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Abstract. Linkage disequilibrium (LD) mapping for complex diseases using
haplotypes has been intensively studied recently due to increased availability of
large-scale dense SNP (single nucleotide polymorphism) markers. Such an LD
mapping has many applications,e.g.finding disease-associated haplotypes and
predictingdisease susceptibility(DS) gene loci from a whole genome scan. In this
research, we develop a new algorithmic method for haplotype mapping based on a
density-based clustering algorithm, and propose a new haplotype (dis)similarity
measure. The mapping regards haplotype segments as data points in a high di-
mensional space. The DS gene embedded haplotypes, especially those mutants of
recent origin, tend to be close to each other due to linkage disequilibrium, while
other haplotypes can be regarded as random noise sampled from the haplotype
space. Clusters are then identified using a density-based clustering algorithm.
Pearsonχ2 statistic orZ-score based on the numbers of cases and controls in a
cluster can be used as an indicator of the degree of association between the cluster
and the disease under study. The method does not require any assumptions about
the evolutionary model or the inheritance patterns of the disease. The proposed
similarity measure is a generalization of several haplotype similarity measures
currently used in the literature. It is robust against recent mutations/genotype er-
rors and recombination events. Preliminary experimental results on an indepen-
dent simulated data set, including both SNP markers and microsatellite markers,
and on a real data set with the known DS gene location for type 1 diabetes show
that our method could predict gene locations with high accuracy, even when the
rate of phenocopies is high. This work is still in progress and more data are going
to be tested.
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case-control studies
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1 Introduction

With the completion of the Human Genome Project [4, 12], an (almost) complete human
genomic DNA sequence has become available, which is essential to the understanding
of the functions and characteristics of human genetic material. An important next step in
human genomics is to determine genetic variations among humans and the correlation
between genetic variations and phenotypic variations (such as disease status, quantita-
tive traits,etc.). To achieve this goal, an international collaboration, namely, the inter-
national HapMap project (http://www.hapmap.org ), was launched in October,
2002. The main objective of the HapMap project is to determine the haplotype struc-
ture of humans, in the hope that we can identify associations of common haplotypes
and common diseases by LD mapping using case-control data in the near future.

The rationale behind haplotype LD mapping is that when a disease mutated allele is
in tight linkage disequilibrium with alleles surrounding them, haplotypes from (or trans-
mitted to) affected individuals are expected to be more similar then those haplotypes
from unaffected individuals (or untransmitted haplotypes). Various statistical methods
have been proposed based on the degree of haplotype sharing in affected individuals
(for example [8, 11] among others). While haplotype based methods have shown higher
power and higher accuracy than traditional LD mapping using individual markers, most
of the methods need explicit assumptions on disease inheritance patterns and/or the evo-
lutionary models of the population under study, which are usually unknown in practice.
The effects of violations of these assumptions are unpredictable in general. Recently,
a nonparametric method called HPM (haplotype pattern mining) [10], inspired by data
mining methods, has been proposed to identify disease associated haplotype patterns
from case-control data. Toivonenet al. [10] showed that HPM does not require any as-
sumptions on the inheritance patterns and has good localization power, even when the
number of phenocopies is large. Later on, the method was extended to family data [13]
and to QTL (quantitative trait loci) mapping [9]. However, methods based on HPM
also have some limitations. First, by allowing “don’t care” symbols in a haplotype pat-
tern, many haplotypes have been counted multiple times. The effect of this duplicate
counting is unknown. Secondly, the frequency of identified haplotype patterns is used
to predict gene locations. But the value is closely related to the sample size, and the
statistical significance of the predicted gene location and obtained patterns cannot be
assessed. Thirdly, the results in [10] showed that the effect of using a permutation test
for HPM to predict gene locations is inconclusive. Finally, the authors of [10] showed in
their experimental results that the prediction accuracy may be worse with dense (SNP)
markers, which is undesirable and greatly limits the utility of the method.

