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Chapter 1

Introduction

1.1 What’s new

We have implemented the QTL mapping method [2] in version 1.1 of HapMiner. In addition, we have

extended the types of weight functions. The two weight functions now can be assigned to different functions.

Pairwise linkage disequilibrium can also be used as the weight function. There are also some minor changes.

The permutation test will be automatically performed unless the number of permutation is 0. There is no

need to provide the number of SNPs and the number of individuals anymore. We also correct one bug in the

previous version regarding the statistics of the last locus.

1.2 Overview

HapMiner is a computer program for association mapping based on directly mining of the haplotypes via a

density-based clustering algorithm. HapMiner is well suited for gene fine mapping and efficient for whole-

genome screens. This document provides the following information about the software: brief description

about the methods, how to obtain, install, and run the software, how to set parameters and how to read the

results files. Details about the methods can be referred to [1, 2].

1.3 Algorithms

We briefly describe the idea of the algorithms in HapMiner for mapping qualitative trait. The framework is

the same for quantitative trait. HapMiner works as follows. A whole-genome screen for haplotype associa-

tion is performed by sliding a window with certain length. Within each window, clusters are identified based

on some similarity measure via a density-based clustering algorithm. The Pearsonχ2 statistic orZ-score

based on a contingency table derived from the numbers of case haplotypes and control haplotypes in a cluster
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6 CHAPTER 1. INTRODUCTION

can be used as an indicator of the degree of association between the cluster and disease. Both measures can

also be used as association/independence test statistics, properly adjusted (e.g., using Bonferroni correction)

for multiple tests. A statistical significance threshold can be chosen independent of the sample size and all

findings that exceed the threshold will be reported. In the current algorithm, we only use theZ-score as an

indicator of the degree of association. The effectiveness of the method depends on the similarity measure

of haplotype fragments used in the clustering algorithm. We will first describe the new haplotype similarity

measure.

A general haplotype (dis)similarity measure. The similarity of two haplotype segments is defined

with respect to a particular marker locus. Suppose that we focus on a marker at locus 0, with loci1, 2, . . . , r

on one side and−1,−2, . . . ,−l on the other side. Assume that the genetic/physical distance from any locus

to locus 0 is known and denoted asxk, where−l ≤ k ≤ r. A haplotypeh spanning this region is just an

(l + 1 + r)-dimensional vector and thekth dimension ofh, denoted ash(k), is the allele at locusk. For a

pair of haplotypeshi, hj , we define the similarity score ofhi, hj with respect to locus 0 as:

si,j =
r∑

k=−l

w1(xk)I(hi(k), hj(k)) +
r′∑

k=1

w2(xk) +
−l′∑

k=−1

w2(xk), (1.3.1)

whereI is the identity function,−l′ andr′ are two boundary loci such that the two haplotypeshi, hj are

identical between these two loci and different at both locus−l′−1 and locusr′+1. The weightsw1 andw2

are two decreasing functions so that the measure on each locus is weighted according to the distance from

locus 0. The choices of the weightsw1 andw2 will be discussed shortly.

The first summation in Equation 1.3.1 is a weighted measure of the number of alleles in common be-

tween haplotypeshi andhj in the region, which can be thought of as Hamming similarity. The remaining

summations form a weighted measure of the longest continuous interval of matching alleles around locus 0,

which has some resemblance to the notion of a longest common substring (p.p. 125 in [3]). This definition

is quite flexible and generalizes several similarity measures used in the literature [4]. For instance, by setting

w1 = 1 andw2 = 0, the measure becomes the counting measure described in [4]. The length measure in

the same article can be achieved by settingw1 = 0 andw2 = 1. This definition of haplotype similarity

is more powerful than the above two specialized measures and can be used for different types of markers

by choosing appropriate weighting functions. It has the strengths of both specialized measures. That is, it

is robust against recent marker mutations and genotyping/haplotyping errors, and it also apprehends partial

sharing from a common ancestral haplotype due to historical recombination events. Notice thatsi,i = sj,j ,

a distance metric between haplotypeshi andhj at marker locus 0 can be defined as:

di,j =
si,i − si,j

si,i
=

sj,j − si,j

sj,j
. (1.3.2)

The distance is normalized to the interval[0, 1] so it will not increase with the length of haplotypes.

The requirement for both weighting functionsw1 andw2 is that they must be decreasing functions. It

can be exponentially, quadratically, or linearly decreasing. It can also be a discrete function with its values
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defined only at marker positions. The user has the freedom of choosing the weighting function depending

on the marker density of the input data. The selection ofw1 andw2 in our simulation is basically a linear

functions since we are using dense markers. Missing alleles can be handled directly in the calculation of

similarity measure by either taking all the missing alleles as a new distinct allele, or imputing them first

according to allele frequencies in the sample. As an extension to the definition, when considering multiple

DS loci simultaneously, the overall distance is defined as an average of pairwise distances at each locus.

