a quantitative trait locus with moderate heritabil-
ity, mutant allele embedded haplotypes should have high
similarity and their trait values may be significantly differ-
ent from the values associated with the remaining haplo-
types. A difficulty lies in the fact that, for many
quantitative traits, there are many loci contributing to the
trait but each only has small effects. Environmental influ-
ences further complicate the phenotype-genotype correla-
tion and any explicit model would have difficulty in
dealing with all the factors. We take the problem of find-
ing strongly-trait-associated haplotype clusters as the
problem of finding clusters from data with noisy back-
ground. We use the concept of "density-based clusters"
and adopt an algorithm called DBSCAN [11] with minor
modifications, which has been shown to be quite effective
for disease gene mapping [18]. More details about the
algorithm can be found in [11,18].

Assessing the degree of association

Analogous to the Z-score used in disease gene mapping
[18], we measure the degree of association with the trait
under study using a Q-score, which is actually a t-statistic
when we assume that the haplotypes in the cluster and the
remaining haplotypes are sampled from two different
populations. A large Q-score means strong association
between the cluster (actually, the haplotypes within the
cluster) and the trait. More specifically, let m denote the
number of haplotypes in the cluster and let n denote the

number of remaining haplotypes. Let c and  denote

the sample mean and variance of the m haplotypes within

the cluster and let r and  denote the sample mean

and variance of the n remaining haplotypes, respectively.
The Q-score of the cluster is defined as:

It is the scaled difference of population means from two
samples, evaluated using sample means and variances,
and follows approximately a t-distribution if we assume
the trait values within the cluster and outside the cluster
are independent, and both are normally distributed
within groups with identical variances. This homoscedas-
ticity assumption might not hold because similar haplo-
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types are more closely related, and thus their trait values
should be more similar to each other, than haplotypes not
forming any clusters. Therefore, it is expected that the var-
iance of the trait values inside a cluster will be smaller. In
this case, Welch's T test for two independent samples with
different variances can be adopted. Notice that the pro-
posed algorithm is non-parametric in nature and its sig-
nificate level is obtained via a permutation test. The t
distribution and the assumption of equal variances are
not used directly in the algorithm.

Permutation tests
The above algorithm takes a non-parametric framework to
minimize the number of assumptions about the evolu-
tionary history of the population, the genetic model of the
complex trait, and the distribution of the quantitative
value. Therefore, we generally do not assume the Q-score
follows a t distribution. To assess the significance of the
predicted gene position, a permutation test can be easily
performed by shuffling the phenotypes among all the
haplotypes to obtain an empirical p-value [5]. By ran-
domly shuffling the phenotype values, it is expected that
associations between haplotypes and the trait are broken.
The association mapping analysis is performed on each
shuffled data set and the values of the resulting statistics
recorded. Then, the process is repeated for a sufficiently
large number of times to mimic the permutation distribu-
tion of the original data. The proportion of the data sets
whose statistic values are equal to or more extreme than
the statistic produced by the original data set is regarded
as the empirical p-value. The proposed method is compu-
tationally efficient so that permutation testing can actu-
ally be done even for a whole genome scan. This
procedure also avoids the multiple testing problem that
limits the power of any statistical test on a whole genome
scale. The permutation test assumes an ethnically homo-
geneous population, or at least that the population can be
divided into ethnically homogeneous strata within which
the permutation can be done.

Model for generating phenotypic data
For each replicate, a set of haploid individuals is generated
from a fixed number of SNPs. A site with minor allele fre-
quency larger than 5% is randomly chosen as the QTN. In
generating the phenotypic values of each haploid individ-
ual, we adopt a distribution proposed in [20] using the
following formula,

where π is the proportion of variation attributable to the
QTN, pi is the allele frequency, zi follows the standard nor-
mal distribution, and Qi is the number of mutant alleles
(0 or 1). The distribution basically assumes that the herit-
ability due to this particular QTN is π and the proportion

of all other variation due to the environment or other
genes (under an additive model) is 1 - π. It can be seen
that the real allele effect of the QTN depends on both the
allele frequency and the heritability π. In our simulation,
the results are for the average across different allele fre-
quencies because each QTN is randomly selected for each
replicate.
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