In this study, we introduce a new haplotype mapping method based on a density-
based clustering algorithm [1], which also does not require any assumptions on the evo-
lutionary model or the inheritance patterns of the disease. The method works as follows.
Haplotypes across a set of markers are first cast to a high dimensional discrete space.
Clusters of haplotypes are then identified based on a new (dis)similarity measure via a
density-based clustering algorithm. Our similarity measure, to be defined in section 2,
generalizes several similarity measures in the literature and combines both Hamming
similarity and the longest common substring. It is very flexible and robust against re-
cent mutations/genotype errors and recombination events. Notice that the framework of
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our method is independent of the choice of haplotype similarity measure. The cluster
with the most haplotypes from affected individuals is more likely to contain haplotypes
with DS genes. By sliding a window of haplotype segments of certain length, a whole
genome scan for association can be performed given because our method has a good
scalability. The overall time complexity of our algorithm isO(MN2), whereM is the
total number of marker loci andN is the sample size which is around hundreds in most
real data sets. The Pearsonχ2 statistic orZ-score (which are equivalent [2]) based on a
contingency table derived from the numbers of case haplotypes and control haplotypes
in a cluster can be used as an indicator of the degree of association of the cluster and
the disease. Both measures can also be used as association/independence test statis-
tics, properly adjusted (for example, using Bonferroni correction) for multiple tests. A
statistical significance threshold can be chosen independent of the sample size and all
findings that exceed the threshold will be reported. In the current algorithm, we only use
theZ-score as an indicator of the degree of association. To truly reveal the performance
of our method, we use the simulated data set from [10] and some real data sets. Prelim-
inary experimental results on that simulated data and on the HLA real data set [3] with
known disease gene location for type 1 diabetes show that our method could predict the
gene location with high accuracy and its performance increases with denser markers.
More benchmark tests will be performed in the future.

2 The Method and Similarity Measure

Our method consists of steps. We first define a general similarity measure. A corre-
sponding distance measure can be defined based on the similarity measure in a straight-
forward way. Although the similarity is defined between two haplotypes, it is marker
specific in the sense that we measure the similarity between two haplotypes relative to
a specific marker. This is useful for whole genome association analysis because each
marker position can have its own similarity score. The meaning will be more clear after
we give the definition below. Clusters are then identified using a density-based clus-
tering algorithm based on pairwise haplotype distance. There is no need to distinguish
case and control haplotypes in these two steps. The labels of haplotypes are only used in
the third step in assessing the degree of association of obtained clusters and the cluster
with the largestZ-score is selected for each marker locus. For simplicity, we state the
procedure by focusing on one locus and its surrounding markers. The procedure can be
extended for a whole genome scan by sequentially examining each marker. At last, we
draw a graph of theZ-score of each marker along a chromosome map. The true gene
location(s) would be the one with the biggest score (or those with scores larger than a
predefined threshold). A consensus haplotype pattern or a haplotype profile based on
the cluster with the highest score will be reported as the disease associated pattern.

2.1 A general haplotype (dis)similarity measure

Suppose that we focus on a marker at locus 0, with loci1, 2, . . . , r on one side and
−1,−2, . . . ,−l on the other side. Assume that the genetic/physical distance from any
locus to locus 0 is known and denoted asxk, where−l ≤ k ≤ r. A haplotypeh



Haplotype mapping via clustering 3

spanning this region is just anl +1+ r-dimensional vector and thekth dimension ofh,
denoted ash(k), is the allele at locusk. For a pair of haplotypeshi, hj , we define the
similarity score ofhi, hj (focusing on locus 0) as:

si,j =
k=r∑

k=−l

w1(xk)I(hi(k), hj(k)) +
k=r′∑

k=1

w2(xk) +
k=−l′∑

k=−1

w2(xk), (1)

whereI is the identity function,−l′ andr′ are two boundary loci such that the two
haplotypeshi, hj are identical between these two loci and different at both locus−l′−1
and locusr′ + 1. The weightsw1 and w2 are two decreasing functions so that the
measure on each locus is weighted according to the distance from locus 0. The choices
of the weightsw1 andw2 will be discussed shortly.

The first summation in Equation 1 is a weighted measure of the number of alleles in
common between haplotypehi andhj in the region, which can be thought of Hamming
similarity. The remaining summations form a weighted measure of the longest contin-
uous interval of matching alleles around locus 0, which has some resemblance to the
longest common substring. This definition is quite flexible and generalize several simi-
larity measures used in the literature [11]. For instance, by settingw1 = 1 andw2 = 0,
the measure becomes the counting measure described in [11]. The length measure in the
same article can be achieved by settingw1 = 0 andw2 = 1. This definition of haplo-
type similarity is more powerful than the above two specialized measures from [11] and
can be used for different types of markers by choosing appropriate weighting functions.
It has the strengths of both specialized measures: it is robust against recent marker
mutations and genotyping/haplotyping errors, and it also apprehends partial sharing
from a common ancestral haplotype due to historical recombination events. Notice that
si,i = sj,j , a distance metric between haplotypeshi andhj at marker locus 0 can be
defined as:

di,j =
si,i − si,j

si,i
=

sj,j − si,j

sj,j
. (2)

The distance is normalized to the interval[0, 1] so it will not increase with the length of
haplotypes.