A density-based clustering algorithm. Clustering is a powerful tool for mining massive data. In the

haplotype association mapping setup, we are interested in identifying haplotype clusters that are strongly

associated with the disease under study. The goal is not to partition all the haplotypes into certain clusters.

Neither do we try to build a cladogram because of the difficulty of reconstructing the evolutionary relation-

ship for all the haplotypes. Instead, we believe that haplotypes from affected individuals are expected to be

more similar at the disease gene location than those from controls which are assumed to be random samples.

We do not expect control haplotypes to form any clusters except by chance. A difficulty lies in the fact that,

due to the existence of allele heterogeneity and phenocopies, some haplotypes from affected individuals do

not necessarily form a cluster. This is also a main reason why a gene mapping method using case-control

data would likely fail in reality if it assumes, explicitly or implicitly, that all or at least most affected in-

dividuals do have the same disease mutations. We take the problem of finding strongly disease associated

haplotype clusters as the problem of finding clusters from data with noise background. We use the concept

of “density-based clusters” and adopt an algorithm called DBSCAN [5] with minor modifications. In order

to keep the paper self-contained, we briefly introduce the DBSCAN algorithm in the context of haplotype

mapping.

There are two input parameters for DBSCAN. One is the radius of the interested neighborhoodε and the

other is a density thresholdMinPts. A haplotype is called acorehaplotype if there are more thanMinPts

haplotypes in itsε neighborhood. The haplotypes in theε neighborhood aredirectly reachablefrom the

core haplotype and a haplotype isreachablefrom a core haplotype if there is a chain of core haplotypes

between these two haplotypes where each is directly reachable from the preceding one. Two haplotypes are

density-connectedif there is a core haplotype such that both haplotypes are reachable from it. Adensity-

based clusterof haplotypes is a set of density-connected haplotypes with maximal density-reachability.

All the above definitions are with respect to the two parametersε andMinPts. DBSCAN examines every

haplotype and starts to construct a cluster once a core haplotype is found. It then iteratively collects directly

reachable haplotypes from a core haplotype, merging clusters when necessary. The process terminates when

all haplotypes have been examined. The clusters are then output and the haplotypes that do not belong to

any cluster are regarded as noise. More details about the algorithm can be found in [5].

Score of the degree of association.We measure the degree of association between a haplotype cluster

and the disease of interest usingZ-scores. Suppose that we are givenm case haplotypes andn control

haplotypes. Letm′ andn′ denote the number of case and control haplotypes in a cluster, respectively. A
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2× 2 contingency table can be constructed and theZ-score of the cluster is defined as:

Z =
m′/m− n′/n√

m′+n′
m+n (1− m′+n′

m+n )(1/m + 1/n)
. (1.3.3)

It is the weighted difference of relative frequencies of the case and control haplotypes in a cluster and follows

approximately a normal distribution if we assume haplotypes randomly occur in the cluster. A largeZ-score

means strong association between the cluster (actually, the haplotypes within the cluster) and the disease.

The cluster with the highest score is taken as the prediction for each marker. The score is regarded as the

point estimation of each marker locus and a consensus haplotype pattern or a haplotype profile based on

the cluster can be used as diseased associated pattern centered at the locus. The allele heterogeneity can be

naturally modelled by taking multiple clusters at each position if their scores are significant. To assess the

significance of the predicted disease clusters, a permutation test can be easily performed by shuffling the

disease labels.

The degree of association with quantitative traits.Analogous to theZ-score used in disease gene

mapping [1], we measure the degree of association with the trait under study using aQ-score, which is

actually at-statistic when we assume that the haplotypes in the cluster and the remaining haplotypes are

sampled from two different populations. A largeQ-score means strong association between the cluster

(actually, the haplotypes within the cluster) and the trait. More specifically, letm denote the number of

haplotypes in the cluster and letn denote the number of remaining haplotypes. Letµ̂c andσ̂2
c denote the

sample mean and variance of them haplotypes within the cluster and letµ̂r andσ̂2
r denote the sample mean

and variance of then remaining haplotypes, respectively. TheQ-score of the cluster is defined as:

Q =
(µ̂c − µ̂r)

√
m + n− 2√

(σ̂2
c + σ̂2

r )(1/m + 1/n)
. (1.3.4)

It is the scaled difference of population means from two samples, evaluated using sample means and vari-

ances, and follows approximately at-distribution if we assume the trait values within the cluster and outside

the cluster are independent, and both are normally distributed within groups with identical variances. This

homoscedasticity assumption might not hold because similar haplotypes are more closely related, and thus

their trait values should be more similar to each other, than haplotypes not forming any clusters. Therefore,

it is expected that the variance of the trait values inside a cluster will be smaller. In this case, Welch’sT test

for two independent samples with different variances can be adopted. Notice that the proposed algorithm is

non-parametric in nature and its significate level is obtained via a permutation test. Thet distribution and

the assumption of equal variances are not used directly in the algorithm.