The requirement for both weighting functionsw1 andw2 is that they must be de-
creasing functions. It can be exponentially decreasing, quadratically decreasing or lin-
early decreasing. It can also be a discrete function and the values are only defined at
marker positions. The user has the freedom of choosing the weighting function depend-
ing on the marker density of the input data. The selection ofw1 andw2 in our simulation
is depicted in Figure 1. More work needs to be done on how to choose these functions
depending on genetic/physical distances of the input data.

2.2 A density-based clustering algorithm

As a general tool of mining useful information from massive data, clustering algorithms
have been widely used in many fields including computational biology, especially in
microarray data analysis. But as far as we know, no such methods have been used in
gene mapping. In the haplotype association mapping setup, we are interested in identi-
fying haplotype clusters that are strongly associated with the disease under study. This
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is unlike traditional clustering tasks that try to partition all the data points into certain
clusters or try to build a hierarchical cluster tree. Under the assumption that the control
haplotypes are randomly sampled, we do not expect them to form any clusters except
by chance. On the other hand, haplotypes from affected individuals are expected to be
more similar. But the difficulty lies in the fact that due to the phenomenon of phenocopy
(i.e. people who were diagnosed with certain disease do not actually have any genetic
material related to the disease), some haplotypes from affected individuals do not nec-
essarily form a cluster. This is also a main reason why a gene mapping method using
case-control data would likely fail in reality if it assumes, explicitly or implicitly, that
all or at least most affected individuals do have disease-related genetic material. The
key idea of our method is that we take the problem of finding strongly disease associ-
ated haplotype clusters as the problem of finding clusters from data with noise back-
ground. We use the concept of “density-based clusters” and adopt an algorithm called
DBSCAN [1] with minor modifications. In order to keep the paper self-contained, we
briefly introduce the DBSCAN algorithm in the context of haplotype mapping.

Before presenting the DBSCAN algorithm, we need some definitions. There are two
input parameters for DBSCAN. One is a radius of the interested neighborhoodε and the
other is a density thresholdMinPts. A haplotype is called acorehaplotype if there are
more thanMinPts haplotypes in itsε neighborhood. The haplotypes in theε neigh-
borhood aredirectly reachablefrom the core haplotype and a haplotype isreachable
from a core haplotype if there is a chain of core haplotypes between these two hap-
lotypes where each is directly reachable from the preceding one. Two haplotypes are
density-connectedif there is a core haplotype such that both haplotypes are reachable
from it. A density-based clusterof haplotypes is a set of density-connected haplotypes
with maximal density-reachability. All the above definitions are with respect to the two
parametersε andMinPts. DBSCAN examines every haplotype and starts to construct
a cluster once a core haplotype is found. It then iteratively collects directly reachable
haplotypes from a core haplotype, merging clusters when necessary. The process ter-
minates when all haplotypes have been examined. The clusters are then output and the
haplotypes that do not belong to any cluster are regarded as noise. More details about
the algorithm can be found in [1].

2.3 Score of the degree of association

We measure the degree of association between a haplotype cluster and the disease of
interest using theZ-score. Suppose that we are givenm case haplotypes andn control
haplotypes. Letm′ andn′ denote the number of case and control haplotypes in a cluster,
respectively. A2× 2 contingency table like Table 1 can be constructed. TheZ-score is
defined as:

Z =
m′/m− n′/n√

m′+n′
m+n (1− m′+n′

m+n )(1/m + 1/n)
. (3)

It is the weighted difference of relative frequencies of the case and control haplotypes
in a cluster and follows approximately a normal distribution if we assume haplotypes
randomly occur in the cluster. A largeZ-score means strong association of the cluster
(the haplotypes within the cluster) and the disease. The cluster with the highest score is
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Table 1.A contingency table built for a cluster C.

Case Control
Cluster C m′ n′

Remainingm−m′ n− n′

taken as the prediction for each marker. The score is regarded as the point estimation
of each marker locus and a consensus haplotype pattern or a haplotype profile based on
the cluster can be used as diseased associated pattern centered at the current locus.

3 Preliminary experimental results

3.1 Simulation studies

To evaluate the performance of the proposed method, we perform simulation studies
using the same data sets generated by Toivonenet al. [10] in their studies of the HPM
method. We take the independent simulated data because our method could be applied
to any population model or disease inheritance pattern, and the results obtained would
truly reveal the performance of our method.

The data sets correspond to a recently founded, relatively isolated founder sub-
population that grows from the initial size of 300 to about 100,000 individuals in 500
years. A pair of homologous chromosomes are simulated for each individual with ge-
netic length of 100 cM. Both microsatellite markers and SNP markers were simulated.
Markers are evenly spaced along the chromosome with interval lengths of 1 cM and 1/3
cM for microsatellite marker and SNP marker respectively. Thepolymorphism infor-
mation content(PIC) is set to 0.7 for microsatellite marker while allele frequency is set
to 0.5 for SNP marker, and the PIC is thus fixed at 0.4375. A dominant disease is mod-
eled. A small sample size with 200 control chromosomes and 200 case chromosomes
are selected in order to study the performance of the method in a realistic situation.
A high rate of phenocopy is used. The proportion of mutation-carrying chromosomes,
denoted byA, is either 2.5%, 5.0%, 7.5%, or 10.0%, corresponding to overall relative
risks ofλ = 1.2, 1.7, 2.7, 4.1, respectively. Mutations are not modeled directly but com-
pensated by introducing missing alleles randomly. A detailed description of simulation
procedure can be found in the paper of Toivonenet al. [10].

The weighting functionsw1 andw2 in the calculation of haplotype distance are de-
picted in Figure 1. The parameters (ε andMinPts) of DBSCAN clustering algorithm
can be chosen based on the distribution of the pairwise haplotype distance. In our ex-
periments, we setε as 0.2.MinPtsis dynamically determined by examining the number
of neighbors of each haplotype givenε. We sort the numbers in an ascending order
and selectMinPts to be the 3/4 quartile. We take the lengths of haplotype segments as
the same as in [10], which are 7 and 21 markers for microsatellite markers and SNP
markers, respectively, corresponding to 6-7 cM.
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Fig. 1. Weighting functions used in our simulation studies. MS stands for microsatellite marker.

3.2 Results on microsatellite data

Figure 2 shows a typicalZ-score distribution map for a data set. Two different haplotype
segment lengths are presented, marker interval with length 5 on the left and marker
interval with length 7 on the right. The true gene location is halfway between 5 and 6
(depicted by a vertical line in the figure) and the predicted gene location is at marker 5
for both length parameters, withZ-scores of 4.63 and 3.86 respectively. The two maps
in general agree with each other. The parameters associated with identified clusters and
haplotype patterns are summarized in Table 2. Figure 3 shows the predicted locations
(y-axis) and true locations (x-axis) on 100 data sets. It illustrates that the localization
accuracy of our method is very good withA = 10%.

In order to compare our results to the results of the HPM algorithm, we take the
same graph format to present the effect of phenocopies and sample sizes on the localiza-
tion accuracy as illustrated in Figure 4. Overall the performances of the two algorithms
are similar. For example, for a sample size of 200 (Figure 4 left versus Figure 2a in [10]),
the prediction errors are small forA = 10%, 7.5%, but the error increases rapidly when
A = 5%. Neither methods can successfully predict gene locations whenA drops to
2.5% (no significant difference from random guess). Our method is slightly better when
only considering errors (distances from the predicted location to the true gene location)
that are smaller than 4 cM. For both methods, doubling the sample size improves the
prediction accuracy greatly. Our method gives better results whenA = 10%, 7.5% in
this case. For example, forA = 10%, all localization errors are within 4.5 cM, while
only about 85% of HPM results achieve the same accuracy. HPM performs better when
A = 5%. None of the two methods could successfully handle data withA = 2.5%,
although the results are better than those with smaller sample sizes. The results show
that our method performs consistently with the value ofA. While the results of HPM
on A = 10% are worse than its results onA = 7.5% (Figure 2b in [10]). This type of
inconsistency also occurs in other results on HPM. For instance, the results (Figure 2c
in [10]) with complete data are worse than the results with 5% corrupted data (by ran-
domly changing 5% alleles), and the results with default parameters (Figure 2f in [10])
are worse than the results with long gaps.
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Fig. 2. The Z-score distribution for a data set with different haplotype segment lengths. Left:
segment length = 5 markers. Right: segment length = 7 markers.