The overall time complexity of our algorithm isO(MN2), whereM is the total number of marker loci

(or the number of all possible pairs of loci when studying a 2-gene disease) andN is the sample size which

is around hundreds in most real datasets. So, the algorithm is efficient for whole-genome screens.
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1.4 Platforms

HapMiner V1.1 has executable code for Windows and Linux, and other platforms may be available in the

future.
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Chapter 2

Running the software

2.1 Obtaining and installing the software

The HapMiner software and this document can be obtained at http://www.eecs.case.edu/˜jxl175/HapMiner.html.

Once downloading the software, the user could create a folder and uncompress the files under the newly cre-

ated folder. The user could use WinZip to unzip the file on Windows and use the command “tar -xzvf

HapMiner.tar.z ” to unzip the file on Linux.

2.2 File list

In addition to the executable file HapMiner.exe (HapMiner on Linux) and the user’s guide HapMinerRead-

MeV1.1.pdf, there are three more example files: “dgdata”, “qtldata”, and “parameter.txt”. The files “dgdata”

and “qtldata” contain simulated data of a disease gene and a quantitative trait, respectively. The file “para-

meter.txt” contains the parameters necessary to run HapMiner. The format of the files will be discussed in

details in Section 2.4.

2.3 Running the software

One can launch HapMiner on a Command Prompt (DOS) window on Windows by typing the following

command:

HapMiner.exe -option datafile parameterfile [distfile] .

Similarly, one can launch HapMiner by typing the following command on Linux terminal:

HapMiner -option datafile parameterfile [distfile] .

The above assumes that HapMiner is in the current directory. Otherwise, we need include the correct

path information in front of the executable file.

11
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There are 2 options in the current version, one for qualitative trait and one for quantitative trait. Different

options will invoke different algorithms as follows.

-s: qualitative trait (disease gene) mapping

-q: quantitative trait (QTL) mapping

2.4 Input files and data preparation

The first row of the input data file is the title row. Starting from the second row, each row represents an

individual. The title row specifies the meaning of each column. The first column is the individual ID,

followed by the affected status, ‘a’ indicates affected (case) haplotypes and ‘c’ indicates normal (control)

haplotypes, or the value of the quantitative trait. The remaining columns are marker alleles, represented by

non-negative integers, one allele each column. Zero stands for missing value.

The file “parameter.txt” contains important parameters used in HapMiner and the meanings of the pa-

rameters will be explained in details shortly. The file is organized in the following way. Each parameter

is specified by two consecutive rows. The first row is a tag and has the format “Pi”, where i is a number

indicating which parameter. The second row specify the value of each parameter. Currently, the file contains

6 parameters and an example file (parameter.txt) is provided.

P1

1 0.2

P2

0.25

P3

7

P4

1 -10 1

P5

1000

P6

1.0

The first parameter specifies the parameterε used in the clustering algorithm. The first row in the two-

row set is the tag “P1”. There are tow ways to set the value ofε. The first integer (either 1 or 2) in the second

row tells HapMiner which way to setε and the second parameter is the value. The first way to setε is to

specify the value ofε directly. Since the pairwise distances are within the range [0,1], one can specify the

neighborhood radiusε to be 0.2 for example. The other way to setε is to choose a percentile according to the
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distribution of all pairwise distances. For example the second row can be ”2 0.01”, which tells HapMiner to

choose the (lower) 1 percentile from the distribution of all pairwise distances as the value ofε.

The second has a tag row “P2” (and each parameter has a such tag row of “Pi” and we will not mention it

any more for the remainings). It specifies how the parameterMinPtsused in the clustering algorithm will be

chosen. Again, here we use the percentile concept to select the value ofMinPtsinstead of directly assigning

its value. We first calculate the number of neighbors (respect toε, which is chosen first) for every haplotype

and based on the distribution of the number of neighbors, we choose the (top) 25 percentile as the value of

MinPts.

The way to choose the values of these two parameters reflects some prior knowledge about the data, for

example, about the rate of phenocopy, allele heterogeneity,etc.The users may use the default values if lack

of such information and may try different values to see the changes of the results.