Table 2.Haplotype clusters identified with different haplotype segment lengths.

LengthZ-score# haps# case haps# core hapsConsensus
5 4.63 24 23 23 66366
7 3.86 18 17 18 1663667

3.3 Results on SNP data

More and more SNP markers will be available for whole genome association studies of
common diseases using case-control data. Thus, it is necessary to test the performance
of our method on biallelic markers. Again we use the simulated SNP data from [10]
with 3 SNPs per cM. We also use the same haplotype segment length of 21 markers
corresponding to 7 cM. As expected, with denser SNP markers, our method performs
better than on microsatellite markers. For instance, withA = 10%, 98% of predicted
errors are smaller than 5 cM and 81% of predicted errors are smaller than 2 cM for SNP
markers and the results for microsatellite markers are 94% and 73% respectively. The
comparison between SNP markers and microsatellite markers without missing alleles
is not shown in [10]. With missing data (12.5% of alleles are randomly removed for
both methods), our method first imputes missing alleles based on allele frequencies in
order to calculate the pairwise haplotype distances. Figure 5 (right) shows the results
on missing data. Comparing to Figure 4 in [10], we have similar prediction accuracy in
the case ofA = 10% and better performance in the cases ofA = 7.5% and5%.

3.4 Results on a real HLA data

We have also tested our method on a real dataset, consisting of affected sib-pair families
with type 1 diabetes obtained from [3]. There are a total of 25 microsatellite markers
spanning a 14Mb region on chromosome 6 including the entire HLA complex, with
known type 1 diabetes-susceptibility locus. To test our algorithm, we first infer the
haplotypes from the genotype data using the integer linear programming (ILP) algo-
rithm [5] of our PedPhase program [6, 7]. We only take 89 families out of the original
385 families to run the ILP haplotyping algorithm. (The other families miss the geno-
types of all members in at least one locus.) For each such family, a haplotype from the
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Fig. 3. Predicted location versus true DS gene location.
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Fig. 4. The effects ofA and sample size (left: 200 individuals, right: 400 individuals) on the
prediction accuracy.

four parental haplotypes is assigned as a case haplotype if it appears in any of the two
affected children. Otherwise it is selected as a control chromosome. There are totally
213 case haplotypes and 143 control haplotypes. Since we have only 25 markers, the
length of haplotype segment is set to be 5. The results in Figure 6 show that our al-
gorithm could find the true gene location at marker D6S2444 with aZ-score of 3.72.
The associated cluster has 32 haplotypes and only 3 are from control haplotypes. The
number of core haplotypes is 27 and the consensus haplotype pattern is 61429.

4 Discussion

W have proposed a new haplotype similarity measure and developed a new method
for haplotype LD mapping using case-control data. The method is based on a density-
based clustering algorithm and makes no assumptions about the population evolutionary
model or disease inheritance patterns. Experimental results on simulated microsatel-
lite/SNP data sets and a real data set of type 1 diabetes disease show that the method
provides highly accurate predictions of the DS gene localization for realistic sample
sizes, even when the degree of phenocopies is high. The method not only provides a
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Fig. 5. Results on the SNP data set.
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Fig. 6. Results on the real HLA data.

new strategy for gene fine mapping and disease associated haplotype pattern identifica-
tion, it can also be used to perform whole genome association study with dense SNP
markers, given its good scalability.

Preliminary experiment results show that the power of our method consistently
increases with the sample size, higher proportion of mutated haplotypes, and denser
markers. More experiments will be performed in the future using different parameter
combinations. Permutation tests will be done by shuffling the disease status to assess
the significant level of predicted results. Extending the method to original genotype
data instead of using haplotype data can be achieved by defining a distance measure
between genotype segments. For instance, we can define a similarity measure by count-
ing the common alleles of each genotype, weighted by the genetic/physical distance
to the locus of interest. Our method is not limited to oligogenic diseases since we can
report all gene locations with Z-scores larger than a predefined threshold; but its ability
to detect multiple DS associated genes requires more investigation. Quantitative traits
that are important to human health can also be analyzed using our framework by first
discretizing the involved continuous measurements.
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