The third parameter sets the length of haplotype segment (the width of the sliding window). This para-

meter can be chosen based on the marker interval distances. The default value is set to be 7 markers. When

choosing the segment length, it is useful to think about the weight functions simultaneously. The fourth

parameter specifies the way to choose the two weight functions used in formulae 1.3.1. In HapMiner V1.1,

there are six ways to set the weight functions, indicated by the value of the first integer (denoted ast for

type). The total number of remaining parameters in this line depends on the value of the first integer. In

the first case (t = 1), both weight functions take the same exponential function of the formbeax and in the

second case (t = 2), both weight functions take the same linear function of the formax + b, where thex

is the genetic distance in Morgan of a marker to the central marker. In both cases, the second and the third

numbers are the value ofa andb, respectively. The valuea must be a negative number since both weight

functions must be decreasing functions. If the return value of the linear function is smaller than 0, the value

of the weight function is set to be 0. The marker interval distances can be read through the marker interval

distance file. By default, HapMiner assumes that the marker interval distance is 1 cM if no distance file is

supplied. HapMiner can also use pairwise LD as the weight functions, which can be specified by setting

t = 3. In this case, the second parameter in this line must be specified as 1, 2, or 3, representing three cases:

1) w1 = LD, w2 = 0; 2) w1 = 0, w2 = LD; 3) w1 = w2 = LD. Users may also specify different

functions forw1 andw2 by usingt = 4 (exponential) ort = 5 (linear). In this two cases, there are four

additional values in this line, representinga1, b1 anda2, b2 for w1 andw2. In other words, type 4 (t = 4)

will be the same as type 1 (t = 1) if a1 = a2 andb1 = b2. The last type (t = 6) can be used to select

constantw1 andw2. There are two additional binary integers in this line, corresponding to the values of

w1 andw2 respectively. For example, given an input like ”6 1 0”, HapMiner will usew1 = 1 andw0 = 0
(i.e., Hamming distance, or counting measure [4]). While the case ”6 0 1” represents the length of longest

continuous interval of matching alleles around a locus (similar as the length measure [4], but in HapMiner

the measure is with respect to a specific locus).

The fifth parameter is to control the times for a permutation test. In version 1.1, users do not need to

invoke the program using different options for permutation test. They only need to change the value of
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permutation times. It is set to be 1000 by default. If users do no need to perform a permutation test, its value

should be 0.

The sixth parameter is to control the output file. It is the threshold of theZ-score (orQ-score for QTL)

and only clusters withZ-score larger than the threshold will be output in the “output” file described in

section 2.5.

The file about the marker interval distance is very simple and only contains one line. That is, the marker

interval distances in the same order of the marker alleles are separated by a space or a tab.

The input file can be prepared by using any file editors such as Notepad on Windows or Emacs or vi on

Linux. The data files can also be exported from a database system. There can be sets of data in the input

data file (for simulations), but they will use the same set of parameters. At the end of the input file, there is

an empty line. The format of the all the input file should be strictly followed.

2.5 Output files

HapMiner has two output files. If the input data file has the name “datafile”, one output file will be named as

“datafile-results” and the other file will be named as “output”. The “datafile-results” contains the score in-

formation for each marker position. There is one line for each marker and each line has six values for a qual-

itative trait, representing the genetic distance from the first position, marker index andZ-score,− log(p),
Z-score based on single marker and its− log(p) value, at the current position. The last line of the file

contains the positions with the largestZ-score (i.e. the prediction) by HapMiner and by the single SNP

association (χ2), together with their scores andp-values. The score profile figures in [1] are drawn based on

the information in this file. The file “output” contains all the clusters for every marker position such that their

Z-scores are larger than a predefined threshold (the parameter 6 in the parameter file). More specifically, for

each marker position, all the clusters withZ-score large than the threshold will be output one by one. For

each cluster, HapMiner outputs the ID of the cluster, followed by the haplotypes within the cluster. For each

haplotype, it outputs the individual ID, the affected status, whether it is a core haplotype and the haplotype

pattern centered at the current marker position where the segment length is as predefined. The last line of

a cluster reports the ChiSquare and theZ-score based on the number of case and control haplotypes in the

cluster, followed by the total number of haplotypes, total number of core haplotypes in the cluster, and the

significate level (− log(p)).

For QTL mapping, the structure of the two files (“datafile-results” and “output”) are the same as that

for disease gene mapping. But the items in each line for QTL mapping are different from that for disease

mapping. Each line in the “datafile-results” contains the score information with nine values for each marker

position. These values are the genetic distance from the first position, marker index andQ-score,− log(p),
T statistic based on single marker, Welch-T statistic and its degree of freedom, the Mann-Whitney U (MWU)

statistic and the Z-score associated with MWU [2]. The last line of the file contains the prediction results
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of three methods,i.e., HapMiner, T-test based on single SNPs, and MWU. For each method, we output the

predicted position, the statistic, its− log(p)-value and its permutationp-value.

2.6 Conventions and restrictions

There are some conventions and restrictions in the current version of HapMiner:

• The current version can only deal with SNP data. We will test the algorithms on multi-allelic data and

implement it in the next release.
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